International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Lattice Gauge Theories Have Gravitational Duals
International Nuclear Information System (INIS)
Hellerman, Simeon
2002-01-01
In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
A lattice formulation of chiral gauge theories
International Nuclear Information System (INIS)
Bodwin, G.T.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Strong dynamics and lattice gauge theory
Schaich, David
In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Witten, E.
1989-01-01
Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)
Statistical mechanics view of quantum chromodynamics: Lattice gauge theory
International Nuclear Information System (INIS)
Kogut, J.B.
1984-01-01
Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
SU(N) chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2004-01-01
We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
An approach to higher dimensional theories based on lattice gauge theory
International Nuclear Information System (INIS)
Murata, M.; So, H.
2004-01-01
A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram
Overview of lattice gauge theory at the CSSM
International Nuclear Information System (INIS)
Williams, A.G.
2002-01-01
Full text: I present an overview of the lattice gauge theory effort at the Special Research Centre for the Subatomic Structure of Matter (CSSM). The CSSM specializes in research into the strong interactions and into quantum chromodynamics (QCD), which is the fundamental quantum gauge field theory of the strong interactions. The primary mission of the CSSM is to attempt to solve QCD and hence test the implications of the theory against experimental evidence. The difficulty lies in the fact that the QCD is a highly nonlinear, strongly coupled theory. The only known first-principles means to solve it is to approximate space-time by a four-dimensional 'grid' or 'lattice' and to simulate this 'lattice QCD' on massively parallel supercomputers. A discussion of the Orion supercomputer of the National Computing Facility for Lattice Gauge Theory (NFCLGT) and the latest QCD predictions obtained from Orion by CSSM researchers will be presented
National Computational Infrastructure for Lattice Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
Ultraviolet stability of three-dimensional lattice pure gauge field theories
International Nuclear Information System (INIS)
Balaban, T.
1985-01-01
We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Numerical techniques for lattice gauge theories
International Nuclear Information System (INIS)
Creutz, M.
1981-01-01
The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields
Classical solutions in lattice gauge theories
International Nuclear Information System (INIS)
Mitrjushkin, V.K.
1996-08-01
The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)
A map between corner and link operators in lattice gauge theories
International Nuclear Information System (INIS)
Bars, I.
1979-01-01
A completely local gauge-invariant lattice gauge theory is formulated in terms of a new set of variables introduced earlier in the continuum. This theory uses local 'corner' variables defined on lattice sites only, as opposed to the conventional 'link' variables. It is shown via a map that the formulation gives identical results to the usual lattice gauge theory. The properties of the quantum commutators in the continuum limit is also discussed and contrasted for the two lattice approaches. In terms of the corner operators the quantized lattice theory is seen to be closely related to continuum QCD. (Auth.)
Five-dimensional Lattice Gauge Theory as Multi-Layer World
Murata, Michika; So, Hiroto
2003-01-01
A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\\beta_4$ controls the dynamics inside a layer and $\\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize t...
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Monopoles and confinement in lattice gauge theory
International Nuclear Information System (INIS)
Singh, V.
1992-01-01
The mechanism by which quarks, believed to be the fundamental constituents of matter, are prevented from existing in the free state is fundamental problems in physics. One of the most viable candidates for a hypothesis of confinement is the dual superconductor mechanism that likens quark confinement to the Meissner effect in superconductors. The peculiarities of quark interactions make a numerical approach to the subject a necessity, and therefore, much of the work in this area has been done through the methods of lattice gauge theory, with the simplicities afforded by putting spacetime on a four-dimensional grid. Over the years a large amount of indirect evidence has accumulated that the dual superconductor hypothesis does indeed lead to quark confinement but unambiguous evidence has eluded research efforts until recently. This work presents the first direct proof of a Meissner-like effect that leads to confinement, using the numerical techniques of lattice gauge theory. It is shown that for a U(1) lattice gauge theory, that serves as a toy model of the real world of quarks, a dual London relation and an electric fluxoid qauntization condition is satisfied, allowing the author to conclude that the vacuum in this case acts like an extreme type-II superconductor, and that quarks are confined. The author also shows that SU(2) lattice gauge theory, which is qualitatively different and another step closer to reality, shows a Meissner-like effect. In contrast to the U(1) case, the author's results are found consistent with a dual version of the Ginsburg-Landau theory of superconductor on the borderline between type-I and type-II. This approach paves the wave for a study of the more complicated theory, quantum chromodynamics, that is believed to describe quarks
Lattice gauge theories, confinement, strings and all that
International Nuclear Information System (INIS)
Muenster, G.
1980-11-01
In this talk I would like to give an overview over some developments in lattice gauge theory, which might be of some interest for experimental physicists. In particular, I shall try to convince you that lattice gauge theory is not only a play-ground for theorists, but is able to produce numerical results for some non-perturbative quantities. And, of course, I would like to tell you about some work, which has been done here in Hamburg. (orig.)
Topological charge in non-abelian lattice gauge theory
International Nuclear Information System (INIS)
Lisboa, P.
1983-01-01
We report on a numerical calculation of topological charge densities in non-abelian gauge theory with gauge groups SU(2) and SU(3). The group manifold is represented by a discrete subset thereof which lies outside its finite subgroups. The results shed light on the usefulness of these representations in Monte Carlo evaluations of non-abelian lattice gauge theory. (orig.)
Instantons and topological charge in lattice gauge theory
International Nuclear Information System (INIS)
Iwasaki, Y.; Yoshie, T.
1983-01-01
The existence of instantons on the lattice in SU(2) lattice gauge theory is investigated for various lattice actions with loops of up to six lattice spacings. Instantons exist only for the actions where short range fluctuations are suppressed. A formula for topological properties of the solutions are examined. (orig.)
Frustration and dual superconductivity in lattice gauge theories
International Nuclear Information System (INIS)
Orland, P.
1984-01-01
Introducing plaquette fields in SU(N) gauge theories yields a mass gap and confinement by a dual Meisnner effect. Sources for the plaquette fields are electric strings. Similiar plaquette fields exist in pure compact lattice gauge theories. In principle they make it possible to expand in h while keeping the guage field compact
A technique for analytical calculation of observables in lattice gauge theories
International Nuclear Information System (INIS)
Narayanan, R.; Vranas, P.
1990-01-01
It is shown that the partition function for a finite lattice factorizes into terms that can be associated with each vertex in the finite lattice. This factorization property forms the basis of well defined and efficient technique developed to calculate partition functions to high accuracy, on finite lattices for gauge theories. This technique along with the expansion in finite lattices, provides a powerful means for calculating observables in lattice gauge theories. This is applied to SU(2) lattice gauge theory in four dimensions. The free energy, expectation value of a plaquette and specific heat are calculated. The results are very good in the strong coupling region, succeed in entering the weak coupling region and describe the crossover region quite well, agreeing all the way with the Monte Carlo data. (orig.)
Lattice chiral gauge theories with finely-grained fermions
International Nuclear Information System (INIS)
Hernandez, P.; Sundrum, R.
1996-01-01
The importance of lattice gauge field interpolation for our recent non-perturbative formulation of chiral gauge theory is emphasized. We illustrate how the requisite properties are satisfied by our recent four-dimensional non-abelian interpolation scheme, by going through the simpler case of U(1) gauge fields in two dimensions. (orig.)
Anomaly cancellation condition in abelian lattice gauge theories
International Nuclear Information System (INIS)
Suzuki, Hiroshi
1999-11-01
We analyze the general solution of the Wess-Zumino consistency condition in abelian lattice gauge theories, without taking the classical continuum limit. We find that, if the anomaly density is a local pseudo-scalar field on the lattice, the non-trivial anomaly is always proportional to the anomaly coefficient in the continuum theory. The possible extension of this result to non-abelian theories is briefly discussed. (author)
Lattice gauge theory on the hypercube
International Nuclear Information System (INIS)
Apostolakis, J.; Baillie, C.; Ding, Hong-Qiang; Flower, J.
1988-01-01
Lattice gauge theory, an extremely computationally intensive problem, has been run successfully on hypercubes for a number of years. Herein we give a flavor of this work, discussing both the physics and the computing behind it. 19 refs., 5 figs., 27 tabs
Mean field with corrections in lattice gauge theory
International Nuclear Information System (INIS)
Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.
1981-12-01
A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)
Lattices gauge theories in terms of knots
International Nuclear Information System (INIS)
Vecernyes, P.
1989-01-01
Cluster expansion is developed in lattice gauge theories with finite gauge groups in d≥3 dimensions where the clusters are connected (d - 2)-dimensional surfaces which can branch along (d - 3)-cells. The interaction between them has a knot theoretical interpretation. It can be many body linking or knotting self-interaction. For small enough gauge coupling g the authors prove analyticity of the correlation functions in the variable exp(-1/g 2
Tadpole-improved SU(2) lattice gauge theory
Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.
Recent advances in lattice gauge theories
Indian Academy of Sciences (India)
Abstract. Recent progress in the ﬁeld of lattice gauge theories is brieﬂy reviewed for a nonspecialist audience. While the emphasis is on the latest and more deﬁnitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.
Analytical methods applied to the study of lattice gauge and spin theories
International Nuclear Information System (INIS)
Moreo, Adriana.
1985-01-01
A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Status and future of lattice gauge theory
International Nuclear Information System (INIS)
Hoek, J.
1989-07-01
The current status of lattice Quantum Chromo Dynamics (QCD) calculations, the computer requirements to obtain physical results and the direction computing is taking are described. First of all, there is a lot of evidence that QCD is the correct theory of strong interactions. Since it is an asymptotically free theory we can use perturbation theory to solve it in the regime of very hard collisions. However even in the case of very hard parton collisions the end-results of the collisions are bound states of quarks and perturbation theory is not sufficient to calculate these final stages. The way to solve the theory in this regime was opened by Wilson. He contemplated replacing the space-time continuum by a discrete lattice, with a lattice spacing a. Continuum physics is then recovered in the limit where the correlation length of the theory, say ξ. is large with respect to the lattice spacing. This will be true if the lattice spacing becomes very small, which for asymptotically free theories also implies that the coupling g becomes small. The lattice approach to QCD is in many respects analogous to the use of finite element methods to solve classical field theories. These finite element methods are easy to apply in 2-dimensional simulations but are computationally demanding in the 3-dimensional case. Therefore it is not unexpected that the 4-dimensional simulations needed for lattice gauge theories have led to an explosion in demand for computing power by theorists. (author)
Majorana and Majorana-Weyl fermions in lattice gauge theory
International Nuclear Information System (INIS)
Inagaki, Teruaki; Suzuki, Hiroshi
2004-01-01
In various dimensional Euclidean lattice gauge theories, we examine a compatibility of the Majorana decomposition and the charge conjugation property of lattice Dirac operators. In 8n and 1 + 8n dimensions, we find a difficulty to decompose a classical lattice action of the Dirac fermion into a system of the Majorana fermion and thus to obtain a factorized form of the Dirac determinant. Similarly, in 2 + 8n dimensions, there is a difficulty to decompose a classical lattice action of the Weyl fermion into a system of the Majorana-Weyl fermion and thus to obtain a factorized form of the Weyl determinant. Prescriptions based on the overlap formalism do not remove these difficulties. We argue that these difficulties are reflections of the global gauge anomaly associated to the real Weyl fermion in 8n dimensions. For this reason (besides other well-known reasons), a lattice formulation of the N = 1 super Yang-Mills theory in these dimensions is expected to be extremely difficult to find. (author)
Fusion basis for lattice gauge theory and loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-02-10
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Fusion basis for lattice gauge theory and loop quantum gravity
International Nuclear Information System (INIS)
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-01-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
U(1) Wilson lattice gauge theories in digital quantum simulators
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
Variational estimates for the mass gap of SU(2) Euclidean lattice gauge theory
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-10-01
The purpose of this letter is to report on the progress made in our understanding of series expansions for the masses in lattice gauge theories by the application of variational techniques to the Euclidean SU(2) lattice gauge theory. (Auth.)
Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations
International Nuclear Information System (INIS)
Joseph, Anosh
2014-06-01
We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.
The cross-over points in lattice gauge theories with continuous gauge groups
International Nuclear Information System (INIS)
Cvitanovic, P.; Greensite, J.; Lautrup, B.
1981-01-01
We obtain a closed expression for the weak-to-strong coupling cross-over point in all Wilson type lattice gauge theories with continuous gauge groups. We use a weak-coupling expansion of the mean-field self-consistency equation. In all cases where our results can be compared with Monte Carlo calculations the agreement is excellent. (orig.)
Quiver gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Yagi, Junya
2015-01-01
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
International Nuclear Information System (INIS)
Wellegehausen, Bjoern-Hendrik
2012-01-01
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Status of glueball mass calculations in lattice gauge theory
International Nuclear Information System (INIS)
Kronfeld, A.S.
1989-11-01
The status of glueball spectrum calculations in lattice gauge theory is briefly reviewed, with focus on the comparison between Monte Carlo simulations and small-volume analytical calculations in SU(3). The agreement gives confidence that the large-volume Monte Carlo results are accurate, at least in the context of the pure gauge theory. An overview of some of the technical questions, which is aimed at non-experts, serves as an introduction. 19 refs., 1 fig
Monte Carlo algorithms for lattice gauge theory
International Nuclear Information System (INIS)
Creutz, M.
1987-05-01
Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-01-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions
Applications of Jarzynski's relation in lattice gauge theories
DEFF Research Database (Denmark)
Nada, Alessandro; Caselle, Michele; Costagliola, Gianluca
2016-01-01
Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice...... gauge theory will be presented, along with numerical results for the ℤ2 gauge model in three dimensions and for the equation of state in SU(2) Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schrödinger functional and for the study of QCD...
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
The Lanczos method in lattice gauge theories
International Nuclear Information System (INIS)
Barbour, I.M.; Behilil, N.E.; Gibbs, P.E.; Teper, M.; Schierholz, G.
1984-09-01
We present a modified version of the Lanczos algorithm as a computational method for tridiagonalising large sparse matrices, which avoids the requirement for large amounts of storage space. It can be applied as a first step in calculating eigenvalues and eigenvectors or for obtaining the inverse of a matrix row by row. Here we describe the method and apply it to various problems in lattice gauge theories. We have found it to have excellent convergence properties. In particular it enables us to do lattice calculations at small and even zero quark mass. (orig.)
Global anomalies in chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Baer, O.; Campos, I.
2000-01-01
We discuss the issue of global anomalies in chiral gauge theories on the lattice. In Luescher's approach, these obstructions make it impossible to define consistently a fermionic measure for the path integral. We show that an SU(2) theory has such a global anomaly if the Weyl fermion is in the fundamental representation. The anomaly in higher representations is also discussed. We finally show that this obstruction is the lattice analogue of the SU(2) anomaly first discovered by Witten. (orig.)
The Origins of Lattice Gauge Theory
International Nuclear Information System (INIS)
Wilson, Kenneth
2004-01-01
The main focus of this talk is an anecdotal account of the history underlying my 1974 article entitled 'Confinement of Quarks.' In preparing this talk, I will draw on a historical interview conducted by the project for History of Recent Science and Technology at the Dibner Institute for the History of Science and Technology at MIT, and on a theory of invention proposed by Peter Drucker in his book 'Innovation and Entrepreneurship.' I will explain this theory; no background is needed. The account will start with related work in the 1960's. I will end the talk with a plea for lattice gauge researchers to be alert for unexpected scalar or vector colored particles that are invisible to experimentalists yet could start to spoil the agreement of computations with experiment. Note: In association with the Symposium ' 'Lattice 2004,' June 21 to June 26, 2004.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
International Nuclear Information System (INIS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-01-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)
Decorated tensor network renormalization for lattice gauge theories and spin foam models
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Standard model and chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Smit, J.
1990-01-01
A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)
Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8
International Nuclear Information System (INIS)
1998-01-01
The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U A (1) symmetry and the η' for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
International Nuclear Information System (INIS)
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-01-01
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined
Gauge theories on the lattice at N/sub c/ = infinity
International Nuclear Information System (INIS)
Cristofano, G.A.
1982-01-01
The thesis is devoted to the study of the physical properties of the SU(N/sub c/) Yang Mills theory on the lattice at N/sub c/ = infinity. Since the lattice approach provides a natural framework toward a better understanding of nonperturbative phenomena, like quark confinement, nonperturbative physical quantities, like the string tension and the glueball mass are studied. The first two chapters are introductory in nature. In chapters (3,4) the strong coupling expansion for the Euclidean SU(N/sub c/) lattice gauge theory at N/sub c/ = infinity to 16th and 12th order in β = 1/g 0 2 N/sub c/ for the free energy F and the string tension k respectively is performed. Estimates of the ratio √k/Λ/sub L/ and of the crossover point from strong to weak coupling for the string tension are made by matching the strong coupling series to the asymptotically free continuum theory. In chapter (5) the strong coupling expansion for the glueball mass m/sub g/ to the 8th order in β for the Euclidean SU(infinity) lattice gauge theory is performed. The ratio of the glueball mass m/sub g/ to the squareroot of the string tension √k for the SU(infinity) theory is estimated to be m/sub g//√k = 2.6 +/- 0.2. It is found that the ratio m/sub g//√k has a rather small dependence on N/sub c/ and appears to increase with the number of colors N/sub c/. In chapter (6) two-point Pade approximants for the one plaquette expectation value E/sub p/ for the SU(2) lattice gauge theory by using the known strong and weak coupling series for D/sub p/ is performed. Comparison with the correspondent Monte Carlo results is made, especially in the delicate transition region, at intermediate β = 4/g 0 2
On the continuum limit of a Z4 lattice gauge theory
International Nuclear Information System (INIS)
Pena, A.; Socolovsky, M.
1983-01-01
The continuum limit of a Z 4 gauge plus matter lattice theory is identified with massless scalar and vector fields with quartic self-interactions phi 4 and (AμAμ) 2 , respectively. The analysis is based on the mean field approximation after gauge fixing. (orig.)
Microcanonical ensemble formulation of lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.; Rahman, A.
1982-01-01
A new formulation of lattice gauge theory without explicit path integrals or sums is obtained by using the microcanonical ensemble of statistical mechanics. Expectation values in the new formalism are calculated by solving a large set of coupled, nonlinear, ordinary differential equations. The average plaquette for compact electrodynamics calculated in this fashion agrees with standard Monte Carlo results. Possible advantages of the microcanonical method in applications to fermionic systems are discussed
Monte Carlo computations for lattice gauge theories with finite gauge groups
International Nuclear Information System (INIS)
Rabbi, G.
