A partitioned conjugate gradient algorithm for lattice Green functions
International Nuclear Information System (INIS)
Bowler, K.C.; Kenway, R.D.; Pawley, G.S.; Wallace, D.J.
1984-01-01
Partitioning reduces by one the dimensionality of the lattice on which a propagator need be calculated using, for example, the conjugate gradient algorithm. Thus the quark propagator in lattice QCD may be determined by a computation on a single spatial hyperplane. For free fermions on a 16 3 x N lattice 2N-bit accuracy in the propagator is required to avoid rounding errors. (orig.)
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Error Estimation in Preconditioned Conjugate Gradients
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2005-01-01
Roč. 45, - (2005), s. 789-817 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB1030306 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned conjugate gradient method * error bounds * stopping criteria * evaluation of convergence * numerical stability * finite precision arithmetic * rounding errors Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2005
Evaluation of the Field Gradient Lattice Detector
AUTHOR|(CDS)2072983
A novel Micro Pattern Gas Detector, named the Field Gradient Lattice Detector, has been implemented using technologies available to CERN’s Printed Circuit Workshop. Numerous prototypes based on various materials were constructed in different geometries and their gain performance has been studied using 55Fe and 109Cd X-ray sources in Argon-CO2 gas mixtures. Two axis (2D) prototype structures have been shown to provide stable gains of around 1000 while a 3D design, based on the same polyimide foils used in other MPGD elements, holds a gain of 5000 for 8.9 keV X-rays even at high rates of 22 kHz/mm2. At a gain of 3100, the device has been tested up to 1 MHz/mm2 and shows no signs of degradation in performance. The energy resolution of the 3D-in-polyimide is modest, around 40% for 5.9 keV X-rays and 30% if the source is collimated indicating a variation in gain over the 3x3 cm2 active area. Having the most promise for future applications, the 3D-in-polyimide design has been selected for testing with a custom-bu...
Temperature-dependent errors in nuclear lattice simulations
International Nuclear Information System (INIS)
Lee, Dean; Thomson, Richard
2007-01-01
We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.
1999-01-01
Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition
Analyses of Lattice Traffic Flow Model on a Gradient Highway
International Nuclear Information System (INIS)
Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna
2014-01-01
The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.
1999-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Virotta, Francesco
2012-01-01
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as τ exp (a)∝a -5 , where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10)τ exp . This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N f =2 simulations using the Kaon decay constant f K as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS
International Nuclear Information System (INIS)
CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.
2004-01-01
The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model
Physical predictions from lattice QCD. Reducing systematic errors
International Nuclear Information System (INIS)
Pittori, C.
1994-01-01
Some recent developments in the theoretical understanding of lattice quantum chromodynamics and of its possible sources of systematic errors are reported, and a review of some of the latest Monte Carlo results for light quarks phenomenology is presented. A very general introduction on a quantum field theory on a discrete spacetime lattice is given, and the Monte Carlo methods which allow to compute many interesting physical quantities in the non-perturbative domain of strong interactions, is illustrated. (author). 17 refs., 3 figs., 3 tabs
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Virotta, Francesco
2012-02-21
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
International Nuclear Information System (INIS)
Burkitt, A.N.; Irving, A.C.
1988-01-01
Two of the methods that are widely used in lattice gauge theory calculations requiring inversion of the fermion matrix are the Lanczos and the conjugate gradient algorithms. Those algorithms are already known to be closely related. In fact for matrix inversion, in exact arithmetic, they give identical results at each iteration and are just alternative formulations of a single algorithm. This equivalence survives rounding errors. We give the identities between the coefficients of the two formulations, enabling many of the best features of them to be combined. (orig.)
Observations on discretization errors in twisted-mass lattice QCD
International Nuclear Information System (INIS)
Sharpe, Stephen R.
2005-01-01
I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime
Identifying Lattice, Orbit, And BPM Errors in PEP-II
International Nuclear Information System (INIS)
Decker, F.-J.; SLAC
2005-01-01
The PEP-II B-Factory is delivering peak luminosities of up to 9.2 · 10 33 1/cm 2 · l/s. This is very impressive especially considering our poor understanding of the lattice, absolute orbit and beam position monitor system (BPM). A few simple MATLAB programs were written to get lattice information, like betatron functions in a coupled machine (four all together) and the two dispersions, from the current machine and compare it the design. Big orbit deviations in the Low Energy Ring (LER) could be explained not by bad BPMs (only 3), but by many strong correctors (one corrector to fix four BPMs on average). Additionally these programs helped to uncover a sign error in the third order correction of the BPM system. Further analysis of the current information of the BPMs (sum of all buttons) indicates that there might be still more problematic BPMs
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-09-15
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco
2010-09-01
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
A Lattice Model for Bidirectional Pedestrian Flow on Gradient Road
International Nuclear Information System (INIS)
Ge Hong-Xia; Cheng Rong-Jun; Lo Siu-Ming
2014-01-01
Ramps and sloping roads appear everywhere in the built environment. It is obvious that the movement pattern of people in the sloping path may be different as compared with the pattern on level roads. Previously, most of the studies, especially the mathematical and simulation models, on pedestrian movement consider the flow at level routes. This study proposes a new lattice model for bidirectional pedestrian flow on gradient road. The stability condition is obtained by using linear stability theory. The nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, and the space of pedestrian flow is divided into three regions: the stable region, the metastable region, and the unstable region respectively. Furthermore, the time-dependent Ginzburg—Landan (TDGL) equation is deduced and solved through the reductive perturbation method. Finally, we present detailed results obtained from the model, and it is found that the stability of the model is enhanced in uphill situation while reduced in downhill situation with increasing slope. (general)
Thresholds of surface codes on the general lattice structures suffering biased error and loss
International Nuclear Information System (INIS)
Tokunaga, Yuuki; Fujii, Keisuke
2014-01-01
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries
Thresholds of surface codes on the general lattice structures suffering biased error and loss
Energy Technology Data Exchange (ETDEWEB)
Tokunaga, Yuuki [NTT Secure Platform Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino, Tokyo 180-8585, Japan and Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Fujii, Keisuke [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)
2014-12-04
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries.
On lattices, learning with errors, cryptography, and quantum
International Nuclear Information System (INIS)
Regev, O.
2004-01-01
Full Text:Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the 'learning from parity with error' problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies a quantum algorithm for SVP and SIVP. A main open question is whether this reduction can be made classical. Using the main result, we obtain a public-key cryptosystem whose hardness is based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public-key cryptosystems such as the one by Ajtai and Dwork were only based on unique-SVP, a special case of SVP. The new cryptosystem is much more efficient than previous cryptosystems: the public key is of size Ο((n 2 ) and encrypting a message increases its size by Ο((n) (in previous cryptosystems these values are Ο((n 4 ) and Ο(n 2 ), respectively)
Investigation of Ionospheric Spatial Gradients for Gagan Error Correction
Chandra, K. Ravi
In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.
Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study
Demiral, Murat
2014-07-01
In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..
Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study
Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.
2014-01-01
In this paper the texture evolution in nano-indentation experiments was investigated numerically. To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic metallic material. A hardening model was implemented to account for strain hardening of the involved slip systems. The surface topography around indents in different crystallographic orientations was compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice rotations in nano-indentation was critically assessed. © 2014 Elsevier B.V..
International Nuclear Information System (INIS)
Vasil'ev, A.P.; Krepkij, A.S.; Lukin, A.V.; Mikhal'kova, A.G.; Orlov, A.I.; Perezhogin, V.D.; Samojlova, L.Yu.; Sokolov, Yu.A.; Terekhin, V.A.; Chernukhin, Yu.I.
1991-01-01
Critical mass experiments were performed using assemblies which simulated one-dimensional lattice consisting of shielding containers with metal fissile materials. Calculations of the criticality of the above assemblies were carried out using the KLAN program with the BAS neutron constants. Errors in the calculations of the criticality for one-, two-, and three-dimensional lattices are estimated. 3 refs.; 1 tab
Design of the Zero Gradient Synchrotron Booster-II lattice
International Nuclear Information System (INIS)
Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.
1975-01-01
A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)
Hajabdollahi, Farzaneh; Premnath, Kannan N.
2018-05-01
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several
Errors due to the cylindrical cell approximation in lattice calculations
Energy Technology Data Exchange (ETDEWEB)
Newmarch, D A [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1960-06-15
It is shown that serious errors in fine structure calculations may arise through the use of the cylindrical cell approximation together with transport theory methods. The effect of this approximation is to overestimate the ratio of the flux in the moderator to the flux in the fuel. It is demonstrated that the use of the cylindrical cell approximation gives a flux in the moderator which is considerably higher than in the fuel, even when the cell dimensions in units of mean free path tend to zero; whereas, for the case of real cells (e.g. square or hexagonal), the flux ratio must tend to unity. It is also shown that, for cylindrical cells of any size, the ratio of the flux in the moderator to flux in the fuel tends to infinity as the total neutron cross section in the moderator tends to zero; whereas the ratio remains finite for real cells. (author)
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye
2013-10-01
Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Characterizing a four-qubit planar lattice for arbitrary error detection
Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias
2015-05-01
Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2002-01-01
Roč. 13, - (2002), s. 56-80 ISSN 1068-9613 R&D Projects: GA ČR GA201/02/0595 Institutional research plan: AV0Z1030915 Keywords : conjugate gradient method * Gauss kvadrature * evaluation of convergence * error bounds * finite precision arithmetic * rounding errors * loss of orthogonality Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2002 http://etna.mcs.kent.edu/volumes/2001-2010/vol13/abstract.php?vol=13&pages=56-80
Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)
2016-12-15
In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.
Beragoui, Manel; Aguir, Chadlia; Khalfaoui, Mohamed; Enciso, Eduardo; Torralvo, Maria José; Duclaux, Laurent; Reinert, Laurence; Vayer, Marylène; Ben Lamine, Abdelmottaleb
2015-03-01
The present work involves the study of bovine serum albumin adsorption onto five functionalized polystyrene lattices. The adsorption measurements have been carried out using a quartz crystal microbalance. Poly(styrene-co-itaconic acid) was found to be an effective adsorbent for bovine serum albumin molecule adsorption. The experimental isotherm data were analyzed using theoretical models based on a statistical physics approach, namely monolayer, double layer with two successive energy levels, finite multilayer, and modified Brunauer-Emmet-Teller. The equilibrium data were then analyzed using five different non-linear error analysis methods and it was found that the finite multilayer model best describes the protein adsorption data. Surface characteristics, i.e., surface charge density and number density of surface carboxyl groups, were used to investigate their effect on the adsorption capacity. The combination of the results obtained from the number of adsorbed layers, the number of adsorbed molecules per site, and the thickness of the adsorbed bovine serum albumin layer allows us to predict that the adsorption of this protein molecule can also be distinguished by monolayer or multilayer adsorption with end-on, side-on, and overlap conformations. The magnitudes of the calculated adsorption energy indicate that bovine serum albumin molecules are physisorbed onto the adsorbent lattices.
Energy Technology Data Exchange (ETDEWEB)
Dietrich, Jens; Boit, Christian [Department of Semiconductor Devices, Berlin University of Technology, Einsteinufer 19, 10587 Berlin (Germany); Abou-Ras, Daniel; Rissom, Thorsten; Unold, Thomas; Schock, Hans-Werner [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)
2011-07-01
Cu(In,Ga)Se{sub 2} absorber layers used in thin-film solar cells exhibit, when grown in a multi-stage process, compositional gradients of gallium and indium, dependent on process parameters such as the Ga content. The high lateral resolution of transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDX) allows the determination of lattice defects and the elemental concentrations at identical sample positions. Cross-sectional TEM samples of ZnO/CdS/Cu(In,Ga)Se{sub 2}/Mo/glass stacks were prepared with varying [Ga]/([In]+[Ga]) ratio in the absorber. The shape of the Ga distribution was measured by means of EDX and differs for the various [Ga]/([In]+[Ga]) ratios. Linear (dislocations) and planar defects (stacking faults, microtwins) were studied by means of TEM bright field and dark field images along the lengths of the Cu(In,Ga)Se{sub 2} layers. Strong Ga compositional gradients were found even within individual grains. It appears that these Ga gradients correlate with the occurrence of dislocation networks in large grains (diameter > 1 {mu}m). We assume that these dislocations compensate for lattice mismatch due to the change in composition in this area of the lattice.
Correcting the error in neutron moisture probe measurements caused by a water density gradient
International Nuclear Information System (INIS)
Wilson, D.J.
1988-01-01
If a neutron probe lies in or near a water density gradient, the probe may register a water density different to that at the measuring point. The effect of a thin stratum of soil containing an excess or depletion of water at various distances from a probe in an otherwise homogeneous system has been calculated, producing an 'importance' curve. The effect of these strata can be integrated over the soil region in close proximity to the probe resulting in the net effect of the presence of a water density gradient. In practice, the probe is scanned through the point of interest and the count rate at that point is corrected for the influence of the water density on each side of it. An example shows that the technique can reduce an error of 10 per cent to about 2 per cent
On computing quadrature-based bounds for the A-norm of the error in conjugate gradients
Czech Academy of Sciences Publication Activity Database
Meurant, G.; Tichý, Petr
2013-01-01
Roč. 62, č. 2 (2013), s. 163-191 ISSN 1017-1398 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : conjugate gradients * norm of the error * bounds for the error norm Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2013
On computing quadrature-based bounds for the A-norm of the error in conjugate gradients
Czech Academy of Sciences Publication Activity Database
Meurant, G.; Tichý, Petr
2013-01-01
Roč. 62, č. 2 (2013), s. 163-191 ISSN 1017-1398 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : conjugate gradient s * norm of the error * bounds for the error norm Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2013
The correction of linear lattice gradient errors using an AC dipole
Energy Technology Data Exchange (ETDEWEB)
Wang,G.; Bai, M.; Litvinenko, V.N.; Satogata, T.
2009-05-04
Precise measurement of optics from coherent betatron oscillations driven by ac dipoles have been demonstrated at RHIC and the Tevatron. For RHIC, the observed rms beta-beat is about 10%. Reduction of beta-beating is an essential component of performance optimization at high energy colliders. A scheme of optics correction was developed and tested in the RHIC 2008 run, using ac dipole optics for measurement and a few adjustable trim quadruples for correction. In this scheme, we first calculate the phase response matrix from the. measured phase advance, and then apply singular value decomposition (SVD) algorithm to the phase response matrix to find correction quadruple strengths. We present both simulation and some preliminary experimental results of this correction.
International Nuclear Information System (INIS)
Friedt, J.M.
1976-01-01
The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr
International Nuclear Information System (INIS)
Lyubutin, I.S.; Terziev, V.G.; Gor'kov, V.P.
1989-01-01
The point charge model is used to calculate the lattice sums and determine the electrical field gradients (EFG) as well as the asymmetry parameters η for all cation sites of the rhombic and tetragonal phases of the superconductor YBa 2 Cu 3 O x . The cases of copper of different valency at the Cu 1 sites are considered separately and EFG and η values are calculated in the vicinity of local defects caused by differences in the number and ordering of the oxygen vacancies at the Cu1 sites
Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice
International Nuclear Information System (INIS)
Kim, Isaac H.
2011-01-01
We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.
Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice
Kim, Isaac H.
2011-05-01
We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
The influence of refractive error and lattice degeneration on the incidence of retinal detachment.
Burton, T C
1989-01-01
This study indicates the feasibility of stratifying the general population into various risk pools for retinal detachment depending on a person's age, refractive status, and the presence of lattice degeneration. At first impression the risks seem at variance with the fine clinical studies of Byer, who has shown a very low detachment rate in the population with lattice degeneration. In all likelihood the vast majority of his patients were emmetropic or mildly myopic, so that very few would be expected to develop detachments during their entire lifetimes, let along during intervals of only 10 to 20 years. This study shows the futility of following, or treating prophylactically, young emmetropic individuals with lattice degeneration. Assuming that prophylaxis is actually effective, one would have to treat 1000 emmetropic lattice patients in the 30 to 39 year age group to prevent a single detachment over a 10-year period. Lattice patients with low to moderate degrees of myopia tend to develop detachments between 40 and 60 years of age caused by premature posterior vitreous separation and tractional tears. Clearly prophylaxis for this group is not warranted, since only 5% to 10% of these individuals will experience detachments in their lifetimes. On the other hand this study has verified the previous suspicions that persons with myopia exceeding -5.0 D accompanied by lattice degeneration have an extraordinarily high risk of detachment during their lifetimes. Detachments in this group tend to cluster in the second, third, and fourth decades, are typically caused by atrophic holes, are slowly progressive, and are often simultaneously bilateral. Enhanced vigilance is certainly appropriate during this time and perhaps consideration should be given to prophylactically treating this group. This would be no small task, since within a population of 1 million persons there would be about 1150 aged 10 to 39 years with myopia exceeding -5.0 D and lattice degeneration. Only 4
ERL with non-scaling fixed field alternating gradient lattice for eRHIC
Energy Technology Data Exchange (ETDEWEB)
Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-05-03
The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.
Akai, Takashi; Bijeljic, Branko; Blunt, Martin J.
2018-06-01
In the color gradient lattice Boltzmann model (CG-LBM), a fictitious-density wetting boundary condition has been widely used because of its ease of implementation. However, as we show, this may lead to inaccurate results in some cases. In this paper, a new scheme for the wetting boundary condition is proposed which can handle complicated 3D geometries. The validity of our method for static problems is demonstrated by comparing the simulated results to analytical solutions in 2D and 3D geometries with curved boundaries. Then, capillary rise simulations are performed to study dynamic problems where the three-phase contact line moves. The results are compared to experimental results in the literature (Heshmati and Piri, 2014). If a constant contact angle is assumed, the simulations agree with the analytical solution based on the Lucas-Washburn equation. However, to match the experiments, we need to implement a dynamic contact angle that varies with the flow rate.
Czech Academy of Sciences Publication Activity Database
Bouman, J.; Bosch, W.; Sebera, Josef
2011-01-01
Roč. 34, č. 2 (2011), s. 85-107 ISSN 0149-0419 Institutional research plan: CEZ:AV0Z10030501 Keywords : satellite altimetry * gravity gradients * GOCE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.329, year: 2011
Beam halo in high-intensity hadron accelerators caused by statistical gradient errors
Directory of Open Access Journals (Sweden)
Frank Gerigk
2004-06-01
Full Text Available The particle-core model for a continuous cylindrical beam is used to describe the motion of single particles oscillating in a uniform linear focusing channel. Using a random variation of the focusing forces, the model is deployed as proof of principle for the occurrence of large single particle radii without the presence of initial mismatch of the beam core. Multiparticle simulations of a periodic 3D transport channel are then used to qualify and quantify the effects in a realistic accelerator lattice.
International Nuclear Information System (INIS)
Sommer, Rainer
2014-02-01
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Design of the SPEAR 3 magnet lattice
International Nuclear Information System (INIS)
Corbett, J.; Limborg, C.; Nosochkov, Y.; Safranek, J.
1998-01-01
The SPEAR 3 Upgrade Project seeks to replace the present 160 nm-rad FODO lattice with an 18 nm-rad double bend achromat (DBA) lattice. The new lattice must conform to the layout of the SPEAR racetrack tunnel and service the existing photon beamlines. Working within these constraints, the authors designed a lattice with 18 achromatic cells and 3 GeV beam energy. This paper reports on design of the main DBA cells, design of the matching cells leading into the 6.5 m racetrack straights, and simulation of the dynamic aperture. The new lattice has gradient dipoles, conventional quadrupoles, and provides horizontal dynamic aperture to ± 20 mm with conservative magnetic multipole errors
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
Directory of Open Access Journals (Sweden)
Patricia A. Townsend
2015-06-01
Full Text Available Rapid climate change poses complex challenges for conservation, especially in tropical developing countries where biodiversity is high while financial and technical resources are limited. The complexity is heightened by uncertainty in predicted effects, both for ecological systems and human communities that depend heavily on natural resource extraction and use. Effective conservation plans and measures must be inexpensive, fast-acting, and able to increase the resilience of both the ecosystem and the social-ecological system. We present conservation practitioners with a framework that strategically integrates climate change planning into connectivity measures for tropical mountain ecosystems in Costa Rica. We propose a strategy for doubling the amount of habitat currently protected in riparian corridors using measures that are relatively low cost and fast-acting, and will employ and expand human capital. We argue that habitat connectivity must be enhanced along latitudinal gradients, but also within the same elevational bands, via a lattice-work corridor system. This is needed to facilitate range shifts for mobile species and evolutionary adaptation for less mobile species. We think that conservation measures within the elevational bands must include conservation-friendly land uses that improve current and future human livelihoods under dynamic conditions. Key components include community involvement, habitat priority-setting, forest landscape restoration, and environmental services payments. Our approach is fundamentally adaptive in that the conservation measures employed are informed by on-the-ground successes and failures and modified accordingly, but are relatively low risk and fast-acting. Our proposal, if implemented, would satisfy tenets of climate-smart conservation, improve the resilience of human and ecological communities, and be a model for other locations facing similar challenges.
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Beam Diagnosis and Lattice Modeling of the Fermilab Booster
International Nuclear Information System (INIS)
Huang, Xiaobiao
2005-01-01
A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Step scaling and the Yang-Mills gradient flow
International Nuclear Information System (INIS)
Lüscher, Martin
2014-01-01
The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.