1980-01-01
Recourse to Monte Carlo simulations for obtaining numerical information about lattice gauge field theories is suggested by the fact that, after a Wick rotation of time to imaginary time, the weighted sum over all configurations used to define quantium expectation values becomes formally identical to a statistical sum of a four-dimensional system. Results obtained in a variety of Monte Carlo investigations are described
Anyonic order parameters for discrete gauge theories on the lattice
International Nuclear Information System (INIS)
Bais, F.A.; Romers, J.C.
2009-01-01
We present a new family of gauge invariant non-local order parameters Δ α A for (non-abelian) discrete gauge theories on a Euclidean lattice, which are in one-to-one correspondence with the excitation spectrum that follows from the representation theory of the quantum double D(H) of the finite group H. These combine magnetic flux-sector labeled by a conjugacy class with an electric representation of the centralizer subgroup that commutes with the flux. In particular, cases like the trivial class for magnetic flux, or the trivial irrep for electric charge, these order parameters reduce to the familiar Wilson and the 't Hooft operators, respectively. It is pointed out that these novel operators are crucial for probing the phase structure of a class of discrete lattice models we define, using Monte Carlo simulations.
International Nuclear Information System (INIS)
Yamaguchi, A.; Sugamoto, A.
2000-01-01
Applying Genetic Algorithm for the Lattice Gauge Theory is formed to be an effective method to minimize the action of gauge field on a lattice. In 4 dimensions, the critical point and the Wilson loop behaviour of SU(2) lattice gauge theory as well as the phase transition of U(1) theory have been studied. The proper coding methodi has been developed in order to avoid the increase of necessary memory and the overload of calculation for Genetic Algorithm. How hichhikers toward equilibrium appear against kidnappers is clarified
Hadron mass spectrum in a lattice gauge theory
International Nuclear Information System (INIS)
Seo, Koichi
1978-01-01
We perform the strong coupling expansion in a lattice gauge theory and obtain the hadron mass spectrum. We develop a theory in the Hamiltonian formalism following Kogut and Susskind, but our treatment of quark fields is quite different from theirs. Thus our results largely differ from theirs. In our model and approximation, the pseudoscalar mesons have the same mass as the vectors. The baryon decuplet and the octet are also degenerate. The excited meson states are studied in detail. (auth.)
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
National Computational Infrastructure for Lattice Gauge Theory: Final Report
International Nuclear Information System (INIS)
Richard Brower; Norman Christ; Michael Creutz; Paul Mackenzie; John Negele; Claudio Rebbi; David Richards; Stephen Sharpe; Robert Sugar
2006-01-01
This is the final report of Department of Energy SciDAC Grant ''National Computational Infrastructure for Lattice Gauge Theory''. It describes the software developed under this grant, which enables the effective use of a wide variety of supercomputers for the study of lattice quantum chromodynamics (lattice QCD). It also describes the research on and development of commodity clusters optimized for the study of QCD. Finally, it provides some high lights of research enabled by the infrastructure created under this grant, as well as a full list of the papers resulting from research that made use of this infrastructure
Lattice gauge theories and Monte Carlo simulations
International Nuclear Information System (INIS)
Rebbi, C.
1981-11-01
After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Selfduality and topological-like properties of lattice gauge field theories. A proposal
Energy Technology Data Exchange (ETDEWEB)
Cotta-Ramusino, P; Dell' Antonio, G [Freie Univ. Berlin (Germany, F.R.). Inst. fuer Theoretische Physik; Rome Univ. (Italy). Istituto di Matematica)
1979-11-01
We introduce for lattice gauge theories an analogue of the Pontrjagin index and a notion of 'selfduality' and 'antiselfduality'. Selfdual and antiselfdual configurations on the lattice have much of the same properties (with some remarkable differences) as the corresponding configurations on the continuum, to which they converge when the lattice spacing goes to zero.
Lattice gauge theory in the microcanonical ensemble
International Nuclear Information System (INIS)
Callaway, D.J.E.; Rahman, A.
1983-01-01
The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)
Inequalities for magnetic-flux free energies and confinement in lattice gauge theories
International Nuclear Information System (INIS)
Yoneya, T.
1982-01-01
Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)
Towards a coupled-cluster treatment of SU(N) lattice gauge field theory
Bishop, Raymond F.; Ligterink, N.E.; Walet, Niels R.
2006-01-01
A consistent approach to Hamiltonian SU(N) lattice gauge field theory is developed using the maximal-tree gauge and an appropriately chosen set of angular variables. The various constraints are carefully discussed, as is a practical means for their implementation. A complete set of variables for the
Departures from scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1987-01-01
High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)
Universality and the approach to the continuum limit in lattice gauge theory
De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U
1995-01-01
The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.
Efficient multitasking of the SU(3) lattice gauge theory algorithm on the CRAY X-MP
International Nuclear Information System (INIS)
Kuba, D.W.; Moriarty, K.J.M.
1985-01-01
The Monte Carlo lattice gauge theory algorithm with the Metropolis et.al. updating procedure is vectorized and multitasked on the four processor CRAY X-MP and results in a code with a link-update-time, in 64-bit arithmetic and 10 hits-per-link, of 11.0 μs on a 16 4 lattice, the fastest link-update-time so far achieved. The program calculates the Wilson loops of size up to L/2.L/2 for an L 4 lattice for SU(3) gauge theory. (orig./HSI)
From lattice BF gauge theory to area-angle Regge calculus
International Nuclear Information System (INIS)
Bonzom, Valentin
2009-01-01
We consider Riemannian 4D BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3D and 4D dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form a la Regge and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir insertions for areas and reproducing for 3D angles known results obtained through angle operators on spin networks. The present formulation is argued to be suitable for deriving spin foam models from discrete path integrals and to unravel their geometric content.
Quantum Monte Carlo studies in Hamiltonian lattice gauge theory
International Nuclear Information System (INIS)
Hamer, C.J.; Samaras, M.; Bursill, R.J.
2000-01-01
Full text: The application of Monte Carlo methods to the 'Hamiltonian' formulation of lattice gauge theory has been somewhat neglected, and lags at least ten years behind the classical Monte Carlo simulations of Euclidean lattice gauge theory. We have applied a Green's Function Monte Carlo algorithm to lattice Yang-Mills theories in the Hamiltonian formulation, combined with a 'forward-walking' technique to estimate expectation values and correlation functions. In this approach, one represents the wave function in configuration space by a discrete ensemble of random walkers, and application of the time development operator is simulated by a diffusion and branching process. The approach has been used to estimate the ground-state energy and Wilson loop values in the U(1) theory in (2+1)D, and the SU(3) Yang-Mills theory in (3+1)D. The finite-size scaling behaviour has been explored, and agrees with the predictions of effective Lagrangian theory, and weak-coupling expansions. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak couplings. A drawback to this method is that it is necessary to introduce a 'trial' or 'guiding wave function' to guide the walkers towards the most probable regions of configuration space, in order to achieve convergence and accuracy. The 'forward-walking' estimates should be independent of this guidance, but in fact for the SU(3) case they turn out to be sensitive to the choice of trial wave function. It would be preferable to use some sort of Metropolis algorithm instead to produce a correct distribution of walkers: this may point in the direction of a Path Integral Monte Carlo approach
Plaquette-plaquette correlations in the SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.
1980-09-01
Monte Carlo measurements of plaquette-plaquette correlations in the 4-dimensional SU(2) lattice gauge theory are reported. For low temperatures the glue ball mass (= inverse correlation length) is estimated to be msub(g) = (3.7 +- 1.2) √K, where K is the string tension. (orig.)
Thick vortices in SU(2) lattice gauge theory
Cheluvaraja, Srinath
2004-01-01
Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...
Lattice gauge theory on a parallel computer
International Nuclear Information System (INIS)
Flower, J.W.
1987-01-01
The results of several numerical simulations of QCD by Monte Carlo lattice gauge theory are presented. Studying the mesonic potential on a 20 4 lattice, we conclude that asymptotic scaling does not hold over the range 6.1 ≤ β ≤ 6.7, although we are not able to quantify the discrepancies. The effect of discrete rotational symmetry on physical parameters is examined and seems to modify the string tension by 15% at β = 6.1, while at β = 6.3 the change was less than 1%. The potential between three charges is studied and yields a string tension of .18 GeV 2 , consistent with mesonic calculations and relativized potential models. Contributions to the potential from low-energy string vibrations appear small in the range x ≤ .5 fm. We perform energy density measurements in the color fields surrounding both mesons and baryons, which provide strong evidence in favor of the dual superconductor picture of confinement. It is also suggested that the confining strings in the baryon meet at a central point rather than joining the quarks pairwise. Several algorithms are explored in an attempt to develop simulation methods which are able to directly account for the currents generated by color sources. The extension of the Langevin equation to complex degrees of freedom is derived leading to a Fokker-Planck equation for a complex 'Probability distribution'. Using this technique we are then able to calculate energy densities in U(1) gauge theory at large charge separations. The extension of the method to non-Abelian theories comes up against an unresolved problem in segregation for certain types of observable. 145 refs., 36 figs
Surface representations of Wilson loop expectations in lattice gauge theory
International Nuclear Information System (INIS)
Brydges, D.C.; Giffen, C.; Durhuus, B.; Froehlich, J.
1986-01-01
Expectations of Wilson loops in lattice gauge theory with gauge group G=Z 2 , U(1) or SU(2) are expressed as weighted sums over surfaces with boundary equal to the loops labelling the observables. For G=Z 2 and U(1), the weights are all positive. For G=SU(2), the weights can have either sign depending on the Euler characteristic of the surface. Our surface (or flux sheet-) representations are partial resummations of the strong coupling expansion and provide some qualitative understanding of confinement. The significance of flux sheets with nontrivial topology for permanent confinement in the SU(2)-theory is elucidated. (orig.)
Gluon condensate from lattice caculations: SU(3) pure gauge theory
International Nuclear Information System (INIS)
Kripfganz, J.
1981-01-01
A short distance expansion of Wilson loops is used to define and isolate vacuum expectation values of composite gluon operators. It is applied to available lattice Monte Carlo data for SU(3) pure gauge theory. The value obtained for the gluon condensate is consistent with the ITEP estimate. (author)
Global anomalies in chiral lattice gauge theories
International Nuclear Information System (INIS)
Baer, O.
2000-07-01
We study global anomalies in a new approach to chiral gauge theories on the lattice, which is based on the Ginsparg-Wilson relation. In this approach, global anomalies make it impossible to define consistently a fermionic measure for the functional integral. We show that a global anomaly occurs in an SU(2) theory if the fundamental representation is used for the fermion fields. The generalization to higher representations is also discussed. In addition we establish a close relation between global anomalies and the spectral flow of the Dirac operator and employ it in a numerical computation to prove the existence of the global SU(2) anomaly in a different way. This method is inspired by an earlier work of Witten who first discovered this type of anomalies in continuum field theory. (orig.)
Optimization of renormalization group transformations in lattice gauge theory
International Nuclear Information System (INIS)
Lang, C.B.; Salmhofer, M.
1988-01-01
We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer
2016-06-01
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.
Anomalous gauge theories revisited
International Nuclear Information System (INIS)
Matsui, Kosuke; Suzuki, Hiroshi
2005-01-01
A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)
International Nuclear Information System (INIS)
Moriarty, K.J.M.; Blackshaw, J.E.
1983-01-01
The computer program calculates the average action per plaquette for SU(6)/Z 6 lattice gauge theory. By considering quantum field theory on a space-time lattice, the ultraviolet divergences of the theory are regulated through the finite lattice spacing. The continuum theory results can be obtained by a renormalization group procedure. Making use of the FPS Mathematics Library (MATHLIB), we are able to generate an efficient code for the Monte Carlo algorithm for lattice gauge theory calculations which compares favourably with the performance of the CDC 7600. (orig.)
Confinement in dually transformed U(1) lattice gauge theory
International Nuclear Information System (INIS)
Zach, M.
1997-10-01
The aim of this work is a detailed investigation of the confinement mechanism in U(1) lattice gauge theory. In the first chapters we give a review on the definition of compact Abelian gauge theory on space-time lattices, the numerical calculation of physical observables for exploring confinement, and the interpretation of the results in terms of the dual superconductor picture, which is introduced at two levels of description. We work out that the electric field strength and the magnetic currents around a charge pair can be described very well by a classical effective model of Maxwell and London equations, if fluctuations of the occurring fluxoid string are considered. In order to obtain a deeper understanding of confinement in U(1), we extend the duality transformation of the path integral to the correlation functions which are used to calculate expectation values of fields and currents. This not only helps to interpret U(1) lattice gauge theory as a limit of the dual Higgs model, but also opens the possibility for efficient calculations of expectation values in the presence of static charges by simulating the dual model. Using this technique we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. The dual simulation is applied to flux tubes between static charges, to periodically closed flux tubes (torelons), and to doubly charged systems. We find that the behavior of flux tubes for large charge distances cannot be explained by the picture of a classical dual type-II superconductor; the observed roughening of the flux tube agrees very well with the prediction from the effective string description. We also analyze the different contributions to the total energy of the electromagnetic field. For torelons we calculate both the free energy and the total field energy, split the free energy into a string tension and a string fluctuation part, and apply lattice sum rules modified for finite
Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field
Figueroa, Daniel G.; Shaposhnikov, Mikhail
2018-01-01
Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.
Lattice implementation of Abelian gauge theories with Chern–Simons number and an axion field
Directory of Open Access Journals (Sweden)
Daniel G. Figueroa
2018-01-01
Full Text Available Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark–gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U(1 gauge sector, a(xFμνF˜μν, reproducing the continuum limit to order O(dxμ2 and obeying the following properties: (i the system is gauge invariant and (ii shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K=FμνF˜μν that admits a lattice total derivative representation K=Δμ+Kμ, reproducing to order O(dxμ2 the continuum expression K=∂μKμ∝E→⋅B→. If we consider a homogeneous field a(x=a(t, the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern–Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking in Abelian gauge theories at finite temperature. When a(x=a(x→,t is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O(dxμ2 accuracy. We discuss an iterative scheme allowing to overcome this difficulty.
Interpolating Lagrangians and SU(2) gauge theory on the lattice
International Nuclear Information System (INIS)
Buckley, I.R.C.; Jones, H.F.
1992-01-01
We apply the linear δ expansion to non-Abelian gauge theory on the lattice, with SU(2) as the gauge group. We establish an appropriate parametrization and evaluate the average plaquette energy E P to O(δ). As a check on our results, we recover the large-β expansion up to O(1/β 2 ), which involves some O(δ 2 ) contributions. Using these contributions we construct a variant of the 1/β expansion which gives a good fit to the data down to the transition region
Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1988-01-01
Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model
Lattice Gauge Field Theory and Prismatic Sets
DEFF Research Database (Denmark)
Akyar, Bedia; Dupont, Johan Louis
as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying......We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...
On the presence of lower dimensional confinement mechanisms in 4d SU2 lattice gauge theory
International Nuclear Information System (INIS)
Hari Dass, N.D.
1983-11-01
The presence of an essentially two-dimensional confinement mechanism in 4d SU 2 gauge theory has been conjectured. The authors present an explicit realization of this conjecture valid up to β = 1.8 based on variational investigations of lattice gauge theories. (Auth.)
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Topological charge and cooling scales in pure SU(2) lattice gauge theory
Berg, Bernd A.; Clarke, David A.
2018-01-01
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...
Lattice gauge fixing as quenching and the violation of spectral positivity
International Nuclear Information System (INIS)
Aubin, C.; Ogilvie, Michael C.
2004-01-01
Lattice Landau gauge and other related lattice gauge-fixing schemes are known to violate spectral positivity. The most direct sign of the violation is the rise of the effective mass as a function of distance. The origin of this phenomenon lies in the quenched character of the auxiliary field g used to implement lattice gauge-fixing, and is similar to quenched QCD in this respect. This is best studied using the Parrinello Jona-Lasinio Zwanziger formalism, leading to a class of covariant gauges similar to the one-parameter class of covariant gauges commonly used in continuum gauge theories. Soluble models are used to illustrate the origin of the violation of spectral positivity. The phase diagram of the lattice theory, as a function of the gauge coupling β and the gauge-fixing parameter α, is similar to that of the unquenched theory, a Higgs model of a type first studied by Fradkin and Shenker. The gluon propagator is interpreted as yielding bound states in the confined phase, and a mixture of fundamental particles in the Higgs phase, but lattice simulation shows the two phases are connected. Gauge-field propagators from the simulation of an SU(2) lattice gauge theory on a 20 4 lattice are well described by a quenched mass-mixing model. The mass of the lightest state, which we interpret as the gluon mass, appears to be independent of α for sufficiently large α
Z2 monopoles in the standard SU(2) lattice gauge theory model
International Nuclear Information System (INIS)
Mack, G.; Petkova, V.B.
1979-04-01
The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de
National software infrastructure for lattice gauge theory
International Nuclear Information System (INIS)
Brower, Richard C
2005-01-01
The current status of the SciDAC software infrastructure project for lattice gauge theory is summarized. This includes the the design of a QCD application programmers interface (API) that allows existing and future codes to be run efficiently on Terascale hardware facilities and to be rapidly ported to new dedicated or commercial platforms. The critical components of the API have been implemented and are in use on the US QCDOC hardware at BNL and on both the switched and mesh architecture Pentium 4 clusters at Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLab). Future software infrastructure requirements and research directions are also discussed
Comparison of lattice gauge theories with gauge groups Z2 and SU(2)
International Nuclear Information System (INIS)
Mack, G.; Petkova, B.
1978-11-01
We study a model of a pure Yang Mills theory with gauge group SU(2) on a lattice in Euclidean space. We compare it with the model obtained by restricting varibales to 2 . An inequality relating expectation values of the Wilson loop integral in the two theories is established. It shows that confinement of static quarks is true in our SU(2) model whenever it holds for the corresponding 2 -model. The SU(2) model is shown to have high and low temperature phases that are distinguished by a qualitatively different behavior of the t'Hooft disorder parameter. (orig.) [de
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
National Computational Infrastructure for Lattice Gauge Theory: Final report
International Nuclear Information System (INIS)
Reed, Daniel A.
2008-01-01
In this document we describe work done under the SciDAC-1 Project National Computerational Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the computational infrastructure needed to study quantum chromodynamics (QCD). Nearly all high energy and nuclear physicists in the United States working on the numerical study of QCD are involved in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the senior participants is given in Appendix A.2. The project includes the development of community software for the effective use of the terascale computers, and the research and development of commodity clusters optimized for the study of QCD. The software developed as part of this effort is publicly available, and is being widely used by physicists in the United States and abroad. The prototype clusters built with SciDAC-1 fund have been used to test the software, and are available to lattice gauge theorists in the United States on a peer reviewed basis
Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.
Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2017-02-17
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
The ϱ-ππ coupling constant in lattice gauge theory
Gottlieb, Steven; MacKenzie, Paul B.; Thacker, H. B.; Weingarten, Don
1984-01-01
We present a method for studying hadronic transitions in lattice gauge theory which requires computer time comparable to that required by recent hadron spectrum calculations. This method is applied to a calculation of the decay ϱ-->ππ. On leave from the Department of Physics, Indiana University, Bloomington, IN 47405, USA. Address after September 1, 1983: IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
Renormalization group aspects of 3-dimensional Pure U(1) lattice gauge theory
International Nuclear Information System (INIS)
Gopfert, M.; Mack, G.
1983-01-01
A few surprises in a recent study of the 3-dimensional pure U(1) lattice gauge theory model, from the point of view of the renormalization group theory, are discussed. Since the gauge group U(1) of this model is abelian, the model is subject to KramersWannier duality transformation. One obtains a ferromagnet with a global symmetry group Z. The duality transformation shows that the surface tension alpha of the model equals the strong tension of the U(1) gauge model. A theorem to represent the true asymptotic behaviour of alpha is derived. A second theorem considers the correlation functions. Discrepiancies between the theorems result in a solution that ''is regarded as a catastrophe'' in renormalization group theory. A lesson is drawn: To choose a good block spin in a renormalization group procedure, know what the low lying excitations of the theory are, to avoid integrating some of them by mischief
Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks
Directory of Open Access Journals (Sweden)
T. Pichler
2016-03-01
Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.
Computation of hybrid static potentials in SU(3 lattice gauge theory
Directory of Open Access Journals (Sweden)
Reisinger Christian
2018-01-01
Full Text Available We compute hybrid static potentials in SU(3 lattice gauge theory. We present a method to automatically generate a large set of suitable creation operators with defined quantum numbers from elementary building blocks. We show preliminary results for several channels and discuss, which structures of the gluonic flux tube seem to be realized by the ground states in these channels.
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
Cutoff effects on energy-momentum tensor correlators in lattice gauge theory
International Nuclear Information System (INIS)
Meyer, Harvey B.
2009-01-01
We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.
Lattice Gauge Theory and the Origin of Mass
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.
2013-08-01
Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.
Extrapolation of lattice gauge theories to the continuum limit
International Nuclear Information System (INIS)
Duncan, A.; Vaidya, H.
1978-01-01
The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references
International Nuclear Information System (INIS)
Chodos, A.
1978-01-01
A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory
Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions
International Nuclear Information System (INIS)
Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas
2008-01-01
We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.
Independent SU(2)-loop variables and the reduced configuration space of SU(2)-lattice gauge theory
International Nuclear Information System (INIS)
Loll, R.
1992-01-01
We give a reduction procedure for SU(2)-trace variables and an explicit description of the reduced configuration sace of pure SU(2)-gauge theory on the hypercubic lattices in two, three and four dimensions, using an independent subset of the gauge-invariant Wilson loops. (orig.)
String tensions for lattice gauge theories in 2+1 dimensions
International Nuclear Information System (INIS)
Ambjoern, J.; Hey, A.J.G.; Otto, S.
1982-01-01
Compact U(1) and SU(2) lattice gauge theories in 3 euclidean dimensions are studied by standard Monte Carlo techniques. The question of extracting reliable string tensions from these theories is examined in detail, including a comparison of the Monte Carlo Wilson loop data with weak coupling predictions and a careful error analysis: our conclusions are rather different from those of previous investigations of these theories. In the case of U(1) theory, we find that only a tiny range of β values can possibly be relevant for extracting a string tension and we are unable to convincingly demonstrate the expected exponential dependence of the string tension on β. For the SU(2) theory we are able to determine, albeit with rather large errors, a string tension from a study of Wilson loops. (orig.)
Response of SU(2) lattice gauge theory to a gauge invariant external field
International Nuclear Information System (INIS)
Goepfert, M.
1980-10-01
Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The expectation value of the corresponding Z(2) loop and the dependence of the string tension on an external field h coupled to them is calculated to lowest order in the high temperature expansion. The result is in agreement with the conjecture that the probability distribution of vortex souls determines the string tension. A different formula for the string tension is found in the two limiting cases 0 < /h/ << β << 1 and 0 < β << h << 1. This penomenon is traced to the effect of short range interactions of the vortex souls which are mediated by the other excitations in the theory. (orig.)
About relation between mass absence and gap in the lattice gauge theories
International Nuclear Information System (INIS)
Barata, J.C.A.
1985-01-01
The absence of electric charge in a dipole state, with limited energy, in a U(1) lattice gauge theory with scalar matter field, in the 'screening-confinement' region of the phase diagram of the theory, in the limit in which we take one of the constituent particles to infinity, is studied. It contains an introductory part, an apendix on polymer expansions and a review of results on changed states in the Z 2 model (Author) [pt
Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)
International Nuclear Information System (INIS)
Grosse, H.; Kuehnelt, H.
1981-01-01
The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)
Towards a multigrid scheme in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1992-12-01
The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)
Observing long colour flux tubes in SU(2) lattice gauge theory
Bali, G S; Schlichter, C; Bali, G S; Schilling, K; Schlichter, C
1995-01-01
We present results of a high statistics study of the chromo field distribution between static quarks in SU(2) gauge theory on lattices of volumes 16^4, 32^4, and 48^3*64, with physical extent ranging from 1.3 fm up to 2.7 fm at beta=2.5, beta=2.635, and beta=2.74. We establish string formation over physical distances as large as 2 fm. The results are tested against Michael's sum rules. A detailed investigation of the transverse action and energy flux tube profiles is provided. As a by-product, we obtain the static lattice potential in unpreceded accuracy.
Particle structure of gauge theories
International Nuclear Information System (INIS)
Fredenhagen, K.
1985-11-01
The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)
Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops
International Nuclear Information System (INIS)
Azcoiti, V.; Nakamura, A.
1982-01-01
Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated
SU(N) lattice gauge theory with Villain's action
International Nuclear Information System (INIS)
Onofri, E.
1981-01-01
The pure gauge lattice theory with Villain's action exp[-A(U)] = GAMMAsub(j=1)sup(N) Σsub(n=-infinity)sup(+infinity) exp[-(N/lambda)(THETAsub(j) + 2nπ) 2 ], where THETA 1 ,..., THETAsub(N) are the invariant angles of U is an element of U(N) or SU(N) is considered. For the two-dimensional lattice the partition function Z(lambda,N) is calculated with the specific heat, the level density rhosub(N)(THETA) and Wilson's loops Wsub(n) = (1/N) (n = 1,2,3,...). The 1/N expansion of Z and Wsub(n) is convergent for sufficiently small |lambda/N| and its coefficients are analytic in lambda near the real axis (no ''Gross-Witten'' singularity to all orders in 1/N), but it is still not possible to commute the strong-coupling limit with the planar limit (lambda→infinity, N→infinity). The character expansion which is needed for strong-coupling calculations in four dimensions is also calculated. A comparison with Monte Carlo data (N=2) and a preliminary discussion of the large-N limit is given. (author)
On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-11-18
Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the ‘magnetic centre choice’, as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.
Revisiting entanglement entropy of lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Lu, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Lu, Shanghai 200433 (China); Wan, Yidun [Perimeter Institute for Theoretical Physics,31 Caroline Street, Waterloo, ON N2L 2Y5 (Canada)
2015-04-22
It is realized recently that the entanglement entropy in gauge theories is ambiguous because the Hilbert space cannot be expressed as a simple direct product of Hilbert spaces defined on the two regions; different ways of dividing the Hilbert spaces near the boundary leads to significantly different result, to the extreme that it could annihilate the otherwise finite topological entanglement entropy between two regions altogether. In this article, we first show that the topological entanglement entropy in the Kitaev model http://dx.doi.org/10.1016/S0003-4916(02)00018-0 which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiment, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories.
Monte Carlo simulations of lattice gauge theories
International Nuclear Information System (INIS)
Forcrand, P. de; Minnesota Univ., Minneapolis, MN
1989-01-01
Lattice gauge simulations are presented in layman's terms. The need for large computer resources is justified. The main aspects of implementations on vector and parallel machines are explained. An overview of state of the art simulations and dedicated hardware projects is presented. 8 refs.; 1 figure; 1 table
International Nuclear Information System (INIS)
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.
1991-01-01
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model
Hardware matrix multiplier/accumulator for lattice gauge theory calculations
International Nuclear Information System (INIS)
Christ, N.H.; Terrano, A.E.
1984-01-01
The design and operating characteristics of a special-purpose matrix multiplier/accumulator are described. The device is connected through a standard interface to a host PDP11 computer. It provides a set of high-speed, matrix-oriented instructions which can be called from a program running on the host. The resulting operations accelerate the complex matrix arithmetic required for a class of Monte Carlo calculations currently of interest in high energy particle physics. A working version of the device is presently being used to carry out a pure SU(3) lattice gauge theory calculation using a PDP11/23 with a performance twice that obtainable on a VAX11/780. (orig.)
One-loop fermion contribution in an asymmetric lattice regularization of SU(N) gauge theories
International Nuclear Information System (INIS)
Trinchero, R.C.
1983-01-01
Using the background field method we calculate the one-loop fermion corrections in an asymmetric lattice version of SU(N) gauge theories with massless fermions. The introduction of different lattice spacings for spatial (a) and temporal (a 4 ) links requires the introduction of two different bare coupling constants, gsub(sigma) and gsub(tau). Our calculation provides the value of the derivatives of the couplings with respect to xi=a/a 4 at xi=1; these derivatives are of particular relevance for finite-temperature lattice calculations. With xi->infinite, the lattice hamiltonian version is obtained, and the ratio of scale parameters Λsub(H)/Λsub(E) is calculated. (orig.)
Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension
International Nuclear Information System (INIS)
Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo
2007-01-01
Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture
Area-preserving diffeomorphisms in gauge theory on a non-commutative plane. A lattice study
International Nuclear Information System (INIS)
Bietenholz, W.; Bigarini, A.; INFN, Sezione di Perugia; Humboldt-Universitaet, Berlin; Torrielli, A.
2007-06-01
We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results confirm the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either. (orig.)
SU(2) gauge theory in the maximally Abelian gauge without monopoles
International Nuclear Information System (INIS)
Shmakov, S.Yu.; Zadorozhnyj, A.M.
1995-01-01
We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab
Study of unique trajectories in SU(2) and SU(3) lattice Gauge theories
International Nuclear Information System (INIS)
Nerses, Hudaverdian
1985-01-01
As is well known, in the context of quantum field theories describing different types of interactions in the domain of particle physics, there are rampant ultraviolet infinite which are subtly taken care of by adequate renormalization procedures. The most conventional perturbative regularization schemes are based on the Feynman expansion, so successfully used in quantum electrodynamics. But the unique feature of confinement in strong interactions has forced physicists to search for a non-perturbative cut-off, and this has been provided by the introduction of discrete spacetime lattices over which the field theories have been formulated. the lattice represents a mathematical trick, a more scaffolding, an intermediate step, used to analyze a difficult non-linear system, of an infinite number of degree of freedom. Herein lies the main virtue of the lattice, which directly eliminates all wavelengths less than twice the lattice spacing.Consequently, regarding the lattice merely as an ultraviolet cut-off, physicists should remove this regulator and expect observable quantities to approach their physical values. However as the removal of the regulator is discussed, the question of renormalization emerges, and it is here that the Migdal-Kadanoff recursion relations, representing a simple approximate method for comparing theories with different lattice spacings bring in their virtue by providing a simple method for obtaining an approximate renormalization group function. It is hoped, and currently extensively investigated whether the Migdal renormalization group approach, combined with some other methods, can really provide useful information on the phase structures of lattice gauge theories
Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory
Directory of Open Access Journals (Sweden)
E.V. Luschevskaya
2015-09-01
Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).
Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?
Tomboulis, E. T.
2010-01-01
The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We appl...
Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.
2010-01-01
We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.
International Nuclear Information System (INIS)
Christensen, J.; Damgaard, P.H.
1991-01-01
The finite-temperature deconfinement phase transition of SU(2) lattice gauge theory in (2+1) dimensions is studied by Monte Carlo methods. Comparison is made with the expected form of correlation functions on both sides of the critical point. The critical behavior is compared with expectations based on universality arguments. Attempts are made to extract unbiased values of critical exponents on several lattices sizes. The behavior of Polyakov loops in higher representations of the gauge group is studied close to the phase transition. (orig.)
Critical behavior of the compact 3D U(1) gauge theory on isotropic lattices
International Nuclear Information System (INIS)
Borisenko, O; Fiore, R; Papa, A; Gravina, M
2010-01-01
We report on the computation of the critical point of the deconfinement phase transition, critical indices and the string tension in the compact three-dimensional U(1) lattice gauge theory at finite temperatures. The critical indices govern the behavior across the deconfinement phase transition in the pure gauge U(1) model and are generally expected to coincide with the critical indices of the two-dimensional XY model. We studied numerically the U(1) model for N t = 8 on lattices with spatial extension ranging from L = 32 to 256. Our determination of the infinite volume critical point on the lattice with N t = 8 differs substantially from the pseudo-critical coupling at L = 32, found earlier in the literature and implicitly assumed as the onset value of the deconfined phase. The critical index ν computed from the scaling of the pseudo-critical couplings with the extension of the spatial lattice agrees well with the XY value ν = 1/2. On the other hand, the index η shows large deviation from the expected universal value. The possible reasons for such behavior are discussed in detail
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....
Calculations in the weak and crossover regions of SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Greensite, J.; Hansson, T.H.; Hari Dass, N.D.; Lauwers, P.G.
1981-07-01
A calculational scheme for lattice gauge theory is proposed which interpolates between lowest order mean-field and full Monte-Carlo calculations. The method is to integrate over a restricted set of link variables in the functional integral, with the remainder fixed at their mean-field value. As an application the authors compute small SU(2) Wilson loops near and above the weak-to-strong coupling transition point. (Auth.)
Holographic description of large N gauge theory
International Nuclear Information System (INIS)
Lee, Sung-Sik
2011-01-01
Based on the earlier work [S.-S. Lee, Nucl. Rev. B 832 (2010) 567], we derive a holographic dual for the D-dimensional U(N) lattice gauge theory from a first principle construction. The resulting theory is a lattice field theory of closed loops, dubbed as lattice loop field theory which is defined on a (D+1)-dimensional space. The lattice loop field theory is well defined non-perturbatively, and it becomes weakly coupled and local in the large N limit with a large 't Hooft coupling.
The string tension and the scaling behavior of SU(2) gauge theory on a random lattice
International Nuclear Information System (INIS)
Qui Zhaoming; Ren Haichang; Academia Sinica, Beijing; Wang Xiaoqun; Yang Zhixing; Zhao Enping
1987-01-01
The SU(2) gauge theory on an 8 4 random lattice has been studied by the Monte Carlo method. The string tensions have been evaluated. They display the expected scaling behavior for β = 1.2-1.3. The scale parameter Λ RAN has been determined approximately. (orig.)
An infinite-dimensional calculus for gauge theories
Mendes, Rui Vilela
2010-01-01
A space for gauge theories is defined, using projective limits as subsets of Cartesian products of homomorphisms from a lattice on the structure group. In this space, non-interacting and interacting measures are defined as well as functions and operators. From projective limits of test functions and distributions on products of compact groups, a projective gauge triplet is obtained, which provides a framework for the infinite-dimensional calculus in gauge theories. The gauge measure behavior ...
Series expansions of the density of states in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Denbleyker, A.; Du, Daping; Liu, Yuzhi; Meurice, Y.; Velytsky, A.
2008-01-01
We calculate numerically the density of states n(S) for SU(2) lattice gauge theory on L 4 lattices [S is the Wilson's action and n(S) measures the relative number of ways S can be obtained]. Small volume dependences are resolved for small values of S. We compare ln(n(S)) with weak and strong coupling expansions. Intermediate order expansions show a good overlap for values of S corresponding to the crossover. We relate the convergence of these expansions to those of the average plaquette. We show that, when known logarithmic singularities are subtracted from ln(n(S)), expansions in Legendre polynomials appear to converge and could be suitable to determine the Fisher's zeros of the partition function.
Four-dimensional Ashkin-Teller gauge theory
International Nuclear Information System (INIS)
Alcaraz, F.C.; Jacobs, L.
1983-01-01
The authors construct and analyze a lattice field theory of two Z 2 gauge fields which interact in a minimal gauge-invariant fashion. Although the theory presented here, a generalization of the two-dimensional Ashkin-Teller spin system, has no formal continuum limit, it is found that it has an electrodynamicslike phase similar to that observed in general Z/sub N/ theories for N> or =4. This model is probably the simplest generalization of the conventional Z 2 pure gauge theory which has a massless phase separated from the strong- and weak-coupling regions by lines of second-order phase transitions
T expansion and SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Horn, D.; Karliner, M.; Weinstein, M.
1985-01-01
This paper presents the results obtained by applying the t expansion to the case of an SU(2) lattice gauge theory in 3+1 space-time dimensions. We compute the vacuum energy density, specific heat, string tension sigma, mass M of the lowest-lying 0 ++ glueball, and the ratio R = M 2 /sigma. Our computations converge best for the energy density, specific heat, and R, and these quantities exhibit behavior which agrees with what we expect on general grounds and what is known from Euclidean Monte Carlo calculations. In particular we see a broad lump in the specific heat and determine √R to be √R = 3.5 +- 0.2, a value which lies in the ballpark of values obtained from Monte Carlo calculations. Our direct computations of the mass of the 0 ++ glueball and string tension cannot be easily compared to the results of Monte Carlo calculations, but appear to be consistent with what one would expect
Phase structure of 3DZ(N) lattice gauge theories at finite temperature
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.
2013-01-01
We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Solbrig, Stefan
2008-07-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
International Nuclear Information System (INIS)
Solbrig, Stefan
2008-01-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
Calculating the Jet Transport Coefficient q-hat in Lattice Gauge Theory
International Nuclear Information System (INIS)
Majumder, Abhijit
2013-01-01
The formalism of jet modification in the higher twist approach is modified to describe a hard parton propagating through a hot thermalized medium. The leading order contribution to the transverse momentum broadening of a high energy (near on-shell) quark in a thermal medium is calculated. This involves a factorization of the perturbative process of scattering of the quark from the non-perturbative transport coefficient. An operator product expansion of the non-perturbative operator product which represents q -hat is carried out and related via dispersion relations to the expectation of local operators. These local operators are then evaluated in quenched SU(2) lattice gauge theory
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
On the entanglement entropy for gauge theories
International Nuclear Information System (INIS)
Ghosh, Sudip; Soni, Ronak M; Trivedi, Sandip P.