International Nuclear Information System (INIS)
Kikuchi, T.; Kawata, S.; Kawata, S.; Nakajima, M.; Horioka, K.
2006-01-01
Emittance growth due to the transverse focusing field error is investigated during the final beam bunching in the energy driver system of heavy ion inertial fusion. The beam bunch is longitudinally compressed during the transport with the field error in the continuous focusing (CF) or the alternating gradient (AG) field lattices. Numerical calculation results show the only 2% difference of the emittance growth between the cases with and without field error in the CF lattice. In the case of the AG lattice model with the field error of 10%, the emittance growth of 2.4 times is estimated, and the major difference between the CF and AG models is indicated from the numerical simulations. (author)
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Automated lattice data generation
Directory of Open Access Journals (Sweden)
Ayyar Venkitesh
2018-01-01
Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Automated lattice data generation
Ayyar, Venkitesh; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.
2018-03-01
The process of generating ensembles of gauge configurations (and measuring various observables over them) can be tedious and error-prone when done "by hand". In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
International Nuclear Information System (INIS)
Smith, L.
1975-01-01
An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed
Investigation of axial power gradients near a control rod tip
Energy Technology Data Exchange (ETDEWEB)
Loberg, John, E-mail: John.Loberg@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Osterlund, Michael, E-mail: Michael.Osterlund@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Bejmer, Klaes-Hakan, E-mail: Klaes-Hakan.Bejmer@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Blomgren, Jan, E-mail: Jan.Blomgren@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Kierkegaard, Jesper, E-mail: Jesper.Kierkegaar@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden)
2011-07-15
Highlights: > Pin power gradients near BWR control rod tips have been investigated. > A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. > Small nodes increases pin power gradients; standard nodes underestimates gradients. > The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, {approx}15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.
Investigation of axial power gradients near a control rod tip
International Nuclear Information System (INIS)
Loberg, John; Osterlund, Michael; Bejmer, Klaes-Hakan; Blomgren, Jan; Kierkegaard, Jesper
2011-01-01
Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.
Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock
Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.
2018-05-01
We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.
Hadronic vacuum polarization contribution to g-2 from the lattice
International Nuclear Information System (INIS)
Feng, X.; Jansen, K.; Renner, D.
2011-12-01
We give a short description of the present situation of lattice QCD simulations. We then focus on the computation of the anomalous magnetic moment of the muon using lattice techniques. We demonstrate that by employing improved observables for the muon anomalous magnetic moment, a significant reduction of the lattice error can be obtained. This provides a promising scenario that the accuracy of lattice calculations can match the experimental errors. (orig.)
Hadronic Vacuum Polarization Contribution to g-2 from the Lattice
Energy Technology Data Exchange (ETDEWEB)
Dru Renner, Xu Feng, Marcus Petschlies, Karl Jansen
2012-05-01
We give a short description of the present situation of lattice QCD simulations. We then focus on the computation of the anomalous magnetic moment of the muon using lattice techniques. We demonstrate that by employing improved observables for the muon anomalous magnetic moment, a significant reduction of the lattice error can be obtained. This provides a promising scenario that the accuracy of lattice calculations can match the experimental errors.
Hadronic vacuum polarization contribution to g-2 from the lattice
Energy Technology Data Exchange (ETDEWEB)
Feng, X. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus); Renner, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2011-12-15
We give a short description of the present situation of lattice QCD simulations. We then focus on the computation of the anomalous magnetic moment of the muon using lattice techniques. We demonstrate that by employing improved observables for the muon anomalous magnetic moment, a significant reduction of the lattice error can be obtained. This provides a promising scenario that the accuracy of lattice calculations can match the experimental errors. (orig.)
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Unquenched lattice upsilon spectroscopy
International Nuclear Information System (INIS)
Marcantonio, L.M.
2001-03-01
A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the
Simulation of 4-turn algorithms for reconstructing lattice optic functions from orbit measurements
International Nuclear Information System (INIS)
Koscielniak, S.; Iliev, A.
1994-06-01
We describe algorithms for reconstructing tune, closed-orbit, beta-function and phase advance from four individual turns of beam orbit acquisition data, under the assumption of coherent, almost linear and uncoupled betatron oscillations. To estimate the beta-function at, and phase advance between, position monitors, we require at least one anchor location consisting of two monitors separated by a drift. The algorithms were submitted to a Monte Carlo analysis to find the likely measurement accuracy of the optics functions in the KAON Factory Booster ring racetrack lattice, assuming beam position monitors with surveying and reading errors, and assuming an imperfect lattice with gradient and surveying errors. Some of the results of this study are reported. (author)
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references
TEK twisted gradient flow running coupling
Pérez, Margarita García; Keegan, Liam; Okawa, Masanori
2014-01-01
We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.
END FIELD EFFECTS IN BEND ONLY COOLING LATTICES
International Nuclear Information System (INIS)
BEERG, J.S.; KIRK, H.; GARREN, A.
2003-01-01
Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them
Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor
2018-04-01
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.
Block-conjugate-gradient method
International Nuclear Information System (INIS)
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Team errors: definition and taxonomy
International Nuclear Information System (INIS)
Sasou, Kunihide; Reason, James
1999-01-01
In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms
International Nuclear Information System (INIS)
Burkitt, A.N.; Irving, A.C.
1990-01-01
The Lanczos and conjugate gradient algorithms are widely used in lattice QCD calculations. The previously known close relationship between the two methods is explored and two commonly used implementations are shown to give identically the same results at each iteration, in exact arithmetic, for matrix inversion. The identities between the coefficients of the two algorithms are given, and many of the features of the two algorithms can now be combined. The effects of finite arithmetic are investigated and the particular Lanczos formulation is found to be most stable with respect to rounding errors. (orig.)
Improved Landau gauge fixing and discretisation errors
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.
2000-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition
GLAD: a generic lattice debugger
International Nuclear Information System (INIS)
Lee, M.J.
1992-01-01
Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. (author)
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
Improved lattice fermion action for heavy quarks
International Nuclear Information System (INIS)
Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias
2015-01-01
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
Lattices with unique complements
Saliĭ, V N
1988-01-01
The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Quasi parton distributions and the gradient flow
International Nuclear Information System (INIS)
Monahan, Christopher; Orginos, Kostas
2017-01-01
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.
Hoede, C.; Li, Z.
2001-01-01
In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,
Hybrid permanent magnet gradient dipoles for the recycler ring at Fermilab
International Nuclear Information System (INIS)
Brown, B.C.; Dimarco, J.; Foster, G.W.; Glass, H.D.; Haggard, J.E.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.
1997-11-01
Hybrid permanent magnets provide the magnetic fields for an anti- proton storage ring which is under construction at Fermilab. Using a combined function lattice, gradient magnets provide the bending, focusing and sextupole correction for the regular cells. Shorter magnets without sextupole are used in dispersion suppressor cells. These magnets use a 4.7 m ( 3 m) long iron shell for flux return, bricks of 25.4 mm thick strontium ferrite supply the flux and transversely tapered iron poles separated by aluminum spacers set the shape of the magnetic field. Central fields of 0.14 T with gradients of ∼6%/inch (∼13%/inch) are required. Field errors are expected to be less than 10 -4 of the bend field over an aperture of ±40 mm (horizontal) x ±20 mm (vertical). Design, procurement, fabrication, pole potential adjustment, field shape trimming and measured fields will be reported
New integrable lattice hierarchies
International Nuclear Information System (INIS)
Pickering, Andrew; Zhu Zuonong
2006-01-01
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula
An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment
Mathew, David J.; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.
2016-01-01
Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were al...
Status and prospects for lattice calculations in heavy quark physics
International Nuclear Information System (INIS)
Wittig, H.; Forschungszentrum Juelich GmbH
1996-06-01
The current status of lattice calculation of weak matrix elements for heavy quark systems is reviewed. After an assessment of systematic errors in present simulations, results for the B meson decay constant, the B parameter B B and semi-leptonic heavy-to-light and heavy-to-heavy transitions are discussed. The final topic are lattice results for heavy baryon spectroscopy. (orig.)
On calculation of lattice parameters of refractory metal solid solutions
International Nuclear Information System (INIS)
Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.
1995-01-01
Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs
Spectral functions of hadrons in lattice QCD
International Nuclear Information System (INIS)
Nakahara, Y.; Asakawa, M.; Hatsuda, T.
2000-01-01
Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
International Nuclear Information System (INIS)
Knuefer; Lindauer
1980-01-01
Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)
Gravity gradient preprocessing at the GOCE HPF
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
Bulk diffusion in a kinetically constrained lattice gas
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow
Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.
2018-05-01
It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.
Full CKM matrix with lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD
Energy Technology Data Exchange (ETDEWEB)
Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)
2017-02-16
We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
International Nuclear Information System (INIS)
Winterflood, A.H.
1980-01-01
In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)
STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION
Directory of Open Access Journals (Sweden)
Nataša Krejić
2014-12-01
Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
International Nuclear Information System (INIS)
Jersak, J.
1986-01-01
This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development
Error studies for SNS Linac. Part 1: Transverse errors
International Nuclear Information System (INIS)
Crandall, K.R.
1998-01-01
The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)
Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction
Energy Technology Data Exchange (ETDEWEB)
Saa Hernandez, Angela
2011-10-15
The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos({theta}) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos({theta}) magnets providing resonant slow extraction. Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant. The field quality in superconducting cos({theta}) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos({theta}) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their
Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction
International Nuclear Information System (INIS)
Saa Hernandez, Angela
2011-10-01
The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos(θ) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos(θ) magnets providing resonant slow extraction. Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant. The field quality in superconducting cos(θ) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos(θ) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their effects have been
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Spin-2 NΩ dibaryon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)
2014-08-15
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.
Spin-2 NΩ dibaryon from lattice QCD
International Nuclear Information System (INIS)
Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji
2014-01-01
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error
Spectral functions from anisotropic lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)
2016-12-15
The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.
Magnetic field of longitudinal gradient bend
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Ling, F.; Proakis, J. G.
1985-04-01
This paper presents two types of adaptive lattice decision-feedback equalizers (DFE), the least squares (LS) lattice DFE and the gradient lattice DFE. Their performance has been investigated on both time-invariant and time-variant channels through computer simulations and compared to other kinds of equalizers. An analysis of the self-noise and tracking characteristics of the LS DFE and the DFE employing the Widrow-Hoff least mean square adaptive algorithm (LMS DFE) are also given. The analysis and simulation results show that the LS lattice DFE has the faster initial convergence rate, while the gradient lattice DFE is computationally more efficient. The main advantages of the lattice DFE's are their numerical stability, their computational efficiency, the flexibility to change their length, and their excellent capabilities for tracking rapidly time-variant channels.
Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group
International Nuclear Information System (INIS)
Katzgraber, Helmut G.; Bombin, H.; Andrist, Ruben S.; Martin-Delgado, M. A.
2010-01-01
We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respect to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Transverse centroid oscillations in solenoidially focused beam transport lattices
International Nuclear Information System (INIS)
Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.
2009-01-01
Transverse centroid oscillations are analyzed for a beam in a solenoid transport lattice. Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by both mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on the properties of the ideal lattice in the absence of errors and steering, and have associated expansion amplitudes set by the misalignments and steering fields, respectively. Applications of this formulation are presented for statistical analysis of centroid oscillations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Vortex lattices in layered superconductors
International Nuclear Information System (INIS)
Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.
1995-01-01
We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear
Hamiltonian lattice field theory: Computer calculations using variational methods
International Nuclear Information System (INIS)
Zako, R.L.
1991-01-01
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. I show how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems
Hamiltonian lattice field theory: Computer calculations using variational methods
International Nuclear Information System (INIS)
Zako, R.L.
1991-01-01
A variational method is developed for systematic numerical computation of physical quantities-bound state energies and scattering amplitudes-in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. An algorithm is presented for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. It is shown how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. It is shown how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. The author discusses the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, the author does not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. The method is applied to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. The author describes a computer implementation of the method and present numerical results for simple quantum mechanical systems
Magnon Hall effect on the Lieb lattice.
Cao, Xiaodong; Chen, Kai; He, Dahai
2015-04-29
Ferromagnetic insulators without inversion symmetry may show magnon Hall effect (MHE) in the presence of a temperature gradient due to the existence of Dzyaloshinskii-Moriya interaction (DMI). In this theoretical study, we investigate MHE on a lattice with inversion symmetry, namely the Lieb lattice, where the DMI is introduced by adding an external electric field. We show the nontrivial topology of this model by examining the existence of edge states and computing the topological phase diagram characterized by the Chern numbers of different bands. Together with the topological phase diagram, we can further determine the sign and magnitude of the transverse thermal conductivity. The impact of the flat band possessed by this model on the thermal conductivity is discussed by computing the Berry curvature analytically.
Lattice-Boltzmann simulations of droplet evaporation
Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.
2014-01-01
© the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is
Lattice-Boltzmann simulations of droplet evaporation
Ledesma-Aguilar, Rodrigo
2014-09-04
© the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is
Numerical optimization with computational errors
Zaslavski, Alexander J
2016-01-01
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s meth...
Pricing Employee Stock Options (ESOs) with Random Lattice
Chendra, E.; Chin, L.; Sukmana, A.
2018-04-01
Employee Stock Options (ESOs) are stock options granted by companies to their employees. Unlike standard options that can be traded by typical institutional or individual investors, employees cannot sell or transfer their ESOs to other investors. The sale restrictions may induce the ESO’s holder to exercise them earlier. In much cited paper, Hull and White propose a binomial lattice in valuing ESOs which assumes that employees will exercise voluntarily their ESOs if the stock price reaches a horizontal psychological barrier. Due to nonlinearity errors, the numerical pricing results oscillate significantly so they may lead to large pricing errors. In this paper, we use the random lattice method to price the Hull-White ESOs model. This method can reduce the nonlinearity error by aligning a layer of nodes of the random lattice with a psychological barrier.
Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A
2017-06-01
To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Lin, C -J David; Ramos, Alberto
2015-01-01
We perform the step-scaling investigation of the running coupling constant, using the gradient-flow scheme, in SU(3) gauge theory with twelve massless fermions in the fundamental representation. The Wilson plaquette gauge action and massless unimproved staggered fermions are used in the simulations. Our lattice data are prepared at high accuracy, such that the statistical error for the renormalised coupling, g_GF, is at the subpercentage level. To investigate the reliability of the continuum extrapolation, we employ two different lattice discretisations to obtain g_GF. For our simulation setting, the corresponding gauge-field averaging radius in the gradient flow has to be almost half of the lattice size, in order to have this extrapolation under control. We can determine the renormalisation group evolution of the coupling up to g^2_GF ~ 6, before the onset of the bulk phase structure. In this infrared regime, the running of the coupling is significantly slower than the two-loop perturbative prediction, altho...
Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions
International Nuclear Information System (INIS)
Stollenwerk, Felix
2017-01-01
In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c sw . In this work, a strategy is developed for the non-perturbative determination of c sw in the theory with N f =3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a 2 ) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.
Charmed meson decay constants in three-flavor lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia
2005-06-01
The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.
Systematic and random erros in lattice parameter determinations
International Nuclear Information System (INIS)
Nascimento, E.M.
1980-01-01
A new method is proposed for evaluation of diffraction data used in precise determination of lattice parameters. The method is based on separation and systematic erros on the diffraction angles level, where the randon part of erros is independent on the 0 angle. The separation is enable by assumption that the systematic part of erros depends on the 0 angle linearly. In that situation the high precision in lattice parameters determination is related more to reducing the randon errors content that to the presence of unremoved systematic errors. (Author) [pt
International Nuclear Information System (INIS)
Chodos, A.
1978-01-01
A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Vinay BC; Nikhitha MK; Patel Sunil B
2015-01-01
In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.
Gradient pattern analysis applied to galaxy morphology
Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.
2018-06-01
Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54 896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalogue. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early- from late-type galaxies better (˜ 90 per cent) than the CAS system (C˜ 79 per cent, A˜ 50 per cent, S˜ 43 per cent) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Radiative Transitions in Charmonium from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek; Robert Edwards; David Richards
2006-01-17
Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.
Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing
Vad, Viktor
2014-06-01
In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing
Vad, Viktor; Csé bfalvi, Balá zs; Rautek, Peter; Grö ller, Eduard M.
2014-01-01
In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Magnetic field errors tolerances of Nuclotron booster
Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet
2018-04-01
Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.
Energy Technology Data Exchange (ETDEWEB)
Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-04
We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B_{0} is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB_{0}/B_{0}, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2
International Nuclear Information System (INIS)
Krojts, M.
1987-01-01
The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
International Nuclear Information System (INIS)
Bali, G.S.
2005-01-01
I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)
Dancoff Correction in Square and Hexagonal Lattices
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1966-11-15
This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.
On the performance of diagonal lattice space-time codes
Abediseid, Walid
2013-11-01
There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.
Tadpole-improved SU(2) lattice gauge theory
Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.
Superspace approach to lattice supersymmetry
International Nuclear Information System (INIS)
Kostelecky, V.A.; Rabin, J.M.
1984-01-01
We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Basis reduction for layered lattices
E.L. Torreão Dassen (Erwin)
2011-01-01
htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these
Wave Propagation in Finite Element and Mass-Spring-Dashpot Lattice Models
National Research Council Canada - National Science Library
Holt-Phoenix, Marianne S
2006-01-01
...), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid...
Testing the standard model of particle physics using lattice QCD
International Nuclear Information System (INIS)
Water, Ruth S van de
2007-01-01
Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future
An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment.
Mathew, David J; Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V
2016-07-01
Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.
Hot B violation, the lattice, and hard thermal loops
International Nuclear Information System (INIS)
Arnold, P.
1997-01-01
It has recently been argued that the rate per unit volume of baryon number violation (topological transitions) in the hot, symmetric phase of electroweak theory is of the form ηα w 5 T 4 in the weak-coupling limit, where η is a nonperturbative numerical coefficient. Over the past several years, there have been attempts to extract the rate of baryon number violation from real-time simulations of classical thermal field theory on a spatial lattice. Unfortunately, the coefficient η will not be the same for classical lattice theories and the real quantum theory. However, by analyzing the appropriate effective theory on the lattice using the method of hard thermal loops, I show that the only obstruction to precisely relating the rates in the real and lattice theories is the fact that the long-distance physics on the lattice is not rotationally invariant. (This is unlike Euclidean-time measurements, where rotational invariance is always recovered in the continuum limit.) I then propose how this violation of rotational invariance can be eliminated emdash and the real B violation rate measured emdash by choosing an appropriate lattice Hamiltonian. I also propose a rough measure of the systematic error to be expected from using simpler, unimproved Hamiltonians. As a byproduct of my investigation, the plasma frequency and Debye mass are computed for classical thermal field theory on the lattice. copyright 1997 The American Physical Society
Strong coupling constant from Adler function in lattice QCD
Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo
2016-09-01
We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.
Lattice quantum chromodynamics equation of state: A better ...
Indian Academy of Sciences (India)
Lattice gauge theory; quantum chromodynamics; finite temperature field theory. ... to a previously underappreciated feature of the plasma phase – that it is far from being a ... setting P = 0 just below Tc and the numerical integration errors. ...... for different temperatures, both above and below Tc. We draw attention to the.
MRT Lattice Boltzmann schemes for confined suspension flows
Sman, van der R.G.M.
2010-01-01
We introduce a novel multiple-relaxation time (modified MRT) Lattice Boltzmann scheme for simulation of confined suspension flow. Via careful tuning of the free eigenvalues of the collision operator we can substantially reduce the error in the so-called hydrodynamic radius. Its performance has been
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
International Nuclear Information System (INIS)
Lutz, H.D.; Willich, P.
1977-01-01
The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
Full Gradient Solution to Adaptive Hybrid Control
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2017-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
International Nuclear Information System (INIS)
1962-01-01
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
Energy Technology Data Exchange (ETDEWEB)
Kumar, J [Agra Coll. (India). Dept. of Physics
1977-03-01
In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.
International Nuclear Information System (INIS)
Bowler, Ken
1990-01-01
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
International Nuclear Information System (INIS)
Beloy, K.
2010-01-01
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
Ghost circles in lattice Aubry-Mather theory
Mramor, Blaz; Rink, Bob
Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms
International Nuclear Information System (INIS)
Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa
2003-01-01
Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size
Comparison of different lattice definitions of the topological charge
International Nuclear Information System (INIS)
Cichy, Krzysztof; Ottnad, Konstantin; Bonn Univ.; Bonn Univ.; Urbach, Carsten; Zimmermann, Falk; Bonn Univ.; Wenger, Urs
2014-11-01
We present a comparison of different definitions of the topological charge on the lattice, using a small-volume ensemble with 2 flavours of dynamical twisted mass fermions. The investigated definitions are: index of the overlap Dirac operator, spectral projectors, spectral flow of the Hermitian Wilson-Dirac operator and field theoretic with different kinds of smoothing of gauge fields (HYP and APE smearings, gradient flow, cooling). We also show some results on the topological susceptibility.
Wilson flow and scale setting from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bornyakov, V.G. [Institute for High Energy Physics, Protvino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Far Eastern Federal Univ., Vladivostok (Russian Federation). School of Biomedicine; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Hudspith, R. [York Univ., Toronto, ON (Canada). Dept. of Mathematics and Statistics; Collaboration: QCDSF-UKQCD Collaboration; and others
2015-08-15
We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t{sub 0} and w{sub 0} for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum extrapolation to be taken.
International Nuclear Information System (INIS)
Kilcup, G.
1986-01-01
A progress report on a lattice project at Los Alamos is presented. The projects are basically of two sorts: approaching the continuum (determination of MCRG flows under the blocking transformation, and beta-function along Wilson and improved action lines); and arriving at the continuum (hadron spectrum, coupling constants, and matrix elements). Since the ultimate goal is to determine matrix elements for which chiral symmetry is very relevant, the authors choose the formalism whose chiral properties are easier to understand, i.e., staggered fermions
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T
1994-01-01
We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.
International Nuclear Information System (INIS)
Vidovsky, I.; Kereszturi, A.
1991-11-01
The results of experiments and calculations on Gd lattices are presented, and a comparison of experimental and calculational data is given. This latter can be divided into four groups. The first belongs to the comparison of criticality parameters, the second group is related with the comparison of 2D distributions, the third one relates the comparison of intra-macrocell distributions, whereas the fourth group is devoted for the comparison of spectral parameters. For comparison, the computer code RFIT based on strict statistical criteria has been used. The calculated and measured results agree, in most cases, sufficiently. (R.P.) 11 refs.; 13 figs.; 9 tabs
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid
2013-04-04
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\\\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid
2012-10-01
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
On Lattice Sequential Decoding for The Unconstrained AWGN Channel
Abediseid, Walid; Alouini, Mohamed-Slim
2012-01-01
In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
Gradient Learning Algorithms for Ontology Computing
Directory of Open Access Journals (Sweden)
Wei Gao
2014-01-01
Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.
Conjugate descent formulation of backpropagation error in ...
African Journals Online (AJOL)
The feedforward neural network architecture uses backpropagation learning to determine optimal weights between dierent interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to ...
Precision Light Flavor Physics from Lattice QCD
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its
J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)
AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Lattice formulations of reggeon interactions
International Nuclear Information System (INIS)
Brower, R.C.; Ellis, J.; Savit, R.; Zinn-Justin, J.
1976-01-01
A class of lattice analogues to reggeon field theory is examined. First the transition from a continuum to a lattice field theory is discussed, emphasizing the necessity of a Wick rotation and the consideration of symmetry properties. Next the theory is transformed to a discrete system with two spins at each lattice site, and the problems of the triple-reggeon interaction and the reggeon energy gap are discussed. It is pointed out that transferring the theory from the continuum to a lattice necesarily introduces new relevant operators not normally present in reggeon field theory. (Auth.)
Lattice QCD inputs to the CKM unitarity triangle analysis
International Nuclear Information System (INIS)
Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.
2010-01-01
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.
Strangeness of the nucleon from lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, Martha; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, Giannis; Vaquero, Alejandro [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Collaboration: ETM Collaboration
2013-10-15
We present a non-perturbative calculation of the strangeness of the nucleon y{sub N} within the framework of lattice QCD. This observable is known to be an important cornerstone to interpret results from direct dark matter detection experiments. We perform a lattice computation for y{sub N} with an analysis of systematic effects originating from discretization, finite size, chiral extrapolation and excited state effects leading to a value of y{sub N}=0.135(46) which turns out to be rather small. As a main result of our work, we demonstrate that the error for y{sub N} is dominated by systematic uncertainties.
Manipulation of single neutral atoms in optical lattices
International Nuclear Information System (INIS)
Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.
2006-01-01
We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices
Determination of c{sub sw} in N{sub f}=3+1 lattice QCD with massive Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Stollenwerk, Felix
2017-02-07
In order to obtain sensible results from Lattice QCD that may be compared with experiment, extrapolation to the continuum is crucial. The well-established Symanzik improvement program systematically reduces the order of cutoff effects, allowing for better control of the aforementioned errors, as well as larger and thus more affordable lattice spacings. Applied to the Wilson fermion action, it entails the addition of the Sheikholeslami-Wohlert term with the O(a) improvement coefficient c{sub sw}. In this work, a strategy is developed for the non-perturbative determination of c{sub sw} in the theory with N{sub f}=3+1 massive sea quarks. It is embedded in a general, mass-dependent renormalization and improvement scheme, for which we lay the foundations. The improvement condition, formulated by means of the PCAC relation in the Schroedinger Functional, is imposed along a line of constant physics that is designed to be close to the physical mass of the charm quark. The aim of this rather elaborate approach is to avoid large, mass-dependent O(a{sup 2}) effects in future large volume simulations with four dynamical quark species. The numerical results are worked out using the tree-level improved Luescher-Weisz gauge action. Since the gradient flow coupling is employed in the definition of the line of constant physics, its interdependence with the topological charge in regard to critical slowing down and topology freezing is investigated in a supplemental study.
Convection-diffusion lattice Boltzmann scheme for irregular lattices
Sman, van der R.G.M.; Ernst, M.H.
2000-01-01
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S
2010-09-01
We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.
AGILE, a tool for interactive lattice design
Bryant, P J
2000-01-01
AGILE is a program that works in the IBM-PC, MS-Windows environment and is dedicated to the interactive design of alternating-gradient lattices for synchrotrons and transfer lines. The program was originally intended as a teaching tool, but has been used mostly for professional design work and is subject to continuous development. It contains original algorithms for coupling, scattering and eddy currents, and some slightly unusual algorithms for off-axis orbits and space charge. There are also additional features such as engineering design aids, calculators for relativistic and synchrotron radiation parameters, expert routines for optimising slow extraction, fitting and matching, and the internal storage of constants for over 1000 stable and quasi-stable charged particles. The program is object-oriented and fully integrated into the Windows environment - it is not a shell. Apart from office work, AGILE is ideal for home use, design workshops and when travelling. It is particularly suited to practical problems...
Learning from prescribing errors
Dean, B
2002-01-01
The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...
Lattice quantum chromodynamics
International Nuclear Information System (INIS)
Hassenfratz, P.
1983-01-01
It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper
On Lattice Sequential Decoding for Large MIMO Systems
Ali, Konpal S.
2014-04-01
Due to their ability to provide high data rates, Multiple-Input Multiple-Output (MIMO) wireless communication systems have become increasingly popular. Decoding of these systems with acceptable error performance is computationally very demanding. In the case of large overdetermined MIMO systems, we employ the Sequential Decoder using the Fano Algorithm. A parameter called the bias is varied to attain different performance-complexity trade-offs. Low values of the bias result in excellent performance but at the expense of high complexity and vice versa for higher bias values. We attempt to bound the error by bounding the bias, using the minimum distance of a lattice. Also, a particular trend is observed with increasing SNR: a region of low complexity and high error, followed by a region of high complexity and error falling, and finally a region of low complexity and low error. For lower bias values, the stages of the trend are incurred at lower SNR than for higher bias values. This has the important implication that a low enough bias value, at low to moderate SNR, can result in low error and low complexity even for large MIMO systems. Our work is compared against Lattice Reduction (LR) aided Linear Decoders (LDs). Another impressive observation for low bias values that satisfy the error bound is that the Sequential Decoder\\'s error is seen to fall with increasing system size, while it grows for the LR-aided LDs. For the case of large underdetermined MIMO systems, Sequential Decoding with two preprocessing schemes is proposed – 1) Minimum Mean Square Error Generalized Decision Feedback Equalization (MMSE-GDFE) preprocessing 2) MMSE-GDFE preprocessing, followed by Lattice Reduction and Greedy Ordering. Our work is compared against previous work which employs Sphere Decoding preprocessed using MMSE-GDFE, Lattice Reduction and Greedy Ordering. For the case of large systems, this results in high complexity and difficulty in choosing the sphere radius. Our schemes
fB from finite size effects in lattice QCD
International Nuclear Information System (INIS)
Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.
2003-01-01
We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD
Progress in the improved lattice calculation of direct CP-violation in the Standard Model
Kelly, Christopher
2018-03-01
We discuss the ongoing effort by the RBC & UKQCD collaborations to improve our lattice calculation of the measure of Standard Model direct CP violation, ɛ', with physical kinematics. We present our progress in decreasing the (dominant) statistical error and discuss other related activities aimed at reducing the systematic errors.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Homogenization theory in reactor lattices
International Nuclear Information System (INIS)
Benoist, P.
1986-02-01
The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Lattice polytopes in coding theory
Directory of Open Access Journals (Sweden)
Ivan Soprunov
2015-05-01
Full Text Available In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also include a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.
Nucleon axial coupling from Lattice QCD
Cheng Chang, Chia; Nicholson, Amy; Rinaldi, Enrico; Berkowitz, Evan; Garron, Nicolas; Brantley, David; Monge-Camacho, Henry; Monahan, Chris; Bouchard, Chris; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Orginos, Kostas; Vranas, Pavlos; Walker-Loud, André
2018-03-01
We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, gA, using Möbius Domain-Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of mπ {400, 350, 310, 220, 130} MeV, three lattice spacings of a {0.15, 0.12, 0.09} fm, and we do a dedicated volume study with mπL {3.22, 4.29, 5.36}. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of gA = 1.285(17), with a relative uncertainty of 1.33%.
Computing the writhe on lattices
International Nuclear Information System (INIS)
Laing, C; Sumners, D W
2006-01-01
Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers
Leading-order hadronic contribution to g-2 from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Renner, Dru B.; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Feng, Xu [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Petschlies, Marcus [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2011-03-15
We calculate the leading-order hadronic correction to the anomalous magnetic moments of each of the three charged leptons in the Standard Model: the electron, muon and tau. Working in two-flavor lattice QCD, we address essentially all sources of systematic error: lattice artifacts, finite-size effects, quark-mass extrapolation, momentum extrapolation and disconnected diagrams. The most significant remaining systematic error, the exclusion of the strange and charm quark contributions, is addressed in our four-flavor calculation. We achieve a statistical accuracy of 2% or better for the physical values for each of the three leptons and the systematic errors are at most comparable. (orig.)
Topological charge using cooling and the gradient flow
International Nuclear Information System (INIS)
Alexandrou, C.; Athenodorou, A.; The Cyprus Institute, Nicosia; Jansen, K.
2015-12-01
The equivalence of cooling to the gradient flow when the cooling step n c and the continuous flow step of gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n c and τ and show that the results for the topological charge become equivalent when rescaling τ ≅ n c /(3-15c 1 ) where c 1 is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with N f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling τ ≅ n c /(3-15c 1 ) leads to equivalent results.
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Study of a ''relaxed'' ALS storage ring lattice
International Nuclear Information System (INIS)
Keller, R.; Forest, E.; Nishimura, H.; Zisman, M.S.