2015-01-01
We propose a definition for the entanglement entropy of a gauge theory on a spatial lattice. Our definition applies to any subset of links in the lattice, and is valid for both Abelian and Non-Abelian gauge theories. For ℤ_N and U(1) theories, without matter, our definition agrees with a particular case of the definition given by Casini, Huerta and Rosabal. We also argue that in general, both for Abelian and Non-Abelian theories, our definition agrees with the entanglement entropy calculated using a definition of the replica trick. Our definition, however, does not agree with some standard ways to measure entanglement, like the number of Bell pairs which can be produced by entanglement distillation.
Energy Technology Data Exchange (ETDEWEB)
Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-20
We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Directory of Open Access Journals (Sweden)
Mari Carmen Bañuls
2017-11-01
Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan
2017-10-01
We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
International Nuclear Information System (INIS)
Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl
2017-01-01
We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Infrared exponents and the strong-coupling limit in lattice Landau gauge
International Nuclear Information System (INIS)
Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)
On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories
International Nuclear Information System (INIS)
Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.
1983-01-01
We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Solbrig, Stefan
2008-07-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
Hamiltonian study of improved U(1) lattice gauge theory in three dimensions
International Nuclear Information System (INIS)
Loan, Mushtaq; Hamer, Chris
2004-01-01
A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25 % for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behavior is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio M S /M A approaches exactly 2, as expected in a theory of free, massive bosons
International Nuclear Information System (INIS)
Chung, Stephen-wei.
1993-01-01
The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint
International Nuclear Information System (INIS)
Ranft, J.
1984-01-01
Hamiltonian lattice models with fermions, gauge bosons and scalar fields are studied in 1+1 dimensions using the local Hamiltonian Monte-Carlo method. Results are presented for the massive Schwinger model with one and two flavors, for a model with interacting Higgs fields, fermions and gauge bosons, where fractionally charged solitons are found as free states of the lattice model, and for Wess-Zumino type models with restricted lattice supersymmetry, where examples for spontaneous breaking of supersymmetry are found
Critical behavior of 3D Z(N) lattice gauge theories at zero temperature
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.
2014-01-01
Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N) model for N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96. We locate the critical points of phase transitions and establish their scaling with N. The values of the critical indices indicate that the models with N>4 belong to the universality class of the three-dimensional XY model. However, the exponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle
Critical behavior of 3D Z(N) lattice gauge theories at zero temperature
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Cortese, G., E-mail: cortese@unizar.es [Instituto de Física Teórica UAM/CSIC, Cantoblanco, E-28049 Madrid (Spain); Departamento de Física Teórica, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gravina, M., E-mail: gravina@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Surzhikov, I., E-mail: i_van_go@inbox.ru [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine)
2014-02-15
Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N) model for N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96. We locate the critical points of phase transitions and establish their scaling with N. The values of the critical indices indicate that the models with N>4 belong to the universality class of the three-dimensional XY model. However, the exponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle.
Pure Gauge theory in crystal lattice and Coulomb gases
International Nuclear Information System (INIS)
Marchetti, D.H.U.
1985-01-01
A method for the construction of classical gases, starting from a pure gauge theory, is described. The method is applied to the U(1) gauge theory in two spatial dimensions. For this model it's seen the vaccua appearing as a consequence of the quantization ambiguity. The connection between the vaccua and the confinement is discussed. (Author) [pt
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.
2014-01-01
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures
International Nuclear Information System (INIS)
Luescher, M.; Weisz, P.
1984-02-01
When operators of dimension 6 are added to the standard Wilson action in lattice gauge theories, physical positivity is lost in general. We show that a transfer matrix can nevertheless be defined. Its properties are, however, unusual: complex eigenvalues may occur (leading to damped oscillatory behaviour of correlation functions), and there are always contributions in the spectral decomposition of two-point functions that come with a negative weight. (orig.)
Spin foam model for pure gauge theory coupled to quantum gravity
International Nuclear Information System (INIS)
Oriti, Daniele; Pfeiffer, Hendryk
2002-01-01
We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale
Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories
CERN. Geneva
2014-01-01
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)
2014-11-15
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.
Estimating q-hat in Quenched Lattice SU(2) Gauge Theory
International Nuclear Information System (INIS)
Majumder, Abhijit
2013-01-01
The propagation of a virtual quark in a thermal medium is considered. The non-perturbative jet transport coefficient q -hat is estimated in quark less SU(2) lattice gauge theory. The light like correlator which defines q -hat , defined in the regime where the jet has small virtuality compared to its energy, is analytically related to a series of local operators in the deep Euclidean region, where the jet's virtuality is of the same order as its energy. It is demonstrated that in this region, for temperatures in the range of T=400–600 MeV, and for jet energies above 20 GeV, the leading term in the series is dominant over the next-to-leading term and thus yields an estimate of the value of q -hat . In these proceedings we discuss the details of the numerical calculation
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1987-01-01
Variational calculations are described that use multi-parameter trial wave functions for the U(1) lattice gauge theory in two space dimensions, and for the XY model. The trial functions are constructed as the exponential of a linear combination of states from the strong-coupling basis of the model, with the coefficients treated as variational parameters. The expectation of the hamiltonian is computed by the Monte Carlo method, using a reweighting technique to evaluate expectation values in finite patches of the parameter space. The trial function for the U(1) gauge theory involves six variational parameters, and its weak-coupling behaviour is in reasonable agreement with theoretical expectations. (orig.)
Mass corrections in string theory and lattice field theory
International Nuclear Information System (INIS)
Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo
2009-01-01
Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
Non-planar diagrams in the large N limit of U(N) and SU(N) lattice gauge theories
International Nuclear Information System (INIS)
Weingarten, D.
1980-01-01
It is shown that the limit as N → infinitely with g 2 N fixed of the strong coupling expansion for the vacuum expectation values of a U(N) or SU(N) lattice gauge theory is not given by a sum of planar diagrams. This contradicts a result claimed by De Wit and 't Hooft. (orig.)
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1984-01-01
The variational principle is used to estimate the ground state of the Kogut-Susskind Hamiltonian of the SU(2) lattice gauge theory, with a trial wave function for which the magnetic fields on different plaquettes are uncorrelated. This trial function describes a disordered state. The energy expectation value is evaluated by a Monte Carlo method. The variational results are compared to similar results for a related Abelian gauge theory. Also, the expectation value of the Wilson loop operator is computed for the trial state, and the resulting estimate of the string tension is compared to the prediction of asymptotic freedom
Monte Carlo studies of non-Abelian gauge theories
International Nuclear Information System (INIS)
Creutz, M.
1980-05-01
After some general remarks on the efficiency of various Monte Carlo algorithms for gauge theories, the calculation of the asymptotic freedom scales of SU(2) and SU(3) gauge theories in the absence of quarks was discussed. There are large numerical factors between these scales when defined in terms of the bare coupling of the lattice theory or when defined in terms of the physical force between external sources
Vortex structure in abelian-projected lattice gauge theory
International Nuclear Information System (INIS)
Ambjoern, J.; Giedt, J.; Greensite, J.
2000-01-01
We report on a breakdown of both monopole dominance and positivity in abelian-projected lattice Yang-Mills theory. The breakdown is associated with observables involving two units of the abelian charge. We find that the projected lattice has at most a global Z 2 symmetry in the confined phase, rather than the global U(1) symmetry that might be expected in a dual superconductor or monopole Coulomb gas picture. Implications for monopole and center vortex theories of confinement are discussed
Analytic study of SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Zheng Xite; Xu Yong
1989-01-01
The variational-cumulant expansion method has been extended to the case of lattice SU(3) Wilson model. The plaquette energy as an order paramenter has been calculated to the 2nd order expansion. No 1st order phase transition in the D = 4 case is found which is in agreement with the monte Carlo results, and the 1st order phase transition in the d = 5 case is clearly seen. The method can be used in the study of problems in LGT with SU(3) gauge group
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Polikarpov, M.I.; Zhelonkin, A.V.
1983-01-01
The mixed SU(2) lattice gauge theory (LGT) is approximately represented as an effective SU(2) LGT with Wilson's action. This approach is applied to the nonperturbative calculation of the ratio of Λ-parameters in the mixed SU(2) LGT. It is shown that the formulas obtained fairly describe the Monte Carlo data so that universality holds in the mixed SU(2) LGT
Gauge theory on a lattice, 1984: proceedings
International Nuclear Information System (INIS)
Zachos, C.; Celmaster, W.; Kovacs, E.; Sivers, D.
1984-06-01
In the past few years there have been rapid advances in understanding quantum field theory by making discrete approximations of the path integral functional. This approach offers a systematic alternative to perturbation theory and opens up the possibility of first-principles calculation of new classes of observables. Computer simulations based on lattice regularization have already provided intriguing insights into the long-distance behavior of quantum chromodynamics. The objective of the workshop was to bring together researchers using lattice techniques for a discussion of current projects and problems. These proceedings aim to communicate the results to a broader segment of the research community. Separate entries were made in the data base for 26 of the 31 papers presented. Five papers were previously included in the data base
Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong-Wan [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom); Department of Physics, Pusan National University,Busan 46241 (Korea, Republic of); Extreme Physics Institute, Pusan National University,Busan 46241 (Korea, Republic of); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom)
2017-04-07
We consider the SU(2) gauge theory with N{sub f}=2 flavors of Dirac fundamental fermions. We study the high-temperature behavior of the spectra of mesons, discretizing the theory on anisotropic lattices, and measuring the two-point correlation functions in the temporal direction as well as screening masses in various channels. We identify the (pseudo-)critical temperature as the temperature at which the susceptibility associated with the Polyakov loop has a maximum. At high temperature both the spin-1 and spin-0 sectors of the light meson spectra exhibit enhanced symmetry properties, indicating the restoration of both the global SU(4) and the axial U(1){sub A} symmetries of the model.
Analytic approximations to hamiltonian lattice field theories. Pt. 2
International Nuclear Information System (INIS)
Surany, P.
1983-01-01
It is shown that at weak coupling physical quantities in hamiltonian U(1) lattice gauge (or global symmetric) theories of arbitrary dimension are provided as expectation values in a d - 1 dimensional lagrangian Z(2) gauge (or spin) theory with calculable long-range interactions. Confinement and the existence of a magnetic mass gap are equivalent to the existence of infinite-range plaquette-plaquette (or link-link) correlations in the spin field. The existence of infinite range correlations is simply related to the dimension of the lattice and the transformation property of the order parameter. As expected, only the d = 2 + 1 U(1) gauge theory confines electric charges at all non-vanishing coupling. (orig.)
Quantum Link Models and Quantum Simulation of Gauge Theories
International Nuclear Information System (INIS)
Wiese, U.J.
2015-01-01
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Time evolution of linearized gauge field fluctuations on a real-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)
2016-12-15
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)
Time evolution of linearized gauge field fluctuations on a real-time lattice
Kurkela, Aleksi; Peuron, Jarkko
2016-01-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.
Fundamental problems of gauge field theory
International Nuclear Information System (INIS)
Velo, G.; Wightman, A.S.
1986-01-01
As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now provides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lecture notes collected in this volume concentrate on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the exploration of the extraordinary enigmatic connections between Kac-Moody-Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories are mentioned
International Nuclear Information System (INIS)
Di Renzo, F.; Onofri, E.; Marchesini, G.; Marenzoni, P.
1994-01-01
We describe a stochastic technique which allows one to compute numerically the coefficients of the weak-coupling perturbative expansion of any observable in Lattice Gauge Theory. The idea is to insert the exponential representation of the link variables U μ (x) →exp {A μ (x)/√(β)} into the Langevin algorithm and the observables and to perform the expansion in β -1/2 . The Langevin algorithm is converted into an infinite hierarchy of maps which can be exactly truncated at any order. We give the result for the simple plaquette of SU(3) up to fourth loop order (β -4 ) which extends by one loop the previously known series. ((orig.))
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block-spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two-loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
A preliminary study of the Gribov ambiguity in lattice SU(3) Coulomb gauge
Energy Technology Data Exchange (ETDEWEB)
Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Dipt. di Fisica, Rome-1 Univ. (Italy) INFN, Rome (Italy)); Vladikas, A. (Dipt. di Fisica, Rome-2 Univ. (Italy) INFN, Rome (Italy))
1991-10-10
We report on simulations of pure SU(3) gauge theory on a 10{sup 3}x20 lattice at {beta}=6.0 in the Coulomb gauge, from which the Gribov ambiguity appears to be maximal, in the sense that the gauge-fixing process is highly unstable with respect to variations of the starting configuration via random gauge transformations. We give a heuristic explanation of the larger number of Gribov copies in such a gauge with respect to the Landau gauge. (orig.).
Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flavored Gauge Theory
International Nuclear Information System (INIS)
Miura, Kohtaroh
2013-01-01
By using the lattice Monte-Carlo simulation, we investigate the finite temperature chiral phase transition in color SU(3) gauge theories with various species of fundamental fermions, and discuss the signals of the (pre-)conformality at large N f (number of flavors) via their comparisons. With increasing N f , we confirm stronger fermion screening which results from a larger fermion multiplicity. We investigate a finite T step-scaling which is attributed to the uniqueness of the critical temperature (T c ) at each N f , then the vanishing step-scaling signals the emergence of the conformality around N* f ∼ 10−12. Further, motivated by the recent functional renormalization group analyses, we examine the N f dependence of T c , whose vanishing behavior indicates that the conformal phase sets in around N* f ∼ 9 − 10.
Simulating plasma instabilities in SU(3) gauge theory
International Nuclear Information System (INIS)
Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes
2009-01-01
We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.
The coupled cluster theory of quantum lattice systems
International Nuclear Information System (INIS)
Bishop, R.; Xian, Yang
1994-01-01
The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
International Nuclear Information System (INIS)
Bartels, J.; Wu, T.T.
1988-01-01
This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest
Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Montvay, I.; Gutbrod, F.
1983-11-01
The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)
Gauge-invariant charged, monopole and dyon fields in gauge theories
International Nuclear Information System (INIS)
Froehlich, J.; Marchetti, P.A.
1999-01-01
We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed
Unexpected behavior of an order parameter for lattice gauge theories with matter fields
International Nuclear Information System (INIS)
Meyer, H.
1983-07-01
I consider a slightly modified definition of an order parameter that was recently suggested by DeTar and McLerran. It is supposed to test for confinement in lattice gauge theories when arbitrary matter fields are present, at finite physical temperature β -1 > 0. Its definition is quite directly related to confinement in the sense that no physical states with fractional baryon number can be observed. We test the parameter for different ranges of the coupling constants in the Z(2) Higgs model, whose phase structure is well known at zero temperature. It is found that the order parameter always shows the behavior characteristic of confinement, for all values of the coupling constants and arbitrary nonzero temperature. (orig.)
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Bistate t-expansion study of U(1) lattice gauge theory in 2+1 dimensions
International Nuclear Information System (INIS)
Morningstar, C.J.
1992-01-01
The compact formulation of U(1) Hamiltonian lattice gauge theory in 2+1 dimensions is studied using the t expansion. The ground-state energy, average plaquette, specific heat, photon mass gap, and the ratio of the two lowest masses are investigated. Two contraction techniques are applied: a unistate scheme which uses only the strong-coupling vacuum for the trial state, and a bistate scheme which allows the introduction of variational parameters and arbitrarily large loops of electric flux in one of the trial states. The mass ratio obtained from the bistate contraction scheme exhibits precocious scaling. No evidence of a stable scalar glueball is found
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
International Nuclear Information System (INIS)
Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
On the value and origin of the chiral condensate in quenched SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Hands, S.J.; Teper, M.; Oxford Univ.
1990-01-01
We present results of a numerical calculation of the chiral condensate in quenched SU(2) lattice gauge theory. The calculation proceeds by evaluating the spectral density distribution function for small eigenvalues on both the original lattice and after a factor-of-two blocking. It is performed on lattices as large as 20 4 and for couplings as small as β=4/g 2 =2.6. The fitted values of the condensate as a function of β show good evidence for scaling and universality when compared with string tension measurements at the same value. At the smallest lattice spacings considered, we find evidence that a separation of length scales between ultraviolet fluctuations and those responsible for chiral symmetry breaking has occurred. A more qualitative study yields a significant correlation between the small modes vertical stroken> responsible for the non-zero value of and topological activity as revealed by the expectation value 5 x1/n(>, and hence provides evidence for a topological origin of chiral symmetry breaking. Our interpretation is supported by a subsidiary calculation of the topological susceptibility of the vacuum. (orig.)
SU(2) Gauge Theory with Two Fundamental Flavours
DEFF Research Database (Denmark)
Arthur, Rudy; Drach, Vincent; Hansen, Martin
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite...... (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter...
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at
2017-03-15
We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
Self-consistent normal ordering of gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1987-01-01
Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs
Duffin-Kemmer formulation of spin one-half particle gauge theory
International Nuclear Information System (INIS)
Samiullah, M.; Mansour, H.M.M.
1981-02-01
We have gauge formulated the spin one-half particle equation in the Duffin-Kemmer formalism of Barut et al. The theory distinguishes between the left and the right chiral states and has a built in chirality. As an example the theory has been applied to the Weinberg Salam model reproducing all its essential features. In view of the built in chirality a lattice gauge version of such a theory is expected to be useful. (author)
Program package for multicanonical simulations of U(1) lattice gauge theory-Second version
Bazavov, Alexei; Berg, Bernd A.
2013-03-01
A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl
Recent developments in chiral gauge theories: approach of infinitely many fermi fields
International Nuclear Information System (INIS)
Narayanan, R.
1994-01-01
I present the recent developments in a specific sub-field of chiral gauge theories on the lattice. This subfield pertains to the use of infinitely many fermi fields to describe a single chiral field. In this approach, both anomalous and anomaly free theories can be discussed in equal footing. It produces the correct anomaly in the continuum limit. It has the potential to describe fermion number violating processes in the presence of a gauge field background with non-trivial topological charge on a finite lattice. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
Heavy quark free energy in QCD and in gauge theories with gravity duals
Noronha, Jorge
2010-09-01
Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.
Exceptional thermodynamics. The equation of state of G2 gauge theory
International Nuclear Information System (INIS)
Bruno, Mattia; Panero, Marco; Pellegrini, Roberto
2014-10-01
We present a lattice study of the equation of state in Yang-Mills theory based on the exceptional G 2 gauge group. As is well-known, at zero temperature this theory shares many qualitative features with real-world QCD, including the absence of colored states in the spectrum and dynamical string breaking at large distances. In agreement with previous works, we show that at finite temperature this theory features a first-order deconfining phase transition, whose nature can be studied by a semi-classical computation. We also show that the equilibrium thermodynamic observables in the deconfined phase bear striking quantitative similarities with those found in SU(N) gauge theories: in particular, these quantities exhibit nearly perfect proportionality to the number of gluon degrees of freedom, and the trace anomaly reveals a characteristic quadratic dependence on the temperature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime dimensions). We compare our lattice data with analytical predictions from effective models, and discuss their implications for the deconfinement mechanism and high-temperature properties of strongly interacting, non-supersymmetric gauge theories. Our results give strong evidence for the conjecture that the thermal deconfining transition is governed by a universal mechanism, common to all simple gauge groups.