1990-06-01
The lattice of the Advanced Light Source (ALS) 1--1.9 GeV electron storage ring was reexamined, introducing an additional family of focusing quadrupoles and looking for a working point with larger dynamic aperture. In the first part of this study, the ideal lattice was investigated to confirm the anticipated behavior, and indeed conditions with increased dynamic aperture were found. In the second part, realistic magnet errors and an undulator in one of the straight sections were taken into account. Under these conditions the dynamic aperture could not be significantly improved over the nominal configuration. Further studies included investigation of the Touschek momentum acceptance of the lattice. In this case too, no net benefit was obtained from the additional quadrupoles. 6 refs., 5 figs. , 2 tabs
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Error studies of Halbach Magnets
Energy Technology Data Exchange (ETDEWEB)
Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2017-03-02
These error studies were done on the Halbach magnets for the CBETA “First Girder” as described in note [CBETA001]. The CBETA magnets have since changed slightly to the lattice in [CBETA009]. However, this is not a large enough change to significantly affect the results here. The QF and BD arc FFAG magnets are considered. For each assumed set of error distributions and each ideal magnet, 100 random magnets with errors are generated. These are then run through an automated version of the iron wire multipole cancellation algorithm. The maximum wire diameter allowed is 0.063” as in the proof-of-principle magnets. Initially, 32 wires (2 per Halbach wedge) are tried, then if this does not achieve 1e-4 level accuracy in the simulation, 48 and then 64 wires. By “1e-4 accuracy”, it is meant the FOM defined by √(Σ_{n≥sextupole} a_{n} ^{2}+b_{n} ^{2}) is less than 1 unit, where the multipoles are taken at the maximum nominal beam radius, R=23mm for these magnets. The algorithm initially uses 20 convergence interations. If 64 wires does not achieve 1e-4 accuracy, this is increased to 50 iterations to check for slow converging cases. There are also classifications for magnets that do not achieve 1e-4 but do achieve 1e-3 (FOM ≤ 10 units). This is technically within the spec discussed in the Jan 30, 2017 review; however, there will be errors in practical shimming not dealt with in the simulation, so it is preferable to do much better than the spec in the simulation.
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
International Nuclear Information System (INIS)
Picard, R.R.
1989-01-01
Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process
Martínez-Legaz, Juan Enrique; Soubeyran, Antoine
2003-01-01
We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Irreversible stochastic processes on lattices
International Nuclear Information System (INIS)
Nord, R.S.
1986-01-01
Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed
Medication errors: prescribing faults and prescription errors.
Velo, Giampaolo P; Minuz, Pietro
2009-06-01
1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.
Large-N limit of the gradient flow in the 2D O(N) nonlinear sigma model
International Nuclear Information System (INIS)
Makino, Hiroki; Sugino, Fumihiko; Suzuki, Hiroshi
2015-01-01
The gradient flow equation in the 2D O(N) nonlinear sigma model with lattice regularization is solved in the leading order of the 1/N expansion. By using this solution, we analytically compute the thermal expectation value of a lattice energy–momentum tensor defined through the gradient flow. The expectation value reproduces thermodynamic quantities obtained by the standard large-N method. This analysis confirms that the above lattice energy–momentum tensor restores the correct normalization automatically in the continuum limit, in a system with a non-perturbative mass gap
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Design and high order optimization of the ATF2 lattices
Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R
2013-01-01
The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Lattice QCD: Status and Prospect
International Nuclear Information System (INIS)
Ukawa, Akira
2006-01-01
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Noise tolerant dendritic lattice associative memories
Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc
2011-09-01
Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.
Non-perturbative renormalization on the lattice
International Nuclear Information System (INIS)
Koerner, Daniel
2014-01-01
Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.
Uses of Effective Field Theory in Lattice QCD
Kronfeld, Andreas S.
2002-01-01
Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...
Hadron spectrum in quenched lattice QCD and quark potential models
International Nuclear Information System (INIS)
Iwasaki, Y.; Yoshie, T.
1989-01-01
We show that the quenched lattice QCD gives a hadron spectrum which remarkably agrees with that of quark potential models for quark mass m q ≥ m strange , even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. (orig.)
Modified one-way coupled map lattices as communication cryptosystems
International Nuclear Information System (INIS)
Zhao Mingchao; Li Kezan; Fu Xinchu
2009-01-01
In this paper, we modify the original communication cryptosystem based on OCML (one-way coupled map lattices), and present a modified OCML communication cryptosystem. The modified OCML communication cryptosystem is shown to have some additional advantages compared to the original one, e.g., it has a larger parameter space, and is more capable of anti-error analysis. And, we apply this modified OCML communication cryptosystem for multiplex OCML communication.
The properties of tagged lattice fluids: II. Velocity correlation functions
International Nuclear Information System (INIS)
Binder, P.M.; d'Humieres, D.; Poujol, L.
1988-01-01
We report preliminary measurements of the velocity autocorrelation function for a tagged particle in a lattice gas. These measurements agree with the Boltzmann-level theory. The Green-Kubo integration of these measurements agrees with theoretical predictions for the diffusion coefficient. To within the error bars of the simulations (3 /times/ 10/sup /minus/3/) we observe no long-time tails. 9 refs., 1 fig., 1 tab
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Lattice Boltzmann model capable of mesoscopic vorticity computation
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.
2000-01-01
The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also ...
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Dynamic aperture and performance of the SSC low energy booster lattice
International Nuclear Information System (INIS)
Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.
1991-05-01
A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Indefinite theta series and generalized error functions
Alexandrov, Sergei; Manschot, Jan; Pioline, Boris
2016-01-01
Theta series for lattices with indefinite signature $(n_+,n_-)$ arise in many areas of mathematics including representation theory and enumerative algebraic geometry. Their modular properties are well understood in the Lorentzian case ($n_+=1$), but have remained obscure when $n_+\\geq 2$. Using a higher-dimensional generalization of the usual (complementary) error function, discovered in an independent physics project, we construct the modular completion of a class of `conformal' holomorphic theta series ($n_+=2$). As an application, we determine the modular properties of a generalized Appell-Lerch sum attached to the lattice ${\\operatorname A}_2$, which arose in the study of rank 3 vector bundles on $\\mathbb{P}^2$. The extension of our method to $n_+>2$ is outlined.
Energy Technology Data Exchange (ETDEWEB)
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Wienands, U.; Craddock, M.K.; Rees, G.H.
1989-03-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. In addition the new lattices have fewer depolarizing resonances than the old circular lattices
DEFF Research Database (Denmark)
Brink, Bastian Klüge
work in synthesis and characterization of interstitial solutions ofnitrogen and carbon in iron-based lattices. In order to avoid the influences of gradients incomposition and residual stresses, which are typically found in treated surface layers,homogenous samples are needed. These were prepared from...
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei
2014-05-05
Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.
Sizes of the lightest glueballs in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Loan Mushtaq; Ying Yi
2006-01-01
Standard Monte Carlo simulations have been performed on improved lattices to determine the wave functions and the sizes of the scalar and tensor glueballs at four lattice spacings in the range a =0.05 - 0.145 fm. Systematic errors introduced by the discretization and the finite volume are studied. Our results in the continuum limit show that the tensor glueball is approximately two times as large as the scalar glueball. (author)
Prescription Errors in Psychiatry
African Journals Online (AJOL)
Arun Kumar Agnihotri
clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.
Lattice QCD Thermodynamics First 5000 Trajectories
International Nuclear Information System (INIS)
Soltz, R; Gupta, R
2007-01-01
These results represent the first LQCD analysis for approximately 5000 trajectories with each of the p4rhmc and milc codes, with some of the lower temperature runs having fewer. Both runs were for lattice dimensions of 32 3 x8. Some 32 4 T=0 jobs were also run for p4rhmc. The p4 calculation was performed with v2.0 QMP( ) MPI.X (semi-optimized p4 code using qmp over mpi) and milc version of the su3 rhmc susc eos executable dated Mar 1, 2007 on ubgl in the /usr/gapps/hip/qcd/milc/bin subdirectory (svn revision 28). As with previous runs, calculations were performed along lines of constant physics, with the light quark masses 2-3 times their physics values and the strange quark mass set by m ud = 0.1m s . Job submissions were performed using a new subSet.pl job submission script that locates current jobs and submits additional jobs with the same beta value as pending. Note that after reaching a limit of about 35 jobs subsequent submissions are delayed and will not be submitted directly from that state. The job submission script was used to submit revised versions of the milc and p4rhmc csh scripts. Initial thermalized lattices for each code were also for milc (taken from the firstPhys runs), but the p4rhmc runs include thermalization. The only modifications for running on BG/L were to the directory names and the mT parameter which determines job durations (24 hrs on BG/L vs. 4 hrs on ubgl). All finite temperature jobs were submitted to the 512 node partitions, and all T=0 runs were submitted to 2048 node partitions. The set of runs was plagued by filesystem errors on lscratch1 and lscratcH 2 . Many jobs had to be reset (deleting the most recent output file for milc and/or lattice for p4) and resubmitted. The analysis was performed with a new set of scripts that produced a more condensed output for scanning. All scans were verified with checksums, which have been retained in the output along with the line numbers. All lattices, log files, and job submission scripts
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
Conjugate descent formulation of backpropagation error in feedforward neural networks
Directory of Open Access Journals (Sweden)
NK Sharma
2009-06-01
Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.
Piretzidis, Dimitrios; Sideris, Michael G.
2017-09-01
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be
High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice
Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof
2018-05-01
Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.
Low temperature anomalies in the lattice parameters of rare earth compounds and UPd3
International Nuclear Information System (INIS)
Pluemacher, D.
1980-01-01
Using a low temperature diffractometer, intermediate valence effects and crystal defects can be identified from the temperature dependence of the lattice parameters and the Debye-Waller factor. For polycrystalline powder samples the measuring error are too large. For intermediate valence systems the relative change in the 4f-level population probability can be calculated together with the anisotropic effects on the lattice parameters and on the unit cell colume. Pronounced effects on the lattice parameters can be observed in the case of RE Cu 2 Si 2 compounds with crystal fields. (DG) [de
Second order bounce back boundary condition for the lattice Boltzmann fluid simulation
International Nuclear Information System (INIS)
Kim, In Chan
2000-01-01
A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method
Embedded Lattice and Properties of Gram Matrix
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Kartush, J M
1996-11-01
Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.
Formulating viscous hydrodynamics for large velocity gradients
International Nuclear Information System (INIS)
Pratt, Scott
2008-01-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
Quantum lattice model solver HΦ
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
The error in total error reduction.
Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R
2014-02-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.
Higher-order force gradient symplectic algorithms
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
Representation theory of lattice current algebras
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.
1996-04-01
Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)
Applicability of quasi-Monte Carlo for lattice systems
International Nuclear Information System (INIS)
Ammon, Andreas; Deutsches Elektronen-Synchrotron; Hartung, Tobias; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Mueller-Preussker, Michael
2013-11-01
This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N -1/2 , where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N -1 , or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.
Applicability of quasi-Monte Carlo for lattice systems
Energy Technology Data Exchange (ETDEWEB)
Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics
2013-11-15
This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.
Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano
2013-01-01
Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...
Experimental quantum error correction with high fidelity
International Nuclear Information System (INIS)
Zhang Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond
2011-01-01
More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett. 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ε to ∼ε 2 . In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.
Diagnosis of transverse coupling errors in a storage ring
International Nuclear Information System (INIS)
Bagley, P.; Rubin, D.
1987-01-01
In a coupled lattice excitation of either one of the two transverse normal modes will generally excite both horizontal and vertical motion at an observation point. A measurement of the relative phase and amplitude of the two components permits a partial reconstruction of the off-diagonal elements of the full turn transfer matrix. At each of the nearly 100 beam position detectors in CESR the coupled transfer matrices are measured. A fit of plausible sources of coupling to the data can improve our understanding of lattice errors and permit an optimization of the rotated quad, solenoid compensation scheme
National Research Council Canada - National Science Library
Byrne, Michael D
2006-01-01
.... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...
International Nuclear Information System (INIS)
Wahlstroem, B.
1993-01-01
Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)
Accurate conjugate gradient methods for families of shifted systems
Eshof, J. van den; Sleijpen, G.L.G.
We present an efficient and accurate variant of the conjugate gradient method for solving families of shifted systems. In particular we are interested in shifted systems that occur in Tikhonov regularization for inverse problems since these problems can be sensitive to roundoff errors. The
Single Pass Collider Memo: Gradient Perturbations of the SLC arc
Energy Technology Data Exchange (ETDEWEB)
Weng, W.T.; Sands, M.; /SLAC
2016-12-16
As the beam passes through the arcs, the gradient it encounters at each magnet differs from the design value. This deviation may be in part random and in part systematic. In this note we make estimates of the effects to be expected from both kinds of errors.
Light Ray Displacements due to Air Temperature Gradient
Teymurazyan, A; CERN. Geneva
2000-01-01
Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.
Refined discrete and empirical horizontal gradients in VLBI analysis
Landskron, Daniel; Böhm, Johannes
2018-02-01
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these
Bidirectional Fano Algorithm for Lattice Coded MIMO Channels
Al-Quwaiee, Hessa
2013-05-08
Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
From lattice gases to polymers
Frenkel, D.
1990-01-01
The modification of a technique that was developed to study time correlations in lattice-gas cellular automata to facilitate the numerical simulation of chain molecules is described. As an example, the calculation of the excess chemical potential of an ideal polymer in a dense colloidal
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Nuclear physics on the lattice?
International Nuclear Information System (INIS)
Koonin, S.E.
1985-01-01
The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...
Lattice fields and strong interactions
International Nuclear Information System (INIS)
Creutz, M.
1989-06-01
I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs
Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.
1999-01-01
We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to .... The Monte Carlo technique to evaluate C(t), or the expectation value of any other observable ... x }occurs with a probability proportional to. 890.
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
International Nuclear Information System (INIS)
Itzykson, C.
1983-10-01
We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Metcalfe, Janet
2017-01-01
Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…
Lattice Boltzmann model for three-phase viscoelastic fluid flow
Xie, Chiyu; Lei, Wenhai; Wang, Moran
2018-02-01
A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.
Nucleon form factors on the lattice with light dynamical fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-09-01
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon form factors on the lattice with light dynamical fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-09-15
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Preprocessing of gravity gradients at the GOCE high-level processing facility
Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin
2009-07-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this
Action errors, error management, and learning in organizations.
Frese, Michael; Keith, Nina
2015-01-03
Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.
Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops
International Nuclear Information System (INIS)
Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.
2004-01-01
This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Statistical hydrodynamics of lattice-gas automata
Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.
1993-01-01
We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...
Cutoff effects on energy-momentum tensor correlators in lattice gauge theory
International Nuclear Information System (INIS)
Meyer, Harvey B.
2009-01-01
We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.
Lattice Designs in Standard and Simple Implicit Multi-linear Regression
Wooten, Rebecca D.
2016-01-01
Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Spatiotemporal complexity in coupled map lattices
International Nuclear Information System (INIS)
Kaneko, Kunihiko
1986-01-01
Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Spatial classification with fuzzy lattice reasoning
Mavridis, Constantinos; Athanasiadis, I.N.
2017-01-01
This work extends the Fuzzy Lattice Reasoning (FLR) Classifier to manage spatial attributes, and spatial relationships. Specifically, we concentrate on spatial entities, as countries, cities, or states. Lattice Theory requires the elements of a Lattice to be partially ordered. To match such
LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR
Energy Technology Data Exchange (ETDEWEB)
Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.
2017-07-16
The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Uncorrected refractive errors.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.
Directory of Open Access Journals (Sweden)
Kovin S Naidoo
2012-01-01
Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.
The {pi}{sup +}{pi}{sup +} scattering length from maximally twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Jansen, Karl; Renner, Dru [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2009-12-15
We calculate the s-wave pion-pion scattering length in the isospin I=2 channel in lattice QCD for pion masses ranging from 270 Mev to 485 Mev using two flavors of maximally twisted mass fermions at a lattice spacing of 0.086 fm. Additionally, we check for lattice artifacts with one calculation at a finer lattice spacing of 0.067 fm. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m{sub {pi}}a{sup I=2}{sub {pi}}{sub {pi}}=-0.04385(28)(38) for the scattering length, where the first error is statistical and the second is our estimate of several systematic effects. (orig.)
Preventing Errors in Laterality
Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie
2014-01-01
An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...
International Nuclear Information System (INIS)
Reason, J.
1988-01-01
This paper is in three parts. The first part summarizes the human failures responsible for the Chernobyl disaster and argues that, in considering the human contribution to power plant emergencies, it is necessary to distinguish between: errors and violations; and active and latent failures. The second part presents empirical evidence, drawn from driver behavior, which suggest that errors and violations have different psychological origins. The concluding part outlines a resident pathogen view of accident causation, and seeks to identify the various system pathways along which errors and violations may be propagated
Space-time symmetries and the Yang-Mills gradient flow
Del Debbio, Luigi; Rago, Antonio
2013-01-01
The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.
Low Horizontal Beta Function In Long Straights Of The NSLS-II Lattice
International Nuclear Information System (INIS)
Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.
2011-01-01
The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Entropy favours open colloidal lattices
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Electroweak interactions on the lattice
International Nuclear Information System (INIS)
Kieu, T.D.
1994-07-01
It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Transitionless lattices for LAMPF II
International Nuclear Information System (INIS)
Franczak, B.J.
1984-10-01
Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties
Graphene antidot lattice transport measurements
DEFF Research Database (Denmark)
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Cellular automata in cytoskeletal lattices
Energy Technology Data Exchange (ETDEWEB)
Smith, S A; Watt, R C; Hameroff, S R
1984-01-01
Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Orginos, Konstantinos
2006-01-01
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Multigrid for Staggered Lattice Fermions
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.
2018-01-23
Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.
Computing nucleon EDM on a lattice
Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey
2018-03-01
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Heavy water critical experiments on plutonium lattice
International Nuclear Information System (INIS)
Miyawaki, Yoshio; Shiba, Kiminori
1975-06-01
This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)
Computing nucleon EDM on a lattice
Energy Technology Data Exchange (ETDEWEB)
Abramczyk, Michael; Izubuchi, Taku
2017-06-18
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Aliasing modes in the lattice Schwinger model
International Nuclear Information System (INIS)
Campos, Rafael G.; Tututi, Eduardo S.
2007-01-01
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass
Apiary B Factory lattice design
International Nuclear Information System (INIS)
Donald, M.H.R.; Garren, A.A.
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Harmonic Lattice Dynamics of Germanium
Energy Technology Data Exchange (ETDEWEB)
Nelin, G
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Harmonic Lattice Dynamics of Germanium
International Nuclear Information System (INIS)
Nelin, G.
1974-01-01
The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field
... this page: //medlineplus.gov/ency/patientinstructions/000618.htm Help prevent hospital errors To use the sharing features ... in the hospital. If You Are Having Surgery, Help Keep Yourself Safe Go to a hospital you ...
2012-03-01
This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...
International Nuclear Information System (INIS)
Jeach, J.L.
1976-01-01
When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables
Spotting software errors sooner
International Nuclear Information System (INIS)
Munro, D.
1989-01-01
Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)
International Nuclear Information System (INIS)
Kop, L.
2001-01-01
On request, the Dutch Association for Energy, Environment and Water (VEMW) checks the energy bills for her customers. It appeared that in the year 2000 many small, but also big errors were discovered in the bills of 42 businesses
Medical Errors Reduction Initiative
National Research Council Canada - National Science Library
Mutter, Michael L
2005-01-01
The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Spin lattices of walking droplets
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Calculational methods for lattice cells
International Nuclear Information System (INIS)
Askew, J.R.
1980-01-01
At the current stage of development, direct simulation of all the processes involved in the reactor to the degree of accuracy required is not an economic proposition, and this is achieved by progressive synthesis of models for parts of the full space/angle/energy neutron behaviour. The split between reactor and lattice calculations is one such simplification. Most reactors are constructed of repetitions of similar geometric units, the fuel elements, having broadly similar properties. Thus the provision of detailed predictions of their behaviour is an important step towards overall modelling. We shall be dealing with these lattice methods in this series of lectures, but will refer back from time to time to their relationship with overall reactor calculation The lattice cell is itself composed of somewhat similar sub-units, the fuel pins, and will itself often rely upon a further break down of modelling. Construction of a good model depends upon the identification, on physical and mathematical grounds, of the most helpful division of the calculation at this level
Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris
2014-07-01
Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to
Nucleon matrix elements using the variational method in lattice QCD
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA
2016-06-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
DEFF Research Database (Denmark)
Rasmussen, Jens
1983-01-01
An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
2008-01-01
One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177
Thermodynamics of Error Correction
Directory of Open Access Journals (Sweden)
Pablo Sartori
2015-12-01
Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.
Green-Schwarz superstring on the lattice
Energy Technology Data Exchange (ETDEWEB)
Bianchi, L. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, M.S. [Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Forini, V.; Leder, B.; Vescovi, E. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-07-04
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
Green-Schwarz superstring on the lattice
International Nuclear Information System (INIS)
Bianchi, L.; Bianchi, M.S.; Forini, V.; Leder, B.; Vescovi, E.