IR fixed points in SU(3 gauge theories
Directory of Open Access Journals (Sweden)
K.-I. Ishikawa
2015-09-01
Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.
Blockspin transformations for finite temperature field theories with gauge fields
International Nuclear Information System (INIS)
Kerres, U.
1996-08-01
A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
International Nuclear Information System (INIS)
Baig, M.; Colet, J.
1986-01-01
Using Monte Carlo simulations the SU(2)xU(1) lattice gauge theory has been analyzed, which is equivalent for the Wilson action to a U(2) theory, at space-time dimensionalities from d=3 to 5. It has been shown that there exist first-order phase transitions for both d=4 and d=5. A monopole-condensation mechanism seems to be responsible for these phase transitions. At d=3 no phase transitions have been detected. (orig.)
International Nuclear Information System (INIS)
Muenster, G.
1980-05-01
We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)
Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1996-01-01
The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)
On the effect of the lattice asymmetry parameter on the phase structure of SU(N) pure gauge theories
International Nuclear Information System (INIS)
Averchenkova, L.A.; Petrov, K.V.; Petrov, V.K.; Zinovjev, G.M.
1998-01-01
The role of the lattice asymmetry parameter ξ in the phase structure description of the SU(2) and SU(3) gluodynamics at finite temperature has been studied analytically in the SU(N)∼Z(N) approach. The properties of thermodynamic quantities have been investigated near the physical border. The effective action which includes the first non-trivial order from the space-like part allows estimates to be made of the phase structure not only close to the physical border but in the whole area of couplings. We find that thermodynamic quantities depend on ξ and this dependence may be strong enough, up to discontinuity over this parameter for some of them. The Hamiltonian formulation of the SU(2) gauge theory on the asymmetric lattice is presented. (orig.)
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O.; Chelnokov, V. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine,UA-03680 Kiev (Ukraine); Gravina, M.; Papa, A. [Dipartimento di Fisica, Università della Calabria, and INFN - Gruppo collegato di Cosenza,I-87036 Arcavacata di Rende, Cosenza (Italy)
2015-09-10
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior of the model in the vicinity of the deconfinement phase transition. These equations are used to check the validity of the Svetitsky-Yaffe conjecture regarding the critical behavior of the lattice U(1) model. Furthermore, we perform numerical simulations of the model for N{sub t}=1,2,4,8 and compute, by a cluster algorithm, the dual correlation functions and the corresponding second moment correlation length. In this way we locate the position of the critical point and calculate critical indices.
Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature
Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.
2018-02-01
We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.
Exceptional thermodynamics. The equation of state of G{sub 2} gauge theory
Energy Technology Data Exchange (ETDEWEB)
Bruno, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Caselle, Michele [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy); Panero, Marco [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Pellegrini, Roberto [Swansea Univ. (United Kingdom). Dept. of Physics
2014-10-15
We present a lattice study of the equation of state in Yang-Mills theory based on the exceptional G{sub 2} gauge group. As is well-known, at zero temperature this theory shares many qualitative features with real-world QCD, including the absence of colored states in the spectrum and dynamical string breaking at large distances. In agreement with previous works, we show that at finite temperature this theory features a first-order deconfining phase transition, whose nature can be studied by a semi-classical computation. We also show that the equilibrium thermodynamic observables in the deconfined phase bear striking quantitative similarities with those found in SU(N) gauge theories: in particular, these quantities exhibit nearly perfect proportionality to the number of gluon degrees of freedom, and the trace anomaly reveals a characteristic quadratic dependence on the temperature, also observed in SU(N) Yang-Mills theories (both in four and in three spacetime dimensions). We compare our lattice data with analytical predictions from effective models, and discuss their implications for the deconfinement mechanism and high-temperature properties of strongly interacting, non-supersymmetric gauge theories. Our results give strong evidence for the conjecture that the thermal deconfining transition is governed by a universal mechanism, common to all simple gauge groups.
Local observables in non-Abelian gauge theories
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1981-09-01
Labelling of the physical states of a non-Abelian gauge theory on a lattice in terms of local observables in considered. The labelling is in terms of local color electric field observables and (separately) local color magnetic field observables. Matter field is also included. The non-local variables required when space is multiply-connected, are specified. Non-Abelian version of the Stokes' theorem is considered. Relevance to the continuum theory is discussed in detail. (orig.)
Beyond the SM with nonlinearly realized gauge theories
International Nuclear Information System (INIS)
ERRARI, R.
2014-01-01
A Stuckelberg Mass Term (SMT) is introduced in a SU(2) non-abelian gauge theory as an alternative to the Higgs mechanism. A lattice model is used in order to investigate the mass spectrum of the theory, in particular the presence of Higgs-like bound states. Simulations indicate the presence of neutral bound states. Further investigations are needed in order to compare the model with experiments.
Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization
Berg, Bernd A.; Wu, Hao
2012-10-01
We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11
Phase transition in SO(3) gauge theory
International Nuclear Information System (INIS)
Datta, Saumen; Gavai, Rajiv V.
1998-01-01
The phase transition in SO(3) lattice gauge theory is investigated by Monte Carlo techniques with a view (i) to understand the relationship between the bulk transition and the deconfinement transition, and (ii) to resolve the current ambiguity about the nature of the high temperature phase. By introduction of a magnetic field, it was shown that the +ve and -ve values of a > correspond to the same phase. Studies on different sized lattices lead to the conclusion that in SO(3), there is only one transition, which is deconfining in nature. (author)
Coarse-graining free theories with gauge symmetries: the linearized case
International Nuclear Information System (INIS)
Bahr, Benjamin; Dittrich, Bianca; He Song
2011-01-01
Discretizations of continuum theories often do not preserve the gauge symmetry content. This occurs in particular for diffeomorphism symmetry in general relativity, which leads to severe difficulties in both canonical and covariant quantization approaches. We discuss here the method of perfect actions, which attempts to restore gauge symmetries by mirroring exactly continuum physics on a lattice via a coarse graining process. Analytical results can only be obtained via a perturbative approach, for which we consider the first step, namely the coarse graining of the linearized theory. The linearized gauge symmetries are exact also in the discretized theory; hence, we develop a formalism to deal with gauge systems. Finally, we provide a discretization of linearized gravity as well as a coarse graining map and show that with this choice the three-dimensional (3D) linearized gravity action is invariant under coarse graining.
On a phase transition of a Kosterlitz-thouless-type in the d=4, U(1)-lattice gauge theory
International Nuclear Information System (INIS)
Marchetti, D.H.U.; Perez, J.F.
1986-12-01
The d=4, U(1)-lattice gauge theory with the Villain action may be represented as a locally neutral gas of topological (plaquette) charges which interact via a logarithmically confining potential, is shown. Using this representation a renormalization group analysis to show the existence of a phase transition of the Kosterlitz-Thouless-type was performed. An improved hierarchical version of the model which displays (unlike the usual Migdal-Kadanoff approach) a stable line of gaussian fixed points at low temperatures, which should correspond to the usual deconfining region of these systems is presented. (Author) [pt
The fixed point structure of lattice field theories
International Nuclear Information System (INIS)
Baier, R.; Reusch, H.J.; Lang, C.B.
1989-01-01
Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
Entanglement entropy for 2D gauge theories with matters
Aoki, Sinya; Iizuka, Norihiro; Tamaoka, Kotaro; Yokoya, Tsuyoshi
2017-08-01
We investigate the entanglement entropy in 1 +1 -dimensional S U (N ) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement," and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.
Vacuum structure of pure gauge theories on the lattice
International Nuclear Information System (INIS)
Haymaker, R.W.; Singh, V.; Browne, D.; Wosiek, J.; Max-Planck-Institut fuer Physik und Astrophysik, Muenchen
1992-01-01
Results from simulations on two aspects of quark confinement in the pure gauge sector are presented. First is the calculation of the profile of the flux tube connecting a static q bar q pair in SU(2). By use of the Michael sum rules as a constraint, evidence is set forth that the energy density at the center of the flux tube goes to a constant as a function of quark- separation. Slow variation of the width and energy density is not ruled out. Secondly in the confined phase of lattice U(l), the curl of the magnetic monopole current is calculated, and it is shown that the dual London equation is satisfied and that the electric fluxoid is quantized
Exceptional confinement in G(2) gauge theory
International Nuclear Information System (INIS)
Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.
1999-01-01
Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition
SU(3) lattice gauge fixing with overrelaxation and Gribov copies
Energy Technology Data Exchange (ETDEWEB)
Paciello, M.L.; Taglienti, B. (INFN La Sapienza, Rome (Italy)); Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Theory Div., CERN, Geneva (Switzerland)); Vladikas, A. (Dipt. di Fisica, Univ. Tor Vergata, Rome (Italy) INFN Tor Vergata, Rome (Italy))
1992-02-06
We report on the phenomenology of SU(3) lattice Landau gauge fixing as obtained by using an overrelaxation algorithm. An interesting result obtained using this very efficient algorithm is that distinct Gribov copies are generated by simply modifying the value {omega} of the overrelaxation parameter for a fixed starting configuration. By generating random gauge equivalent configurations, we study the variation of the number of copies with the lattice volume and gauge coupling. (orig.).
Lattice approximation of gauge theories with Dirac Kaehler fermions
International Nuclear Information System (INIS)
Joos, H.
1988-01-01
A program which tries to overcome the systematic difficulties caused by the lattice fermion problem by the consideration of models which describe Dirac fields by differential forms is reported. In the first lecture the formalism is developped and applied to the formulation of geometric QCD and of a Geometric Standard Model. The second lecture treats the characteristic symmetry problems which appear in the lattice approximation of geometric field theories. In the last lecture strong coupling dynamics of geometric QCD are considered with the final aim of a derivation of the quark model for the hadron spectrum. (author) [pt
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.
1999-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia
SU (2) lattice gauge theory simulations on Fermi GPUs
International Nuclear Information System (INIS)
Cardoso, Nuno; Bicudo, Pedro
2011-01-01
In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Some approximate calculations in SU2 lattice mean field theory
International Nuclear Information System (INIS)
Hari Dass, N.D.; Lauwers, P.G.
1981-12-01
Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?
Gasbarro, Andrew
2018-03-01
In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Yamamoto, Takuya; Nishigaki, Shinsuke M.
2018-02-01
We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Strongly coupled gauge theories: What can lattice calculations teach us?
CERN. Geneva
2015-01-01
Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
International Nuclear Information System (INIS)
Goepfert, M.; Mack, G.
1981-07-01
We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g 2 , and obeys and bound α >= const x msub(D)β -1 for small ag 2 , with β = 4π 2 /g 2 and m 2 sub(D) = (2β/a 3 )esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D) -2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag 2 are found. Renormalization group aspects are discussed. (orig.)
Properties of lattice gauge theory models at low temperatures
International Nuclear Information System (INIS)
Mack, G.
1980-01-01
The Z(N) theory of quark confinement is discussed and how fluctuations of Z(N) gauge fields may continue to be important in the continuum limit. Existence of a model in four dimensions is pointed out in which confinement of (scalar) quarks can be shown to persist in the continuum limit. This article is based on the author's Cargese lectures 1979. Some of its results are published here for the first time. (orig.) 891 HSI/orig. 892 MKO
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)
2016-08-02
The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
Uses of Effective Field Theory in Lattice QCD
Kronfeld, Andreas S.
2002-01-01
Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...
Nf=2 Lattice QCD and Chiral Perturbation Theory
International Nuclear Information System (INIS)
Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.
2006-01-01
By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit
Gauge field theories on a || lattice
International Nuclear Information System (INIS)
Burkardt, Matthias
1999-01-01
In these notes, the transverse || lattice approach is presented as a means to control the k + →0 divergences in light-front QCD. Technical difficulties of both the canonical compact formulation as well as the non-compact formulation of the || lattice motivate the color-dielectric formulation, where the link fields are linearized
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)
2014-06-02
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-01-01
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
Chemical potentials in gauge theories
International Nuclear Information System (INIS)
Actor, A.; Pennsylvania State Univ., Fogelsville
1985-01-01
One-loop calculations of the thermodynamic potential Ω are presented for temperature gauge and non-gauge theories. Prototypical formulae are derived which give Ω as a function of both (i) boson and/or fermion chemical potential, and in the case of gauge theories (ii) the thermal vacuum parameter Asub(O)=const (Asub(μ) is the euclidean gauge potential). From these basic abelian gauge theory formulae, the one-loop contribution to Ω can readily be constructed for Yang-Mills theories, and also for non-gauge theories. (orig.)
N = 1 SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos
International Nuclear Information System (INIS)
Demmouche, Kamel
2009-01-01
The supersymmetric Yang-Mills (SYM) theory with one supercharge (N=1) and one additional Majorana matter-field represents the simplest model of supersymmetric gauge theory. Similarly to QCD, this model includes gauge fields, gluons, with color gauge group SU(N c ) and fermion fields, describing the gluinos. The non-perturbative dynamical features of strongly coupled supersymmetric theories are of great physical interest. For this reason, many efforts are dedicated to their formulation on the lattice. The lattice regularization provides a powerful tool to investigate non-perturbatively the phenomena occurring in SYM such as confinement and chiral symmetry breaking. In this work we perform numerical simulations of the pure SU(2) SYM theory on large lattices with small Majorana gluino masses down to about m g approx 115 MeV with lattice spacing up to a ≅0.1 fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass m g ≠0. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs). (orig.)
Statistical mechanics and stability of random lattice field theory
International Nuclear Information System (INIS)
Baskaran, G.
1984-01-01
The averaging procedure in the random lattice field theory is studied by viewing it as a statistical mechanics of a system of classical particles. The corresponding thermodynamic phase is shown to determine the random lattice configuration which contributes dominantly to the generating function. The non-abelian gauge theory in four (space plus time) dimensions in the annealed and quenched averaging versions is shown to exist as an ideal classical gas, implying that macroscopically homogeneous configurations dominate the configurational averaging. For the free massless scalar field theory with O(n) global symmetry, in the annealed average, the pressure becomes negative for dimensions greater than two when n exceeds a critical number. This implies that macroscopically inhomogeneous collapsed configurations contribute dominantly. In the quenched averaging, the collapse of the massless scalar field theory is prevented and the system becomes an ideal gas which is at infinite temperature. Our results are obtained using exact scaling analysis. We also show approximately that SU(N) gauge theory collapses for dimensions greater than four in the annealed average. Within the same approximation, the collapse is prevented in the quenched average. We also obtain exact scaling differential equations satisfied by the generating function and physical quantities. (orig.)
Lattice field theories: non-perturbative methods of analysis
International Nuclear Information System (INIS)
Weinstein, M.
1978-01-01
A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
Evidence for the existence of Gribov copies in Landau gauge lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)
1991-09-16
We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).
The renormalization group study of the effective theory of lattice QED
International Nuclear Information System (INIS)
Sugiyama, Y.
1988-01-01
The compact U(1) lattice gauge theory with massless fermions (Lattice QED) is studied through the effective model analytically, using the renormalization group method. The obtained effective model is the local boson field system with non-local interactions. The authors study the existence of non-trivial fixed point and its scaling behavior. This fixed point seems to be tri-critical. Such fixed point is interpreted in terms of the original Lattice QED model, and the results are consistent with the Monte Calro study
Construction of the dual Ginzburg-Landau theory from the lattice QCD
International Nuclear Information System (INIS)
Suganuma, H.; Amemiya, K.; Ichie, H.; Koma, Y.
2002-01-01
We roughly review the QCD physics and then introduce recent topics on the confinement physics. In the maximally abelian (MA) gauge, the low-energy QCD is abelianized owing to the effective off-diagonal gluon mass M off ≅ 1.2 GeV induced by the MA gauge fixing. We demonstrate the construction of the dual Ginzburg-Landau (DGL) theory from the low-energy QCD in the MA gauge in terms of the lattice QCD evidences on infrared abelian dominance and infrared monopole condensation. (author)
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Meurice, Yannick L [Univ. of Iowa, Iowa City, IA (United States); Reno, Mary Hall [Univ. of Iowa, Iowa City, IA (United States)
2016-06-23
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
International Nuclear Information System (INIS)
Meurice, Yannick L; Reno, Mary Hall
2016-01-01
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Itou, Etsuko
2013-08-01
We report the nonperturbative behavior of the twisted Polyakov loop (TPL) coupling constant for the SU(3) gauge theories defined by the ratio of Polyakov loop correlators in finite volume with twisted boundary condition. We reveal the vacuum structures and the phase structure for the lattice gauge theory with the twisted boundary condition. Carrying out the numerical simulations, we determine the nonperturbative running coupling constant in this renormalization scheme for the quenched QCD and N_f=12 SU(3) gauge theories. First, we study the quenched QCD theory using the plaquette gauge action. The TPL coupling constant has a fake fixed point in the confinement phase. We discuss this fake fixed point of the TPL scheme and obtain the nonperturbative running coupling constant in the deconfinement phase, where the magnitude of the Polyakov loop shows the nonzero values. We also investigate the system coupled to fundamental fermions. Since we use the naive staggered fermion with the twisted boundary condition in our simulation, only multiples of 12 are allowed for the number of flavors. According to the perturbative two-loop analysis, the N_f=12 SU(3) gauge theory might have a conformal fixed point in the infrared region. However, recent lattice studies show controversial results for the existence of the fixed point. We point out possible problems in previous work, and present our careful study. Finally, we find the infrared fixed point (IRFP) and discuss the robustness of the nontrivial IRFP of a many-flavor system under the change of the analysis method. Some preliminary results were reported in the proceedings [E. Bilgici et al., PoS(Lattice 2009), 063 (2009); Itou et al., PoS(Lattice 2010), 054 (2010)] and the letter paper [T. Aoyama et al., arXiv:1109.5806 [hep-lat
Universality and scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Michael, C.; Teper, M.; Oxford Univ.
1988-01-01
We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)
International Nuclear Information System (INIS)
Decker, K.; Hamburg Univ.
1985-12-01
An efficient description of all clusters contributing to the strong coupling expansion of the mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in four dimensions for gauge group Z 2 . Relying on this description an algorithm has been constructed which generates and processes all the contributing graphs to the exact strong coupling expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major component of this algorithm can also be used to generate exact strong coupling expansions for the free energy logZ. The algorithm is correct to any order; thus the order of these expansions is only limited by the available computing power. The presentation of the algorithm is such that it can serve as a guide-line for the construction of a generalized one which would also generate exact strong coupling expansions for the masses of low-lying excited states of four-dimensional pure Yang-Mills theories. (orig.)
Unorthodox lattice fermion derivatives and their shortcomings
International Nuclear Information System (INIS)
Bodwin, G.T.; Kovacs, E.V.
1987-01-01
We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
Drukker, Nadav; Teschner, Joerg
2009-10-01
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
Directory of Open Access Journals (Sweden)
Alex Thomson
2018-01-01
Full Text Available Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP^{1} theory of bosonic spinons coupled to a U(1 gauge field, and with a global SU(2 spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z_{2} topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π-flux state are described by (2+1-dimensional quantum chromodynamics (QCD_{3} with a SU(2 gauge group and N_{f}=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017.PRXHAE2160-330810.1103/PhysRevX.7.031051] that this QCD_{3} theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD_{3} and obtain fermionic dual descriptions of the phases with Z_{2} topological order obtained earlier using the bosonic CP^{1} theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1 gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Gauge theories as string theories: the first results
International Nuclear Information System (INIS)
Gorsky, Aleksandr S
2005-01-01
The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)
Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories
Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi
2018-01-01
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...
Numerical studies of gauge field theories
International Nuclear Information System (INIS)
Creutz, M.
1981-06-01
Monte Carlo simulation of statistical systems is a well established technique of the condensed matter physicist. In the last few years, particle theorists have rediscovered this method and are having a marvelous time applying it to quantized gauge field theories. The main result has been strong numerical evidence that the standard SU(3) non-Abelian gauge theory of the strong interaction is capable of simultaneously confining quarks into the physical hadrons and exhibiting asymptotic freedom, the phenomenon of quark interactions being small at short distances. In four dimensions, confinement is a non-perturbative phenomenon. Essentially all models of confinement tie widely separated quarks together with strings of gauge field flux. This gives rise to a linear potential at long distances. A Monte Carlo program generates a sequence of field configuration by a series of random changes of the fields. The algorithm is so constructed that ultimately the probability density for finding any given configuration is proportional to the Boltzmann weighting. We bring our lattices into thermal equilibrium with a heat bath at a temperature specified by the coupling constant. Thus we do computer experiments with four-dimensional crystals stored in a computer memory. As the entire field configuration is stored, we have access to any correlation function desired. These lectures describe the kinds of experiments being done and the implications of these results for strong interaction physics
Center-vortex dominance after dimensional reduction of SU(2) lattice gauge theory
Gattnar, J.; Langfeld, K.; Schafke, A.; Reinhardt, H.
2000-01-01
The high-temperature phase of SU(2) Yang-Mills theory is addressed by means of dimensional reduction with a special emphasis on the properties of center vortices. For this purpose, the vortex vacuum which arises from center projection is studied in pure 3-dimensional Yang-Mills theory as well as in the 3-dimensional adjoint Higgs model which describes the high temperature phase of the 4-dimensional SU(2) gauge theory. We find center-dominance within the numerical accuracy of 10%.
Lattice guage theories on a hypercube computer
International Nuclear Information System (INIS)
Otto, S.W.
1984-01-01
A report on the parallel computer effort underway at Caltech and the use of these machines for lattice gauge theories is given. The computational requirements of the Monte Carlos are, of course, enormous, so high Mflops (Million floating point operations per second) and large memories are required. Various calculations on the machines in regards to their programmability (a non-trivial issue on a parallel computer) and their efficiency in usage of the machine are discussed
T-expansion and its application to SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Karliner, M.
1984-01-01
A scheme allowing systematic improvement of variational calculations has been developed at SLAC. This paper contains an outline of the method, as well as some preliminary results of its application to two dimensional spin systems and four dimensional SU(2) lattice guage theory
Scattering lengths in SU(2) gauge theory with two fundamental fermions
DEFF Research Database (Denmark)
Arthur, R.; Drach, V.; Hansen, Martin Rasmus Lundquist
2014-01-01
We investigate non perturbatively scattering properties of Goldstone Bosons in an SU(2) gauge theory with two Wilson fermions in the fundamental representation. Such a theory can be used to build extensions of the Standard Model that unifies Technicolor and pseudo Goldstone composite Higgs models...... the expected chiral symmetry breaking pattern. We then discuss how to compute them on the lattice and give preliminary results using finite size methods....
Freedom and confinement in lattice Yang-Mills theories: a case for divorce
International Nuclear Information System (INIS)
Colangelo, P.; Cosmai, L.; Pellicoro, M.; Preparata, G.
1986-01-01
It is presented evidence that nonperturbative effects in lattice gauge theories do not obey at small coupling constant (large β) asymptotic scaling, but they rather behave as suggested by a recent result in continuum Yang-Mills theories. It is also discussed the possible impact of these results on our understanding of QCD
On the phase structure of lattice SU(2) Gauge-Higgs theory
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.
1985-01-01
The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
International Nuclear Information System (INIS)
Zet, G.
2002-01-01
The self-duality equations are important in gauge theories because they show the connection between gauge models with internal symmetry groups and gauge theory of gravity. They are differential equations of the first order and it is easier to investigate the solutions for different particular configurations of the gauge fields and of space-times.One of the most important property of the self-duality equations is that they imply the Yang-Mills field equations. In this paper we will prove this property for the general case of a gauge theory with compact Lie group of symmetry over a 4-dimensional space-time manifold. It is important to remark that there are 3m independent self-duality equations (of the first order) while the number of Yang-Mills equations is equal to 4m, where m is the dimension of the gauge group. Both of them have 4m unknown functions which are the gauge potentials A μ a (x), a = 1, 2, ....,m; μ = 0, 1, 2, 3. But, we have, in addition, m gauge conditions for A μ a (x), (for example Coulomb, Lorentz or axial gauge) which together with the selfduality equation constitute a system of 4m equations. The Bianchi identities for the self-dual stress tensor F μν a coincide with the Yang-Mills equations and do not imply therefore supplementary conditions. We use the axial gauge in order to obtain the self duality equations for a SU(2) gauge theory over a curved space-time. The compatibility between self-duality and Yang-Mills equations is studied and some classes of solutions are obtained. In fact, we will write the Einstein-Yang-Mills equations and we will analyse only the Yang-Mills sector. The Einstein equations can not be obtained of course from self-duality. They should be obtained if we would consider a gauge theory having P x SU(2) as symmetry group, where P is the Poincare group. More generally, a gauge theory of N-extended supersymmetry can be developed by imposing the self-duality condition. (author)
Magnetic Monopoles and the Dual London Equation in SU(3) Lattice Gauge Theory
Skala, Peter; Faber, Manfried; Zach, Martin
1996-01-01
We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge invariant formulation.
Nonperturbative β function of eight-flavor SU(3) gauge theory
Hasenfratz, Anna; Schaich, David; Veernala, Aarti
2015-06-01
We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.
Review of lattice supersymmetry and gauge-gravity duality
International Nuclear Information System (INIS)
Joseph, Anosh
2015-12-01
We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.
Center vortex properties in the Laplace center gauge of SU(2) Yang-Mills theory
Langfeld, K.; Reinhardt, H.; Schafke, A.
2001-01-01
Resorting to the the Laplace center gauge (LCG) and to the Maximal-center gauge (MCG), respectively, confining vortices are defined by center projection in either case. Vortex properties are investigated in the continuum limit of SU(2) lattice gauge theory. The vortex (area) density and the density of vortex crossing points are investigated. In the case of MCG, both densities are physical quantities in the continuum limit. By contrast, in the LCG the piercing as well as the crossing points li...
International Nuclear Information System (INIS)
Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu
1983-01-01
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Reduction of a Z(3) gauge theory on the flat lattices to the spin-1 BEG model
International Nuclear Information System (INIS)
Ananikian, N.S.; Shcherbakov, R.R.
1995-01-01
The Z(3) gauge model with double plaquette representation of the action on the flat triangular and square lattices is constructed. It is reduced to the spin-1 Blume-Emery-Griffiths (BEG) model. An Ising-type critical line of a second-order phase transition is found. ((orig.))
Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge
International Nuclear Information System (INIS)
Reinhardt, H.; Schleifenbaum, W.
2009-01-01
We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
Some formal problems in gauge theories
International Nuclear Information System (INIS)
Magpantay, J.A.
1980-01-01
The concerns of this thesis are the problems due to the extra degrees of freedom in gauge-invariant theories. Since gauge-invariant Lagrangians are singular, Dirac's consistency formalism and Fadeev's extension are first reviewed. A clarification on the origin of primary constraints is given, and some of the open problems in singular Lagrangian theory are discussed. The criteria in choosing a gauge, i.e., attainability, maintainability and Poincare invariance are summarized and applied to various linear gauges. The effects of incomplete removal of all gauge freedom on the criteria for gauge conditions are described. A simple example in point mechanics that contains some of the features of gauge field theories is given. Finally, we describe a method of constructing gauge-invariant variables in various gauge field theories. For the Abelian theory, the gauge-invariant, transverse potential and Dirac's gauge-invariant fermion field was derived. For the non-Abelian case we introduce a local set of basis vectors and gauge transformations are interpreted as rotations of the basis vectors introduced. The analysis leads to the reformulation of local SU(2) field theory in terms of path-dependent U(1) x U(1) x U(1). However, the analysis fails to include the matter fields as of now
International Nuclear Information System (INIS)
Leite Lopes, J.
1981-01-01
The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)
String field theory-inspired algebraic structures in gauge theories
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2009-01-01
We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions
International Nuclear Information System (INIS)
Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.
1997-01-01
We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society
Duffin-Kemmer formulation of gauge theories
International Nuclear Information System (INIS)
Okubo, S.; Tosa, Y.
1979-01-01
Gauge theories, including the Yang-Mills theory as well as Einstein's general relativity, are reformulated in first-order differential forms. In this generalized Duffin-Kemmer formalism, gauge theories take very simple forms with only cubic interactions. Moreover, every local gauge transformation, e.g., that of Yang and Mills or Einstein, etc., has an essentially similar form. Other examples comprise a gauge theory akin to the Sugawara theory of currents and the nonlinear realization of chiral symmetry. The octonion algebra is found possibly relevant to the discussion of the Yang-Mills theory
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Massless phases and confinement in extended Z(4) gauge theories
International Nuclear Information System (INIS)
Alcaraz, F.C.; Jacobs, L.
1983-01-01
We analyze a general Z(4) lattice gauge theory in four dimensions. The two-parameter model is shown to possess four distinct phases characterized by the behavior of Wilson loops carrying one or two units of flux. The appearance of a bifurcation in the phase plane just below the Wilson action is conjectured to be the precursor of the massless electrodynamicslike phase seen in the larger-N models
Colour magnetic currents and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1997-01-01
We propose a method for the determination of magnetic currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge-invariant formulation. (orig.)
Notes on gauge theory and gravitation
International Nuclear Information System (INIS)
Wallner, R.P.
1981-01-01
In order to investigate whether Einstein's general relativity theory (GRT) fits into the general scheme of a gauge theory, first the concept of a (classical) gauge theory is outlined in an introductionary spacetime approach. Having thus fixed the notation and the main properties of gauge fields, GRT is examined to find out what the gauge potentials and the corresponding gauge group might be. In this way the possibility of interpreting GRT as a gauge theory of the 4-dimensional translation group T(4) = (R 4 , +), and where the gauge potentials are incorporated in a T(4)-invariant way via orthonormal anholonomic basis 1-forms is considered. To include also the spin aspect a natural extension of GRT is given by gauging also the Lorentz group, whereby a Riemann-Cartan spacetime (U 4 -spacetime) comes into play. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Smiseth, Jo
2005-07-01
The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)
Electroweak interactions on the lattice
International Nuclear Information System (INIS)
Kieu, T.D.
1994-07-01
It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig
The renaissance of gauge theory
International Nuclear Information System (INIS)
Moriyasu, K.
1982-01-01
Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
Effective potential for spontaneously broken gauge theories and gauge hierarchies
International Nuclear Information System (INIS)
Hagiwara, T.; Ovrut, B.
1979-01-01
The Appelquist-Carazzone effective-field-theory method, where one uses effective light-field coupling constants dependent on the heavy-field sector, is explicitly shown to be valid for the discussion of the gauge-hierarchy problem in grand unified gauge models. Using the method of functionals we derive an expression for the one-loop approximation to the scalar-field effective potential for spontaneously broken theories in an arbitrary R/sub xi/ gauge. We argue that this potential generates, through its derivatives, valid zero-momentum, one-particle-irreducible vertices for any value of xi (not just the xi→infinity Landau gauge). The equation that the one-loop vacuum correction must satisfy is presented, and we solve this equation for a number of spontaneously broken theories including gauge theories with gauge groups U(1) and SO(3). We find that a one-loop vacuum shift in a massless, non-Goldstone direction occurs via the Coleman-Weinberg mechanism with an effective coupling constant dependent on the heavy-field sector
Zero energy gauge fields and the phases of a gauge theory
International Nuclear Information System (INIS)
Guendelman, E.I.
1990-01-01
A new approach to the definition of the phases of a Poincare invariant gauge theory is developed. It is based on the role of gauge transformations that change the asymptotic value of the gauge fields from zero to a constant. In the context of theories without Higgs fields, this symmetry can be spontaneously broken when the gauge fields are massless particles, explicitly broken when the gauge fields develop a mass. Finally, the vacuum can be invariant under this transformation, this last case can be achieved when the theory has a violent infrared behavior, which in some theories can be connected to a confinement mechanism
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Lee, Hyun Min
2018-03-01
We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.
Gauge theories and their superspace quantization
International Nuclear Information System (INIS)
Falck, N.K.
1984-01-01
In this thesis the mathematical formalism for gauge theory is treated together with its extensions to supersymmetry. After a description of the differential calculus in superspace, gauge theories at the classical level are considered. Then the superspace quantization of gauge theories is described. (HSI)
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Matrix product states for lattice field theories
Energy Technology Data Exchange (ETDEWEB)
Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences
2013-10-15
The term Tensor Network States (TNS) refers to a number of families of states that represent different ansaetze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used testbench for lattice techniques. Using finite-size, open boundary MPS, we are able to determine the low energy states of the model in a fully non-perturbativemanner. The precision achieved by the method allows for accurate finite size and continuum limit extrapolations of the ground state energy, but also of the chiral condensate and the mass gaps, thus showing the feasibility of these techniques for gauge theory problems.
Loop calculus for lattice gauge theories
International Nuclear Information System (INIS)
Gambini, R.; Leal, L.; Trias, A.; Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela, Apartado 47724, Caracas 1051, Venezuela; Departament de Matematiques, Universitat Politecnica de Catalunya, Escuela Tecnica Superior de Enginyers de Telecomunicaciones, Barcelona 08034, Spain)
1989-01-01
Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1984-12-01
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
International Nuclear Information System (INIS)
Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.; Bohacik, J.
1997-01-01
An approach to studying lattice gauge models in the weak-coupling region is proposed. Conceptually, this approach is based on the crucial role of original Z(N) symmetry and of the invariant gauge-group measure. As an example, an effective model from the compact Wilson formulation of SU(2) gauge theory is calculated in d=3 dimensions at zero temperature. The confining properties and the phase structure of the effective model are studied in detail
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
Phase structure and critical properties of an abelian gauge theory
Energy Technology Data Exchange (ETDEWEB)
Mo, Sjur
2001-12-01
The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model
International Nuclear Information System (INIS)
Rasolt, M.; Vignale, G.
1992-03-01
We formulate the current-density functional theory for systems in arbitrarily strong magnetic fields. A set of self-consistent equations comparable to the Kohn-Sham equations for ordinary density functional theory is derived, and proved to be gauge-invariant and to satisfy the continuity equation. These equations of Vignale and Rasolt involve the gauge field corresponding to the external magnetic field as well as a new gauge field generated entirely from the many-body interactions. We next extend this gauge theory (following Rasolt and Vignale) to a lattice Lagrangian believed to be appropriate to a tight-binding Hamiltonian in the presence of an external magnetic field. We finally examine the nature of the ground state of a strongly nonuniform electron gas in the presence of this many-body self-induced gauge field
Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling
International Nuclear Information System (INIS)
Wagner, C.E.M.
1989-01-01
A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)
Directory of Open Access Journals (Sweden)
Gattringer Christof
2018-01-01
Full Text Available We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes, or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles. Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2 principal chiral model with chemical potential coupled to two of the Noether charges, SU(2 lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta
2018-03-01
We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
Gauge fixing conditions for the SU(3) gauge theory
International Nuclear Information System (INIS)
Ragiadakos, Ch.; Viswanathan, K.S.
1979-01-01
SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)
Physics from multidimensional gauge theories
International Nuclear Information System (INIS)
Forgacs, P.; Lust, D.; Zoupanos, G.
1986-01-01
The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
N=4 supersymmetry on a space-time lattice
DEFF Research Database (Denmark)
Catterall, Simon; Schaich, David; Damgaard, Poul H.
2014-01-01
Maximally supersymmetric Yang–Mills theory in four dimensions can be formulated on a space-time lattice while exactly preserving a single supersymmetry. Here we explore in detail this lattice theory, paying particular attention to its strongly coupled regime. Targeting a theory with gauge group SU...... behind a lattice formulation based on the SU(N) gauge group with the expected apparently conformal behavior at both weak and strong coupling....
Higgs phase in non-Abelian gauge theories
International Nuclear Information System (INIS)
Kaymakcalan, O.S.
1981-06-01
A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Effective monopole potential for SU(2) lattice gluodynamics in spatial maximal Abelian gauge
International Nuclear Information System (INIS)
Chernodub, M.N.; Polikarpov, M.I.; Veselov, A.I.
1999-01-01
We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the Spatial Maximal Abelian gauge. This gauge is more physical than the ordinary Maximal Abelian gauge due to absence of non-localities in temporal direction. We shown numerically that in the Spatial Maximal Abelian gauge the probability distribution of the abelian monopole field is consistent with the dual superconductor mechanism of confinement [ru
Noncommutative induced gauge theories on Moyal spaces
International Nuclear Information System (INIS)
Wallet, J-C
2008-01-01
Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
SU(N) gauge theory couplings on asymmetric lattices
International Nuclear Information System (INIS)
Karsch, F.
1982-01-01
The connection between euclidean and hamiltonian lattice QCD requires the use of asymmetric lattices, which in turn implies the necessity of two coupling parameters. We analyse the dependence of space- and time-like couplings gsub(sigma) and gsub(tau) on the different lattice spacings a and asub(tau) in space and time directions. Using the background field method we determine the derivatives of the couplings with respect to the asymmetry factor xi = a/asub(tau) in the weak coupling limit, obtaining for xi = 1 the values (deltag -2 sub(sigma)/deltaxi)sub(xi = 1) = 0.11403, N = 2, 0.20161, N = 3, (deltag -2 sub(tau)/deltaxi)sub(xi = 1) = -0.06759, N = 2, -0.13195, N = 3. We argue that the sum of these derivatives has to be equal to b 0 = 11N/48π 2 and determine the Λ parameter for asymmetric lattices. In the limit xi → infinity all our results agree with those of A. and P. Hasenfratz. (orig.)
Abelian gauge symmetries in F-theory and dual theories
Song, Peng
In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Gyrocenter-gauge kinetic theory
International Nuclear Information System (INIS)
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
Gauge theory description of compactified pp-waves
International Nuclear Information System (INIS)
Bertolini, Matteo; Boer, Jan de; Harmark, Troels; Imeroni, Emiliano; Obers, Niels A.
2003-01-01
We find a new Penrose limit of AdS 5 xS 5 that gives the maximally symmetric pp-wave background of type-IIB string theory in a coordinate system that has a manifest space-like isometry. This induces a new pp-wave/gauge-theory duality which on the gauge theory side involves a novel scaling limit of N=4 SYM theory. The new Penrose limit, when applied to AdS 5 xS 5 /Z M , yields a pp-wave with a space-like circle. The dual gauge theory description involves a triple scaling limit of an N=2 quiver gauge theory. We present in detail the map between gauge theory operators and string theory states including winding states, and verify agreement between the energy eigenvalues obtained from string theory and those computed in gauge theory, at least to one-loop order in the planar limit. We furthermore consider other related new Penrose limits and explain how these limits can be understood as part of a more general framework. (author)
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
International Nuclear Information System (INIS)
Tellis, D.R.
2000-01-01
Full text: Instantons in pure Yang-Mills gauge theory have been studied extensively by physicists and mathematicians alike. The surprisingly rich topological structure plays an important role in hadron structure. A crucial role is played by how the boundary conditions on the gauge fields are imposed. While the topology of gauge fields in pure Yang-Mills gauge theory is understood for the compact manifold of the 4-sphere, the manifold of the 4-torus remains an active area of study. The latter is particularly important in the study of Lattice QCD
Gravitation as Gauge theory of Poincare Group
International Nuclear Information System (INIS)
Stedile, E.
1982-08-01
The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author) [pt
Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields
International Nuclear Information System (INIS)
Gabrielli, E.
1991-01-01
The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Bergner, Georg; Piemonte, Stefano
2018-04-01
Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.
Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory
International Nuclear Information System (INIS)
Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.
2010-01-01
We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.
Gauge theory of amorphous magnets
International Nuclear Information System (INIS)
Nesterov, A.I.; Ovchinnikov, S.G.
1989-01-01
A gauge theory of disordered magnets as a field theory in the principal fiber bundle with structure group SL(3, R) is constructed. The gauge field interacting with a vector field (the magnetization) is responsible for the disorder. A complete system of equations, valid for arbitrary disordered magnets, is obtained. In the limiting case of a free gauge field the proposed approach leads to the well-known Volovik-Dzyaloshinskii theory, which describes isotropic spin glasses. In the other limiting case when the curvature is zero the results of Ignatchenko and Iskhakov for weakly disordered ferromagnets are reproduced
Gauge theories as theories of spontaneous breakdown
International Nuclear Information System (INIS)
Ivanov, E.A.; Ogievetsky, V.I.
1976-01-01
Any gauge theory is proved to arise from spontaneous breakdown of symmetry under certain infinite parameter group, the corresponding gauge field being the Goldstone field by which this breakdown is accompanied
Chern-Simons gauge theory: Ten years after
International Nuclear Information System (INIS)
Labastida, J. M. F.
1999-01-01
A brief review on the progress made in the study of Chern-Simons gauge theory since its relation to knot theory was discovered ten years ago is presented. Emphasis is made on the analysis of the perturbative study of the theory and its connection to the theory of Vassiliev invariants. It is described how the study of the quantum field theory for three different gauge fixings leads to three different representations for Vassiliev invariants. Two of these gauge fixings lead to well known representations: the covariant Landau gauge corresponds to the configuration space integrals while the non-covariant light-cone gauge to the Kontsevich integral. The progress made in the analysis of the third gauge fixing, the non-covariant temporal gauge, is described in detail. In this case one obtains combinatorial expressions, instead of integral ones, for Vassiliev invariants. The approach based on this last gauge fixing seems very promising to obtain a full combinatorial formula. We collect the combinatorial expressions for all the Vassiliev invariants up to order four which have been obtained in this approach
Renormalization of gauge theories of weak interactions
International Nuclear Information System (INIS)
Lee, B.W.
1973-01-01
The renormalizability of spontaneously broken gauge theories is discussed. A brief outline of the motivation for such an investigation is given, and the manner in which the renormalizability of such theories is proven is described. The renormalizability question of the unbroken gauge theory is considered, and the formulation of a renormalizable perturbation theory of Higgs phenomena (spontaneously broken gauge theories) is considered. (U.S.)
Supertwistor orbifolds: gauge theory amplitudes and topological strings
International Nuclear Information System (INIS)
Park, Jaemo; Rey, Soojong
2004-01-01
Witten established correspondence between multiparton amplitudes in four-dimensional maximally supersymmetric gauge theory and topological string theory on supertwistor space CP 3verticalbar4 . We extend Witten's correspondence to gauge theories with lower supersymmetries, product gauge groups, and fermions and scalars in complex representations. Such gauge theories arise in high-energy limit of the Standard Model of strong and electroweak interactions. We construct such theories by orbifolding prescription. Much like gauge and string theories, such prescription is applicable equally well to topological string theories on supertwistor space. We work out several examples of orbifolds of CP 3verticalbar4 that are dual to N=2,1,0 quiver gauge theories. We study gauged sigma model describing topological B-model on the superorbifolds, and explore mirror pairs with particular attention to the parity symmetry. We check the orbifold construction by studying multiparton amplitudes in these theories with particular attention to those involving fermions in bifundamental representations and interactions involving U(1) subgroups. (author)
String theory duals of Lifshitz–Chern–Simons gauge theories
International Nuclear Information System (INIS)
Balasubramanian, Koushik; McGreevy, John
2012-01-01
We propose candidate gravity duals for a class of non-Abelian z = 2 Lifshitz Chern–Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern–Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang–Mills theory. Using the holographic dictionary, we identify the bulk fields of type IIB supergravity that are dual to these deformations. The geometries describing the groundstates of the non-Abelian LCS gauge theories realized here exhibit a mass gap. (paper)
Local gauge coupling running in supersymmetric gauge theories on orbifolds
International Nuclear Information System (INIS)
Hillenbach, M.
2007-01-01
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Noncommutative gauge theories and Kontsevich's formality theorem
International Nuclear Information System (INIS)
Jurco, B.; Schupp, P.; Wess, J.
2001-01-01
The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor
Nonperturbative quantization of nonabelian gauge theories
International Nuclear Information System (INIS)
Slavnov, A.
2011-01-01
Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries
Hard amplitudes in gauge theories
International Nuclear Information System (INIS)
Parke, S.J.
1991-03-01
In this lecture series 1 presents recent developments in perturbation theory methods for gauge theories for processes with many partons. These techniques and results are useful in the calculation of cross sections for processes with many final state partons which have applications in the study of multi-jet phenomena in high-energy colliders. The results illuminate many important and interesting properties of non-abelian gauge theories. 30 refs., 9 figs
The light-cone gauge in Polyakov's theory of strings and its relation to the conformal gauge
International Nuclear Information System (INIS)
Tzani, R.
1989-01-01
The author studies the string theory as a gauge theory. The analysis includes the formulation of the interacting bosonic string by fixing the Gervais-Sakita light-cone gauge in Polyakov's path-integral formulation of the theory and the study of the problem of changing gauge in string theory in the context of the functional formulation of the theory. The main results are the following: Mandelstam's picture is obtained from the light-cone gauge fixed Polyakov's theory. Due to the off-diagonal nature of the gauge, the calculation of the determinants differs from the usual (conformal gauge) case. The regularization of the functional integrals associated with these determinants is done by using the conformal-invariance principle. He then shows that the conformal anomaly associated with this new gauge fixing is canceled at dimensions of space-time d = 26. Studying the problem of changing gauge in string theory, he shows the equivalence between the light-cone and conformal gauge in the path-integral formulation of the theory. In particular, by performing a proper change of variables in the commuting and ghost fields in the Polyakov path-integral, the string theory in the conformal gauge is obtained from the light-cone gauge fixed expression. Finally, the problem of changing gauge is generalized to the higher genus surfaces. It is shown that the string theory in the conformal gauge is equivalent to the light-cone gauge fixed theory for surface with arbitrary number of handles
Dual computations of non-Abelian Yang-Mills theories on the lattice
International Nuclear Information System (INIS)
Cherrington, J. Wade; Khavkine, Igor; Christensen, J. Daniel
2007-01-01
In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest
CP violation in gauge theories
International Nuclear Information System (INIS)
Escobar, C.O.
Some aspects of CP violation in gauge theories are reviewed. The topics covered include a discussion of the Kobayashi-Maskawa six-quarks model, models of soft- CP violation (extended Higgs sector), the strong CP problem and finally some speculations relating CP violation and magnetic charges in non-abelian gauge theories. (Author) [pt
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Monte Carlo sampling strategies for lattice gauge calculations
International Nuclear Information System (INIS)
Guralnik, G.; Zemach, C.; Warnock, T.
1985-01-01
We have sought to optimize the elements of the Monte Carlo processes for thermalizing and decorrelating sequences of lattice gauge configurations and for this purpose, to develop computational and theoretical diagnostics to compare alternative techniques. These have been applied to speed up generations of random matrices, compare heat bath and Metropolis stepping methods, and to study autocorrelations of sequences in terms of the classical moment problem. The efficient use of statistically correlated lattice data is an optimization problem depending on the relation between computer times to generate lattice sequences of sufficiently small correlation and times to analyze them. We can solve this problem with the aid of a representation of auto-correlation data for various step lags as moments of positive definite distributions, using methods known for the moment problem to put bounds on statistical variances, in place of estimating the variances by too-lengthy computer runs
Correlation of the ghost and the quark in the lattice Landau gauge QCD
International Nuclear Information System (INIS)
Furui, Sadataka; Nakajima, Hideo
2007-01-01
Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the unquenched SU(3) configurations produced by the MILC collaboration and compared with quenched gauge configurations of SU(2) first copy of the over relaxation gauge fixing, the parallel tempering (PT) gauge fixing and quenched SU(3) 56 4 configurations. We measure the color symmetric and the color antisymmetric ghost propagator and the Binder cumulant of the l 1 norm and the l 2 norm of color antisymmetric ghost propagators and investigate deviation from those of Gaussian distributions. In the first copy samples of quenched SU(2) we observe a large fluctuation in the Binder cumulant at the lowest momentum point. This fluctuation is reduced in the P T gauge fixed samples. The color anti-symmetric ghost propagator of quenched SU(3) configurations depends on the lattice size and is small as compared to the symmetric one in the large lattice of 56 4 . The Binder cumulant of the quenched SU(2) and the N f = 2 + 1 unquenched SU(3) are almost consistent with 3-d and 8-d Gaussian distribution, respectively. A comparison of the SU(3) unquenched configurations and quenched configurations indicates that the dynamical quarks have the effect of making color antisymmetric ghost propagator closer to the Gaussian distribution and the Kugo-Ojima color confinement parameter c closer to 1. (author)
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
A new scheme for the running coupling constant in gauge theories using Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA
2009-01-01
We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.
Remarks on an equation common to Weyl's gauge field, Yang-Mills field and Toda lattice
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
In this letter a remark is presented on an equation of a gauge-invariant Weyl's gauge field and it is shown that the equation is common to Yang's approach to the self-duality condition for SU 2 gauge field and the simplest Toda lattice
An improved single-plaquette gauge action
International Nuclear Information System (INIS)
Banerjee, D.; Bögli, M.; Holland, K.; Niedermayer, F.; Pepe, M.; Wenger, University; Wiese, UniversityJ.
2016-01-01
We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-off effects.
International Nuclear Information System (INIS)
Neves, A.G.M.
1988-01-01
The renormalization transformation e sup(-S 1) sup((B)) const. ζ e sup(-S o (A) - V(A)) δ (B-C sub(1) A) δ sub(Ax) (A)DA for the U(1) lattice gauge theory, where S sub(o) (A) is the gaussian fixed point of the transformation, V(A) is a gauge invariant perturbation, C sub(1) is the averaging operator and δ sub(Ax) (A) fixes the local axial gauge is studied via an equivalent renormalization transformation on the 2-forms F = dA. The transformation is linearized in the neighborhood of the fixed point and then diagonalized. (author)
Phase transitions and flux distributions of SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Peng, Yingcai.
1993-01-01
The strong interactions between quarks are believed to be described by Quantum Chromodynamics (QCD), which is a non-abelian SU(3) gauge theory. It is known that QCD undergoes a deconfining phase transition at very high temperatures, that is, at low temperatures QCD is in confined phase, at sufficient high temperatures it is in an unconfined phase. Also, quark confinement is believed to be due to string formation. In this dissertation the authors studied SU(2) gauge theory using numerical methods of LGT, which will provide some insights about the properties of QCD because SU(2) is similar to SU(3). They measured the flux distributions of a q bar q pair at various temperatures in different volumes. They find that in the limit of infinite volumes the flux distribution is different in the two phases. In the confined phase strong evidence is found for the string formation, however, in the unconfined phase there is no string formation. On the other hand, in the limit of zero temperature and finite volumes they find a clear signal for string formation in the large volume region, however, the string tension measured in intermediate volumes is due to finite volume effects, there is no intrinsic string formation. The color flux energies (action) of the q bar q pair are described by Michael sum rules. The original Michael sum rules deal with a static q bar q pair at zero temperature in infinite volumes. To check these sum rules with flux data at finite temperatures, they present a complete derivation for the sum rules, thus generalizing them to account for finite temperature effects. They find that the flux data are consistent with the prediction of generalized sum rules. The study elucidates the rich structures of QCD, and provides evidence for quark confinement and string formation. This supports the belief that QCD is a correct theory for strong interactions, and quark confinement can be explained by QCD
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Stochastic quantization of field theories on the lattice and supersymmetrical models
International Nuclear Information System (INIS)
Aldazabal, Gerardo.
1984-01-01
Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es
Aspects of confinement in QCD from lattice simulations
International Nuclear Information System (INIS)
Spielmann, Daniel
2011-01-01
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Aspects of confinement in QCD from lattice simulations
Energy Technology Data Exchange (ETDEWEB)
Spielmann, Daniel
2011-01-12
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Abelian 2-form gauge theory: special features
International Nuclear Information System (INIS)
Malik, R P
2003-01-01
It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
International Nuclear Information System (INIS)
Haymaker, Richard W.; Matsuki, Takayuki
2007-01-01
We address the problem of determining the type I, type II or borderline dual superconductor behavior in maximal Abelian gauge SU(2) through the study of the dual Abrikosov vortex. We find that significant electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs model in interpreting the data. Further, two definitions of the penetration depth parameter take two different values. The splitting of this parameter into two is intricately connected to the existence of electric currents. It is important in our approach that we employ definitions of flux and electric and magnetic currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings. Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Running coupling in SU(2) gauge theory with two adjoint fermions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari
2016-01-01
We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...... with the existence of a fixed point in the interval 2.2g∗23. We also measure the anomalous dimension and find that its value at the fixed point is γ∗≃0.2±0.03....... constant using the step scaling method with the Schrödinger functional and study the remaining discretization effects. At weak coupling we observe significant discretization effects, which make it difficult to obtain a fully controlled continuum limit. Nevertheless, the data remains consistent...
International Nuclear Information System (INIS)
Kazama, Y.; Yao, Y.
1982-01-01
In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@theorie.physik.uni-muenchen.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2001-06-18
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2001-01-01
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric
Bianchi-identities for supersymmetric gauge-theories
International Nuclear Information System (INIS)
Sohnius, M.F.
1978-01-01
The Bianchi-identities for gauge-theories in an extended flat superspace are evaluated. They permitbetter understanding of possible constraint equations, and can serve as a starting point for further constructions of gauge-theories with extended supersymmetry. (orig.) [de
Octonionic gauge theory from spontaneously broken SO(8)
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
An attempt is made to construct a gauge theory based on a bimodular representation of the octonion algebra, the non associativity of which is manifested as a non-closure of the bimodule algebra. It is found that this fact leads to gauge-noninvariance of the theory. However, the bimodule algebra can be embedded in SO(8), the gauge theory of which can be broken down to give a massless SO(7) theory together with a massive octonionic gauge theory. 7 refs
Supersymmetric gauge theories with classical groups via M theory fivebrane
International Nuclear Information System (INIS)
Terashima, S.
1998-01-01
We study the moduli space of vacua of four-dimensional N=1 and N=2 supersymmetric gauge theories with the gauge groups Sp(2N c ), SO(2N c ) and SO(2N c +1) using the M theory fivebrane. Higgs branches of the N=2 supersymmetric gauge theories are interpreted in terms of the M theory fivebrane and the type IIA s-rule is realized in it. In particular, we construct the fivebrane configuration which corresponds to a special Higgs branch root. This root is analogous to the baryonic branch root in the SU(N c ) theory which remains as a vacuum after the adjoint mass perturbation to break N=2 to N=1. Furthermore, we obtain the monopole condensations and the meson vacuum expectation values in the confining phase of N=1 supersymmetric gauge theories using the fivebrane technique. These are in complete agreement with the field theory results for the vacua in the phase with a single confined photon. (orig.)
Monopole charges in unified gauge theories
Chan Hong Mo
1981-01-01
Monopole charges, being global quantities, depend on the gauge group of a theory, which in turn is determined by the representations of all its fields. For example, chromodynamics in its present form when combined with electrodynamics has as its gauge group not SU(3)*U(1) but a 'smaller' group U(3). The specification of monopole charges for a theory can thus be quite intricate. The authors report the result of an investigation in several current gauge theories. Of particular interest is the possible existence in some theories of monopoles carrying multiplicative charges. As a by-product, some earlier assertions seem to be incorrect, are clarified. (16 refs).
Dualiy for Z(N) gauge theories
International Nuclear Information System (INIS)
Korthals Altes, C.P.
1978-04-01
The duality properties of simple Z(N) gauge theories are discussed. For N 4 these systems are not self dual. Also the order parameter is discussed. The general Z(N) gauge theory is found to be self dual for all N
Manifestly gauge invariant discretizations of the Schrödinger equation
International Nuclear Information System (INIS)
Halvorsen, Tore Gunnar; Kvaal, Simen
2012-01-01
Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.
Duality for Z(N) gauge theories
International Nuclear Information System (INIS)
Korthals Altes, C.P.
1978-01-01
The duality properties of simple Z(N) gauge theories are discussed. For N 4 these systems are not self dual. Also, the order parameter is discussed. The general Z(N) gauge theory is found to be self dual for all N. (Auth.)
1994-01-01
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are d
Gauge/string duality in confining theories
International Nuclear Information System (INIS)
Edelstein, J.D.; Portugues, R.
2006-01-01
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Gauge/string duality in confining theories
Energy Technology Data Exchange (ETDEWEB)
Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2006-07-03
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Holism and structuralism in U(1) gauge theory
Lyre, Holger
After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
Metzger, St.
2005-12-01
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
Very high order lattice perturbation theory for Wilson loops
International Nuclear Information System (INIS)
Horsley, R.
2010-10-01
We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)
Wess-Zumino-Witten term on the lattice
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Matsui, Kosuke; Yamamoto, Masaru
2003-01-01
We construct the Wess-Zumino-Witten (WZW) term in lattice gauge theory by using a Dirac operator which obeys the Ginsparg-Wilson relation. Topological properties of the WZW term known in the continuum are reproduced on the lattice as a consequence of a non-trivial topological structure of the space of admissible lattice gauge fields. In the course of this analysis, we observe that the gauge anomaly generally implies that there is no basis of a Weyl fermion which leads to a single-valued expectation value in the fermion sector. The lattice Witten term, which carries information of a gauge path along which the gauge anomaly is integrated, is separated from the WZW term and the multivaluedness of the Witten term is shown to be related to the homotopy group π 2n+1 (G). We also discuss the global SU(2) anomaly on the basis of the WZW term. (author)
Lin, C -J David; Ramos, Alberto
2015-01-01
We perform the step-scaling investigation of the running coupling constant, using the gradient-flow scheme, in SU(3) gauge theory with twelve massless fermions in the fundamental representation. The Wilson plaquette gauge action and massless unimproved staggered fermions are used in the simulations. Our lattice data are prepared at high accuracy, such that the statistical error for the renormalised coupling, g_GF, is at the subpercentage level. To investigate the reliability of the continuum extrapolation, we employ two different lattice discretisations to obtain g_GF. For our simulation setting, the corresponding gauge-field averaging radius in the gradient flow has to be almost half of the lattice size, in order to have this extrapolation under control. We can determine the renormalisation group evolution of the coupling up to g^2_GF ~ 6, before the onset of the bulk phase structure. In this infrared regime, the running of the coupling is significantly slower than the two-loop perturbative prediction, altho...
Introduction to gauge theories of electroweak interactions
International Nuclear Information System (INIS)
Ecker, G.
1982-01-01
Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)
On low rank classical groups in string theory, gauge theory and matrix models
International Nuclear Information System (INIS)
Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun
2004-01-01
We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature
the Simple Centern Projection of SU (2) Gauge Theory
Bakker, B.L.G.; Veselov, A.I.; Zubkov, M.A.
2001-01-01
We consider the SU(2) lattice gauge model. We propose a new gauge invariant definition of center projection, which we call the Simple Center Projection. We demonstrate the center dominance, i.e., the coincidence of the projected potential with the full potential up to the mass renormalization term
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1986-01-01
This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications
Higher spin gauge theories in any dimension
International Nuclear Information System (INIS)
Vasiliev, M.A.
2004-01-01
Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system
Investigations in gauge theories, topological solitons and string theories
International Nuclear Information System (INIS)
1993-01-01
This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory
International Nuclear Information System (INIS)
Chung, S.; Tye, S.H.
1993-01-01
The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
Some aspects of non-Abelian gauge theories
International Nuclear Information System (INIS)
Tyburski, L.J.
1976-01-01
Two aspects of the theory of non-Abelian gauge fields are considered. In the first part, the fermion-fermion scattering amplitude is calculated for a non-Abelian gauge theory with SU(N) gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling constant. Only the leading logarithmic terms in each order of perturbation theory are kept. To avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory. It is found that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from an earlier published calculation. In the second part of the thesis, we consider fermion-fermion scattering in a non-Abelian gauge theory with massless vector bosons, and demonstrate that for physically measurable cross sections the infrared divergences of the theory cancel out to lowest nontrivial order
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Many-Body Localization Dynamics from Gauge Invariance
Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello
2018-01-01
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
The mathematical foundations of gauge theories
International Nuclear Information System (INIS)
Marathe, K.B.; Martucci, G.
1992-01-01
Theoretical physicists tend to discuss their theories in the language of mathematics. However, the adequate mathematical formulation may not yet be available when the physical law is first discovered. Mathematical physicists trying to develop the relevant mathematics for these theories, may obtain new insights into old mathematical structures. Gauge Theory is such a gift from physics to mathematics. This book presents a self-contained development of a differential geometric formulation of gauge theories, in particular, the theory of Yang-Mills fields. (author). refs.; figs.; tabs
Sp(2) covariant quantisation of general gauge theories
Energy Technology Data Exchange (ETDEWEB)
Vazquez-Bello, J L
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.
Sp(2) covariant quantisation of general gauge theories
International Nuclear Information System (INIS)
Vazquez-Bello, J.L.
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs
String theory considered as a local gauge theory of an extended object
International Nuclear Information System (INIS)
Chan Hongmo; Tsou Sheungtsun.
1986-11-01
In attempting to understand more about the physical origin of the so-called 'chordal gauge symmetry' in string field theory it is found that one can, at least formally, consider the theory as a generalised local gauge theory. However, the fundamental object is no longer a point, as in ordinary gauge theory, but a point with a tail, and it is the motion of this tail which represents the internal gauge degree of freedom. Moreover, the differential geometry is based on the non-abelian conformal group instead of the usual translation group. (author)
Relativity and equivalence principles in the gauge theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.; Sardanashvili, G.
1981-01-01
Roles of relativity (RP) and equivalence principles (EP) in the gauge theory of gravity are shown. RP in the gravitational theory in formalism of laminations can be formulated as requirement of covariance of equations relative to the GL + (4, R)(X) gauge group. In such case RP turns out to be identical to the gauge principle in the gauge theory of a group of outer symmetries, and the gravitational theory can be directly constructed as the gauge theory. In general relativity theory the equivalence theory adds RP and is intended for description of transition to a special relativity theory in some system of reference. The approach described takes into account that in the gauge theory, besides gauge fields under conditions of spontaneous symmetry breaking, the Goldstone and Higgs fields can also arise, to which the gravitational metric field is related, what is the sequence of taking account of RP in the gauge theory of gravitation [ru
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
A precise determination of the psibar-psi anomalous dimension in conformal gauge theories
Patella, Agostino
2012-01-01
A strategy for computing the psibar-psi anomalous dimension at the fixed point in infrared-conformal gauge theories from lattice simulations is discussed. The method is based on the scaling of the spectral density of the Dirac operator or rather its integral, the mode number. It is relatively cheap, mainly for two reasons: (a) the mode number can be determined with quite high accuracy, (b) the psibar-psi anomalous dimension is extracted from a fit of several observables on the same set of configurations (no scaling in the Lagrangian parameters is needed). As an example the psibar-psi anomalous dimension has been computed in the SU(2) theory with 2 Dirac fermions in the adjoint representation of the gauge group, and has been found to be 0.371(20). In this particular case, the proposed strategy has proved to be very robust and effective.
Canonical transformation path to gauge theories of gravity
Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.
2017-06-01
In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.
Introduction to gauge theories of electroweak interactions
International Nuclear Information System (INIS)
Ecker, G.
1982-01-01
The author presents an introduction to electroweak gauge theories. Emphasis is placed on the properties of a general gauge theory. The standard model is discussed as the simplest example to illustrate these properties. (G.T.H.)
Perturbative Quantum Gravity from Gauge Theory
Carrasco, John Joseph
In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.
Renormalization of gauge theories without cohomology
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)
Hamiltonian formulation of QCD in the Schwinger gauge
International Nuclear Information System (INIS)
Schutte, D.
1989-01-01
The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
Abelian gauge theories on homogeneous spaces
International Nuclear Information System (INIS)
Vassilevich, D.V.
1992-07-01
An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs
Unity from duality: gravity, gauge theory and strings
International Nuclear Information System (INIS)
Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.
2002-01-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Duality transformation of a spontaneously broken gauge theory
International Nuclear Information System (INIS)
Mizrachi, L.
1981-04-01
Duality transformation for a spontaneously broken gauge theory is constructed in the CDS gauge (xsub(μ)Asub(μ)sup(a)=0). The dual theory is expressed in terms of dual potentials which satisfy the same gauge condition, but with g→ 1 /g. Generally the theory is not self dual but in the weak coupling region (small g), self duality is found for the subgroup which is not spontaneously broken or in regions where monopoles and vortices are concentrated (in agreement with t'Hooft's ideas that monopoles and vortices in the Georgi-Glashow model make it self dual). In the strong coupling regime a systematic strong coupling expansion can be written. For this region the dual theory is generally not local gauge invariant, but it is invariant under global gauge transformations. (author)
Gradient flow coupling in the SU(2) gauge theory with two adjoint fermions
DEFF Research Database (Denmark)
Rantaharju, Jarno
2016-01-01
We study SU(2) gauge theory with two fermion flavors in the adjoint representation. Using a clover improved HEX smeared action and the gradient flow running coupling allows us to simulate with larger lattice size than before. We find an infrared fixed point after a continuum extrapolation in the ...... in the range 4.3g∗24.8. We also measure the mass anomalous dimension and find the value 0.25γ∗0.28 at the fixed point....
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)
2016-11-14
We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
SO(2N) and SU(N) gauge theories
Lau, Richard; Teper, Michael
2013-01-01
We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit. SO(2N) theories may help us to understand QCD at finite chemical potential since there is an orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing them to their corresponding SU(N) ...
Indefinite harmonic forms and gauge theory
International Nuclear Information System (INIS)
Nakashima, M.
1988-01-01
Indecomposable representations have been extensively used in the construction of conformal and de Sitter gauge theories. It is thus noteworthy that certain unitary highest weight representations have been given a geometric realization as the unitary quotient of an indecomposable representation using indefinite harmonic forms [RSW]. We apply this construction to SU(2,2) and the de Sitter group. The relation is established between these representations and the massless, positive energy representations of SU(2,2) obtained in the physics literature. We investigate the extent to which this construction allows twistors to be viewed as a gauge theory of SU(2,2). For the de Sitter group, on which the gauge theory of singletons is based, we find that this construction is not directly applicable. (orig.)
Topological higher gauge theory: From BF to BFCG theory
International Nuclear Information System (INIS)
Girelli, F.; Pfeiffer, H.; Popescu, E. M.
2008-01-01
We study generalizations of three- and four-dimensional BF theories in the context of higher gauge theory. First, we construct topological higher gauge theories as discrete state sum models and explain how they are related to the state sums of Yetter, Mackaay, and Porter. Under certain conditions, we can present their corresponding continuum counterparts in terms of classical Lagrangians. We then explain that two of these models are already familiar from the literature: the ΣΦEA model of three-dimensional gravity coupled to topological matter and also a four-dimensional model of BF theory coupled to topological matter
Exact renormalization group for gauge theories
International Nuclear Information System (INIS)
Balaban, T.; Imbrie, J.; Jaffe, A.
1984-01-01
Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study
Once more about the topologically massive gauge theory
International Nuclear Information System (INIS)
Kogan, Ya.I.
1989-01-01
The general properties of the three-dimensional gauge theory with the topological mass is discussed namely the long-range interaction of the Aharonov-Bohm type. It is argued that Chern-Simons gauge theories must be considered as the infrared limit of the topologically massive theories. The analogy between the Landau problem of a charged particle in a magnetic field and quantization of this gauge theory is considered, as well as the quantization condition for the Abelian Chern-Simons term. 38 refs.; 5 figs
Dynamic conservation of anomalous current in gauge theories
International Nuclear Information System (INIS)
Kulikov, A.V.
1986-01-01
The symmetry of classical Lagrangian of gauge fields is shown to lead in quantum theory to certain limitations for the fields interacting with gauge ones. Due to this property, additional terms appear in the effective action in the theories with anomalous currents and its gauge invariance is ensured
Weyl gravity as a gauge theory
Trujillo, Juan Teancum
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor---a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
One-loop renormalization of Lee-Wick gauge theory
International Nuclear Information System (INIS)
Grinstein, Benjamin; O'Connell, Donal
2008-01-01
We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theory than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.
Non-Abelian gauge field theory in scale relativity
International Nuclear Information System (INIS)
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-01-01
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description
Jet quenching parameters in strongly coupled nonconformal gauge theories
International Nuclear Information System (INIS)
Buchel, Alex
2006-01-01
Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases
Dynamics of Strings in Noncommutative Gauge Theory
International Nuclear Information System (INIS)
Gross, David J.; Nekrasov, Nikia A.
2000-01-01
We continue our study of solitons in noncommutative gauge theories and present an extremely simple BPS solution of N=4 U(1) noncommutative gauge theory in 4 dimensions, which describes N infinite D1 strings that pierce a D3 brane at various points, in the presence of a background B-field in the Seiberg-Witten limit. We call this solution the N-fluxon. For N=1 we calculate the complete spectrum of small fluctuations about the fluxon and find three kinds of modes: the fluctuations of the superstring in 10 dimensions arising from fundamental strings attached to the D1 strings, the ordinary particles of the gauge theory in 4 dimensions and a set of states with discrete spectrum, localized at the intersection point - corresponding to fundamental strings stretched between the D1 string and the D3 brane. We discuss the fluctuations about the N-fluxon as well and derive explicit expressions for the amplitudes of interactions between these various modes. We show that translations in noncommutative gauge theories are equivalent to gauge transformations (plus a constant shift of the gauge field) and discuss the implications for the translational zeromodes of our solitons. We also find the dyonic versions of N-fluxon, as well as of our previous string-monopole solution. (author)
Renormalizable Abelian-projected effective gauge theory derived from quantum chromodynamics
International Nuclear Information System (INIS)
Kondo, Kei-ichi; Shinohara, Toru
2001-01-01
We show that an effective Abelian gauge theory can be obtained as a renormalizable theory from QCD in the maximal Abelian gauge. The derivation improves in a systematic manner the previous version that was obtained by one of the authors and was referred to as the Abelian-projected effective gauge theory. This result supports the view that we can construct an effective Abelian gauge theory from QCD without losing characteristic features of the original non-Abelian gauge theory. In fact, it is shown that the effective coupling constant in the resulting renormalizable theory has a renormalization-scale dependence governed by the β-function that is exactly the same as that of the original Yang-Mills theory, irrespective of the choice of gauge fixing parameters of the maximal Abelian gauge and the parameters used for identifying the dual variables. Moreover, we evaluate the anomalous dimensions of the fields and parameters in the resultant theory. By choosing the renormalized parameters appropriately, we can switch the theory into an electric or a magnetic theory. (author)
Cirafici, M.; Sinkovics, A.; Szabo, R.J.
2009-01-01
We study the relation between Donaldson–Thomas theory of Calabi–Yau threefolds and a six-dimensional topological Yang–Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques
Gauge theories under incorporation of a generalized uncertainty principle
International Nuclear Information System (INIS)
Kober, Martin
2010-01-01
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
Homogenization theory in reactor lattices
International Nuclear Information System (INIS)
Benoist, P.
1986-02-01
The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Problem of ''global color'' in gauge theories
International Nuclear Information System (INIS)
Horvathy, P.A.; Rawnsley, J.H.; UER de Mathematique, Universite de Provence, Marseille, France)
1986-01-01
The problem of ''global color'' (which arose recently in monopole theory) is generalized to arbitrary gauge theories: a subgroup K of the ''unbroken'' gauge group G is implementable iff the gauge bundle reduces to the centralizer of K in G. Equivalent implementations correspond to equivalent reductions. Such an action is an internal symmetry for a given configuration iff the Yang-Mills field reduces also. The case of monopoles is worked out in detail
International Nuclear Information System (INIS)
Hart, C.F.
1981-01-01
A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach
Topological methods in gauge theory
International Nuclear Information System (INIS)
Sarukkai, S.R.
1992-01-01
The author begins with an overview of the important topological methods used in gauge theory. In the first chapter, the author discusses the general structure of fiber bundles and associated mathematical concepts and briefly discuss their application in gauge theory. The second chapter deals with the study of instantons in both gauge and gravity theories. These self-dual solutions are presented. This chapter is also a broad introduction to certain topics in gravitational physics. Gravity and gauge theory are unified in Kaluza-Klein theory as discussed in the third chapter. Of particular interest is the physics of the U(1) bundles over non-trivial manifolds. The radius of the fifth dimension is undetermined classically in the Kaluza-Klein theory. A mechanism is described using topological information to derive the functional form of the radius of the fifth dimension and show that it is possible classically to derive expressions for the radius as a consequence of topology. The behavior of the radius is dependent on the information present in the base metric. Results are computed for three gravitational instantons. Consequences of this mechanism are discussed. The description is studied of instantons in terms of projector valued fields and universal bundles. The results of the previous chapter and this are connected via the study of universal bundles. Projector valued transformations are defined and their consequences discussed. With the solutions of instantons in this formalism, it is shown explicitly that there can be solutions which allow for a Sp(n) instanton to be transformed to a Sp(k) instanton, thus showing that there can be interpolations which carry one instanton with a rank n to another characterized by rank k with different topological numbers
Representation theory of lattice current algebras
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.
1996-04-01
Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)
SU(N) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2017-02-03
We calculate the low-lying glueball spectrum and various string tensions in SU(N) lattice gauge theories in 2+1 dimensions, and extrapolate the results to the continuum limit. We do so for for the range N∈[2,16] so as to control the N-dependence with a useful precision. We observe a number of striking near-degeneracies in the various J{sup PC} sectors of the glueball spectrum, in particular between C=+ and C=− states. We calculate the string tensions of flux tubes in a number of representations, and provide evidence that the leading correction to the N-dependence of the k-string tensions is ∝1/N rather than ∝1/N{sup 2}, and that the dominant binding of k fundamental flux tubes into a k-string is via pairwise interactions. We comment on the possible implications of our results for the dynamics of these gauge theories.
Antisymmetric tensor Zp gauge symmetries in field theory and string theory
International Nuclear Information System (INIS)
Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.
2014-01-01
We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality
International Nuclear Information System (INIS)
Dahmen, Bernd
1994-01-01
A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))
Critical properties of effective gauge theories for novel quantum fluids
Energy Technology Data Exchange (ETDEWEB)
Smoergrav, Eivind
2005-07-01
Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Introduction to gauge theories and unification
International Nuclear Information System (INIS)
Das, A.
1990-01-01
This paper contains the following lectures on gauge theories: basic notations; dimensional regularization; complex scalar field theory; scalar field theory; self-interacting scalar field theory; Noether's theorem; spontaneous symmetry breaking; dirac field theories; local symmetry; quantum electrodynamics; Higgs mechanism; non-Abelian symmetries; and Weinberg-Salam-Glashow theory