2016-01-01
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
The gradient flow coupling in the Schroedinger functional
International Nuclear Information System (INIS)
Fritzsch, Patrick; Ramos, Alberto
2013-01-01
We study the perturbative behavior of the Yang-Mills gradient flow in the Schroedinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N f =2 gauge field ensembles in a physical volume of L∝0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.
The gradient flow running coupling with twisted boundary conditions
International Nuclear Information System (INIS)
Ramos, Alberto
2014-09-01
We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density left angle E(t) right angle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
International Nuclear Information System (INIS)
Meddahi, M.; Bengtsson, J.
1993-05-01
We have studied change of expected performance of the Advanced Light Source storage ring at LBL for the (design) nominal and maximum energy of 1.5 and 1.9 GeV respectively. Furthermore, we have also studied a possible increase to 2.3 GeV by modeling the change of dynamical aperture caused by saturation of the magnets. Independently, we have also modeled the beam's trajectory at injection. Comparison with bpm data from early storage ring commissioning led to the diagnosis of a major lattice error due to a short in a quadrupole, which was rectified leading to stored beam of 60 turns
International Nuclear Information System (INIS)
Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.
2014-01-01
A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
Optimizer convergence and local minima errors and their clinical importance
International Nuclear Information System (INIS)
Jeraj, Robert; Wu, Chuan; Mackie, Thomas R
2003-01-01
Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization
A high gradient quadrupole magnet for the SSC
International Nuclear Information System (INIS)
Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.
1987-01-01
A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil I.D. is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped space in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coil using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented. The quadrupole magnets proposed for the main SSC rings have a design gradient of 230 T/m. For one proposed 60 degree lattice cell, each 3-m long quad is separated by five 17-m long dipole magnets
Lattice Commissioning Strategy Simulation for the B Factory
International Nuclear Information System (INIS)
Lee, M.; Whittum, D.; Yan, Y.; Cai, Y.; Shoaee, H.
2011-01-01
To prepare for the PEP-II turn on, we have studied one commissioning strategy with simulated lattice errors. Features such as difference and absolute orbit analysis and correction are discussed. To prepare for the commissioning of the PEP-II injection line and high energy ring (HER), we have developed a system for on-line orbit analysis by merging two existing codes: LEGO and RESOLVE. With the LEGO-RESOLVE system, we can study the problem of finding quadrupole alignment and beam position (BPM) offset errors with simulated data. We have increased the speed and versatility of the orbit analysis process by using a command file written in a script language designed specifically for RESOLVE. In addition, we have interfaced the LEGO-RESOLVE system to the control system of the B-Factory. In this paper, we describe online analysis features of the LEGO-RESOLVE system and present examples of practical applications.
Energy Technology Data Exchange (ETDEWEB)
Borland, M.; Lindberg, R.
2017-06-01
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hardedge nonlinear fringe effects in quadrupoles.
Directory of Open Access Journals (Sweden)
MA. Lendita Kryeziu
2015-06-01
Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.
Compact disk error measurements
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
Topological magnon bands in ferromagnetic star lattice
International Nuclear Information System (INIS)
Owerre, S A
2017-01-01
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
DEFF Research Database (Denmark)
Løvborg, Leif; Gaffney, C. F.; Clark, P. A.
1985-01-01
Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...... that the present practice of avoiding samples above a depth of 0.3 m may be over-cautious...
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice
Park, Jincheol
2012-04-01
The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
U(1) Wilson lattice gauge theories in digital quantum simulators
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
A first look at Quasi-Monte Carlo for lattice field theory problems
International Nuclear Information System (INIS)
Jansen, K.; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2012-11-01
In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Quasi-Monte Carlo methods for lattice systems. A first look
International Nuclear Information System (INIS)
Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2013-02-01
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
Energy Technology Data Exchange (ETDEWEB)
Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-11-15
The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model
Pouriayevali, Habib; Xu, Bai-Xiang
2017-11-01
A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.
Directory of Open Access Journals (Sweden)
Antonio Boldrini
2013-06-01
Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Nucleon Structure from Lattice QCD
International Nuclear Information System (INIS)
Zanotti, J. M.
2011-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes.By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of parton distribution functions, show some indication of approaching their phenomenological values.
Lattice dynamics of ionic crystals
International Nuclear Information System (INIS)
Mahan, G.D.
1990-01-01
The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces
Rojas Bocanegra, Alberto
2004-01-01
Objetivo: Determinar la prevalencia de degeneración periférica de retina Lattice y su relación con estados refractivos y rupturas retinales. Metodología: Estudio de corte transversal con exploración de asociación, mediante análisis de casos y controles. Se examinaron 680 ojos en el Instituto de Investigaciones Optométricas e Instituto de Córnea. El estado refractivo se determinó mediante técnica estática y el estado retinal mediante oftalmoscopia indirecta con indentación escleral. Resultados...
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
The lattice dynamics of imidazole
International Nuclear Information System (INIS)
Link, K.H.
1983-05-01
The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
LIBERTARISMO & ERROR CATEGORIAL
Directory of Open Access Journals (Sweden)
Carlos G. Patarroyo G.
2009-01-01
Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.
Libertarismo & Error Categorial
PATARROYO G, CARLOS G
2009-01-01
En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibili...
1985-01-01
A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
International Nuclear Information System (INIS)
Richter, W.
1976-01-01
α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)
Experimental generation of optical coherence lattices
Energy Technology Data Exchange (ETDEWEB)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Indian Academy of Sciences (India)
Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
Introduction to Vortex Lattice Theory
Directory of Open Access Journals (Sweden)
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
Coherent lattice vibrations in superconductors
International Nuclear Information System (INIS)
Kadin, Alan M.
2008-01-01
A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed
Lattice dynamics in solid oxygen
International Nuclear Information System (INIS)
Kobashi, K.; Klein, M.L.; Chandrasekharan, V.
1979-01-01
Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted
Polarization response of RHIC electron lens lattices
International Nuclear Information System (INIS)
Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.
2016-01-01
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Advancements in simulations of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Lippert, T.
2008-01-01
An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Elastic lattice in an incommensurate background
International Nuclear Information System (INIS)
Dickman, R.; Chudnovsky, E.M.
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices
Anomalous diffusion in a dynamical optical lattice
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Polarization response of RHIC electron lens lattices
Directory of Open Access Journals (Sweden)
V. H. Ranjbar
2016-10-01
Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Testing the holographic principle using lattice simulations
Directory of Open Access Journals (Sweden)
Jha Raghav G.
2018-01-01
Full Text Available The lattice studies of maximally supersymmetric Yang-Mills (MSYM theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme between them.
Global analysis of all linear stable settings of a storage ring lattice
Directory of Open Access Journals (Sweden)
David S Robin
2008-02-01
Full Text Available The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straightforward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS (GLobal scan of All Stable Settings that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices—the triple bend achromat of the Advanced Light Source and the double bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some cases previously unknown stability regions.
Challenge and Error: Critical Events and Attention-Related Errors
Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel
2011-01-01
Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…
Directory of Open Access Journals (Sweden)
Lehner Christoph
2018-01-01
Full Text Available In this talk I present the current status of a precise first-principles calculation of the quark connected, quark disconnected, and leading QED and strong isospin-breaking contributions to the leading-order hadronic vacuum polarization by the RBC and UKQCD collaborations. The lattice data is also combined with experimental e+e− scattering data, consistency between the two datasets is checked, and a combined result with smaller error than the lattice data and e+e− scattering data individually is presented.
Leading hadronic contributions to the running of the electroweak coupling constants from lattice QCD
International Nuclear Information System (INIS)
Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit
2015-12-01
The quark-connected leading-order hadronic contributions to the running of the electromagnetic fine structure constant, α QED , and the weak mixing angle, θ W , are determined by a four-flavour lattice QCD computation with twisted mass fermions. Full agreement of the results with a phenomenological analysis is observed with an even comparable statistical uncertainty. We show that the uncertainty of the lattice calculation is dominated by systematic effects which then leads to significantly larger errors than obtained by the phenomenological analysis.
Lehner, Christoph
2018-03-01
In this talk I present the current status of a precise first-principles calculation of the quark connected, quark disconnected, and leading QED and strong isospin-breaking contributions to the leading-order hadronic vacuum polarization by the RBC and UKQCD collaborations. The lattice data is also combined with experimental e+e- scattering data, consistency between the two datasets is checked, and a combined result with smaller error than the lattice data and e+e- scattering data individually is presented.
Phakic retinal detachment associated with atrophic hole of lattice degeneration of the retina.
Murakami-Nagasako, F; Ohba, N
1983-01-01
Forty patients with phakic nontraumatic retinal detachment caused by atrophic retinal hole of lattice degeneration were reviewed. The condition was characterized by insidious, slowly developing shallow detachment, with frequent formation of demarcation lines. Often, the patients did not recognize their visual problems until the detachment had extended to the macular region. Young patients under 40 years of age were more common than older patients. Myopic refractive errors were frequently associated. The results of surgical repair were favorable. The risk of retinal detachment in lattice degeneration with atrophic holes was estimated to be about 1 in 90 patients, and prophylactic treatment for this common anomaly is not readily recommended.
MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT
Directory of Open Access Journals (Sweden)
ZURAIDAH FITRIAH
2017-10-01
Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.
NIF optical specifications - the importance of the RMS gradient specification
International Nuclear Information System (INIS)
Auerbach, J. M.; Cotton, C. T.; English, R. E.; Henesian, M. A.; Hunt, J. T.; Kelly, J. H.; Lawson, J. K.; Sacks, J. B.; Shoup, M. J.; Trenholme, W. H.
1998-01-01
The performance of the National Ignition Facility (NIF), especially in terms of laser focusability, will be determined by several key factors. One of these key factors is the optical specification for the thousands of large aperture optics that will comprise the 192 beamlines. We have previously reported on the importance of the specification of the power spectral density (PSD) on NIF performance. Recently, we have been studying the importance of long spatial wavelength (>33 mm) phase errors on focusability. We have concluded that the preferred metric for determining the impact of these long spatial wavelength phase errors is the rms phase gradient. In this paper, we outline the overall approach to NIF optical specifications, detail the impact of the rms phase gradient on NIF focusability, discuss its trade-off with the PSD in determining the spot size and review measurements of optics similar to those to be manufactured for NIF
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2018-02-01
Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.
Rieger, Martina; Martinez, Fanny; Wenke, Dorit
2011-01-01
Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Directory of Open Access Journals (Sweden)
Yi Jiao
2011-05-01
Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.
Correction of refractive errors
Directory of Open Access Journals (Sweden)
Vladimir Pfeifer
2005-10-01
Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.
1989-01-01
001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.
Spatial gradient tuning in metamaterials
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
Minimum Tracking Error Volatility
Luca RICCETTI
2010-01-01
Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Satellite Photometric Error Determination
2015-10-18
Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical