WorldWideScience

Sample records for lattice bf gauge

  1. From lattice BF gauge theory to area-angle Regge calculus

    CERN Document Server

    Bonzom, Valentin

    2009-01-01

    We consider Riemannian 4d BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3d and 4d dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form {\\it \\`a la Regge} and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir inserti...

  2. Gauge-invariant massive BF models

    Energy Technology Data Exchange (ETDEWEB)

    Bizdadea, Constantin; Saliu, Solange-Odile [University of Craiova, Department of Physics, Craiova (Romania)

    2016-02-15

    Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincare invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A{sub μ} with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking. (orig.)

  3. Gauge-invariant massive BF models

    Science.gov (United States)

    Bizdadea, Constantin; Saliu, Solange-Odile

    2016-02-01

    Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincaré invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A_{μ } with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.

  4. Gauge-invariant massive BF models

    CERN Document Server

    Bizdadea, Constantin

    2015-01-01

    Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, Poincare invariance, supplemented with the requirement on the preservation of the number of derivatives on each field with respect to the free theory, we obtain that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field $A_{\\mu }$ with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.

  5. Modified Lattice Landau Gauge

    CERN Document Server

    Von Smekal, L; Sternbeck, A; Williams, A G

    2007-01-01

    We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.

  6. Digital lattice gauge theories

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio

    2016-01-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...

  7. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  8. Digital lattice gauge theories

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  9. Gauge Fixing on the Lattice without Ambiguity

    CERN Document Server

    Vink, Jeroen C; 10.1016/0370-2693(92)91372-G

    2009-01-01

    A new gauge fixing condition is discussed, which is (lattice) rotation invariant, has the `smoothness' properties of the Landau gauge but can be efficiently computed and is unambiguous for almost all lattice gauge field configurations.

  10. Introduction to lattice gauge theory

    Science.gov (United States)

    Gupta, R.

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.

  11. Technicolor and Lattice Gauge Theory

    CERN Document Server

    Chivukula, R Sekhar

    2010-01-01

    Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories

  12. Lattice gauge theories and Monte Carlo simulations

    CERN Document Server

    Rebbi, Claudio

    1983-01-01

    This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.

  13. Lattice Gauge Theories and Spin Models

    CERN Document Server

    Mathur, Manu

    2016-01-01

    The Wegner $Z_2$ gauge theory-$Z_2$ Ising spin model duality in $(2+1)$ dimensions is revisited and derived through a series of canonical transformations. These $Z_2$ results are directly generalized to SU(N) lattice gauge theory in $(2+1)$ dimensions to obtain a dual SU(N) spin model in terms of the SU(N) magnetic fields and electric scalar potentials. The gauge-spin duality naturally leads to a new gauge invariant disorder operator for SU(N) lattice gauge theory. A variational ground state of the dual SU(2) spin model with only nearest neighbour interactions is constructed to analyze SU(2) lattice gauge theory.

  14. Gauge-fixing approach to lattice chiral gauge theories

    CERN Document Server

    Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal

    1998-01-01

    We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.

  15. Topological Charge of Lattice Abelian Gauge Theory

    CERN Document Server

    Fujiwara, T; Wu, K

    2001-01-01

    Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.

  16. Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View

    CERN Document Server

    Meurice, Yannick

    2011-01-01

    Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.

  17. Lattice Chiral Fermions Through Gauge Fixing

    CERN Document Server

    Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten; Shamir, Yigal

    1998-01-01

    We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions, and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced version of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no species doublers, and that the fermion spectrum contains only the desired states in the continuum limit, namely charged left-handed (LH) fermions and neutral right-handed (RH) fermions.

  18. Global anomalies in Chiral Lattice Gauge Theory

    Science.gov (United States)

    Bär, Oliver; Campos, Isabel

    As first realized by Witten an SU(2) gauge theory coupled to a single Weyl fermion suffers from a global anomaly. This problem is addressed here in the context of the recent developments on chiral gauge theories on the lattice. We find Witten's anomaly manifests in the impossibility of defining globally a fermion measure that reproduces the proper continuum limit. Moreover, following Witten's original argument, we check numerically the crossing of the lowest eigenvalues of Neuberger's operator along a path connecting two gauge fields that differ by a topologically non-trivial gauge transformation.

  19. Entanglement of Distillation for Lattice Gauge Theories

    Science.gov (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank

    2016-09-01

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  20. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  1. Integrable Lattice Models From Gauge Theory

    CERN Document Server

    Witten, Edward

    2016-01-01

    These notes provide an introduction to recent work by Kevin Costello in which integrable lattice models of classical statistical mechanics in two dimensions are understood in terms of quantum gauge theory in four dimensions. This construction will be compared to the more familiar relationship between quantum knot invariants in three dimensions and Chern-Simons gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture at Strings 2016 in Beijing.)

  2. Gauge-Higgs Unification on the Lattice

    CERN Document Server

    Irges, Nikos; Yoneyama, Kyoko

    2012-01-01

    The simplest Gauge-Higgs Unification model is a five-dimensional SU(2) gauge theory compactified on the S^1/Z_2 orbifold, such that on the four-dimensional boundaries of space-time there is an unbroken U(1) symmetry and a complex scalar, the latter identified with the Higgs boson. Perturbatively the U(1) remains spontaneously unbroken. Earlier lattice Monte Carlo simulations revealed however that the spontaneous breaking of the U(1) does occur at the non-perturbative level. Here, we verify the Monte Carlo result via an analytical lattice Mean-Field expansion.

  3. Lattice Landau Gauge via Stereographic Projection

    Science.gov (United States)

    von Smekal, L.; Mehta, D.; Sternbeck, A.

    alexander.jorkowski@student.adelaide.edu.au, dhagash.mehta@adelaide.edu.au, andre.sternbeck@adelaide.edu.au The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover, there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is posi- tive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on the lattice as stereographically-projected link variables, it provides a framework for gauge fixed Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies between gauge-fixed lattice and continuum studies of QCD Green’s functions.

  4. Local gauge symmetry on optical lattices?

    CERN Document Server

    Liu, Yuzhi; Tsai, Shan-Wen

    2012-01-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.

  5. Lattice gauge theories and spin models

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2016-10-01

    The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.

  6. Large N lattice gauge theory

    CERN Document Server

    Narayanan, Rajamani

    2008-01-01

    Wilson loops in large N gauge theory exhibit a weak to strong coupling transition as the loop is dilated. A multiplicative matrix model captures the universal behavior associated with this transition. A universal scaling function is obtained in a double scaling limit. Numerical studies show that both large N QCD in three dimensions and the SU(N) principal chiral model in two dimensions are in the same universality class.

  7. Dynamical gauge symmetry breaking on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, K.; Koutsoumbas, G.; Zoupanos, G. (National Research Centre for the Physical Sciences Democritos, Athens (Greece))

    1990-10-11

    We study, using lattice techniques, the dynamical symmetry breaking of a three-dimensional theory that mimics the electroweak sector of the standard model. We show that in the strong coupling limit of a QCD-like theory the fermion condensates which are produced induce dynamical symmetry breaking of the sector corresponding to the electroweak gauge group. (orig.).

  8. Recent advances in lattice gauge theories

    Indian Academy of Sciences (India)

    R V Gavai

    2000-04-01

    Recent progress in the field of lattice gauge theories is briefly reviewed for a nonspecialist audience. While the emphasis is on the latest and more definitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.

  9. National Computational Infrastructure for Lattice Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  10. Jarzynski's theorem for lattice gauge theory

    CERN Document Server

    Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.

  11. Noncompact lattice formulation of gauge theories

    CERN Document Server

    Friedberg, R; Pang, Y; Ren, H C

    1995-01-01

    We expand the gauge field in terms of a suitably constructed complete set of Bloch wave functions, each labeled by a band designation \\,n\\, and a wave number \\,\\vec K\\, restricted to the Brillouin zone. A noncompact formulation of lattice QCD (or QED) can be derived by restricting the expansion only to the \\,0^{th}-band (\\,n = 0\\,) functions, which are simple continuum interpolations of discrete values associated with sites or links on a lattice. The exact continuum theory can be reached through the inclusion of all \\,n = 0\\, and \\,n \

  12. Chiral symmetry and lattice gauge theory

    CERN Document Server

    Creutz, M

    1994-01-01

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.

  13. Gauge theories and integrable lattice models

    Science.gov (United States)

    Witten, Edward

    1989-08-01

    Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question — previously considered in both the knot theory and statistical mechanics — are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be presented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory.

  14. Lattice gaugefixing and other optics in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Ken

    1992-06-01

    We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.

  15. Lattice gaugefixing and other optics in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Ken.

    1992-06-01

    We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.

  16. Axial Anomaly in Lattice Abelian Gauge Theory in Arbitrary Dimensions

    CERN Document Server

    Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    1999-01-01

    Axial anomaly of lattice abelian gauge theory in hyper-cubic regular lattice in arbitrary even dimensions is investigated by applying the method of exterior differential calculus. The topological invariance, gauge invariance and locality of the axial anomaly determine the explicit form of the topological part. The anomaly is obtained up to a multiplicative constant for finite lattice spacing and can be interpreted as the Chern character of the abelian lattice gauge theory.

  17. Manifestly Gauge Covariant Formulation of Lattice Chiral Fermions

    CERN Document Server

    Okuyama, K; Okuyama, Kiyoshi; Suzuki, Hiroshi

    1997-01-01

    We propose a new formulation of chiral fermions on a lattice, on the basis of a lattice extension of the covariant regularization scheme in continuum field theory. The species doublers do not emerge. The real part of the effective action is just one half of that of Dirac-Wilson fermion and is always gauge invariant even with a finite lattice spacing. The gauge invariance of the imaginary part, on the other hand, sets a severe constraint which is a lattice analogue of the gauge anomaly free condition. For real gauge representations, the imaginary part identically vanishes and the gauge invariance becomes exact.

  18. Lattice gauge theories and Monte Carlo algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M. (Brookhaven National Lab., Upton, NY (USA). Physics Dept.)

    1989-07-01

    Lattice gauge theory has become the primary tool for non-perturbative calculations in quantum field theory. These lectures review some of the foundations of this subject. The first lecture reviews the basic definition of the theory in terms of invariant integrals over group elements on lattice bonds. The lattice represents an ultraviolet cutoff, and renormalization group arguments show how the bare coupling must be varied to obtain the continuum limit. Expansions in the inverse of the coupling constant demonstrate quark confinement in the strong coupling limit. The second lecture turns to numerical simulation, which has become an important approach to calculating hadronic properties. Here I discuss the basic algorithms for obtaining appropriately weighted gauge field configurations. The third lecture turns to algorithms for treating fermionic fields, which still require considerably more computer time than needed for purely bosonic simulations. Some particularly promising recent approaches are based on global accept-reject steps and should display a rather favorable dependence of computer time on the system volume. (orig.).

  19. Entanglement in Weakly Coupled Lattice Gauge Theories

    CERN Document Server

    Radicevic, Djordje

    2015-01-01

    We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group $G$ contains a generic logarithmic term at sufficiently weak coupling $e$. In two spatial dimensions, for a region of linear size $r$, this term equals $\\frac{1}{2} \\dim(G) \\log\\left(e^2 r\\right)$ and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.

  20. Lattice Gauge Field Theory and Prismatic Sets

    DEFF Research Database (Denmark)

    Akyar, Bedia; Dupont, Johan Louis

    as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying......We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...

  1. Parallel supercomputers for lattice gauge theory.

    Science.gov (United States)

    Brown, F R; Christ, N H

    1988-03-18

    During the past 10 years, particle physicists have increasingly employed numerical simulation to answer fundamental theoretical questions about the properties of quarks and gluons. The enormous computer resources required by quantum chromodynamic calculations have inspired the design and construction of very powerful, highly parallel, dedicated computers optimized for this work. This article gives a brief description of the numerical structure and current status of these large-scale lattice gauge theory calculations, with emphasis on the computational demands they make. The architecture, present state, and potential of these special-purpose supercomputers is described. It is argued that a numerical solution of low energy quantum chromodynamics may well be achieved by these machines.

  2. Quiver gauge theories and integrable lattice models

    CERN Document Server

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d $\\mathcal{N} = 1$ theories known as brane box and brane tilling models, 3d $\\mathcal{N} = 2$ and 2d $\\mathcal{N} = (2,2)$ theories obtained from them by compactification, and 2d $\\mathcal{N} = (0,2)$ theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  3. Quiver gauge theories and integrable lattice models

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Junya [International School for Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, 34149 Trieste (Italy)

    2015-10-09

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  4. From lattice gauge theories to hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Manu Mathur

    2015-10-01

    Full Text Available We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space Hp of pure SU(22+1 lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in Hp is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates |n l m〉 describing electric fluxes on the loops. The SU(2 gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut–Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2 invariance and a simple weak coupling (g2→0 continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N. The ideas and techniques can also be extended to higher dimension.

  5. Modified $U(1)$ lattice gauge theory towards realistic lattice QED

    CERN Document Server

    Bornyakov, V G; Müller-Preussker, M

    1992-01-01

    We study properties of the compact $~4D~$ $U(1)$ lattice gauge theory with monopoles {\\it removed}. Employing Monte Carlo simulations we calculate correlators of scalar, vector and tensor operators at zero and nonzero momenta $~\\vec{p}~$. We confirm that the theory without monopoles has no phase transition, at least, in the interval $~0 < \\beta \\leq 2~$. There the photon becomes massless and fits the lattice free field theory dispersion relation very well. The energies of the $~0^{++}~$, $~1^{+-}~$ and $~2^{++}~$ states show a rather weak dependence on the coupling in the interval of $~\\beta~$ investigated, and their ratios are practically constant. We show also a further modification of the theory suppressing the negative plaquettes to improve drastically the overlap with the lowest states (at least, for $~J=1$).

  6. Wilson loop expectations in $SU(N)$ lattice gauge theory

    CERN Document Server

    Jafarov, Jafar

    2016-01-01

    This article gives a rigorous formulation and proof of the $1/N$ expansion for Wilson loop expectations in strongly coupled $SU(N)$ lattice gauge theory in any dimension. The coefficients of the expansion are represented as absolutely convergent sums over trajectories in a string theory on the lattice, establishing a kind of gauge-string duality. Moreover, it is shown that in large $N$ limit, calculations in $SU(N)$ lattice gauge theory with coupling strength $2\\beta$ corresponds to those in $SO(N)$ lattice gauge theory with coupling strength $\\beta$ when $|\\beta|$ is sufficiently small.

  7. Gauge-fixing on the lattice via orbifolding

    Science.gov (United States)

    Mehta, Dhagash; Daleo, Noah S.; Hauenstein, Jonathan D.; Seaton, Christopher

    2014-09-01

    When fixing a covariant gauge, most popularly the Landau gauge, on the lattice, one encounters the Neuberger 0/0 problem, which prevents one from formulating a Becchi-Rouet-Stora-Tyutin symmetry on the lattice. Following the interpretation of this problem in terms of Witten-type topological field theory and using the recently developed Morse theory for orbifolds, we propose a modification of the lattice Landau gauge via orbifolding of the gauge-fixing group manifold and show that this modification circumvents the orbit-dependence issue and hence can be a viable candidate for evading the Neuberger problem. Using algebraic geometry, we also show that though the previously proposed modification of the lattice Landau gauge via stereographic projection relies on delicate departure from the standard Morse theory due to the noncompactness of the underlying manifold, the corresponding gauge-fixing partition function turns out to be orbit independent for all the orbits except in a region of measure zero.

  8. Manifestly Gauge Covariant Treatment of Lattice Chiral Fermion

    CERN Document Server

    Suzuki, H

    1997-01-01

    We propose a lattice formulation of the chiral fermion which maximally respects the gauge symmetry and simultaneously is free of the unwanted species doublers. This is achieved by directly dealing with the lattice fermion propagator and the composite operators, rather than the lattice action and the fermionic determinant. The latter is defined as a functional integral of the expectation value of the gauge current operator with respect to the background gauge field. The gauge anomaly is characterized as a non-integrability of this integration process and, the determinant is defined only for anomaly free cases. Gauge singlet operators on the other hand are always regularized gauge invariantly. Some perturbative check is performed to confirm the gauge covariance and the absence of the doublers. This formulation can be applied rather straightforwardly to numerical simulations in the quenched approximation.

  9. Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories

    CERN Document Server

    Wiese, U -J

    2013-01-01

    Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...

  10. The Gribov ambiguity for maximal abelian and center gauges in SU(2) lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Stack, John D.; Tucker, William W

    2001-03-01

    We present results for the fundamental string tension in SU(2) lattice gauge theory after projection to maximal abelian and direct maximal center gauges. We generate 20 Gribov copies/configuration. Abelian and center projected string tensions slowly decrease as higher values of the gauge functionals are reached.

  11. Topology of four-dimensional lattice gauge fields

    Science.gov (United States)

    Panagiotakopoulos, C.

    1985-08-01

    An extremely careful implementation of Woit's definition of the topological charge for SU(2) lattice gauge fields reveals a scaling violation by the topological susceptibility in the region 2.1Luscher's charge at weak enough coupling.

  12. Gauge Invariant Effective Action in Abelian Chiral Gauge Theory on the Lattice

    CERN Document Server

    Suzuki, H

    1999-01-01

    Lüscher's recent formulation of Abelian chiral gauge theories on the lattice, in the vacuum (or perturbative) sector in infinite lattice volume, is re-interpreted in terms of the lattice covariant regularization. The gauge invariance of the effective action and the integrability of the gauge current in anomaly-free cases become transparent then. The real part of the effective action is simply one-half of that of the Dirac fermion and, when the Dirac operator has proper properties in the continuum limit, the imaginary part in the continuum limit reproduces the $\\eta$-invariant.}

  13. A Formulation of Lattice Gauge Theories for Quantum Simulations

    CERN Document Server

    Zohar, Erez

    2014-01-01

    We examine the Kogut-Susskind formulation of lattice gauge theories under the light of fermionic and bosonic degrees of freedom that provide a description useful to the development of quantum simulators of gauge invariant models. We consider both discrete and continuous gauge groups and adopt a realistic multi-component Fock space for the definition of matter degrees of freedom. In particular, we express the Hamiltonian of the gauge theory and the Gauss law in terms of Fock operators. The gauge fields are described in two different bases, based on either group elements or group representations. This formulation allows for a natural scheme to achieve a consistent truncation of the Hilbert space for continuous groups, and provides helpful tools to study the connections of gauge theories with topological quantum double and string-net models for discrete groups. Several examples, including the case of the discrete $D_3$ gauge group, are presented.

  14. Heavy-quarkonium potential with input from lattice gauge theory

    CERN Document Server

    Serenone, Willian Matioli

    2014-01-01

    In this dissertation we study potential models incorporating a nonperturbative propagator obtained from lattice simulations of a pure gauge theory. Initially we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We then study the effect of using a gluon propagator from lattice simulations of pure SU(2) theory as an input in a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use, in both cases, a numerical approach to evaluate masses of quarkonium states. The resulting spectra are compared to calculations using the Coulomb plus linear (or Cornell) potential.

  15. Comparison of SO(3) and SU(2) lattice gauge theory

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Jahn, Oliver

    2003-01-01

    The Villain form of SO(3) lattice gauge theory is studied and compared to Wilson's SU(2) theory. The topological invariants in SO(3) which correspond to twisted boundary conditions in SU(2) are discussed and lattice observables are introduced for them. An apparent SO(3) phase with negative adjoint Polyakov loop is explained in terms of these observables. The electric twist free energy, an order parameter for the confinement-deconfinement transition, is measured in both theories to calibrate the temperature. The results indicate that lattices with about 700^4 sites or larger will be needed to study the SO(3) confined phase. Alternative actions are discussed and an analytic path connecting SO(3) and SU(2) lattice gauge theory at weak coupling is exhibited. The relevance for confinement of the centre of the gauge group is discussed.

  16. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-01

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  17. On the definition of entanglement entropy in lattice gauge theories

    Science.gov (United States)

    Aoki, Sinya; Iritani, Takumi; Nozaki, Masahiro; Numasawa, Tokiro; Shiba, Noburo; Tasaki, Hal

    2015-06-01

    We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z N gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z N gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.

  18. On the definition of entanglement entropy in lattice gauge theories

    CERN Document Server

    Aoki, Sinya; Nozaki, Masahiro; Numasawa, Tokiro; Shiba, Noburo; Tasaki, Hal

    2015-01-01

    We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contain gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the $Z_N$ gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the $Z_N$ gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.

  19. Landau gauge gluon vertices from Lattice QCD

    CERN Document Server

    Duarte, Anthony G; Silva, Paulo J

    2016-01-01

    In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.

  20. Real Representation in Chiral Gauge Theories on the Lattice

    CERN Document Server

    Suzuki, H

    2000-01-01

    The Weyl fermion belonging to the real representation of the gauge group provides a simple illustrative example for L\\"uscher's gauge-invariant lattice formulation of chiral gauge theories. We can explicitly construct the fermion integration measure globally over the gauge-field configuration space in the arbitrary topological sector; there is no global obstruction corresponding to the Witten anomaly. It is shown that this Weyl formulation is equivalent to a lattice formulation based on the Majorana (left--right-symmetric) fermion, in which the fermion partition function is given by the Pfaffian with a definite sign, up to physically irrelevant contact terms. This observation suggests a natural relative normalization of the fermion measure in different topological sectors for the Weyl fermion belonging to the complex representation.

  1. Multigrid methods for propagators in lattice gauge theories

    CERN Document Server

    Kalkreuter, T

    1994-01-01

    Multigrid methods were invented for the solution of discretized partial differential equations in ordered systems. The slowness of traditional algorithms is overcome by updates on various length scales. In this article we discuss generalizations of multigrid methods for disordered systems, in particular for propagators in lattice gauge theories. A discretized nonabelian gauge theory can be formulated as a system of statistical mechanics where the gauge field degrees of freedom are SU(N) matrices on the links of the lattice. These SU(N) matrices appear as random coefficients in Dirac equations. We aim at finding an efficient method by which one can solve Dirac equations without critical slowing down. If this could be achieved, Monte Carlo simulations of Quantum Chromodynamics (the theory of the strong interaction) would be accelerated considerably. In principle, however, the methods discussed can be used in arbitrary space-time dimension and for arbitrary gauge group. Moreover, there are applications in multig...

  2. Variational Calculation in SU(3) Lattice Gauge Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Chun; ZHANG Qi-Ren; GAO Chun-Yuan

    2001-01-01

    Using the Hamiltonian lattice gauge theory, we perform some variational calculations to obtain the ground-state energy of SU(3) gauge field and scalar (0++) glueball mass. The agreement of our data with the strong and weak expansion results in the corresponding limits indicates that this method can provide us with reliable information in the most interesting medium region. The trial wavefunction used in our variational method is also proven to be a good first approximation of the ground-state of the SU(3) gauge field. Upgrading this function according to correlations of adjacent plaquettes may mean better results.

  3. Kitaev Lattice Models as a Hopf Algebra Gauge Theory

    Science.gov (United States)

    Meusburger, Catherine

    2017-07-01

    We prove that Kitaev's lattice model for a finite-dimensional semisimple Hopf algebra H is equivalent to the combinatorial quantisation of Chern-Simons theory for the Drinfeld double D( H). This shows that Kitaev models are a special case of the older and more general combinatorial models. This equivalence is an analogue of the relation between Turaev-Viro and Reshetikhin-Turaev TQFTs and relates them to the quantisation of moduli spaces of flat connections. We show that the topological invariants of the two models, the algebra of operators acting on the protected space of the Kitaev model and the quantum moduli algebra from the combinatorial quantisation formalism, are isomorphic. This is established in a gauge theoretical picture, in which both models appear as Hopf algebra valued lattice gauge theories. We first prove that the triangle operators of a Kitaev model form a module algebra over a Hopf algebra of gauge transformations and that this module algebra is isomorphic to the lattice algebra in the combinatorial formalism. Both algebras can be viewed as the algebra of functions on gauge fields in a Hopf algebra gauge theory. The isomorphism between them induces an algebra isomorphism between their subalgebras of invariants, which are interpreted as gauge invariant functions or observables. It also relates the curvatures in the two models, which are given as holonomies around the faces of the lattice. This yields an isomorphism between the subalgebras obtained by projecting out curvatures, which can be viewed as the algebras of functions on flat gauge fields and are the topological invariants of the two models.

  4. Prepotential formulation of SU(3) lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Anishetty, Ramesh [Institute of Mathematical Sciences, CIT-Campus, Taramani, Chennai 600 113 (India); Mathur, Manu; Raychowdhury, Indrakshi [S N Bose, National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700 098 (India)], E-mail: ramesha@imsc.res.in, E-mail: manu@bose.res.in, E-mail: indrakshi@bose.res.in

    2010-01-22

    The SU(3) lattice gauge theory is reformulated in terms of SU(3) prepotential harmonic oscillators. This reformulation has enlarged SU(3)xU(1)xU(1) gauge invariance under which the prepotential operators transform like matter fields. The Hilbert space of SU(3) lattice gauge theory is shown to be equivalent to the Hilbert space of the prepotential formulation satisfying certain color invariant Sp(2, R) constraints. The SU(3) irreducible prepotential operators which solve these Sp(2, R) constraints are used to construct SU(3) gauge invariant Hilbert spaces at every lattice site in terms of SU(3) gauge invariant vertex operators. The electric fields and the link operators are reconstructed in terms of these SU(3) irreducible prepotential operators. We show that all the SU(3) Mandelstam constraints become local and take a very simple form within this approach. We also discuss the construction of all possible linearly independent SU(3) loop states which solve the Mandelstam constraints. The techniques can be easily generalized to SU(N)

  5. cuLGT: Lattice Gauge Fixing on GPUs

    CERN Document Server

    Vogt, Hannes

    2014-01-01

    We adopt CUDA-capable Graphic Processing Units (GPUs) for Landau, Coulomb and maximally Abelian gauge fixing in 3+1 dimensional SU(3) and SU(2) lattice gauge field theories. A combination of simulated annealing and overrelaxation is used to aim for the global maximum of the gauge functional. We use a fine grained degree of parallelism to achieve the maximum performance: instead of the common 1 thread per site strategy we use 4 or 8 threads per lattice site. Here, we report on an improved version of our publicly available code (www.cuLGT.com and github.com/culgt) which again increases performance and is much easier to include in existing code. On the GeForce GTX 580 we achieve up to 470 GFlops (utilizing 80% of the theoretical peak bandwidth) for the Landau overrelaxation code.

  6. Tadpole-improved SU(2) lattice gauge theory

    CERN Document Server

    Shakespeare, N H; Shakespeare, Norman H.; Trottier, Howard D.

    1999-01-01

    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in Landau gauge. Simulations are done with spatial lattice spacings $a_s$ in the range of about 0.1--0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy $a_t/a_s$ (where $a_t$ is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquett...

  7. Fusion basis for lattice gauge theory and loop quantum gravity

    CERN Document Server

    Delcamp, Clement; Riello, Aldo

    2016-01-01

    We introduce a new basis for the gauge--invariant Hilbert space of lattice gauge theory and loop quantum gravity in $(2+1)$ dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin--network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi--local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse--graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin--network basis, in which it ...

  8. Fusion basis for lattice gauge theory and loop quantum gravity

    Science.gov (United States)

    Delcamp, Clement; Dittrich, Bianca; Riello, Aldo

    2017-02-01

    We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.

  9. Applications of Jarzynski's relation in lattice gauge theories

    CERN Document Server

    Nada, Alessandro; Costagliola, Gianluca; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice gauge theory will be presented, along with numerical results for the $\\mathbb{Z}_2$ gauge model in three dimensions and for the equation of state in $\\mathrm{SU}(2)$ Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schr\\"odinger functional and for the study of QCD in strong magnetic fields.

  10. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  11. Independent Plaquette Trial Action for 4-Dimensional Lattice Gauge Theory

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2001-01-01

    Based on the explicit expressions of the plaquette formulations, the independent plaquette trial action for 4-dimensional lattice gauge theory is introduced. As an example, the mean plaquette energy EP for the SU(2) lattice gauge theory is calculated by using action variational approach with the independent trial action. The results are in good agreement with the Monte Carlo results in the strong coupling and the crossover region, and the curve is smooth in the whole region, which show that 4-dimensional SU(2) theory has only a single, confining phase. The unwanted discontinuity of EP given by the single link trial action, which is used in the earlier variational calculations has been avoided.

  12. $BF$ gravity

    CERN Document Server

    Celada, Mariano; Montesinos, Merced

    2016-01-01

    $BF$ gravity comprises all the formulations of gravity that are based on deformations of $BF$ theory. Such deformations consist of either constraints or potential terms added to the topological $BF$ action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The $BF$ formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the $BF$ formulations of $D$-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  13. BF gravity

    Science.gov (United States)

    Celada, Mariano; González, Diego; Montesinos, Merced

    2016-11-01

    BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.

  14. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  15. Matrix product states for Hamiltonian lattice gauge theories

    CERN Document Server

    Buyens, Boye; Haegeman, Jutho; Verstraete, Frank

    2014-01-01

    Over the last decade tensor network states (TNS) have emerged as a powerful tool for the study of quantum many body systems. The matrix product states (MPS) are one particular case of TNS and are used for the simulation of 1+1 dimensional systems. In [1] we considered the MPS formalism for the simulation of the Hamiltonian lattice gauge formulation of 1+1 dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model. We deduced the ground state and lowest lying excitations. Furthermore, we performed a full quantum real-time simulation for a quench with a uniform background electric field. In this proceeding we continue our work on the Schwinger model. We demonstrate the advantage of working with gauge invariant MPS by comparing with MPS simulations on the full Hilbert space, that includes numerous non-physical gauge variant states. Furthermore, we compute the chiral condensate and recover the predicted UV-divergent behavior.

  16. Gribov horizon and Gribov copies effect in lattice Coulomb gauge

    CERN Document Server

    Burgio, Giuseppe; Reinhardt, Hugo; Vogt, Hannes

    2016-01-01

    Following a recent proposal by Cooper and Zwanziger we investigate via lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e. the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g. the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.

  17. Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U{sub A}(1) symmetry and the {eta}{prime} for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk.

  18. Two-dimensional lattice gauge theories with superconducting quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2014-12-15

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  19. Flux-tubes in three-dimensional lattice gauge theories

    CERN Document Server

    Trottier, H D; Trottier, Howard D.

    1993-01-01

    Flux-tubes in different representations of SU(2) and U(1) lattice gauge theories in three dimensions are measured. Wilson loops generate heavy ``quark-antiquark'' pairs in fundamental ($j=1/2$), adjoint ($j=1$), and quartet ($j=3/2$) representations of SU(2). The first direct lattice measurements of the flux-tube cross-section ${\\cal A}_j$ as a function of representation are made. It is found that ${\\cal A}_j \\approx {\\rm constant}$, to about 10\\%. Results are consistent with a connection between the string tension $\\sigma_j$ and ${\\cal A}_j$ suggested by a simplified flux-tube model, $\\sigma_j = g^2 j(j+1) / (2 {\\cal A}_j)$ [$g$ is the gauge coupling], given that $\\sigma_j$ scales like the Casimir $j(j+1)$, as observed in previous lattice studies in both three and four dimensions. The results can discriminate among phenomenological models of the physics underlying confinement. Flux-tubes for singly- and doubly-charged Wilson loops in compact QED$_3$ are also measured. It is found that the string tension scal...

  20. Thermodynamics and reference scale of SU(3) gauge theory from gradient flow on fine lattices

    CERN Document Server

    Kitazawa, Masakiyo; Hatsuda, Tetsuo; Iritani, Takumi; Itou, Etsuko; Suzuki, Hiroshi

    2015-01-01

    We study the parametrization of lattice spacing and thermodynamics of SU(3) gauge theory on the basis of the Yang-Mills gradient flow on fine lattices. The lattice spacing of the Wilson gauge action is determined over a wide range $6.3\\le\\beta\\le7.5$ with high accuracy. The measurements of the flow time and lattice spacing dependences of the expectation values of the energy-momentum tensor are performed on fine lattices.

  1. The QCD Abacus A New Formulation for Lattice Gauge Theories

    CERN Document Server

    Brower, R C

    1998-01-01

    A quantum Hamiltonian is constructed for SU(3) lattice QCD entirely from color triplet Fermions --- the standard quarks and a new Fermionic ``constituent'' of the gluon we call ``rishons''. The quarks are represented by Dirac spinors on each site and the gauge fields by rishon-antirishon bilinears on each link which together with the local gauge transforms are the generators of an SU(6) algebra. The effective Lagrangian for the path integral lives in $R^4 \\times S^1$ Euclidean space with a compact ``fifth time'' of circumference ($\\beta$) and non-Abelian charge ($e^2$) both of which carry dimensions of length. For large $\\beta$, it is conjectured that continuum QCD is reached and that the dimensionless ratio $g^2 = e^2/\\beta$ becomes the QCD gauge coupling. The quarks are introduced as Kaplan chiral Fermions at either end of the finite slab in fifth time. This talk will emphasize the gauge and algebraic structure of the rishon or link Fermions and the special properties that may lead to fast discrete dynamics...

  2. Lattice regularization of gauge theories without loss of chiral symmetry

    CERN Document Server

    't Hooft, Gerardus

    1994-01-01

    Abstract: A lattice regularization procedure for gauge theories is proposed in which fermions are given a special treatment such that all chiral flavor symmetries that are free of Adler-Bell-Jackiw anomalies are kept intact. There is no doubling of fermionic degrees of freedom. A price paid for this feature is that the number of fermionic degrees of freedom per unit cell is still infinite, although finiteness of the complete functional integrals can be proven (details are outlined in an Appendix). Therefore, although perhaps of limited usefulness for numerical simulations, our scheme can be applied for studying aspects such as analytic convergence questions, spontaneous symmetry breakdown and baryon number violation in non-Abelian gauge theories.

  3. Symanzik improvement of the gradient flow in lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Alberto [PH-TH, CERN, Geneva (Switzerland); Sint, Stefan [Trinity College Dublin, School of Mathematics, Dublin (Ireland)

    2016-01-15

    We apply the Symanzik improvement programme to the 4 + 1-dimensional local re-formulation of the gradient flow in pure SU(N) lattice gauge theories. We show that the classical nature of the flow equation allows one to eliminate all cutoff effects at O(a{sup 2}), which originate either from the discretised gradient flow equation or from the gradient flow observable. All the remaining O(a{sup 2}) effects can be understood in terms of local counterterms at the zero flow-time boundary. We classify these counterterms and provide a complete set as required for on-shell improvement. Compared to the 4-dimensional pure gauge theory only a single additional counterterm is required, which corresponds to a modified initial condition for the flow equation. A consistency test in perturbation theory is passed and allows one to determine all counterterm coefficients to lowest non-trivial order in the coupling. (orig.)

  4. Fracton topological order, generalized lattice gauge theory, and duality

    Science.gov (United States)

    Vijay, Sagar; Haah, Jeongwan; Fu, Liang

    2016-12-01

    We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin systems with symmetries along extensive, lower-dimensional subsystems, which may be used to systematically search for and characterize fracton topological phases. Commutative algebra and elementary algebraic geometry provide an effective mathematical tool set for our results. Our work paves the way for identifying possible material realizations of fracton topological phases.

  5. A floating point engine for lattice gauge calculations

    Energy Technology Data Exchange (ETDEWEB)

    Husby, D.; Atac, R.; Cook, A.; Deppe, J.; Fischler, M.; Gaines, I.; Wash, T.; Pham, T.; Zmuda, T.

    1989-02-01

    The latest in low cost computing solutions from the Fermilab Advanced Computer Program is targeted at Lattice Gauge theory calculations and delivers supercomputer performance at a fraction of the cost. A typical system with 256 processors, 2.5 Gigabytes of memory, and 64 Gigabytes of on-line tape storage, delivers a peak performance of 5 billion floating point operations per second. The programming environment, Canopy, provides a comprehensive, hardware independent, distributed processing platform from within the more familiar environments of FORTRAN, C, and UNIX. This paper describes the individual processing elements of the system and gives a brief description of the Canopy software.

  6. A floating point engine for lattice gauge calculations

    Energy Technology Data Exchange (ETDEWEB)

    Husby, D.; Atac, R.; Cook, A.; Deppe, J.; Fischler, M.; Gaines, I.; Nash, T.; Pham, T.; Zmuda, T.; Eichten, E.

    1988-11-01

    The latest in low cost computing solutions from the Fermilab Advanced Computer Program is targeted at Lattice Gauge theory calculations and delivers supercomputer performance at a fraction of the cost. A typical system with 256 processors, 2.5 Gigabytes of memory, and 64 Gigabytes of on-line tape storage, delivers a peak performance of 5 billion floating point operations per second. The programming environment, Canopy, provides a comprehensive, hardware independent, distributed processing platform from within the more familiar environments of FORTRAN, C, and UNIX. This paper describes the individual processing elements of the system and gives a brief description of the Canopy software. 8 refs., 3 figs.

  7. Lattice Gauge Theory and the Origin of Mass

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andreas S.

    2013-08-01

    Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.

  8. Lattice Gauge Theory and the Origin of Mass

    CERN Document Server

    Kronfeld, Andreas S

    2012-01-01

    Most of the mass of everyday objects resides in atomic nuclei; the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.

  9. CERN Theory Institute: Future directions in lattice gauge theory

    CERN Document Server

    2010-01-01

    The main goal of the Institute is to bring together researchers in lattice gauge theory and in its applications to phenomenology to discuss interesting future directions of research. The focus will be on new ideas rather than on the latest computation of the usual quantities. The aim is to identify calculations in QCD, flavour physics, other strongly-interacting theories, etc. which are of high physics interest, and to clarify the theoretical and technical difficulties which, at present, prevent us from carrying them out.

  10. Lattice gauge theory on the Intel parallel scientific computer

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, S. (Department of Physics, Indiana University, Bloomington, IN (USA))

    1990-08-01

    Intel Scientific Computers (ISC) has just started producing its third general of parallel computer, the iPSC/860. Based on the i860 chip that has a peak performance of 80 Mflops and with a current maximum of 128 nodes, this computer should achieve speeds in excess of those obtainable on conventional vector supercomputers. The hardware, software and computing techniques appropriate for lattice gauge theory calculations are described. The differences between a staggered fermion conjugate gradient program written under CANOPY and for the iPSC are detailed.

  11. Light-cone Wilson loop in classical lattice gauge theory

    CERN Document Server

    Laine, M

    2013-01-01

    The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

  12. Loops and Strings in a Superconducting Lattice Gauge Simulator

    Science.gov (United States)

    Brennen, G. K.; Pupillo, G.; Rico, E.; Stace, T. M.; Vodola, D.

    2016-12-01

    We propose an architecture for an analog quantum simulator of electromagnetism in 2 +1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1) representation of the quantum link model formulation of compact U (1 ) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.

  13. Loops and strings in a superconducting lattice gauge simulator

    CERN Document Server

    Brennen, G K; Rico, E; Stace, T M; Vodola, D

    2015-01-01

    We propose a quantum simulation of electromagnetism in (2+1) dimensions using an array of superconducting fluxonium devices. The encoding is in the integer (S=1) representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer the Gauss constraint via an ancilla mediated gadget construction and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by non-local order parameters from Wilson loops and disorder parameters from 't Hooft strings and we show how to measure these operators non-destructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Evidence for existence of the confined phase in the ground state of the simulation Hamiltonian is found by DMRG calculations on a ladder geometry.

  14. Lattice gauge theory of three dimensional Thirring model

    CERN Document Server

    Kim, S; Kim, Seyong; Kim, Yoonbai

    1999-01-01

    Three dimensional Thirring model with N four-component Dirac fermions, reformulated as a lattice gauge theory, is studied by computer simulation. According to an 8^{3} data and preliminary 16^3 data, chiral symmetry is found to be spontaneously broken for N=2,\\;4 and 6. N=2 data exhibits long tail of the non-vanishing chiral condensate into weak coupling region, and N=6 case shows phase separation between the strong coupling region and the weak coupling region. Although the comparison between 8^3 data and 16^3 data shows large finite volume effects, an existence of the critical fermion flavor number N_{{\\rm cr}} (2

  15. Provable forst-order transitions for liquid crystal and lattice gauge models with continuous symmetries

    CERN Document Server

    Van Enter, A C D

    2003-01-01

    We consider various sufficiently nonlinear sigma models for nematic ordering of RP^{N-1} type and of lattice gauge type with continous symmetries. We rigorously show that they exhibit a first-order transition in the temperature. The result holds in dimension 2 or more for the RP{N-1} models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibilty of such transitions. For lattice gauge models our methods provide the first prof of a first-order transition in a model with a continous gauge symmetry.

  16. Recent progress in lattice supersymmetry: from lattice gauge theory to black holes

    CERN Document Server

    Kadoh, Daisuke

    2016-01-01

    Supersymmetry (SUSY) is a fascinating topic in theoretical physics, because of its unique and counterintuitive properties. It is expected to emerge as new physics beyond the standard model, and it is also a building block for supergravity and superstring theory. A number of exact results obtained via SUSY theories provide insights into field theory. However, the dynamics of many SUSY theories are not yet fully understood, and numerical study of SUSY theories through lattice simulations is promising as regards furthering this understanding. In this paper, I overview the current status of lattice SUSY by discussing its development in chronological order, and by reviewing some simple models. In addition, I discuss the numerical verification of gauge/gravity duality, which is one of the recent significant developments in this field.

  17. Non-commutative Differential Calculus and the Axial Anomaly in Abelian Lattice Gauge Theories

    CERN Document Server

    Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    2000-01-01

    The axial anomaly in lattice gauge theories has topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological techniques. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which validates the Leibniz rule of exterior derivatives on the lattice. The topological nature of the ``Chern character'' on the lattice becomes manifest with NCDC. Our result provides an algebraic proof of Lüscher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions.

  18. Supersymmetric gauge theories on the lattice: Pfaffian phases and the Neuberger 0/0 problem

    CERN Document Server

    Mehta, Dhagash; Galvez, Richard; Joseph, Anosh

    2011-01-01

    Recently a class of supersymmetric gauge theories have been successfully implemented on the lattice. However, there has been an ongoing debate on whether lattice versions of some of these theories suffer from a sign problem, with independent simulations for the ${\\cal N} = (2, 2)$ supersymmetric Yang-Mills theories in two dimensions yielding seemingly contradictory results. Here, we address this issue from an interesting theoretical point of view. We conjecture that the sign problem observed in some of the simulations is related to the so called Neuberger 0/0 problem, which arises in ordinary non-supersymmetric lattice gauge theories, and prevents the realization of Becchi-Rouet-Stora-Tyutin symmetry on the lattice. After discussing why we expect a sign problem in certain classes of supersymmetric lattice gauge theories far from the continuum limit, we argue that these problems can be evaded by use of a non-compact parametrization of the gauge link fields.

  19. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B. [Niels Bohr Inst., Kobenhavn (Denmark); Rugh, H.H. [Univ. of Warwick, Coventry (United Kingdom); Rugh, S.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.

  20. Monopoles and Confinement in U(1) Lattice Gauge Theory

    Science.gov (United States)

    Copeland, Timothy John

    Available from UMI in association with The British Library. Requires signed TDF. Confinement in U(1) gauge theory is investigated, with particular emphasis on the role of monopoles. Starting from the work of Polyakov, the theoretical aspects are considered first, in some detail. This leads to the conclusion that the conventional techniques for analysing Monte Carlo data may not be adequate, and motivates the development of an alternative interpretation based on the theoretical insight gained. This takes more account of the expected physical properties of the theory, and does not assume beforehand that one type of behaviour (perturbative, or monopole driven) dominates. It is found that better fits to the Monte Carlo data can be achieved this way than by using the conventional methods, although different string tensions are found. The small distance behaviour is found to be best explained in terms of Coulomb effects, rather than the Luscher vibrating string picture sometimes used before. Perturbative calculations are made of Wilson loops on lattices of different shapes, and some comparisons with Monte Carlo data are made. Comments are made on the significance of these results for four dimensions, and for SU(2) and SU(3).

  1. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  2. Dualization of non-abelian lattice gauge theory with Abelian Color Cycles (ACC)

    CERN Document Server

    Marchis, Carlotta

    2016-01-01

    We discuss a new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theories. The Wilson gauge action is decomposed into a sum over "abelian color cycles" (ACC), which are loops around plaquettes visiting different colors at the corners. ACCs are complex numbers and thus commute such that a dual representation of a non-abelian theory can be obtained as in the abelian case. We apply the ACC approach to SU(2) and SU(3) lattice gauge theory and exactly rewrite the two partition sums in a strong coupling series where all gauge integrals are known in closed form.

  3. On the continuum limit of Landau gauge gluon and ghost propagators in SU(2) lattice gauge gluodynamics

    CERN Document Server

    Bogolubsky, I; Müller-Preussker, M; Sternbeck, A

    2013-01-01

    We continue the systematic computation of Landau gauge gluon and ghost propagators of SU(2) gluodynamics using a sequence of increasing lattice sizes L^4 up to L=112 with corresponding \\beta-values chosen to keep the linear physical size a(\\beta)L ~ 9.6 fm fixed. To extremize the Landau gauge functional we employ simulated annealing combined with subsequent overrelaxation. Renormalizing the propagators at momentum \\mu= 2.2 GeV we observe quite strong lattice artifacts for the gluon propagator as well as for the ghost dressing function within the momentum region q < 1.0 GeV. The dependence on the lattice spacing for the gluon propagator at lowest accessible physical momentum values does not yet allow a simple extrapolation to the continuum limit. On the contrary, the running coupling derived from the bare dressing functions seems less affected by lattice artifacts.

  4. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  5. Review of lattice supersymmetry and gauge-gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Anosh [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP)

    2015-12-15

    We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.

  6. Lattice Landau gauge quark propagator and the quark-gluon vertex

    CERN Document Server

    Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G

    2016-01-01

    We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.

  7. Vortex free energies in SO(3) and SU(2) lattice gauge theory

    CERN Document Server

    De Forcrand, Philippe; Forcrand, Philippe de; Jahn, Oliver

    2003-01-01

    Lattice gauge theories with gauge groups SO(3) and SU(2) are compared. The free energy of electric twist, an order parameter for the confinement-deconfinement transition which does not rely on centre-symmetry breaking, is measured in both theories. The results are used to calibrate the scale in SO(3).

  8. R\\'enyi Entropy for a $\\bf 2d$ CFT with a gauge field: $\\bf \\widehat{\\rm SU}(N)_1$ WZW theory on a branched torus

    CERN Document Server

    Schnitzer, Howard J

    2016-01-01

    The R\\'enyi entropy for the $\\widehat{\\rm SU}(N)_1$ WZW model as described by $N$ free fermions coupled to a $U(1)$ constraint field is computed on an $n$-sheeted branched torus. The boundary condition of the harmonic component of the gauge field on the homology cycles of the genus $g$ Riemann surface is central to the final result. This calculation is complementary to that of arXiv:$1510.05993$, which presents the bose side of the bose-fermi equivalence.

  9. SU(2) lattice gauge theory at non-zero temperature with fixed holonomy boundary condition

    CERN Document Server

    Ilgenfritz, E M; Müller-Preussker, M; Veselov, A I

    2001-01-01

    We study SU(2) lattice gauge theory at $T>0$ in a finite box with fixed holonomy value at the spatial boundary. We search for (approximate) classical solutions of the lattice field equations and find in particular the dissociated calorons recently discussed by van Baal and collaborators.

  10. Time evolution of linearized gauge field fluctuations on a real-time lattice

    CERN Document Server

    Kurkela, Aleksi; Peuron, Jarkko

    2016-01-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

  11. Topological Objects And Confinement In Non-abelian Lattice Gauge Theory

    CERN Document Server

    Tucker, W W

    2005-01-01

    We use lattice methods to study the connection between topological objects and the confining potential in SU(2) and SU(3) Yang-Mills theories. We use Monte Carlo techniques, generating and performing measurements on sample configurations of SU(2) and SU(3) gauge fields. We isolate topological objects, specifically Abelian monopoles and center vortices, in these configurations. We then measure the contribution to the string tension from these objects, and compare the results to “full” measurements made on the original configurations. In addition we investigate the effects of gauge ambiguities (Gribov effects) and cooling on these sets of measurements. For the case of SU(2) lattice gauge theory, our results from monopoles agree with full values but are somewhat lower when gauge ambiguities are taken into account. The situation is not stable under cooling. When we carry out analogous procedures on sample SU(3) lattice configurations, we find disagreement between full SU(3) values and those fr...

  12. Coulomb, Landau and Maximally Abelian Gauge Fixing in Lattice QCD with Multi-GPUs

    CERN Document Server

    Schröck, Mario

    2013-01-01

    A lattice gauge theory framework for simulations on graphic processing units (GPUs) using NVIDIA's CUDA is presented. The code comprises template classes that take care of an optimal data pattern to ensure coalesced reading from device memory to achieve maximum performance. In this work we concentrate on applications for lattice gauge fixing in 3+1 dimensional SU(3) lattice gauge field theories. We employ the overrelaxation, stochastic relaxation and simulated annealing algorithms which are perfectly suited to be accelerated by highly parallel architectures like GPUs. The applications support the Coulomb, Landau and maximally Abelian gauges. Moreover, we explore the evolution of the numerical accuracy of the SU(3) valued degrees of freedom over the runtime of the algorithms in single (SP) and double precision (DP). Therefrom we draw conclusions on the reliability of SP and DP simulations and suggest a mixed precision scheme that performs the critical parts of the algorithm in full DP while retaining 80-90% of...

  13. Non-Abelian Lattice Gauge Theories in Superconducting Circuits

    CERN Document Server

    Mezzacapo, A; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E

    2015-01-01

    We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure $SU(2)$ gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.

  14. Landau gauge fixing on the lattice using GPU's

    CERN Document Server

    Cardoso, Nuno; Oliveira, Orlando; Bicudo, Pedro

    2013-01-01

    In this work, we consider the GPU implementation of the steepest descent method with Fourier acceleration for Laudau gauge fixing, using CUDA. The performance of the code in a Tesla C2070 GPU is compared with a parallel CPU implementation.

  15. Polyakov line actions from SU(3) lattice gauge theory with dynamical fermions via relative weights

    CERN Document Server

    Höllwieser, Roman

    2016-01-01

    We extract an effective Polyakov line action from an underlying SU(3) lattice gauge theory with dynamical fermions via the relative weights method. The center-symmetry breaking terms in the effective theory are fit to a form suggested by effective action of heavy-dense quarks, and the effective action is solved at finite chemical potential by a mean field approach. We show results for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

  16. Strong-coupling study of the Gribov ambiguity in lattice Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel [Karl-Franzens Universitaet Graz, Institut fuer Physik, Graz (Austria); Pawlowski, Jan M.; Spielmann, Daniel [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Sternbeck, Andre [University of Adelaide, Centre for the Subatomic Structure of Matter, SA, Adelaide (Australia); Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Smekal, Lorenz von [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2010-07-15

    We study the strong-coupling limit {beta}=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite {beta}. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)

  17. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    Science.gov (United States)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  18. The potential of the effective Polyakov line action from the underlying lattice gauge theory

    CERN Document Server

    Greensite, Jeff

    2012-01-01

    I adapt a numerical method, previously applied to investigate the Yang-Mills vacuum wavefunctional, to the problem of extracting the effective Polyakov line action from SU(N) lattice gauge theories, with or without matter fields. The method can be used to find the variation of the effective Polyakov line action along any trajectory in field configuration space; this information is sufficient to determine the potential term in the action, and strongly constrains the possible form of the kinetic term. The technique is illustrated for both pure and gauge-Higgs SU(2) lattice gauge theory at finite temperature. A surprise, in the pure gauge theory, is that the potential of the corresponding Polyakov line action contains a non-analytic (yet center-symmetric) term proportional to |P|^3, where P is the trace of the Polyakov line at a given point, in addition to the expected analytic terms proportional to even powers of P.

  19. Direct evidence for a Coulombic phase in monopole-suppressed SU(2) lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Michael, E-mail: grady@fredonia.edu

    2013-11-21

    Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)–Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb gauge methods, with an infinite lattice critical point near β=3.2. The theory with both Z2 vortices and monopoles and SO(3)–Z2 monopoles eliminated is simulated in the strong-coupling (β=0) limit on lattices up to 60{sup 4}. Here, as in the high-β phase of the Wilson-action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any β. Direct measurement of the instantaneous Coulomb potential shows a Coulombic form with moderately running coupling possibly approaching an infrared fixed point of α∼1.4. The Coulomb potential is measured to 50 lattice spacings and 2 fm. A short-distance fit to the 2-loop perturbative potential is used to set the scale. High precision at such long distances is made possible through the use of open boundary conditions, which was previously found to cut random and systematic errors of the Coulomb gauge fixing procedure dramatically. The Coulomb potential agrees with the gauge-invariant interquark potential measured with smeared Wilson loops on periodic lattices as far as the latter can be practically measured with similar statistics data.

  20. Direct evidence for a Coulombic phase in monopole-suppressed SU(2) lattice gauge theory

    Science.gov (United States)

    Grady, Michael

    2013-11-01

    Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)-Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb gauge methods, with an infinite lattice critical point near β=3.2. The theory with both Z2 vortices and monopoles and SO(3)-Z2 monopoles eliminated is simulated in the strong-coupling (β=0) limit on lattices up to 604. Here, as in the high-β phase of the Wilson-action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any β. Direct measurement of the instantaneous Coulomb potential shows a Coulombic form with moderately running coupling possibly approaching an infrared fixed point of α˜1.4. The Coulomb potential is measured to 50 lattice spacings and 2 fm. A short-distance fit to the 2-loop perturbative potential is used to set the scale. High precision at such long distances is made possible through the use of open boundary conditions, which was previously found to cut random and systematic errors of the Coulomb gauge fixing procedure dramatically. The Coulomb potential agrees with the gauge-invariant interquark potential measured with smeared Wilson loops on periodic lattices as far as the latter can be practically measured with similar statistics data.

  1. Structure of flux tube in SU(2) lattice gauge theory

    CERN Document Server

    Shiba, H

    1994-01-01

    The structure of the flux tube is studied in SU(2) QCD from the standpoint of the abelian projection theory. It is shown that the flux distributions of the orthogonal electric field and the magnetic field are produced by the effect that the abelian monopoles in the maximally abelian (MA) gauge are expelled from the string region.

  2. Lattice gauge theory simulations in the quantum information era

    Science.gov (United States)

    Dalmonte, M.; Montangero, S.

    2016-07-01

    The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behaviour of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analysing the symmetric properties of Hamiltonian and states: the most striking examples are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realisation of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review, we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.

  3. Definition of Magnetic Monopole Numbers for SU(N) Lattice Gauge-Higgs Models

    CERN Document Server

    Hollands, S

    2001-01-01

    A geometric definition for a magnetic charge of Abelian monopoles in SU(N) lattice gauge theories with Higgs fields is presented. The corresponding local monopole number defined for almost all field configurations does not require gauge fixing and is stable against small perturbations. Its topological content is that of a 3-cochain. A detailed prescription for calculating the local monopole number is worked out. Our method generalizes a magnetic charge definition previously invented by Phillips and Stone for SU(2).

  4. Dual of 3-dimensional pure SU(2) Lattice Gauge Theory and the Ponzano-Regge Model

    CERN Document Server

    Anishetty, R; Sharatchandra, H S; Mathur, M; Anishetty, Ramesh; Cheluvaraja, Srinath; Mathur, Manu

    1993-01-01

    By carrying out character expansion and integration over all link variables, the partition function of 3-dimensional pure SU(2) lattice gauge theory is rewritten in terms of 6j symbols. The result is Ponzano-Regge model of 3-dimensional gravity with a term that explicitly breaks general coordinate invariance. Conversely, we show that dual of Ponzano-Regge model is an SU(2) lattice gauge theory where all plaquette variables are constrained to the identity matrix and therefore the model needs no further regularization. Our techniques are applicable to other models with non-abelian symmetries in any dimension and provide duality transform for the partition function.

  5. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    CERN Document Server

    Dittrich, Bianca; Steinhaus, Sebastian

    2014-01-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. Using this novel information encoded in the decoration might eventually lead to new methods incorporating both analytical and numerical techniques.

  6. Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions

    CERN Document Server

    Chernodub, M N; Molochkov, A V

    2016-01-01

    We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result.

  7. Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions

    Science.gov (United States)

    Chernodub, M. N.; Goy, V. A.; Molochkov, A. V.

    2016-11-01

    We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result.

  8. What are the Confining Field Configurations of Strong-Coupling Lattice Gauge Theory?

    CERN Document Server

    Faber, M; Olejník, S

    2000-01-01

    Starting from the strong-coupling SU(2) Wilson action in D=3 dimensions, we derive an effective, semi-local action on a lattice of spacing L times the spacing of the original lattice. It is shown that beyond the adjoint color-screening distance, i.e. for $L \\ge 5$, thin center vortices are stable saddlepoints of the corresponding effective action. Since the entropy of these stable objects exceeds their energy, center vortices percolate throughout the lattice, and confine color charge in half-integer representations of the SU(2) gauge group. This result contradicts the folklore that confinement in strong-coupling lattice gauge theory, for D>2 dimensions, is simply due to plaquette disorder, as is the case in D=2 dimensions. It also demonstrates explicitly how the emergence and stability of center vortices is related to the existence of color screening by gluon fields.

  9. The exact decomposition of gauge variables in lattice Yang-Mills theory

    Science.gov (United States)

    Shibata, Akihiro; Kondo, Kei-Ichi; Shinohara, Toru

    2010-07-01

    In this Letter, we consider lattice versions of the decomposition of the Yang-Mills field a la Cho-Faddeev-Niemi, which was extended by Kondo, Shinohara and Murakami in the continuum formulation. For the SU (N) gauge group, we propose a set of defining equations for specifying the decomposition of the gauge link variable and solve them exactly without using the ansatz adopted in the previous studies for SU (2) and SU (3). As a result, we obtain the general form of the decomposition for SU (N) gauge link variables and confirm the previous results obtained for SU (2) and SU (3).

  10. Parallel implementation of a lattice-gauge-theory code: studying quark confinement on PC clusters

    CERN Document Server

    Cucchieri, A; Travieso, G; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Travieso, Gonzalo; Taurines, Andre R.

    2003-01-01

    We consider the implementation of a parallel Monte Carlo code for high-performance simulations on PC clusters with MPI. We carry out tests of speedup and efficiency. The code is used for numerical simulations of pure SU(2) lattice gauge theory at very large lattice volumes, in order to study the infrared behavior of gluon and ghost propagators. This problem is directly related to the confinement of quarks and gluons in the physics of strong interactions.

  11. apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory

    CERN Document Server

    Bodin, F; Cabibbo, Nicola; Carlo, F D; De Pietri, R; Renzo, F D; Kaldass, H; Lonardo, A; Lukyanov, M; De Luca, S; Micheli, J; Morénas, V; Pène, O; Pleiter, D; Paschedag, N; Rapuano, F; Sartori, L; Schifano, F; Simma, H; Tripiccione, R; Vicini, P; Boucaud, Ph.

    2003-01-01

    We present the APE (Array Processor Experiment) project for the development of dedicated parallel computers for numerical simulations in lattice gauge theories. While APEmille is a production machine in today's physics simulations at various sites in Europe, a new machine, apeNEXT, is currently being developed to provide multi-Tflops computing performance. Like previous APE machines, the new supercomputer is largely custom designed and specifically optimized for simulations of Lattice QCD.

  12. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  13. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    CERN Document Server

    Martinez, E A; Schindler, P; Nigg, D; Erhard, A; Heyl, M; Hauke, P; Dalmonte, M; Monz, T; Zoller, P; Blatt, R

    2016-01-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. In the spirit of Feynman's vision of a quantum simulator, this has recently stimulated theoretical effort to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the first experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realising 1+1-dimensional quantum electrodynamics (Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-posi...

  14. Strongly coupled gauge theories: What can lattice calculations teach us?

    CERN Document Server

    Hasenfratz, A; Rebbi, C; Weinberg, E; Witzel, O

    2015-01-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light $0^{++}$ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the $vev$ of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could...

  15. Renormalization of Anisotropy and Glueball Masses on Tadpole Improved Lattice Gauge Action

    CERN Document Server

    Loan, M; Hamer, C; Loan, Mushtaq; Byrnes, Tim; Hamer, Chris

    2003-01-01

    The Numerical calculations for tadpole-improved U(1) lattice gauge theory in three-dimensions on anisotropic lattices have been performed using standard path integral Monte Carlo techniques. Using average plaquette tadpole renormalization scheme, simulations were done with temporal lattice spacings much smaller than the spatial ones and results were obtained for the string tension, the renormalized anisotropy and scalar glueball masses. We find, by comparing the `regular' and `sideways' potentials, that tadpole improvement results in very little renormalization of the bare anisotropy and reduces the discretization errors in the static quark potential and in the glueball masses.

  16. Universality and the approach to the continuum limit in lattice gauge theory

    CERN Document Server

    De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U

    1995-01-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  17. Maximum-Likelihood Approach to Topological Charge Fluctuations in Lattice Gauge Theory

    CERN Document Server

    Brower, R C; Fleming, G T; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Voronov, G; Vranas, P; Weinberg, E; Witzel, O

    2014-01-01

    We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods.

  18. Geometric approach to chaos in the classical dynamics of Abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Casetti, Lapo [Istituto Nazionale per la Fisica della Materia (INFM), Unita di Ricerca del Politecnico di Torino, Dipartimento di Fisica, Politecnico di Torino, Turin (Italy); Gatto, Raoul [Departement de Physique Theorique, Universite de Geneve, Geneva (Switzerland); Pettini, Marco [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Florence (Italy)

    1999-04-23

    A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent {lambda} with the energy density {epsilon} is found to be well described by the law {lambda}{proportional_to}{epsilon}{sup 2}. (author)

  19. Geometric approach to chaos in the classical dynamics of abelian lattice gauge theory

    CERN Document Server

    Casetti, L; Pettini, M; Casetti, Lapo; Gatto, Raoul; Pettini, Marco

    1998-01-01

    A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent with the energy density is found to be well described by a quadratic power law.

  20. Direct evidence for a Coulombic phase in monopole-suppressed SU(2) lattice gauge theory

    CERN Document Server

    Grady, Michael

    2013-01-01

    Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)-Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb-gauge methods, with an infinite lattice critical point near $\\beta = 3.2$. The theory with both Z2 vortices and monopoles and SO(3)-Z2 monopoles eliminated is simulated in the strong coupling ($\\beta = 0$) limit on lattices up to $60^4$. Here, as in the high-$\\beta$ phase of the Wilson action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any $\\beta$. Direct measurement of the instantaneous Coulomb potential shows...

  1. Mathematical Derivation of Chiral Anomaly in Lattice Gauge Theory with Wilson's Action

    CERN Document Server

    Hattori, T G; Hattori, Tetsuya; Watanabe, Hiroshi

    1998-01-01

    Chiral U(1) anomaly is derived with mathematical rigor for a Euclidean fermion coupled to a smooth external U(1) gauge field on an even dimensional torus as a continuum limit of lattice regularized fermion field theory with the Wilson term in the action. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

  2. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, Steven Arthur [Indiana University; DeTar, Carleton [University of Utah; Tousaint, Doug [University of Arizona

    2014-07-24

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  3. Cold-atom quantum simulation of U(1) lattice gauge-Higgs model

    Science.gov (United States)

    Kasamatsu, Kenichi; Kuno, Yoshihito; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-03-01

    We discuss the possible methods to construct a quantum simulator of the U(1) lattice gauge-Higgs model using cold atoms in an optical lattice. These methods require no severe fine tunings of parameters of atomic-interactions in contrast with the other previous literature. We propose some realistic experimental setups to realize the atomic quantum simulator of the U(1) lattice gauge-Higgs model in a two-dimensional optical lattice. Our target gauge-Higgs model has a nontrivial phase structure, i.e., existence of the phase boundary between confinement and Higgs phases, and this phase boundary is to be observed by cold-atom experiments. As a reference to such experiments, we make numerical simulations of the time-dependent Gross-Pitaevskii equation and observe the real-time dynamics of the atomic simulators. Clarification of the dynamics of this gauge-Higgs model sheds some lights upon various unsolved problems including the inflation process of the early universe.

  4. Entanglement entropy for pure gauge theories in 1+1 dimensions using the lattice regularization

    CERN Document Server

    Aoki, Sinya; Nagata, Keitaro

    2016-01-01

    We study the entanglement entropy (EE) for pure gauge theories in 1+1 dimensions with the lattice regularization. Using the definition of the EE for lattice gauge theories proposed in a previous paper [1] (S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba and H. Tasaki, JHEP 1506 (2015) 187), we calculate the EE for arbitrary pure as well as mixed states in terms of eigenstates of the transfer matrix in 1+1 dimensional lattice gauge theory. We find that the EE of an arbitrary pure state does not depend on the lattice spacing, thus giving the EE in the continuum limit, and show that the EE for an arbitrary pure state is independent of the real (Minkowski) time evolution. We also explicitly demonstrate the dependence of EE on the gauge fixing at the boundaries between two subspaces, which was pointed out for general cases in the paper [1]. In addition, we calculate the EE at zero as well as finite temperature by the replica method, and show that our result in the continuum limit corresponds to the result ob...

  5. Libraries and Development Environments for Monte Carlo Simulations of Lattice Gauge Theories on Parallel Computers

    Science.gov (United States)

    Decker, K. M.; Jayewardena, C.; Rehmann, R.

    We describe the library lgtlib, and lgttool, the corresponding development environment for Monte Carlo simulations of lattice gauge theory on multiprocessor vector computers with shared memory. We explain why distributed memory parallel processor (DMPP) architectures are particularly appealing for compute-intensive scientific applications, and introduce the design of a general application and program development environment system for scientific applications on DMPP architectures.

  6. Gauge-invariant nonlocal quark condensates in QCD a new interpretation of the lattice results

    CERN Document Server

    Meggiolaro, E

    2000-01-01

    We study the asymptotic short-distance behaviour as well as the asymptotic large-distance behaviour of the gauge-invariant quark-antiquark nonlocal condensates in QCD. A comparison of some analytical results with the available lattice data is performed.

  7. Phase structure of (2+1)d strongly coupled lattice gauge theories

    CERN Document Server

    Strouthos, C G

    2003-01-01

    We study the chiral phase transition in (2+1)d strongly coupled U(N) lattice gauge theories with staggered fermions. We show with high precision simulations performed directly in the chiral limit that these models undergo a Berezinski-Kosterlitz-Thouless (BKT) transition. We also show that this universality class is unaffected even in the large N limit.

  8. From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code

    CERN Document Server

    Olesen, T Z; Wiese, U -J

    2015-01-01

    We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group $\\mathbb{R}$, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space $\\mathbb{R}^2$ in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus $U(1)^2$ threaded by $k$ units of quantized "magnetic" flux, with $k$ being the level of the Chern-Simons theory. The holonomies of the torus $U(1)^2$ give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry...

  9. Compact U(1) lattice gauge-Higgs theory with monopole suppression

    CERN Document Server

    Krishnan, B; Mitrjushkin, V K; Müller-Preussker, M; Krishnan, Balasubramanian

    1996-01-01

    We investigate a model of a U(1)-Higgs theory on the lattice with compact gauge fields but completely suppressed (elementary) monopoles. We study the model at two values of the quartic Higgs self-coupling, a strong coupling, \\lambda = 3.0, and a weak coupling, \\lambda=0.01. We map out the phase diagrams and find that the monopole suppression eliminated the confined phase of the standard lattice model at strong gauge coupling. We perform a detailed analysis of the static potential and study the mass spectrum in the Coulomb and Higgs phases for three values of the gauge coupling. We also probe the existence of a scalar bosonium to the extent that our data allow and conclude that further investigations are required in the Coulomb phase.

  10. Tricritical points in a compact $U(1)$ lattice gauge theory at strong coupling

    CERN Document Server

    De, Asit K

    2016-01-01

    Pure compact $U(1)$ lattice gauge theory exhibits a phase transition at gauge coupling $g \\sim {\\cal{O}}(1)$ separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any non-trivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact $U(1)$ lattice gauge theory is studied with addition of a dimension-two mass counter-term and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase which breaks Euclidean rotational symmetry. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with $g\\ge {\\cal{O}}(1...

  11. Lattice Gauge Quantum Simulation via State-Dependent Hopping

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin

    2017-01-01

    We develop a quantum simulator architecture that is suitable for the simulation of U(1) Abelian gauge theories such as quantum electrodynamics. Our approach relies on the ability to control the hopping of a particle through a barrier by means of the internal quantum states of a neutral or charged...... impurity-particle sitting at the barrier. This scheme is highly experimentally feasible, as the correlated hopping does not require fine-tuning of the intra- and inter-species interactions. We investigate the applicability of the scheme in a double well potential, which is the basic building block...... of the simulator, both at the single-particle and the many-body mean-field level. Moreover, we evaluate its performance for different particle interactions and trapping, and, specifically for atom-ion systems, in the presence of micro-motion....

  12. Dense baryonic matter in strong coupling lattice gauge theory

    CERN Document Server

    Bringoltz, B

    2004-01-01

    We investigate the strong coupling limit of lattice QCD in the Hamiltonian formulation for systems with non-zero baryon density. In leading order the Hamiltonian looks like an antiferromagnet that is invariant under global U(N_f)xU(N_f) and local SU(N_c). Physically it describes meson dynamics with a fixed background of baryon density. We study this Hamiltonian with several baryon number distributions, and concentrate on the global symmetries of the ground state and on the properties of low lying excitations. In particular, for uniform non-zero baryon density we write the partition function as a path integral that is tractable in the limit of large N_c. We find that the ground state spontaneously breaks chiral symmetry as well as discrete lattice rotations in a way that depends on N_f and the density. The low energy excitations include type I and type II Goldstone bosons. The energies of the latter are of order 1/N_c, and are quadratic in momentum. Bosons of either type can develop anisotropic dispersion rela...

  13. Precision lattice test of the gauge/gravity duality at large N

    Science.gov (United States)

    Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; Ishiki, Goro; Shimasaki, Shinji; Vranas, Pavlos; Monte Carlo String/M-Theory Collaboration McSmc

    2016-11-01

    We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4 ≤T ≤1.0 . As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E /N2=7.41 T14 /5 : the coefficient is estimated to be 7.4 ±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity prediction for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. We also constrain stringy corrections to the internal energy.

  14. Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks

    Science.gov (United States)

    Buyens, Boye; Montangero, Simone; Haegeman, Jutho; Verstraete, Frank; Van Acoleyen, Karel

    2017-05-01

    It has been established that matrix product states can be used to compute the ground state and single-particle excitations and their properties of lattice gauge theories at the continuum limit. However, by construction, in this formalism the Hilbert space of the gauge fields is truncated to a finite number of irreducible representations of the gauge group. We investigate quantitatively the influence of the truncation of the infinite number of representations in the Schwinger model, one-flavor QED2 , with a uniform electric background field. We compute the two-site reduced density matrix of the ground state and the weight of each of the representations. We find that this weight decays exponentially with the quadratic Casimir invariant of the representation which justifies the approach of truncating the Hilbert space of the gauge fields. Finally, we compute the single-particle spectrum of the model as a function of the electric background field.

  15. Doubled Lattice Chern-Simons-Yang-Mills Theories with Discrete Gauge Group

    CERN Document Server

    Caspar, Stephan; Olesen, Therkel Z; Vlasii, Nadiia D; Wiese, Uwe-Jens

    2016-01-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group $G$ in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm pha...

  16. Z2 gauge theory for valence bond solids on the kagome lattice

    Science.gov (United States)

    Hwang, Kyusung; Huh, Yejin; Kim, Yong Baek

    We present an effective Z2 gauge theory that captures various competing phases in spin-1/2 kagome lattice antiferromagnets: the topological Z2 spin liquid (SL) phase, and the 12-site and 36- site valence bond solid (VBS) phases. Our effective theory is a generalization of the recent Z2 gauge theory proposed for SL phases by Wan and Tchernyshyov. In particular, we investigate possible VBS phases that arise from vison condensations in the SL. In addition to the 12-site and 36-site VBS phases, there exists 6-site VBS that is closely related to the symmetry-breaking valence bond modulation patterns observed in the recent density matrix renormalization group simulations. We find that our results have remarkable consistency with a previous study using a different Z2 gauge theory. Motivated by the lattice geometry in the recently reported vanadium oxyfluoride kagome antiferromagnet, our gauge theory is extended to incorporate lowered symmetry by inequivalent up- and down-triangles. We investigate effects of this anisotropy on the 12-site, 36-site, and 6-site VBS phases. Particularly, interesting dimer melting effects are found in the 36-site VBS. We discuss the implications of our findings and also compare the results with a different type of Z2 gauge theory used in previous studies.

  17. Real-time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms

    Science.gov (United States)

    Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-06-01

    Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.

  18. Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian

    Science.gov (United States)

    Mehta, Dhagash; Kastner, Michael

    2011-06-01

    We study the stationary points of what is known as the lattice Landau gauge fixing functional in one-dimensional compact U(1) lattice gauge theory, or as the Hamiltonian of the one-dimensional random phase XY model in statistical physics. An analytic solution of all stationary points is derived for lattices with an odd number of lattice sites and periodic boundary conditions. In the context of lattice gauge theory, these stationary points and their indices are used to compute the gauge fixing partition function, making reference in particular to the Neuberger problem. Interpreted as stationary points of the one-dimensional XY Hamiltonian, the solutions and their Hessian determinants allow us to evaluate a criterion which makes predictions on the existence of phase transitions and the corresponding critical energies in the thermodynamic limit.

  19. Area-preserving diffeomorphisms in gauge theory on a non-commutative plane. A lattice study

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Bigarini, A. [Univ. degli Studi di Perugia (Italy). Dipt. di Fisica]|[INFN, Sezione di Perugia (Italy)]|[Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Torrielli, A. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics, Lab. for Nuclear Sciences

    2007-06-15

    We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results confirm the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either. (orig.)

  20. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  1. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    Science.gov (United States)

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  2. Phase structure of pure SU(3) lattice gauge theory in 5-dimensions

    CERN Document Server

    Itou, Etsuko; Nakamoto, Norihiro

    2014-01-01

    We investigate the nonperturbative phase structure of five-dimensional SU(3) pure Yang-Mills theory on the lattice. We perform numerical simulations using the Wilson plaquette gauge action on an anisotropic lattice with a four-dimensional lattice spacing (a4) and with an independent value in the fifth dimension (a5). We investigate both cases of a4 > a5 and a4 < a5. The Polyakov loops in the fourth and the fifth directions are observed, and we find that there are four possible phases for the anisotropic five-dimensional quenched QCD theory on the lattice. We determine the critical values of the lattice bare coupling and the anisotropic parameter for each phase transition. Furthermore, we find that there is novel meta-stable vacuum, where the global gauge symmetry would be spontaneously broken. It appears only in the phase where the center symmetry in four dimensions is preserved while the symmetry in the fifth dimension is spontaneously broken.

  3. Lattice gauge theory and gluon color-confinement in curved spacetime

    CERN Document Server

    Villegas, Kristian Hauser

    2014-01-01

    The lattice gauge theory for curved spacetime is formulated. A discretized action is derived for both gluon and quark fields which reduces to the generally covariant form in the continuum limit. Using the Wilson action, it is shown analytically that for a general curved spacetime background, two propagating gluons are always color-confined. The fermion-doubling problem is discussed in the specific case of Friedman-Robertson-Walker metric. Lastly, we discussed possible future numerical implementation of lattice QCD in curved spacetime.

  4. Digital quantum simulation of $\\mathbb{Z}_2$ lattice gauge theories with dynamical fermionic matter

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio

    2016-01-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with $2+1$ and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a $\\mathbb{Z}_2$ model in $2+1$ dimensions.

  5. Volume scaling of Dirac eigenvalues in SU(3) lattice gauge theory with color sextet fermions

    CERN Document Server

    DeGrand, Thomas

    2009-01-01

    I observe a rough volume-dependent scaling of the low eigenvalues of a chiral Dirac operator in lattice studies of SU(3) lattice gauge theory with two flavors of color sextet fermions, in its weak-coupling phase. The mean value of the ith eigenvalue scales with the simulation volume V=L^4 as L^p ~zeta_i, where zeta_i is a volume-independent constant. The exponent p is about 1.4. A possible explanation for this phenomenon is that p is the leading relevant exponent associated with the fermion mass dependence of correlation functions in a theory whose zero-mass limit is conformal.

  6. London relation and fluxoid quantization for monopole currents in U(1) lattice gauge theory

    CERN Document Server

    Singh, Vandana; Browne, Dana A; 10.1103/PhysRevD.47.1715

    2009-01-01

    We explore the analogy between quark confinement and the Meissner effect in superconductors. We measure the response of color-magnetic "supercurrents" from Dirac magnetic monopoles to the presence of a static quark-antiquark pair in four dimensional U(1) lattice gauge theory. Our results indicate that in the confined phase these currents screen the color-electric flux due to the quarks in an electric analogy of the Meisner effect. We show that U(1) lattice guage theory obeys both a dual London equation and an electric fluxoid quantization condition.

  7. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    Science.gov (United States)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  8. Thermodynamics of Gauge-Invariant U(1) Vortices from Lattice Monte Carlo Simulations

    CERN Document Server

    Kajantie, Keijo; Laine, Mikko; Peisa, J; Rajantie, A

    1998-01-01

    We study non-perturbatively and from first principles the thermodynamics of vortices in 3d U(1) gauge+Higgs theory, or the Ginzburg-Landau model, which has frequently been used as a model for cosmological topological defect formation. We discretize the system and introduce a gauge-invariant definition of a vortex passing through a loop on the lattice. We then study with Monte Carlo simulations the total vortex density, extract the physically meaningful part thereof, and demonstrate that it has a well-defined continuum limit. The total vortex density behaves as a pseudo order parameter, having a discontinuity in the regime of first order transitions and behaving continuously in the regime of second order transitions. Finally, we discuss further gauge-invariant observables to be measured.

  9. On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity

    CERN Document Server

    Delcamp, Clement; Riello, Aldo

    2016-01-01

    Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non--Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non--Abelian analogue of the `magnetic centre choice', as obtained through an extended--Hilbert--space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. W...

  10. Radiative contribution to the effective potential in composite Higgs models from lattice gauge theory

    Science.gov (United States)

    DeGrand, Thomas; Golterman, Maarten; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin

    2016-09-01

    We develop methods to calculate the electroweak gauge boson contribution to the effective Higgs potential in the context of composite Higgs models, using lattice gauge theory. The calculation is analogous to that of the electromagnetic mass splitting of the pion multiplet in QCD. We discuss technical details of carrying out this calculation, including modeling of the momentum and fermion-mass dependence of the underlying current-current correlation function, direct integration of the correlation function over momentum, and fits based on the minimal-hadron approximation. We show results of a numerical study using valence overlap fermions, carried out in an SU(4) gauge theory with two flavors of Dirac fermions in the two-index antisymmetric representation.

  11. Canonical transformations and loop formulation of SU(N) lattice gauge theories

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2015-12-01

    We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in terms of a set of fundamental loop and string flux operators along with their canonically conjugate loop and string electric fields. The canonical relations between the initial SU(N) link operators and the final SU(N) loop and string operators, consistent with SU(N) gauge transformations, are explicitly constructed over the entire lattice. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom become cyclic and decouple from the physical Hilbert space Hp. The Kogut-Susskind Hamiltonian rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no gauge fields. We further show that the (1 /g2 ) magnetic field terms on plaquettes create and annihilate the fundamental plaquette loop fluxes while the (g2 ) electric field terms describe all their interactions. In the weak coupling (g2→0 ) continuum limit the SU(N) loop dynamics is described by SU(N) spin Hamiltonian with nearest neighbor interactions. In the simplest SU(2) case, where the canonical transformations map the SU(2) loop Hilbert space into the Hilbert spaces of hydrogen atoms, we analyze the special role of the hydrogen atom dynamical symmetry group S O (4 ,2 ) in the loop dynamics and the spectrum. A simple tensor network ansatz in the SU(2) gauge invariant hydrogen atom loop basis is discussed.

  12. Efficient implementation of the Monte Carlo method for lattice gauge theory calculations on the floating point systems FPS-164

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.J.M. (Royal Holloway Coll., Englefield Green (UK). Dept. of Mathematics); Blackshaw, J.E. (Floating Point Systems UK Ltd., Bracknell)

    1983-04-01

    The computer program calculates the average action per plaquette for SU(6)/Z/sub 6/ lattice gauge theory. By considering quantum field theory on a space-time lattice, the ultraviolet divergences of the theory are regulated through the finite lattice spacing. The continuum theory results can be obtained by a renormalization group procedure. Making use of the FPS Mathematics Library (MATHLIB), we are able to generate an efficient code for the Monte Carlo algorithm for lattice gauge theory calculations which compares favourably with the performance of the CDC 7600.

  13. Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory

    Science.gov (United States)

    Nakagawa, Y.; Voigt, A.; Ilgenfritz, E.-M.; Müller-Preussker, M.; Nakamura, A.; Saito, T.; Sternbeck, A.; Toki, H.

    2009-06-01

    We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at β=5.8,…,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a(β) for the transversal gluon and the ghost propagator which indeed run faster with β than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(β) dependence as determined from the instantaneous time-time gluon propagator, D44, remains a problem, though. The role of residual gauge-fixing influencing D44 is discussed.

  14. Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory

    CERN Document Server

    Nakagawa, Y; Ilgenfritz, E -M; Müller-Preussker, M; Nakamura, A; Saitô, T; Sternbeck, A; Toki, H

    2009-01-01

    We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb gauge theory carrying out a joint analysis of data collected independently at RCNP Osaka and Humboldt University Berlin. We focus on the scaling behavior of these propagators at beta=5.8,...,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at large momentum. As a byproduct we obtain the respective lattice scale dependences a(beta) for the transversal gluon and the ghost propagator which indeed run faster with beta than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(beta) dependence as determined from the instantaneous time-time gluon propagator, D_{44}, remains a problem, though. The role of residual gauge-fixing influencing D_{44...

  15. Numerical Evaluation of the Bose-Ghost Propagator in Minimal Landau Gauge on the Lattice

    CERN Document Server

    Cucchieri, Attilio

    2016-01-01

    We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted as direct evidence of BRST-symmetry breaking, which is induced when restricting the functional measure to the first Gribov region Omega. Our simulations are done for lattice volumes up to 120^4 and for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.

  16. Landau gauge gluon and ghost propagators from two-flavor lattice QCD at T > 0

    CERN Document Server

    Aouane, R; Muller-Preussker, M; Ilgenfritz, E -M; Sternbeck, A

    2013-01-01

    In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We show data which correspond to pion mass values between 300 and 500 MeV and are obtained for a lattice size 32**3 x 12. The longitudinal and transversal components of the gluon propagator turn out to change smoothly through the crossover region, while the ghost propagator exhibits only a very weak temperature dependence. For a pion mass of around 400 MeV and the intermediate temperature value of approx. 240 MeV we compare our results with additional data obtained on a lattice with smaller Euclidean time extent N_t = 8, 10 and find a reasonable scaling behavior.

  17. Numerical evaluation of the Bose-ghost propagator in minimal Landau gauge on the lattice

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2016-07-01

    We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted as direct evidence of Becchi-Rouet-Stora-Tyutin-symmetry breaking, which is induced when restricting the functional measure to the first Gribov region Ω . Our simulations are done for lattice volumes up to 1204 and for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.

  18. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field arXiv

    CERN Document Server

    Figueroa, Daniel G.

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present a lattice formulation of the interaction between a $shift$-symmetric field and some $U(1)$ gauge sector, $a(x)\\tilde{F}_{\\mu\

  19. The infrared behavior of lattice QCD Green's functions. A numerical study of lattice QCD in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Sternbeck, A.

    2006-07-18

    Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)

  20. SU(3) gauge theory with four degenerate fundamental fermions on the lattice

    CERN Document Server

    Aoki, Yasumichi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2015-01-01

    As a part of the project studying large $N_f$ QCD, the LatKMI Collaboration has been investigating the SU(3) gauge theory with four fundamental fermions (four-flavor QCD). The main purpose of studying four-flavor QCD is to provide a qualitative comparison to $N_f= 8$, $12$, $16$ QCD; however, a quantitative comparison to real-world QCD is also interesting. To make such comparisons more meaningful, it is desirable to use the same kind of lattice action consistently, so that qualitative difference of different theories are less affected by artifacts of lattice discretization. Here, we adopt the highly-improved staggered quark action with the tree-level Symanzik gauge action (HISQ/tree), which is exactly the same as the setup for our simulations for $SU(3)$ gauge theories with $N_f=8$, $12$ and $16$ fundamental fermions~\\cite{Aoki:2013xza, Aoki:2012eq, Aoki:2014oma}. In the next section, we show the fermion mass dependence of $F_\\pi$, $\\langle\\bar{\\psi}\\psi\\rangle$, $M_\\pi$, $M_\\rho$, $M_N$ and their chiral extr...

  1. Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice MCRG matching

    CERN Document Server

    Hasenfratz, Anna

    2011-01-01

    I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group $\\beta$ function and infrared conformality.

  2. A Candidate for Solvable Large N Lattice Gauge Theory in D>2

    CERN Document Server

    Dubin, A Yu

    1999-01-01

    I propose a class of D\\geq{2} lattice SU(N) gauge theories dual to certain vector models endowed with the local [U(N)]^{D} conjugation-invariance and Z_{N} gauge symmetry. In the latter models, both the partitition function and Wilson loop observables depend nontrivially only on the eigenvalues of the link-variables. Therefore, the vector-model facilitates a master-field representation of the large N loop-averages in the corresponding induced gauge system. As for the partitition function, in the limit N->{infinity} it is reduced to the 2Dth power of an effective one-matrix eigenvalue-model which makes the associated phase structure accessible. In particular a simple scaling-condition, that ensures the proper continuum limit of the induced gauge theory, is proposed. We also derive a closed expression for the large N average of a generic nonself-intersecting Wilson loop in the D=2 theory defined on an arbitrary 2d surface.

  3. Geometric asymptotics for spin foam lattice gauge gravity on arbitrary triangulations

    CERN Document Server

    Hellmann, Frank

    2012-01-01

    We study the behavior of holonomy spin foam partition functions, a form of lattice gauge gravity, on generic 4d-triangulations using micro local analysis. To do so we adapt tools from the renormalization theory of quantum field theory on curved space times. This allows us, for the first time, to study the partition function without taking any limits on the interior of the triangulation. We establish that for many of the most widely used models the geometricity constraints, which reduce the gauge theory to a geometric one, introduce strong accidental curvature constraints. These limit the curvature around each triangle of the triangulation to a finite set of values. We demonstrate how to modify the partition function to avoid this problem. Finally the new methods introduced provide a starting point for studying the regularization ambiguities and renormalization of the partition function.

  4. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    CERN Document Server

    Laine, M; Tassler, M

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.

  5. Lattice study for conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions

    CERN Document Server

    Huang, Cynthia Y -H; Lin, C.-J. David; Ogawa, Kenji; Ohki, Hiroshi; Ramos, Alberto; Rinaldi, Enrico

    2016-01-01

    We present our investigation of SU(2) gauge theory with 8 flavours, and SU(3) gauge theory with 12 flavours. For the SU(2) case, at strong bare coupling, $\\beta \\lesssim 1.45$, the distribution of the lowest eigenvalue of the Dirac operator can be described by chiral random matrix theory for the Gaussian symplectic ensemble. Our preliminary result indicates that the chiral phase transition in this theory is of bulk nature. For the SU(3) theory, we use high-precision lattice data to perform the step-scaling study of the coupling, $g_{{\\rm GF}}$, in the Gradient Flow scheme. We carefully examine the reliability of the continuum extrapolation in the analysis, and conclude that the scaling behaviour of this SU(3) theory is not governed by possible infrared conformality at $g_{{\\rm GF}}^{2} \\lesssim 6$.

  6. Lattice study for conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions

    CERN Document Server

    Huang, Cynthia Y.-H.; Lin, C.-J. David; Ogawa, Kenji; Ohki, Hiroshi; Ramos, Alberto; Rinaldi, Enrico

    2015-10-30

    We present our investigation of SU(2) gauge theory with 8 flavours, and SU(3) gauge theory with 12 flavours. For the SU(2) case, at strong bare coupling, $\\beta \\lesssim 1.45$, the distribution of the lowest eigenvalue of the Dirac operator can be described by chiral random matrix theory for the Gaussian symplectic ensemble. Our preliminary result indicates that the chiral phase transition in this theory is of bulk nature. For the SU(3) theory, we use high-precision lattice data to perform the step-scaling study of the coupling, $g_{{\\rm GF}}$, in the Gradient Flow scheme. We carefully examine the reliability of the continuum extrapolation in the analysis, and conclude that the scaling behaviour of this SU(3) theory is not governed by possible infrared conformality at $g_{{\\rm GF}}^{2} \\lesssim 6$.

  7. Status of the Lambda Lattice Scale for the SU(3) Wilson gauge action

    CERN Document Server

    Berg, Bernd A

    2014-01-01

    With the emergence of the Yang-Mills gradient flow technique there is renewed interest in the issue of scale setting in lattice gauge theory. Here I compare for the SU(3) Wilson gauge action the non-perturbative lambda scales of Edwards, Heller and Klassen (EHK), Necco and Sommer (NS), both relying on Sommer's method using the quark potential, with the lambda scale derived by Bazavov, Berg and Velytsky (BBV) from deconfining phase transition data of the Bielefeld group. It turns out that these scales are based on mutually inconsistent data. Nevertheless their over-all agreement is still at a better than +/- 2% in the coupling constant range for which one expects them to apply. Somewhat surprisingly the scale based on the deconfining transition is consistent with the relevant part of the EHK data (baring one data point, which is closest to the strong coupling region), while the NS scale is not.

  8. Twenty-first Century Lattice Gauge Theory: Results from the QCD Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andreas S.; /Fermilab

    2012-03-01

    Quantum chromodynamics (QCD) reduces the strong interactions, in all their variety, to an elegant nonabelian gauge theory. It clearly and elegantly explains hadrons at short distances, which has led to its universal acceptance. Since its advent, however, many of its long-distance, emergent properties have been believed to be true, without having been demonstrated to be true. This paper reviews a variety of results in this regime that have been established with lattice gauge theory, directly from the QCD Lagrangian. This body of work sheds light on the origin of hadron masses, its interplay with dynamical symmetry breaking, as well as on other intriguing features such as the phase structure of QCD. In addition, nonperturbative QCD is quantitatively important to many aspects of particle physics (especially the quark flavor sector), nuclear physics, and astrophysics. This review also surveys some of the most interesting connections to those subjects.

  9. Locality and Efficient Evaluation of Lattice Composite Fields: Overlap-Based Gauge Operators

    CERN Document Server

    Alexandru, Andrei

    2016-01-01

    We propose a novel general approach to locality of lattice composite fields, which in case of QCD involves locality in both quark and gauge degrees of freedom. The method is applied to gauge operators based on the overlap Dirac matrix elements, showing for the first time their local nature on realistic path-integral backgrounds. The framework entails a method for efficient evaluation of such non-ultralocal operators, whose computational cost is volume-indepenent at fixed accuracy, and only grows logarithmically as this accuracy approaches zero. This makes computation of useful operators, such as overlap-based topological density, practical. The key notion underlying these features is that of exponential insensitivity to distant fields, made rigorous by introducing the procedure of statistical regularization. The scales associated with insensitivity property are useful characteristics of non-local continuum operators.

  10. Shear viscosity to relaxation time ratio in SU(3) lattice gauge theory

    CERN Document Server

    Kohno, Yasuhiro; Kitazawa, Masakiyo

    2011-01-01

    We evaluate the ratio of the shear viscosity to the relaxation time of the shear flux above but near the critical temperature $T_c$ in SU(3) gauge theory on the lattice. The ratio is related to Kubo's canonical correlation of the energy-momentum tensor in Euclidean space with the relaxation time approximation and an appropriate regularization. Using this relation, the ratio is evaluated by direct measurements of the Euclidean observables on the lattice. We obtained the ratio with reasonable statistics for the range of temperature $1.3T_c \\lesssim T \\lesssim 4T_c$. We also found that the characteristic speed of the transverse plane wave in gluon media is almost constant, $v \\simeq 0.5$, for $T \\gtrsim 1.5T_c$, which is compatible with the causality in the second order dissipative hydrodynamics.

  11. Vector meson masses in two-dimensional SU(NC) lattice gauge theory with massive quarks

    Institute of Scientific and Technical Information of China (English)

    JIANG Jun-Qin

    2008-01-01

    Using an improved lattice Hamiltonian with massive Wilson quarks a variational method is applied to study the dependence of the vector meson mass Mv on the quark mass m and the Wilson parameter r in in the scaling window 1 ≤ 1/g2 ≤ 2, Mv/g is approximately linear in m, but Mv/g obviously does not depend on r (this differs from the quark condensate). Particularly for m → 0 our numerical results agree very well with Bhattacharya's analytical strong coupling result in the continuum, and the value of ((e)Mv/(e)m) |mm=0 in two-dimensional SU(NC) lattice gauge theory is very close to that in Schwinger model.

  12. Flux tubes and their interaction in U(1) lattice gauge theory

    CERN Document Server

    Zach, M P; Skála, P; Zach, Martin; Faber, Manfried; Skala, Peter

    1997-01-01

    We investigate singly and doubly charged flux tubes in U(1) lattice gauge theory. By simulating the dually transformed path integral we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. We simulate flux tubes between static sources as well as periodically closed flux tubes, calculating flux tube profiles, the total field energy and the free energy. Our main results are that the string tension in both three and four dimensions scales proportionally to the charge -- which is in contrast to previous lattice results -- and that in four-dimensional U(1) there is an attractive interaction between flux tubes for beta approaching the phase transition.

  13. On the chiral limit in lattice gauge theories with Wilson fermions

    CERN Document Server

    Hoferichter, A; Müller-Preussker, M

    1995-01-01

    The chiral limit ~\\kappa \\simeq \\kappa_c(\\beta)~ in lattice gauge theories with Wilson fermions and problems related to near--to--zero ('exceptional') eigenvalues of the fermionic matrix are studied. For this purpose we employ compact lattice QED in the confinement phase. A new estimator ~\\mpr_{\\pi}~ for the calculation of the pseudoscalar mass ~m_{\\pi}~ is proposed which does not suffer from 'divergent' contributions at \\kappa \\simeq \\kappa_c(\\beta). We conclude that the main contribution to the pion mass comes from larger modes, and 'exceptional' eigenvalues play {\\it no} physical role. The behaviour of the subtracted chiral condensate ~\\langle \\psb \\psi \\rangle_{subt}~ near ~\\kappa_c(\\beta)~ is determined. We observe a comparatively large value of ~\\langle \\psb \\psi \\rangle_{subt} \\cdot Z_P^{-1}~, which could be interpreted as a possible effect of the quenched approximation.

  14. Realization of the Harper Hamiltonian with Artificial Gauge Fields in Optical Lattices

    Science.gov (United States)

    Miyake, Hirokazu; Siviloglou, Georgios; Kennedy, Colin; Burton, William Cody; Ketterle, Wolfgang

    2014-03-01

    Systems of charged particles in magnetic fields have led to many discoveries in science-such as the integer and fractional quantum Hall effects-and have become important paradigms of quantum many-body physics. We have proposed and implemented a scheme which realizes the Harper Hamiltonian, a lattice model for charged particles in magnetic fields, whose energy spectrum is the fractal Hofstadter butterfly. We experimentally realize this Hamiltonian for ultracold, charge neutral bosonic particles of 87Rb in a two-dimensional optical lattice by creating an artificial gauge field using laser-assisted tunneling and a potential energy gradient provided by gravity. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. Furthermore, this scheme can be extended to realize spin-orbit coupling and the spin Hall effect for neutral atoms in optical lattices by modifying the motion of atoms in a spin-dependent way by laser recoil and Zeeman shifts created with a magnetic field gradient. Major advantages of our scheme are that it does not rely on near-resonant laser light to couple different spin states and should work even for fermionic particles. Our work is a step towards studying novel topological phenomena with ultracold atoms. Currently at the RAND Corporation.

  15. Generating SU(Nc) pure gauge lattice QCD configurations on GPUs with CUDA and OpenMP

    CERN Document Server

    Cardoso, Nuno

    2011-01-01

    The starting point of any lattice QCD computation is the generation of a Markov chain of gauge field configurations. Due to the large number of lattice links and due to the matrix multiplications, generating SU(Nc) lattice QCD configurations is a highly demanding computational task, requiring advanced computer parallel architectures such as clusters of several Central Processing Units (CPUs) or Graphics Processing Units (GPUs). In this paper we present and explore the performance of CUDA codes for NVIDIA GPUs to generate SU(Nc) lattice QCD pure gauge configurations. Our implementation in one GPU uses CUDA and in multiple GPUs uses OpenMP and CUDA. We present optimized CUDA codes SU(2), SU(3) and SU(4). We also show a generic SU(Nc) code for Nc$\\,\\geq 4$ and compare it with the optimized version of SU(4). Our codes are publicly available for free use by the lattice QCD community.

  16. Correlation and specific heat of U(1) and SU(2) lattice gauge models

    CERN Document Server

    Nauenberg, M

    1981-01-01

    Describes some recent work on Monte Carlo simulations of U(1) and SU (2) lattice gauge models. The authors have primarily been interested in the correlations between Wilson plaquettes in order to study the nature of the transition between the strong and weak coupling regimes. Since lattice gauge models confine static charges in the strong coupling limit, it is expected that U(1) models in four dimensions exhibit a phase transition to a weak coupling Coulomb phase, corresponding to QED. For SU(2) models the lore is that there does not exist any phase transition. In this case confinement is also a property of the continuum limit which corresponds to QCD. While the existence of a phase transition in the U(1) model can be demonstrated rigorously, virtually nothing is known theoretically about the order of this transition. For the SU(2) model there is some evidence in support of a single confining phase based on strong coupling expansions, and on Monte Carlo calculations. (8 refs).

  17. Canonical Transformations and Loop Formulation of SU(N) Lattice Gauge Theories

    CERN Document Server

    Mathur, Manu

    2015-01-01

    We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in terms of a set of fundamental loop & string flux operators along with their canonically conjugate loop & string electric fields. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom become cyclic and decouple from the physical Hilbert space ${\\cal H}^p$. The canonical relations between the initial SU(N) link operators and the final SU(N) loop & string operators over the entire lattice are worked out in a self consistent manner. The Kogut-Susskind Hamiltonian rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no gauge fields. We further show that the $(1/g^2)$ magnetic field terms on plaquettes create and annihilate the fundamental plaquette loop fluxes while the $(g^2)$ electric field terms describe all their interactions. In the weak coupling ($g^2 \\rightarrow 0$) continuum limit the SU(N) loop dynamics is described b...

  18. New approach to the Dirac spectral density in lattice gauge theory applications

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2016-01-01

    We report tests and results from a new approach to the spectral density and the mode number distribution of the Dirac operator in lattice gauge theories. The algorithm generates the spectral density of the lattice Dirac operator as a continuous function over all scales of the complete eigenvalue spectrum. This is distinct from an earlier method where the integrated spectral density (mode number) was calculated efficiently for some preselected fixed range of the integration. The new algorithm allows global studies like the chiral condensate from the Dirac spectrum at any scale including the cutoff-dependent IR and UV range of the spectrum. Physics applications include the scale-dependent mass anomalous dimension, spectral representation of composite fermion operators, and the crossover transition from the $\\epsilon$-regime of Random Matrix Theory to the p-regime in chiral perturbation theory. We present thorough tests of the algorithm in the 2-flavor sextet SU(3) gauge theory that we continue to pursue for its...

  19. Study of compact U(1) flux tubes in 3+1 dimensions in lattice gauge theory using GPU's

    CERN Document Server

    Amado, André; Cardoso, Marco; Bicudo, Pedro

    2012-01-01

    We utilize Polyakov loop correlations to study (3+1)D compact U(1) flux tubes and the static electron-positron potential in lattice gauge theory. By using field operators it is possible in U(1) lattice gauge theory to probe directly the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPU's, in order to achieve the necessary performance for our computations.

  20. Hamiltonian Study of Improved $U(1)_{2+1}$ Lattice Gauge Theory

    CERN Document Server

    Loan, M; Hamer, C; Loan, Mushtaq; Byrnes, Tim; Hamer, Chris

    2003-01-01

    Monte Carlo results are presented, in the Hamiltonian limit, for the string tension and antisymmetric mass gap for U(1) lattice gauge theory in (2+1) dimensions, using mean-field improved anisotropic Wilson action, are presented. Evidence of scaling in the string tension and antisymmetric mass gap is observed in the weak coupling regime of the theory. The results are compared to previous simulation data using the standard Wilson action and we find that a more accurate determination of the string tension and scalar glueball masses has been achieved. The scaling behaviour observed is in good agreement with the results from other numerical calculations. Finally comparisons are made with previous estimates obtained in the Hamiltonian limit by various other studies.

  1. Optimizing the performance of Lattice Gauge Theory simulations with Streaming SIMD extensions

    CERN Document Server

    Srinivasan, Shyam

    2013-01-01

    Two factors, which affect simulation quality are the amount of computing power and implementation. The Streaming SIMD (single instruction multiple data) extensions (SSE) present a technique for influencing both by exploiting the processor's parallel functionalism. In this paper, we show how SSE improves performance of lattice gauge theory simulations. We identified two significant trends through an analysis of data from various runs. The speed-ups were higher for single precision than double precision floating point numbers. Notably, though the use of SSE significantly improved simulation time, it did not deliver the theoretical maximum. There are a number of reasons for this: architectural constraints imposed by the FSB speed, the spatial and temporal patterns of data retrieval, ratio of computational to non-computational instructions, and the need to interleave miscellaneous instructions with computational instructions. We present a model for analyzing the SSE performance, which could help factor in the bot...

  2. Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature

    CERN Document Server

    Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I

    2012-01-01

    We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. In the strong coupling limit these models are equivalent to a generalized version of the vector Potts models in two dimensions, where Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.

  3. Gauge-invariant implementation of the Abelian Higgs model on optical lattices

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin

    2015-01-01

    We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics) with a chemical potential $\\mu$ on a 1+1 dimensional lattice. This formulation provides an expansion in the hopping parameter $\\kappa$ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling $\\beta_{pl}$ and small values of the scalar self-coupling $\\lambda$. In the opposite limit of infinitely large $\\lambda$, the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Their numerical implementation requires truncations but there is no sign problem for arbitrary values of $\\mu$. We show that the time continuum limit of the blocked transfer matrix can be obtained numerically and, in the limit of infinite $\\beta_{pl}$ and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this proced...

  4. Smooth Gauge Strings and D > 2 Lattice Yang-Mills Theories

    CERN Document Server

    Dubin, A Yu

    2000-01-01

    Employing the nonabelian duality transformation \\cite{Dub2}, I derive theGauge String representation of certain D>2 lattice Yang-Mills theories in theSC phase. With the judicious choice of the actions, in D>2 our constructiongeneralizes the Gross-Taylor stringy reformulation of the continuous YM_{2} ona 2d manifold. Using the Twisted Eguchi-Kawai model as an example, we developethe algorithm to determine the weights w[\\tilde{M}] for connected YM-fluxworldsheets $\\tilde{M}$ immersed, \\tilde{M}->T, into a given 2d cell-complex T.Owing to the invariance of w[\\tilde{M}] under a continuous group ofarea-preserving worldsheet homeomorphisms, the weights {w[\\tilde{M}]} can bereadily used to define the theory of the smooth YM-fluxes which unambiguouslyrefers to a particular continuous YM_{D} system. I argue that the latter YM_{D}models (with a finite ultraviolet cut-off \\Lambda) for sufficiently largevalues of the coupling constant(s) are reproduced, to all orders in 1/N, by thesmooth Gauge String thus associated. The...

  5. Third-Order Approximation of 0++ Glueball Mass and Wavefunction of (2 + 1)-Dimensional SU(3) Lattice Gauge Theory

    Institute of Scientific and Technical Information of China (English)

    LI Jie-Ming; CHEN Qi-Zhou; GUO Shuo-Hong

    2001-01-01

    The random phase approximation is applied to the coupled-cluster expansions of lattice gauge theory (LGT). Using this method, wavefunctions are approximated by linear combination of graphs consisting of only one connected Wilson loop. We study the excited state energy and wavefunction in (2 + 1)-D SU(3) LGT up to thc third order. The glueballmass shows a good scaling behavior.``

  6. Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization

    Science.gov (United States)

    Berg, Bernd A.; Wu, Hao

    2012-10-01

    We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11

  7. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Science.gov (United States)

    Gattringer, Christof; Marchis, Carlotta

    2017-03-01

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over "abelian color cycles" (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  8. Program package for multicanonical simulations of U(1) lattice gauge theory-Second version

    Science.gov (United States)

    Bazavov, Alexei; Berg, Bernd A.

    2013-03-01

    A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl

  9. Finite Size Scaling and the Universality Class of SU(2) Lattice Gauge Theory

    Science.gov (United States)

    Staniford-Chen, Stuart Gresley

    For a system near a second order phase transition, the correlation length becomes extremely large. This gives rise to much interesting physics such as the existence of critical exponents and the division of physical theories into universality classes. SU(2) lattice gauge theory has such a phase transition at finite temperature and it has been persuasively argued in the literature that it should be in the same universality class as the Ising model in a space with dimensionality one less than the gauge theory. This is in the sense that the effective theory for the SU(2) Wilson lines is universal with the Ising model. This prediction has been checked for d = 3 + 1 SU(2) by comparing the critical exponents, and those checks appear to confirm it to the modest accuracy currently available. However, the theory of finite size scaling predicts a very rich set of objects which should be the same across universality classes. For example, the shape of the graph of various observables against temperature near the transition is universal. Not only that, but whole collections of probability distributions as a function of temperature can be given a scaling form and the shape of this object is universal. I develop a methodology for comparing such sets of distributions. This gives a two dimensional surface for each theory which can then be used in comparisons. I then use this approach and compare the surface for the order parameter in SU(2) with that in phi^4. The visual similarity is very striking. I perform a semi-quantitative error analysis which does not reveal significant differences between the two surfaces. This strengthens the idea that the SU(2) effective line theory is in the Ising universality class. I conclude by discussing the advantages and disadvantages of the method used here.

  10. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Meurice, Yannick L [Univ. of Iowa, Iowa City, IA (United States); Reno, Mary Hall [Univ. of Iowa, Iowa City, IA (United States)

    2016-06-23

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.

  11. Phase Structure of lattice $SU(2) x U_{S}(1)$ three-dimensional Gauge Theory

    CERN Document Server

    Farakos, K; McNeill, D

    1999-01-01

    We discuss a phase diagram for a relativistic SU(2) x U_{S}(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the $U_{S}(1)$ field is infinitely coupled, and the SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review uncoventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the rôle of instantons of the unbroken subgroup U(1) of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanati...

  12. An O(a) modified lattice set-up of the Schr\\"odinger functional in SU(3) gauge theory

    CERN Document Server

    Pérez-Rubio, Paula; Takeda, Shinji

    2011-01-01

    The set-up of the QCD Schr\\"odinger functional (SF) on the lattice with staggered quarks requires an even number of points $L/a$ in the spatial directions, while the Euclidean time extent of the lattice, $T/a$, must be odd. Identifying a unique renormalisation scale, $L=T$, is then only possible up to O($a$) lattice artefacts. In this article we study such lattices in the pure SU(3) gauge theory, where we can also compare to the standard set-up. We consider the SF coupling as obtained from the variation of an SU(3) Abelian and spatially constant background field. The O($a$) lattice artefacts can be cancelled by the existing O($a$) boundary counterterm. However, its coefficient, $\\ct$, differs at the tree-level from its standard value, so that one first needs to re-determine the induced background gauge field. The perturbative one-loop correction to the coupling allows to determine $\\ct$ to one-loop order. A few numerical simulations serve to demonstrate that residual cutoff effects in the step scaling functio...

  13. Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    CERN Document Server

    Loan, M; Sloggett, C; Hamer, C; Loan, Mushtaq; Brunner, Michael; Sloggett, Clare; Hamer, Chris

    2003-01-01

    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extract the static quark potential, the string tension and the low-lying "glueball" spectrum. The Euclidean string tension and mass gap decrease exponentially at weak coupling in excellent agreement with the predictions of Polyakov and G{\\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.

  14. SU(2) lattice gauge theory in 2+1 dimensions: critical couplings from twisted boundary conditions and universality

    CERN Document Server

    Edwards, Sam

    2009-01-01

    We present a precision determination of the critical coupling beta_c for the deconfinement transition in pure SU(2) gauge theory in 2+1 dimensions. This is possible from universality, by intersecting the center vortex free energy as a function of the lattice coupling beta with the exactly known value of the interface free energy in the 2D Ising model at criticality. Results for lattices with different numbers of sites N_t along the Euclidean time direction are used to determine how beta varies with temperature for a given N_t around the deconfinement transition.

  15. Gauge fields emerging from time-reversal symmetry breaking for spin-5/2 fermions in a honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Szirmai, G.; Szirmai, E. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-07-15

    We propose an experimentally feasible setup with ultracold alkaline-earth-metal atoms to simulate the dynamics of U(1) lattice gauge theories in 2 + 1 dimensions with a Chern-Simons term. To this end we consider the ground-state properties of spin-5/2 alkaline-earth-metal fermions in a honeycomb lattice. We use the Gutzwiller projected variational approach in the strongly repulsive regime in the case of filling 1/6. The ground state of the system is a chiral spin-liquid state with 2{pi}/3 flux per plaquette, which violates time-reversal invariance. We demonstrate that due to the breaking of time-reversal symmetry the system exhibits quantum Hall effect and chiral edge states. We relate the experimentally accessible spin fluctuations to the emerging gauge-field dynamics. We discuss also properties of the lowest energy competing orders.

  16. Flux tube widening in compact U (1) lattice gauge theory computed at T < Tc with the multilevel method and GPUs

    CERN Document Server

    Amado, A; Bicudo, P

    2013-01-01

    We utilize Polyakov loop correlations to study d=3+1 compact U (1) flux tubes and the static electron-positron potential in lattice gauge theory. With the plaquette field operator, in U(1) lattice gauge theory, we probe directly the components of the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPUs, in order to achieve the necessary efficiency for our computations. We measure in detail the quantum widening of the flux tube, as a function of the intercharge distance and at different finite temperatures T < Tc . Our results are compatible with the Effective String Theory.

  17. Neural Network for Quantum Brain Dynamics: 4D CP$^1$+U(1) Gauge Theory on Lattice and its Phase Structure

    CERN Document Server

    Sakane, Shinya; Matsui, Tetsuo

    2016-01-01

    We consider a system of two-level quantum quasi-spins and gauge bosons put on a 3+1D lattice. As a model of neural network of the brain functions, these spins describe neurons quantum-mechanically, and the gauge bosons describes weights of synaptic connections. It is a generalization of the Hopfield model to a quantum network with dynamical synaptic weights. At the microscopic level, this system becomes a model of quantum brain dynamics proposed by Umezawa et al., where spins and gauge field describe water molecules and photons, respectively. We calculate the phase diagram of this system under quantum and thermal fluctuations, and find that there are three phases; confinement, Coulomb, and Higgs phases. Each phase is classified according to the ability to learn patterns and recall them. By comparing the phase diagram with that of classical networks, we discuss the effect of quantum fluctuations and thermal fluctuations (noises in signal propagations) on the brain functions.

  18. Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice Monte Carlo renomalization-group matching.

    Science.gov (United States)

    Hasenfratz, Anna

    2012-02-10

    I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group β function and infrared conformality.

  19. Gauge cooling in complex Langevin for lattice QCD with heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Erhard, E-mail: ehs@mppmu.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München (Germany); Sexty, Dénes, E-mail: d.sexty@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg (Germany); Stamatescu, Ion-Olimpiu, E-mail: I.O.Stamatescu@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg (Germany)

    2013-06-10

    We employ a new method, “gauge cooling”, to stabilize complex Langevin simulations of QCD with heavy quarks. The results are checked against results obtained with reweighting; we find agreement within the estimated errors, except for strong gauge coupling in the confinement region. The method allows us to go to previously unaccessible high densities.

  20. Cluster algorithm for two-dimensional U(1) lattice gauge theory

    Science.gov (United States)

    Sinclair, R.

    1992-03-01

    We use gauge fixing to rewrite the two-dimensional U(1) pure gauge model with Wilson action and periodic boundary conditions as a nonfrustrated XY model on a closed chain. The Wolff single-cluster algorithm is then applied, eliminating critical slowing down of topological modes and Polyakov loops.

  1. Connecting phase transitions between the 3-d O(4) Heisenberg model and 4-d SU(2) lattice gauge theory

    CERN Document Server

    Grady, Michael

    2011-01-01

    SU(2) lattice gauge theory is extended to a larger coupling space where the coupling parameter for horizontal (spacelike) plaquettes, $\\beta_H$, differs from that for vertical (Euclidean timelike) plaquettes, $\\beta_V$. When $\\beta_H \\rightarrow \\infty$ the system, when in Coulomb Gauge, splits into multiple independent 3-d O(4) Heisenberg models on spacelike hyperlayers. Through consideration of the robustness of the Heisenberg model phase transition to small perturbations, and illustrated by Monte Carlo simulations, it is shown that the ferromagnetic phase transition in this model persists for $\\beta_H < \\infty$. Once it has entered the phase-plane it must continue to another edge due to its symmetry-breaking nature, and therefore must necessarily cross the $\\beta_V = \\beta_H$ line at a finite value. Indeed, a higher-order SU(2) phase transition is found at $\\beta = 3.18 \\pm 0.08$, from a finite-size scaling analysis of the Coulomb gauge magnetization from Monte Carlo simulations, which also yields criti...

  2. NSPT study of the three-loop lattice gluon propagator in Landau gauge

    CERN Document Server

    Torrero, C; Ilgenfritz, E -M; Perlt, H; Schiller, A

    2010-01-01

    By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a parametrization of both the hypercubic symmetry group H(4) and finite-size effects, we calculate the non-leading-log and non-logarithmic contributions iteratively, starting with the first-loop expression.

  3. Six-dimensional regularization of chiral gauge theories on a lattice

    CERN Document Server

    Fukaya, Hidenori; Yamamoto, Shota; Yamamura, Ryo

    2016-01-01

    We propose a six-dimensional regularization of four dimensional chiral gauge theories. We consider a massive Dirac fermion in six dimensions with two different operators having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of the two domain-walls. In our formulation, the Stora-Zumino chain of the anomaly descent equations, starting from the axial $U(1)$ anomaly in six-dimensions to the gauge anomaly in four-dimensions, is naturally embedded. Moreover, a similar inflow of the global anomalies is found. The anomaly free condition is equivalent to requiring that the axial $U(1)$ anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Putting the gauge field at the four- dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  4. Final Report for "Infrared Fixed Points in Multiflavor Lattice Gauge Theory"

    Energy Technology Data Exchange (ETDEWEB)

    Meurice, Yannick; Sinclair, Donald K.

    2013-09-27

    The goal of the grant was to apply methods that we have developed with spin and pure gauge models to models with dynamical fermions which are considered as candidates for an alternative to the Higgs mechanism. The work on SU(3) with fundamental quarks and with sextet quarks is described.

  5. A Numerical Study of Spectral Flows of Hermitian Wilson-Dirac Operator and The Index Theorem in Abelian Gauge Theories on Finite Lattices

    CERN Document Server

    Fujiwara, T

    2000-01-01

    We investigate the index of the Neuberger's Dirac operator in abelian gauge theories on finite lattices by numerically analyzing the spectrum of the hermitian Wilson-Dirac operator for a continuous family of gauge fields connecting different topological sectors. By clarifying the characteristic structure of the spectrum leading to the index theorem we show that the index coincides to the topological charge for a wide class of gauge field configurations. We also argue that the index can be found exactly for some special but nontrivial configurations in two dimensions by directly analyzing the spectrum.

  6. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    OpenAIRE

    M. Laine; Philipsen, O.(Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany); Tassler, M.

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number...

  7. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  8. Density of States FFA analysis of SU(3) lattice gauge theory at a finite density of color sources

    Science.gov (United States)

    Giuliani, Mario; Gattringer, Christof

    2017-10-01

    We present a Density of States calculation with the Functional Fit Approach (DoS FFA) in SU(3) lattice gauge theory with a finite density of static color sources. The DoS FFA uses a parameterized density of states and determines the parameters of the density by fitting data from restricted Monte Carlo simulations with an analytically known function. We discuss the implementation of DoS FFA and the results for a qualitative picture of the phase diagram in a model which is a further step towards implementing DoS FFA in full QCD. We determine the curvature κ in the μ-T phase diagram and find a value close to the results published for full QCD.

  9. Composite (Goldstone) Higgs Dynamics on the Lattice: Spectrum of SU(2) Gauge Theory with two Fundamental Fermions

    CERN Document Server

    Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Lewis, Randy; Pica, Claudio; Sannino, Francesco

    2014-01-01

    We study the meson spectrum of the SU(2) gauge theory with two Wilson fermions in the fundamental representation. The theory unifies both Technicolor and composite Goldstone Boson Higgs models of electroweak symmetry breaking. We have calculated the masses of the lightest spin one vector and axial vector mesons. In addition, we have also obtained preliminary results for the mass of the lightest scalar (singlet) meson state. The simulations have been done with multiple masses and two different lattice spacings for chiral and continuum extrapolations. The spin one meson masses set lower limits for accelerator experiments, whereas the scalar meson will mix with a pGB of the theory and produce two scalar states. The lighter of the states is the 125 GeV Higgs boson, and the heavier would be a new yet unobserved scalar state.

  10. Finite-size scaling tests for spectra in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions

    Science.gov (United States)

    Degrand, Thomas

    2011-12-01

    I carry out a finite-size scaling study of the correlation length in SU(3) lattice gauge theory coupled to 12 fundamental flavor fermions, using recent data published by Fodor, Holland, Kuti, Nógradi and Schroeder [Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B 703, 348 (2011).PYLBAJ0370-269310.1016/j.physletb.2011.07.037]. I make the assumption that the system is conformal in the zero-mass, infinite volume limit, that scaling is violated by both nonzero fermion mass and by finite volume, and that the scaling function in each channel is determined self-consistently by the data. From several different observables I extract a common exponent for the scaling of the correlation length ξ with the fermion mass mq, ξ˜mq-1/ym with ym˜1.35. Shortcomings of the analysis are discussed.

  11. Intersections of thick Center Vortices, Dirac Eigenmodes and Fractional Topological Charge in SU(2) Lattice Gauge Theory

    CERN Document Server

    Höllwieser, Roman; Heller, Urs M

    2011-01-01

    Intersections of thick, plane vortices are characterized by the topological charge $|Q|=1/2$. We compare such intersections with the distribution of zeromodes of the Dirac operator in the fundamental and adjoint representation using both the overlap and asqtad staggered fermion formulations in SU(2)-lattice gauge theory. We analyze configurations with four intersections and find that the probability density distribution of fundamental zeromodes in the intersection plane differs significantly from the one obtained analytically in [Phys.\\ Rev.\\ D 66, 85004 (2002)]. The Dirac eigenmodes are clearly sensitive to the traces of the Polyakov (Wilson) lines and do not exactly locate topological charge contributions. Although, the adjoint Dirac operator is able to produce zeromodes for configurations with topological charge $|Q|=1/2$, they do not locate single vortex intersections, as we prove by forming arbitrary linear combinations of these zeromodes - their scalar density peaks at least at two intersection points. ...

  12. Synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring-network lattice

    Science.gov (United States)

    Ochiai, Tetsuyuki

    2017-02-01

    We study the effects of a synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring-network model. The model was introduced to simulate light propagation in the corresponding ring-resonator lattice, and is thus completely bosonic. Without these two items, the model exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterized by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points can be preserved by breaking the space-inversion symmetry. Implementing both the synthetic gauge field and pseudospin-orbit interaction requires a certain nonreciprocity.

  13. Heavy Quark Thermalization in Classical Lattice Gauge Theory Lessons for Strongly-Coupled QCD

    CERN Document Server

    Laine, Mikko; Philipsen, Owe; Tassler, Marcus

    2009-01-01

    Thermalization of a heavy quark near rest is controlled by the correlator of two electric fields along a temporal Wilson line. We address this correlator within real-time, classical lattice Yang-Mills theory, and elaborate on the analogies that exist with the dynamics of hot QCD. In the weak-coupling limit, it can be shown analytically that the dynamics on the two sides are closely related to each other. For intermediate couplings, we carry out non-perturbative simulations within the classical theory, showing that the leading term in the weak-coupling expansion significantly underestimates the heavy quark thermalization rate. Our analytic and numerical results also yield a general understanding concerning the overall shape of the spectral function corresponding to the electric field correlator, which may be helpful in subsequent efforts to reconstruct it from Euclidean lattice Monte Carlo simulations.

  14. θ dependence of the vacuum energy in SU(3) gauge theory from the lattice

    Science.gov (United States)

    Giusti, Leonardo; Petrarca, Silvano; Taglienti, Bruno

    2007-11-01

    We report on a precise computation of the topological charge distribution in the SU(3) Yang-Mills theory. It is carried out on the lattice with high statistics Monte Carlo simulations by employing the definition of the topological charge suggested by Neuberger’s fermions. We observe significant deviations from a Gaussian distribution. Our results disfavor the θ behavior of the vacuum energy predicted by dilute instanton models, while they are compatible with the expectation from the large Nc expansion.

  15. Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice

    CERN Document Server

    Giusti, Leonardo; Taglienti, B

    2007-01-01

    We report on a precise computation of the topological charge distribution in the SU(3) Yang--Mills theory. It is carried out on the lattice with high statistics Monte Carlo simulations by employing the definition of the topological charge suggested by Neuberger's fermions. We observe significant deviations from a Gaussian distribution. Our results disfavour the theta behaviour of the vacuum energy predicted by instanton models, while they are compatible with the expectation from the large Nc expansion.

  16. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [IHEP, Protvino, Moscow region, 142284 (Russian Federation); ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); Buividovich, P.V. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); JINR, Joliot-Curie str. 6, Dubna, Moscow region, 141980 (Russian Federation); Institute of Theoretical Physics, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Chernodub, M.N., E-mail: maxim.chernodub@lmpt.univ-tours.fr [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Kotov, A.Yu.; Polikarpov, M.I. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); MIPT, Institutskii per. 9, Dolgoprudny, Moscow region, 141700 (Russian Federation)

    2012-12-05

    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged {rho} mesons if the strength of the magnetic field exceeds the critical value eB{sub c}=0.927(77) GeV{sup 2} or B{sub c}=(1.56{+-}0.13) Dot-Operator 10{sup 16} Tesla. The condensation of the charged {rho} mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  17. Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai-Xia, E-mail: zhangax@nwnu.edu.cn; Xue, Ju-Kui

    2016-07-01

    We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices. - Highlights: • Ultra-cold atoms in OL with nonuniform magnetic field are studied. • Matter wave reflection, refraction and splitting are coherently controlled. • Results provide a guide for the design of new atomic optics devices.

  18. Chiral Spin Liquids in Triangular-Lattice SU (N ) Fermionic Mott Insulators with Artificial Gauge Fields

    Science.gov (United States)

    Nataf, Pierre; Lajkó, Miklós; Wietek, Alexander; Penc, Karlo; Mila, Frédéric; Läuchli, Andreas M.

    2016-10-01

    We show that, in the presence of a π /2 artificial gauge field per plaquette, Mott insulating phases of ultracold fermions with SU (N ) symmetry and one particle per site generically possess an extended chiral phase with intrinsic topological order characterized by an approximate ground space of N low-lying singlets for periodic boundary conditions, and by chiral edge states described by the SU(N ) 1 Wess-Zumino-Novikov-Witten conformal field theory for open boundary conditions. This has been achieved by extensive exact diagonalizations for N between 3 and 9, and by a parton construction based on a set of N Gutzwiller projected fermionic wave functions with flux π /N per triangular plaquette. Experimental implications are briefly discussed.

  19. Isotriplet Dark Matter on the Lattice: SO(4)-gauge theory with two Vector Wilson fermions

    CERN Document Server

    Hietanen, Ari; Sannino, Francesco; Søndergaard, Ulrik Ishøj

    2012-01-01

    We present preliminary results for simulations of SO(4)-gauge theory with two Dirac Wilson fermions transforming according to the vector representation. We map out the phase diagram including the strong coupling bulk phase transition line as well as the zero PCAC-mass line. In addition, we measure the pseudo scalar and vector meson masses, and investigate whether the theory features chiral symmetry breaking. If the theory is used for breaking the electroweak symmetry dynamically it is the orthogonal group equivalent of the Minimal Walking Technicolor model but with the following distinctive features: a] It provides a natural complex weak isotriplet of Goldstone bosons of which the neutral component can be identified with a light composite dark matter state; b] It is expected to break the global symmetry spontaneously; c] It is free from fermionic composite states made by a techniglue and a technifermion.

  20. Finite-density phase diagram of a (1+1)-d non-abelian lattice gauge theory with tensor networks

    CERN Document Server

    Silvi, Pietro; Dalmonte, Marcello; Tschirsich, Ferdinand; Montangero, Simone

    2016-01-01

    We investigate the finite-density phase diagram of a non-abelian SU(2) lattice gauge theory, encoding Yang-Mills microscopical dynamics, in (1+1)-dimensions using tensor network methods. We numerically characterise the phase diagram as a function of the filling and of the matter-field coupling, individuating different phases, some of them appearing only at finite densities. At unit filling, we find a meson BCS liquid phase, which at strong coupling undergoes a phase transition to a charge density wave of single-site (spin-0) mesons via spontaneous chiral symmetry breaking. At finite densities, the chiral symmetry is restored almost everywhere, and the meson BCS liquid becomes a simple liquid at strong couplings, with the exception of filling two-thirds, where a charge density wave of mesons spreading over neighbouring sites appears. Finally, we individuate two tri-critical points between the chiral and the two liquid phases which are compatible with a SU(2)$_2$ Wess-Zumino-Novikov-Witten model.

  1. Functional Fit Approach (FFA) for Density of States method: SU(3) spin system and SU(3) lattice gauge theory with static quarks

    CERN Document Server

    Giuliani, Mario

    2016-01-01

    We apply a recently developed variant of the Density of States (DoS) method, the so-called Functional Fit Approach (FFA) to two different models: the SU(3) spin model and SU(3) lattice gauge theory with static quarks. Both models can be derived from QCD and inherit the complex action problem at finite density. We discuss the implementation of DoS FFA in the two models and compute observables related to the particle density. For the SU(3) spin model we show that the results are in good agreement with the results from a Monte Carlo simulation in the dual formulation, which is free of the complex action problem. For the case of SU(3) lattice gauge theory with static quarks we present first results for the particle number as a function of the coupling for different values of the chemical potential.

  2. Non-perturbative improvement of the axial current in N_f=3 lattice QCD with Wilson fermions and tree-level improved gauge action

    CERN Document Server

    Bulava, John; Heitger, Jochen; Wittemeier, Christian

    2015-01-01

    The coefficient c_A required for O(a) improvement of the axial current in lattice QCD with N_f=3 flavors of Wilson fermions and the tree-level Symanzik-improved gauge action is determined non-perturbatively. The standard improvement condition using Schroedinger functional boundary conditions is employed at constant physics for a range of couplings relevant for simulations at lattice spacings of ~ 0.09 fm and below. We define the improvement condition projected onto the zero topological charge sector of the theory, in order to avoid the problem of possibly insufficient tunneling between topological sectors in our simulations at the smallest bare coupling. An interpolation formula for c_A(g_0^2) is provided together with our final results.

  3. Non-perturbative renormalization of the axial current in $N_f = 3$ lattice QCD with Wilson fermions and tree-level improved gauge action

    CERN Document Server

    Bulava, John; Heitger, Jochen; Wittemeier, Christian

    2016-01-01

    We non-perturbatively determine the renormalization factor of the axial vector current in lattice QCD with $N_f=3$ flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity and it is imposed among Schr\\"{o}dinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of $\\approx 0.09$ fm and below. An interpolation formula for $Z_A(g_0^2)$, smoothly connecting the non-perturbative values to the 1-loop expression, is provided together with our final results.

  4. Supergravity from Gauge Theory

    CERN Document Server

    Berkowitz, Evan

    2016-01-01

    Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.

  5. Effective action for the Abelian-Higgs model for a gauge-invariant implementation on optical lattices

    CERN Document Server

    Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin

    2015-01-01

    We present a gauge-invariant effective action for the Abelian-Higgs model in 1+1 dimensions. It is constructed by integrating out the gauge field and then using the hopping parameter expansion. The latter is tested with Monte Carlo simulations for small values of the scalar self-coupling. In the opposite limit, at infinitely large self-coupling, the Higgs mode is frozen and the partition function can be written in terms of local tensors and the tensor renormalization group blocking can be applied. The numerical implementation requires truncations and the time continuum limit of the blocked transfer matrix can be obtained numerically. At zero gauge coupling and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. The procedure is extended to finite gauge coupling and we derive a spin-1 approximation of the Hamiltonian which involves terms corresponding to transitions among the two species i...

  6. An NMR study of molecular reorientations and diffusion in solid LiBF4

    Science.gov (United States)

    Reynhardt, E. C.; Lourens, J. A. J.

    1984-06-01

    The 19F second moment and the 19F, 11B, and 7Li spin-lattice relaxation times in a powdered sample of LiBF4 have been measured as a function of temperature. The results show that the BF-4 ion reorients isotropically while the Li+ ion remains stationary. The activation energy associated with the BF-4 motion is 8.5 kcal/mol. Above ˜385 K the BF-4 and Li+ diffuse through the lattice resulting in a 19F second moment which is almost zero. The activation energy of this process is 19.2 kcal/mol. A librational motion presumably influences the 19F T1ρ results just before diffusion sets in. The migration of Li+ around the BF-4 ion, which seems to be a strong possibility in the case of an isolated LiBF4 molecule, does not take place in the solid.

  7. Establishment of the Coulomb law in the layer phase of a pure U(1) lattice gauge theory

    CERN Document Server

    Farakos, K

    2008-01-01

    In this article we examine the Layer phase of the five dimensional, anisotropic, Abelian gauge model. Our results are to be compared with the ones of the 4D U(1) gauge model in an attempt to verify that four dimensional physics governs the four dimensional layers. The main results are: i) From the analysis of Wilson loops we verified the $\\frac{1}{R}$ behavior, in the layered phase, for the potential between heavy charges. The renormalized fine structure constant in the layer phase is found to be equal to that of 4D Coulomb phase,$\\alpha_{layer}$=$\\alpha_{4D}$. ii) Based on the helicity modulus analysis we show that the layers are in the Coulomb phase while the transverse bulk space is in the confining phase. We also calculated the renormalized coupling $\\beta_{R}$ and found results compatible with those obtained from the Coulomb potential. Finally we calculated the potential in the 5D Coulomb phase and found $\\frac{1}{R^{2}}$ behavior for the static $q \\bar{q}$ potential. From the study of the helicity modul...

  8. Gauge engineering and propagators

    CERN Document Server

    Maas, Axel

    2016-01-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  9. Gauge engineering and propagators

    Science.gov (United States)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  10. Synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring network lattice

    CERN Document Server

    Ochiai, Tetsuyuki

    2016-01-01

    Synthetic gauge field and pseudospin-orbit interaction are implemented in the stacked two-dimensional ring network model proposed by the present author. The model was introduced to simulate light propagation in the corresponding ring-resonator network, and is thus completely bosonic. Without these two items, the system exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterization by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes in the rings. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points ...

  11. The three-loop $\\beta$-function of SU(N) lattice gauge theories with overlap fermions

    CERN Document Server

    Constantinou, M

    2007-01-01

    We briefly report our calculation of the 2-loop coefficient of the coupling constant renormalization function Z_g in lattice perturbation theory. The quantity under study is defined through g_0 = Z_g g, where g_0 (g) is the bare (renormalized) coupling constant. The 2-loop expression for Z_g can be directly related to the 3-loop bare beta-function beta_L(g_0). Our calculation is performed using overlap fermions and Wilson gluons, and the background field technique has been chosen for convenience. Our results depend explicitly on the number of fermion flavors (N_f) and colors (N). Since the dependence of Z_g on the overlap parameter rho cannot be extracted analytically, we tabulate our results for different values of rho in the allowed range (0

  12. Superspace version of BF theories

    Energy Technology Data Exchange (ETDEWEB)

    Aidaoui, A.; Tahiri, M. [Laboratoire de Physique Theorique, Universite d' Oran Es-senia, 31100 Oran (Algeria)

    2012-06-27

    The BF theory is presented in a superspace formalism. This permits us to see that the necessary fields of the quantized theory enlarged with auxiliary fields naturally occur and lead to a BRST-VSUY exact quantum action.

  13. High-loop perturbative renormalization constants for Lattice QCD (II): three-loop quark currents for tree-level Symanzik improved gauge action and n_f=2 Wilson fermions

    CERN Document Server

    Brambilla, Michele

    2013-01-01

    Numerical Stochastic Perturbation Theory was able to get three- (and even four-) loop results for finite Lattice QCD renormalization constants. More recently, a conceptual and technical framework has been devised to tame finite size effects, which had been reported to be significant for (logarithmically) divergent renormalization constants. In this work we present three-loop results for fermion bilinears in the Lattice QCD regularization defined by tree-level Symanzik improved gauge action and n_f=2 Wilson fermions. We discuss both finite and divergent renormalization constants in the RI'-MOM scheme. Since renormalization conditions are defined in the chiral limit, our results also apply to Twisted Mass QCD, for which non-perturbative computations of the same quantities are available. We emphasize the importance of carefully accounting for both finite lattice space and finite volume effects. In our opinion the latter have in general not attracted the attention they would deserve.

  14. Gauge engineering and propagators

    Directory of Open Access Journals (Sweden)

    Maas Axel

    2017-01-01

    The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  15. Confining gauge fields

    CERN Document Server

    Lenz, F

    2009-01-01

    By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.

  16. Toward semistrict higher gauge theory

    CERN Document Server

    Zucchini, Roberto

    2011-01-01

    We work out a formulation of higher gauge theory, whose symmetry is encoded in a semistrict Lie 2-algebra v and which we call semistrict. We view v as a 2-term L-infinity algebra, a special case of strong homotopy Lie algebra generalizing an ordinary Lie algebra by allowing the Lie bracket to have a non trivial Jacobiator. Fields are v-valued and gauge transformations are special Aut(v)-valued maps organized as an ordinary group and acting on them. The global behaviour of fields is controlled by appropriate gauge transformation 1-cocycles. Using the BV quantization method in the AKSZ geometrical version, we write down a 3-dimensional semistrict higher BF gauge theory generalizing ordinary BF theory, carry out its gauge fixing and obtain as end result a semistrict higher topological gauge field theory of the Witten type. We also introduce a related 4-dimensional semistrict higher Chern--Simons gauge theory. We discuss merits and weaknesses of our formulation in relations to other approaches.

  17. Hamiltonian analysis of SO(4,1)-constrained BF theory

    Energy Technology Data Exchange (ETDEWEB)

    Durka, R; Kowalski-Glikman, J, E-mail: rdurka@ift.uni.wroc.p, E-mail: jkowalskiglikman@ift.uni.wroc.p [Institute for Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw (Poland)

    2010-09-21

    In this paper we discuss the canonical analysis of SO(4,1)-constrained BF theory. The action of this theory contains topological terms appended by a term that breaks the gauge symmetry down to the Lorentz subgroup SO(3,1). The equations of motion of this theory turn out to be the vacuum Einstein equations. By solving the B field equations one finds that the action of this theory contains not only the standard Einstein-Cartan term but also the Holst term proportional to the inverse of the Immirzi parameter, as well as a combination of topological invariants. We show that the structure of the constraints of an SO(4,1)-constrained BF theory is exactly that of gravity in the Holst formulation. We also briefly discuss the quantization of the theory.

  18. Hamiltonian analysis of SO(4,1) constrained BF theory

    CERN Document Server

    Durka, R

    2010-01-01

    In this paper we discuss canonical analysis of SO(4,1) constrained BF theory. The action of this theory contains topological terms appended by a term that breaks the gauge symmetry down to the Lorentz subgroup SO(3,1). The equations of motion of this theory turn out to be the vacuum Einstein equations. By solving the B field equations one finds that the action of this theory contains not only the standard Einstein-Cartan term, but also the Holst term proportional to the inverse of the Immirzi parameter, as well as a combination of topological invariants. We show that the structure of the constraints of a SO(4,1) constrained BF theory is exactly that of gravity in Holst formulation. We also briefly discuss quantization of the theory.

  19. Duality and Dimensional Reduction of 5D BF Theory

    CERN Document Server

    Amoretti, Andrea; Caruso, Giacomo; Maggiore, Nicola; Magnoli, Nicodemo

    2013-01-01

    A planar boundary introduced \\`a la Symanzik in the 5D topological BF theory, with the only requirement of locality and power counting, allows to uniquely determine a gauge invariant, non topological 4D Lagrangian. The boundary condition on the bulk fields is interpreted as a duality relation for the boundary fields, in analogy with the fermionization duality which holds in the 3D case. This suggests that the 4D degrees of freedom might be fermionic, although starting from a bosonic bulk theory. The method we propose to dimensionally reduce a Quantum Field Theory and to identify the resulting degrees of freedom can be applied to a generic spacetime dimension.

  20. G2 gauge theories

    CERN Document Server

    Maas, Axel

    2012-01-01

    QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.

  1. Building projected entangled pair states with a local gauge symmetry

    Science.gov (United States)

    Zohar, Erez; Burrello, Michele

    2016-04-01

    Tensor network states, and in particular projected entangled pair states (PEPS), suggest an innovative approach for the study of lattice gauge theories, both from a pure theoretic point of view, and as a tool for the analysis of the recent proposals for quantum simulations of lattice gauge theories. In this paper we present a framework for describing locally gauge invariant states on lattices using PEPS. The PEPS constructed hereby shall include both bosonic and fermionic states, suitable for all combinations of matter and gauge fields in lattice gauge theories defined by either finite or compact Lie groups.

  2. Building Projected Entangled Pair States with a Local Gauge Symmetry

    CERN Document Server

    Zohar, Erez

    2015-01-01

    Tensor network states, and in particular projected entangled pair states (PEPS), suggest an innovative approach for the study of lattice gauge theories, both from a pure theoretic point of view, and as a tool for the analysis of the recent proposals for quantum simulations of lattice gauge theories. In this paper we present a framework for describing locally gauge invariant states on lattices using PEPS. The PEPS constructed hereby shall include both bosonic and fermionic states, suitable for all combinations of matter and gauge fields in lattice gauge theories defined by either finite or compact Lie groups.

  3. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists and the ...

  4. General Gauge Mediation and Deconstruction

    CERN Document Server

    McGarrie, Moritz

    2010-01-01

    We locate a supersymmetry breaking hidden sector and supersymmetric standard model on different lattice points of an orbifold moose. The hidden sector is encoded in a set of current correlators and the effects of the current correlators are mediated by the lattice site gauge groups with "lattice hopping" functions and through the bifundamental matter that links the lattice sites together. We show how the gaugino mass, scalar mass and Casimir energy of the lattice can be computed for a general set of current correlators and then give specific formulas when the hidden sector is specified to be a generalised messenger sector coupled to a supersymmetry breaking spurion. The results reproduce the effect of five dimensional gauge mediation from a purely four dimensional construction.

  5. Bf and Anti-Bf Theories in the Generalized Connection Formalism

    Science.gov (United States)

    Aidaoui, A.; Doebner, H.-D.; Tahiri, M.

    We present a generalized connection formalism to explicitly determine an off-shell BRST-anti-BRST algebra for BF theories. This results in the construction of anti-BF theories based on an anti-BRST exact quantum action. These are not fundamentally different from BF theories, since they are in complete duality with respect to a mirror symmetry of the ghost numbers.

  6. Gauged Supergravities

    CERN Document Server

    Trigiante, Mario

    2016-01-01

    We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.

  7. Gauged supergravities

    Science.gov (United States)

    Trigiante, Mario

    2017-03-01

    We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.

  8. Lattice Gerbe Theory

    CERN Document Server

    Lipstein, Arthur E

    2014-01-01

    We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.

  9. Generalized BF state in quantum gravity

    CERN Document Server

    Yamashita, Shinji; Fukuda, Makoto

    2014-01-01

    The BF state is known as a simple wave function which satisfies three constraints in canonical quantum gravity without a cosmological constant. It is constructed from a product of the group delta functions. Applying the chiral asymmetric extension, the BF state is generalized to the state for the real values of the Barbero-Immirzi parameter.

  10. Dimension of the moduli space and Hamiltonian analysis of BF field theories

    CERN Document Server

    Cartas-Fuentevilla, R; Berra-Montiel, J

    2011-01-01

    By using the Atiyah-Singer theorem through some similarities with the instanton and the anti-instanton moduli spaces, the dimension of the moduli space for two and four-dimensional BF theories valued in different background manifolds and gauge groups scenarios is determined. Additionally, we develop Dirac's canonical analysis for a four-dimensional modified BF theory, which reproduces the topological YM theory. This framework will allow us to understand the local symmetries, the constraints, the extended Hamiltonian and the extended action of the theory.

  11. Phylodynamics of HIV-1 Circulating Recombinant Forms 12_BF and 38_BF in Argentina and Uruguay

    Directory of Open Access Journals (Sweden)

    Mangano Andrea

    2010-03-01

    Full Text Available Abstract Background Although HIV-1 CRF12_BF and CRF38_BF are two epidemiologically important recombinant lineages circulating in Argentina and Uruguay, little is known about their population dynamics. Methods A total of 120 "CRF12_BF-like" and 20 "CRF38_BF-like" pol recombinant sequences collected in Argentina and Uruguay from 1997 to 2009 were subjected to phylogenetic and Bayesian coalescent-based analyses to estimate evolutionary and demographic parameters. Results Phylogenetic analyses revealed that CRF12_BF viruses from Argentina and Uruguay constitute a single epidemic with multiple genetic exchanges among countries; whereas circulation of the CRF38_BF seems to be confined to Uruguay. The mean estimated substitution rate of CRF12_BF at pol gene (2.5 × 10-3 substitutions/site/year was similar to that previously described for subtype B. According to our estimates, CRF12_BF and CRF38_BF originated at 1983 (1978-1988 and 1986 (1981-1990, respectively. After their emergence, the CRF12_BF and CRF38_BF epidemics seem to have experienced a period of rapid expansion with initial growth rates of around 1.2 year-1 and 0.9 year-1, respectively. Later, the rate of spread of these CRFs_BF seems to have slowed down since the mid-1990s. Conclusions Our results suggest that CRF12_BF and CRF38_BF viruses were generated during the 1980s, shortly after the estimated introduction of subtype F1 in South America (~1975-1980. After an initial phase of fast exponential expansion, the rate of spread of both CRFs_BF epidemics seems to have slowed down, thereby following a demographic pattern that resembles those previously reported for the HIV-1 epidemics in Brazil, USA, and Western Europe.

  12. Understanding Gauge

    CERN Document Server

    Weatherall, James Owen

    2015-01-01

    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure in this sense.

  13. Determination of $c_\\mathrm A$ in three-flavour lattice QCD with Wilson fermions and tree-level improved gauge action

    CERN Document Server

    Bulava, John; Heitger, Jochen; Wittemeier, Christian

    2013-01-01

    We report on an ongoing non-perturbative determination of the improvement coefficient of the axial current, $c_\\mathrm A$, with three flavours of dynamical $\\mathrm O(a)$ improved Wilson quarks and tree-level Symanzik improved gauge action. Our computations are based on simulations with the openQCD code. The improvement condition for a range of couplings is formulated with Schr\\"odinger functional boundary conditions and imposed along a line of constant physics in parameter space. Our analysis involves correlation functions with boundary wave functions such that a large sensitivity to $c_\\mathrm A$ can be reached by exploiting the PCAC relation with two different pseudoscalar states.

  14. BF Cyg during its Current Outburst

    Science.gov (United States)

    Siviero, A.; Tamajo, E.; Lutz, J.; Wallerstein, G.; ANS Collaboration

    We are intensively monitoring the current outburst on BF Cyg, both spectroscopically (high and low resolution modes) and photometrically (so far 450 BVR CI C measurements have been collected). The outburst is photometrically reminiscent of the major event BF Cyg experienced in 1890 when it rose by 4 mag in the blue. In this contribution we present the data and describe the plans to investigate this object.

  15. Higgsless superconductivity from topological defects in compact BF terms

    CERN Document Server

    Diamantini, M Cristina

    2014-01-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. In D space dimensions it involves a (D-1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D-2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, a generalised Higgs phenomenon takes place: the photon eats up not only the gapless mode but the massive vector t...

  16. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  17. Higgsless superconductivity from topological defects in compact BF terms

    Science.gov (United States)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2015-02-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D - 1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D - 2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2) and the topological order (4) are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  18. A ${\\bf Z}_2$ Classification for 2D Fermion Level Crossing

    CERN Document Server

    Axenides, M; Nielsen, Holger Bech; Axenides, Minos; Johansen, Andrei; Nielsen, Holger Bech

    1997-01-01

    We demonstrate that the number of fermionic zero modes of the static $2$-dimensional Dirac operator in the background of $SU(2)$ static gauge-= Higgs field configurations is a topological invariant modulo four. Static configurations which are everywhere odd under parity with even-parity pur= e gauge behaviour at infinity admit $4n$, $n\\in {\\bf Z},$ zero modes of the Jackiw-Rebbi (JR) type. Odd-parity configurations with odd-parity pure ga= uge behaviour at infinity are topologically disconnected from the vacuum and = admit $4 n + 2$ fermionic zero energy solutions. The classification implies the collapse of half of the fermion zero modes upon embedding a $2$-dimension= al gauge-Higgs configuration (string) with odd-parity pure gauge behaviour a= t infinity into the $3$-dimensional Minkowski space.

  19. Gauge-coupling unification and the minimal SUSY model a fourth generation below the top?

    CERN Document Server

    Gunion, J F; Pois, H; Douglas W McKay

    1994-01-01

    \\centerline{\\bf Abstract} We explore the possibility of a fourth generation in the gauge-coupling-unified, minimal supersymmetric (MSSM) framework. We find that a sequential fourth generation (with a heavy neutrino \

  20. Landau Gauge Fixing on GPUs

    CERN Document Server

    Cardoso, Nuno; Bicudo, Pedro; Oliveira, Orlando

    2012-01-01

    In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using $32^4$ lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.

  1. Gauged Inflation

    CERN Document Server

    Hofmann, Ralf; Hofmann, Ralf; Keil, Mathias Th.

    2002-01-01

    Based on thermal equilibrium between the vacuum and its relevant excitations a model for cosmic inflation is presented. Due to a vacuum dominating, U(1) gauged inflaton field an inflationary regime can be reached without explicitly imposing slow-roll conditions. Thereby, nontrivial euclidean BPS saturation of the inflaton bans gravity from the field equations and masquerades the gauge symmetry as a $Z_{N+1}$ symmetry at the point where thermal equilibrium breaks down. Solving the vacuum dynamics of the gauge field in the inflaton background in the spirit of a Born-Oppenheimer approximation, a temperature dependent cosmological constant $\\La=\\La(T)$ is obtained. The $T$ dependence of $\\La$ competes with the black body radiation of the (massive) gauge field during cosmic expansion. This leads to (initial condition independent) inflation at some critical value of the inflaton amplitude. The model allows for a closed, noncollapsing universe with Planckian initial density, and hence it resolves the flatness proble...

  2. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  3. Dark matter on the lattice

    OpenAIRE

    Lewis, Randy

    2014-01-01

    Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.

  4. Analytic Variational Investigation of Euclidean SU(3) Gauge Theory

    CERN Document Server

    Dass, N D H

    1993-01-01

    Analytic variational techniques for lattice gauge theories based on the Rayleigh-Ritz(RR) method were previously developed for euclidean SU(2) gauge theories in 3 and 4 dimensions. Their extensions to SU(3) gauge theory including applications to correlation functions and mass gaps are presented here.

  5. GPU implementation of a Landau gauge fixing algorithm

    CERN Document Server

    Cardoso, Nuno; Oliveira, Orlando; Bicudo, Pedro

    2012-01-01

    We discuss how the steepest descent method with Fourier acceleration for Laudau gauge fixing in lattice SU(3) simulations can be implemented using CUDA. The scaling of the gauge fixing code was investigated using a Tesla C2070 Fermi architecture, and compared with a parallel CPU gauge fixing code.

  6. Explanation of the site-specific spin crossover in Fe(mtz)(6)(BF4)(2)

    NARCIS (Netherlands)

    Rudavskyi, Andrii; Havenith, Remco W. A.; Broer, Ria; de Graaf, Coen; Sousa, Carmen

    2013-01-01

    The spin crossover behavior of the two [Fe(mtz)(6)](2+) complexes occupying different lattice sites in Fe(mtz)(6)(BF4)(2) is addressed by combining quantum chemical calculations with a careful analysis of the crystal structure. It is first established from the calculations that the energy difference

  7. New Topological Aspects of $BF$ Theories

    CERN Document Server

    Caicedo, M I

    1998-01-01

    $BF$ theories defined over non trivial line bundles are studied. It is shown that such theories describe a realization of a non trivial higher order bundle. The partition function differs from the usual one -in terms of the Ray Singer Torsion- by a factor that arises from the non triviality of the line bundles.

  8. G_2 gauge theory at finite temperature

    CERN Document Server

    Cossu, Guido; Di Giacomo, Adriano; Lucini, Biagio; Pica, Claudio

    2007-01-01

    The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.

  9. Exact formulas in noncommutative gauge theories

    CERN Document Server

    Wallet, Jean-Christophe

    2016-01-01

    The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  10. D-brane gauge theories from toric singularities of the form $C^3/\\Gamma$ and $C^4/\\Gamma$

    OpenAIRE

    Sarkar, Tapobrata

    2000-01-01

    We discuss examples of D-branes probing toric singularities, and the computation of their world-volume gauge theories from the geometric data of the singularities. We consider several such examples of D-branes on partial resolutions of the orbifolds ${\\bf C^3/Z_2\\times Z_2}$,${\\bf C^3/Z_2\\times Z_3}$ and ${\\bf C^4/Z_2\\times Z_2 \\times Z_2}$.

  11. Gauge-fixing and the Gribov-Singer ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel [Institute for Theoretical Physics, University of Jena (Germany)

    2013-07-01

    Gauge-fixing is a useful tool in intermediate steps of calculations in quantum gauge field theories. However, in non-Abelian gauge theories it is complicated non-perturbatively by the Gribov-Singer ambiguity. Several aspects of this ambiguity and proposals for its resolution in the class of Landau gauges are presented, especially in view of the necessity to perform the same type of gauge-fixing both in the continuum and on the lattice. This has implications also for global residual gauge symmetries, like the BRST symmetry or the breaking of global symmetries by the Higgs mechanism.

  12. A mathematical method to calculate efficiency of BF3 detectors

    Institute of Scientific and Technical Information of China (English)

    SI Fenni; HU Qingyuan; PENG Taiping

    2009-01-01

    In order to calculate absolute efficiency of the BF3 detector, MCNP/4C code is applied to calculate rela-tive efficiency of the BF3 detector first, and then absolute efficiency is figured out through mathematical techniques. Finally an energy response curve of the BF3 detector for 1~20 MeV neutrons is derived. It turns out that efficiency of BF3 detector are relatively uniform for 2~16 MeV neutrons.

  13. A Nonperturbative Regulator for Chiral Gauge Theories

    CERN Document Server

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  14. BF topological theories and infinitely reducible systems

    CERN Document Server

    Caicedo, M I; Bol, S; Bol, Simon

    1996-01-01

    We present a rigurous disscusion for abelian BF theories in which the base manifold of the U(1) bundle is homeomorphic to a Hilbert space. The theory has an infinte number of stages of reducibility. We specify conditions on the base manifold under which the covarinat quantization of the system can be performed unambiguously. Applications of the formulation to the superparticle and the supertstring are also discussed.

  15. Precocious scaling in lattice gauge theories

    Science.gov (United States)

    Gliozzi, F.; Ravanini, F.; Sciuto, S.

    1982-12-01

    We propose a method to evaluate numerically and in some cases analytically the two-loop contributions to physical quantities without computing Feynman graphs. Such contributions are negligible for the SU(2) Wilson action, which shows a precocious scaling; on the contrary they are important for other actions (including Manton and heat kernel ones) and account for the observed violations of universality.

  16. Lattice Gauge Field Theory and Prismatic Sets

    DEFF Research Database (Denmark)

    Akyar, Bedia; Dupont, Johan Louis

    We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type as and in part......We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...

  17. Radiative improvement of the lattice NRQCD action using the background field method with applications to quarkonium spectroscopy

    CERN Document Server

    Hammant, T C; von Hippel, G M; Horgan, R R; Monahan, C J

    2013-01-01

    We apply the background field (BF) method to Non-Relativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner by matching the NRQCD prediction for particular on-shell processes with those of relativistic continuum QCD. We explain how the BF method is implemented in automated perturbation theory and discuss the technique for matching the relativistic and non-relativistic theories. We compute the one-loop radiative corrections to the sigma.B and Darwin terms for the NRQCD action currently used in simulations, as well as the one-loop coefficients of the spin-dependent O(alpha^2) four-fermion contact terms. The effect of the corrections on the hyperfine splitting of bottomonium is estimated using earlier simulation results; the corrected lattice prediction is found to be in agreement with experiment. Agreement of the hyperfine splitting of bottomonium and the B-meson system is confirmed by recent sim...

  18. Gauge fixing and BRST formalism in non-Abelian gauge theories

    CERN Document Server

    Ghiotti, Marco; Williams, A G

    2007-01-01

    In this Thesis we present a comprehensive study of perturbative and non-perturbative non-Abelian gauge theories in the light of gauge-fixing procedures, focusing our attention on the BRST formalism in Yang-Mills theory. We propose first a model to re-write the Faddeev-Popov quantisation method in terms of group-theoretical techniques and then we give a possible way to solve the no-go theorem of Neuberger for lattice Yang-Mills theory with double BRST symmetry. In the final part we present a study of the Batalin-Vilkovisky quantisation method for non-linear gauges in non-Abelian gauge theories.

  19. 3D Dynamics of 4D Topological BF Theory With Boundary

    CERN Document Server

    Amoretti, Andrea; Maggiore, Nicola; Magnoli, Nicodemo

    2012-01-01

    We consider the four dimensional abelian topological BF theory with a planar boundary introduced following the Symanzik's method. We find the most general boundary conditions compatible with the fields equations broken by the boundary. The residual gauge invariance is described by means of two Ward identities which generate an algebra of conserved currents. We interpret this algebra as canonical commutation relations of fields, which we use to construct a three dimensional Lagrangian. As a remarkable by-product, the (unique) boundary condition which we found, can be read as a duality relation between 3D dynamical variables.

  20. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey

    2015-01-01

    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  1. Gauge mechanics

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;

  2. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  3. Hamiltonian BF theory and projected Borromean Rings

    CERN Document Server

    Contreras, Ernesto; Leal, Lorenzo

    2011-01-01

    It is shown that the canonical formulation of the abelian BF theory in D = 3 allows to obtain topological invariants associated to curves and points in the plane. The method consists on finding the Hamiltonian on-shell of the theory coupled to external sources with support on curves and points in the spatial plane. We explicitly calculate a non-trivial invariant that could be seen as a "projection" of the Milnor's link invariant MU(1; 2; 3), and as such, it measures the entanglement of generalized (or projected) Borromeans Rings in the Euclidean plane.

  4. International Lattice Data Grid

    CERN Document Server

    Davies, C T H; Kenway, R D; Maynard, C M

    2002-01-01

    We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.

  5. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  6. Testing gauge-invariant perturbation theory

    CERN Document Server

    Törek, Pascal

    2016-01-01

    Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...

  7. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  8. Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry

    CERN Document Server

    Luo, Xi

    2016-01-01

    The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.

  9. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    Science.gov (United States)

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  10. Long Campaign of BF with Overheating-Free Cooling Stave

    Institute of Scientific and Technical Information of China (English)

    CHENG Su-sen; YANG Tian-jun; CANG Da-qiang

    2003-01-01

    A basic idea of permanent lining in designing long campaign of BF was put forward. BF designer should follow a chain of thinking procedure: Cooling water-Cooling system-Refractory lining. The temperature field of BF wall and cooling stave was calculated using heat transfer model and the results were proved by a 1 000-1 200 ℃ test rig. The overheating-free cooling stave with different parameters was designed, and such a long campaign of BF (15 years) was going to put into construction.

  11. Doebner condensation in ionic liquids [Bmim]BF4 and [Bpy]BF4 to synthesize α, β-unsaturated carboxylic acid

    Institute of Scientific and Technical Information of China (English)

    Dong Jiang; Yuan Yuan Wang; Yan Nan Xu; Li Yi Dai

    2009-01-01

    Ionic liquids [Bmim]BF4 and [Bpy]BF4 were employed as environmentally benign media in Doebner condensation to synthesize α,β-unsaturated carboxylic acid. The good results showed that [Bmim]BF4 and [Bpy]BF4 were efficient media for Doebner condensation, which could be recycled easily. The highest yields could reach 93% and 90% in [Bmim]BF4 and [Bpy]BF4, respectively.

  12. Signatures of confinement in Landau gauge QCD

    CERN Document Server

    Pawlowski, J M; Nedelko, S; Von Schmekal, L

    2005-01-01

    We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.

  13. Resummation of Cactus Diagrams in Lattice QCD

    CERN Document Server

    Panagopoulos, H

    1998-01-01

    We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge invariant diagrams in Lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this expansion yields results remarkably close to corresponding nonperturbative estimates.

  14. Application of Noncommutative Differential Geometry on Lattice to Anomaly

    CERN Document Server

    Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    1999-01-01

    The chiral anomaly in lattice abelian gauge theory is investigated by applying the geometric and topological method in noncommutative differential geometry(NCDG). A new kind of double complex and descent equation are proposed on infinite hypercubic lattice in arbitrary even dimensional Euclidean space, in the framework of NCDG. Using the general solutions to proposed descent equation, we derive the chiral anomaly in Abelian lattice gauge theory. The topological origin of anomaly is nothing but the Chern classes in NCDG.

  15. Qcd Thermodynamics On A Lattice

    CERN Document Server

    Levkova, L A

    2004-01-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...

  16. QCD Thermodynamics with an Improved Lattice Action

    CERN Document Server

    Bernard, C W; DeGrand, T A; Wingate, M; DeTar, C E; Gottlieb, S; Heller, U M; Rummukainen, K; Toussaint, D; Sugar, R L; Bernard, Claude; Hetrick, James E.; Grand, Thomas De; Wingate, Matthew; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Rummukainen, Kari; Toussaint, Doug; Sugar, Robert L.

    1997-01-01

    We have investigated QCD with two flavors of degenerate fermions using a Symanzik-improved lattice action for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an $N_t=4$ lattice. Having located the thermal transition, we performed zero temperature simulations nearby in order to compute hadronic masses and the static quark potential. We find that the present action reduces lattice artifacts present in thermodynamics with the standard Wilson (gauge and fermion) actions. However, it does not bring studies with Wilson-type quarks to the same level as those using the Kogut--Susskind formulation.

  17. Lattice quantum chromodynamics practical essentials

    CERN Document Server

    Knechtli, Francesco; Peardon, Michael

    2017-01-01

    This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.

  18. Eight light flavors on large lattice volumes

    CERN Document Server

    Schaich, David

    2013-01-01

    I present first results from large-scale lattice investigations of SU(3) gauge theory with eight light flavors in the fundamental representation. Using leadership computing resources at Argonne, we are generating gauge configurations with lattice volumes up to $64^3\\times128$ at relatively strong coupling, in an attempt to access the chiral regime. We use nHYP-improved staggered fermions, carefully monitoring finite-volume effects and other systematics. Here I focus on analyses of the light hadron spectrum and chiral condensate, measured on lattice volumes up to $48^3\\times96$ with fermion masses as light as m=0.004 in lattice units. We find no clear indication of spontaneous chiral symmetry breaking in these observables. I discuss the implications of these initial results, and prospects for further physics projects employing these ensembles of gauge configurations.

  19. Gauge Theories on the Light-Front

    CERN Document Server

    Brodsky, S J

    2004-01-01

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.

  20. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  1. Phase structure of lattice N=4 super Yang-Mills

    DEFF Research Database (Denmark)

    Catterall, Simon; Damgaard, Poul H.; DeGrand, Thomas;

    2012-01-01

    We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results are consi...

  2. 5D Maximally Supersymmetric Yang-Mills on the Lattice

    CERN Document Server

    Joseph, Anosh

    2016-01-01

    We provide details of the lattice construction of five-dimensional maximally supersymmetric Yang-Mills theory. The lattice theory is supersymmetric, gauge invariant and free from spectrum doublers. Such a supersymmetric lattice formulation is interesting as it can be used for non-perturbative explorations of the five-dimensional theory, which has a known gravitational dual.

  3. Gauge theory and little gauge theory

    CERN Document Server

    Koizumi, Kozo

    2016-01-01

    The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.

  4. Dicty_cDB: FC-BF11 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-BF11 (Link to dictyBase) - - - Contig-U16455-1 FC-BF11Z (Li...nk to Original site) - - FC-BF11Z 718 - - - - Show FC-BF11 Library FC (Link to library) Clone ID FC-BF11 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-BF/FC-BF11Q.Seq.d/ Representative seq. ID FC-BF1...1Z (Link to Original site) Representative DNA sequence >FC-BF11 (FC-BF11Q) /CSM/FC/FC-BF/FC-BF11Q.Seq....: (bits) Value N X55973 |X55973.1 D. discoideum EF1-I gene for elongation factor 1 alpha. 1292 0.0 1 X55972

  5. Lattice Bosons

    CERN Document Server

    Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon

    2000-01-01

    Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.

  6. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  7. Exact partition functions for gauge theories on Rλ3

    Science.gov (United States)

    Wallet, Jean-Christophe

    2016-11-01

    The noncommutative space R,SUB>λ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of R&x03bb;3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  8. Pyyromethene-BF2 Complexes as Laser Dyes

    Science.gov (United States)

    1990-05-24

    15 PAGE COUNT Interim Technical FROM6/01/89 TO5/31/9 21 May 1990 23 16. SUPPLEMENTARY NOTATION Submitted to Heteroatom Chemistry 17 COSATICODES 18...SUBJECT TERMS Continue on reverse of necessary ana identify oy blocK number) FIELD GROUP SUB-GROUP Laser action in pyrromethene-BF2 complexes, synthesis ...pyrromethene-BF2 complexes under flashlamp excitation showed broadband laser activity in the region . 530 - 580 nm. In methanol PMPDS-BF2 was six times more

  9. BF Orionis - Evidence for an infalling circumstellar envelope

    Science.gov (United States)

    Welty, Alan D.; Barden, Samuel C.; Huenemoerder, David P.; Ramsey, Lawrence W.

    1992-01-01

    Analysis of the optical magnitudes and Balmer lines of the Herbig Ae/Be star BF Orionis confirm that the object is an early to mid A-type star, but appears to be below the zero-age main sequence. Enhanced metal-line strengths (once thought to link BF Ori with the Am stars), line asymmetries, and radial velocities are shown to be signatures of an infalling circumstellar envelope. The possibility that BF Ori has a late-type companion is examined, and it is concluded that it does not.

  10. More on the properties of the first Gribov region in Landau gauge

    CERN Document Server

    Maas, Axel

    2015-01-01

    Complete gauge-fixing beyond perturbation theory in non-Abelian gauge theories is a non-trivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.

  11. More on the properties of the first Gribov region in Landau gauge

    Science.gov (United States)

    Maas, Axel

    2016-03-01

    Complete gauge fixing beyond perturbation theory in non-Abelian gauge theories is a nontrivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.

  12. A lattice approach to spinorial quantum gravity

    Science.gov (United States)

    Renteln, Paul; Smolin, Lee

    1989-01-01

    A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.

  13. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  14. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  15. Classical Loop Actions of Gauge Theories

    CERN Document Server

    Armand-Ugon, D; Griego, J R; Setaro, L; Armand-Ugon, Daniel; Gambini, Rodolfo; Griego, Jorge; Setaro, Leonardo

    1994-01-01

    Since the first attempts to quantize Gauge Theories and Gravity in the loop representation, the problem of the determination of the corresponding classical actions has been raised. Here we propose a general procedure to determine these actions and we explicitly apply it in the case of electromagnetism. Going to the lattice we show that the electromagnetic action in terms of loops is equivalent to the Wilson action, allowing to do Montecarlo calculations in a gauge invariant way. In the continuum these actions need to be regularized and they are the natural candidates to describe the theory in a ``confining phase''.

  16. Comment on "Dimension of the Moduli Space and Hamiltonian Analysis of BF Field Theories"

    CERN Document Server

    Mondragon, Mauricio

    2012-01-01

    The purpose of this Comment is to point out that the results presented in the appendix of M. Mondragon and M. Montesinos, J. Math. Phys. 47, 022301 (2006) provides a generic method so as to deal with cases as those of Section 6 of R. Cartas-Fuentevilla, A. Escalante-Hern\\'andez, and J. Berra-Montiel, Int. J. Mod. Phys. A 26, 3013 (2011). The results already reported are: the canonical analysis, the transformations generated by the constraints, and the analysis of the reducibility of the constraints for SO(3,1) and SO(4) four-dimensional BF theory coupled or not to a cosmological constant. But such results are generic and hold actually for any Lie algebra having a non-degenerate inner product invariant under the action of the gauge group.

  17. On Fractional Quantum Hall Solitons and Chern-Simons Quiver Gauge Theories

    CERN Document Server

    Belhaj, Adil

    2011-01-01

    We investigate a class of hierarchical multiple layers of fractional quantum Hall solitons (FQHS) systems from Chern-Simons quivers embedded in M-theory on the cotangent on a 2-dimensional complex toric variety \\bf V^2, which is dual to type IIA superstring on a 3-dimensional complex manifolds \\bf {CP}^1\\times V^2 fibered over a real line \\mathbb{R}. Based on M-theory/Type IIA duality, FQHS systems can be derived from wrapped D4-branes on 2-cycles in \\bf {CP}^1\\times V^2 type IIA geometry. In this realization, the magnetic source can be identified with gauge fields obtained from the decomposition of the R-R 3-form on a generic combination of 2-cycles. Using type IIA D-brane flux data, we compute the filling factors for models relying on \\bf {CP}^2 and the zeroth Hirzebruch surface.

  18. Screening Masses of Hot SU(2) Gauge Theory from the 3D Adjoint Higgs Model

    CERN Document Server

    Karsch, Frithjof; Petreczky, P

    1999-01-01

    We study the Landau gauge propagators of the lattice SU(2) 3d adjoint Higgs model, considered as an effective theory of high temperature 4d SU(2) gauge theory. From the long distance behaviour of the propagators we extract the screening masses. It is shown that the pole masses extracted from the propagators agree well with the screening masses obtained recently in finite temperature SU(2) theory. The relation of the propagator masses to the masses extracted from gauge invariant correlators is also discussed. In so-called lambda gauges non-perturbative evidence is given for the gauge independence of pole masses within this class of gauges.

  19. A Lattice Study of the Glueball Spectrum

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan

    2001-01-01

    The glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3) lattice gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the ontinuum limit more reliable. Converting our lattice results to physical units using the scale set by the static quark potential, we obtain the following results for the glueball masses: MG(0++) -= 1730(90) MeV for the scalarglueball and MG(2++) = 2400(95) MeV for the tensor glueball.

  20. Discrete gauge theories

    NARCIS (Netherlands)

    de Wild Propitius, M.D.F.; Bais, F.A.

    1999-01-01

    In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha

  1. Extra-dimensional models on the lattice

    CERN Document Server

    Knechtli, Francesco

    2016-01-01

    In this review we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergencies by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include non-perturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime for various extra-dimensional models.

  2. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  3. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  4. Quantum Gauge General Relativity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.

  5. Twisted Superspace for N=D=2 Super BF and Yang-Mills with Dirac-K\\"ahler Fermion Mechanism

    CERN Document Server

    Kato, J; Uchida, Y; Kato, Junji; Kawamoto, Noboru; Uchida, Yukiya

    2003-01-01

    We propose a twisted D=N=2 superspace formalism. The relation between the twisted super charges including the BRST charge, vector and pseudo scalar super charges and the N=2 spinor super charges is established. We claim that this relation is essentially related with the Dirac-K\\"ahler fermion mechanism. We show that a fermionic bilinear form of twisted N=2 chiral and anti-chiral superfields is equivalent to the quantized version of BF theory with the Landau type gauge fixing while a bosonic bilinear form leads to the N=2 Wess-Zumino action. We then construct a Yang-Mills action described by the twisted N=2 chiral and vector superfields, and show that the action is equivalent to the twisted version of the D=N=2 super Yang-Mills action, previously obtained from the quantized generalized topological Yang-Mills action with instanton gauge fixing.

  6. Unquenched Gluon Propagator in Landau Gauge

    OpenAIRE

    2004-01-01

    Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propagator in Landau gauge. We use configurations generated with the AsqTad quark action by the MILC collaboration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills gluon propagator) with that of 2+1 flavor QCD. The effects of the dynamical quarks are clearly visible and lead to a significant reduction of the nonperturbative infrared enhancement relat...

  7. Loop Equations in Abelian Gauge Theories

    CERN Document Server

    Di Bartolo, C; Pe~na, F; Bartolo, Cayetano Di; Leal, Lorenzo; Peña, Francisco

    2005-01-01

    The equations obeyed by the vacuum expectation value of the Wilson loop of Abelian gauge theories are considered from the point of view of the loop-space. An approximative scheme for studying these loop-equations for lattice Maxwell theory is presented. The approximation leads to a partial difference equation in the area and length variables of the loop, and certain physically motivated ansatz is seen to reproduce the mean field results from a geometrical perspective.

  8. Lattice BRST without Neuberger 0/0 problem

    CERN Document Server

    von Smekal, Lorenz

    2013-01-01

    We illustrate in a simple toy model how the methods of SUSY quantum mechanics and topological quantum field theory can be used for covariant gauge-fixing with unbroken BRST symmetry on a finite lattice.

  9. An improved single-plaquette gauge action

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland); NIC, DESY,Platanenallee 6, 15738, Zeuthen (Germany); Bögli, M. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland); Department of Physics, Chung-Yuan Christian University (CYCU),Chung-Li 32023, Taiwan (China); Holland, K. [Physics Department, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Niedermayer, F. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland); Pepe, M. [INFN - Sezione di Milano-Bicocca,Edificio U2, Piazza della Scienza 3, 20126 Milano (Italy); Wenger, University; Wiese, UniversityJ. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-03-17

    We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-off effects.

  10. An Improved Single-Plaquette Gauge Action

    CERN Document Server

    Banerjee, Debasish; Holland, Kieran; Niedermayer, Ferenc; Pepe, Michele; Wenger, Urs; Wiese, Uwe-Jens

    2015-01-01

    We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-of...

  11. Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics

    Science.gov (United States)

    Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni

    2016-11-01

    We study a U(1) × U(1) gauge theory discussing its vortex solutions and supersymmetric extension. In our set-up, the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors interact via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.

  12. Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics

    CERN Document Server

    Ireson, Edwin; Tallarita, Gianni

    2016-01-01

    We study a $U(1) \\times U(1)$ gauge theory discussing its vortex solutions and supersymmetric extension. In our set-upon the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.

  13. Gauge Theory On The Fuzzy Torus

    CERN Document Server

    Bigatti, D

    2001-01-01

    In this paper a formulation of U(1) gauge theory on a fuzzy torus is discussed. The theory is regulated in both the infrared and ultraviolet. It can be thought of as a non-commutative version of lattice gauge theory on a periodic lattice. The construction of Wilson loops is particularly transparent in this formulation. Following Ishibashi, Iso, Kawai and Kitazawa, we show that certain Fourier modes of open Wilson lines are gauge invariant. We also introduce charged matter fields which can be thought of as fundamentals of the gauge group. These particles behave like charges in a strong magnetic field and are frozen into the lowest Landau levels. The resulting system is a simple matrix quantum mechanics which should reflect much of the physics of charged particles in strong magnetic fields. The present results were first presented as a talk at the Institute for Mathematical Science, Chennai, India; the author wishes to thank Prof. T. R. Govindarajan and the IMS for hospitality and financial support, and the aud...

  14. Superradiance Lattice

    CERN Document Server

    Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O

    2014-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.

  15. Cosmic Strings on the Lattice

    CERN Document Server

    Bukenov, A K; Polikarpov, M I; Polley, L; Wiese, U J

    1992-01-01

    We develop a formalism for the quantization of topologically stable excitations in the 4-dimensional abelian lattice gauge theory. The excitations are global and local (Abrikosov-Nielsen-Olesen) strings and monopoles. The operators of creation and annihilation of string states are constructed; the string Green functions are represented as a path integral over random surfaces. Topological excitations play an important role in the early universe. In the broken symmetry phase of the $U(1)$ spin model, closed global cosmic strings arise, while in the Higgs phase of the noncompact gauge-Higgs model, local cosmic strings are present. The compact gauge-Higgs model also involves monopoles. Then the strings can break if their ends are capped by monopoles. The topology of the Euclidean string world sheets are studied by numerical simulations.

  16. Possible Reasons for the Slow Rotation of BF Ori

    Science.gov (United States)

    Shulman, S. G.

    2016-03-01

    Possible reasons for the very low projected rotation velocity of BF Ori compared to other UX Ori stars are discussed. The hypothesis of a close companion that slows down the star's rotation by a tidal interaction is examined. Based on a theory of synchronization and modern models of evolution, the interaction is calculated numerically for different masses of the companion and values of the semi-major axis. It is shown that in order to obtain the projected velocity observed for BF Ori, the companion must have a mass greater than 0.5M⊙ . Such a large companion should have been discovered observationally. It is suggested that the low rotation velocity of BF Ori is more likely to be related to the distribution of the angular momentum of a protostellar cloud between the angular momentum of the star and the orbital angular momentum of a low-mass companion.

  17. Destabilizing Tachyonic Vacua at or above the BF Bound

    CERN Document Server

    Kanno, Sugumi; Soda, Jiro

    2012-01-01

    It is well known that tachyonic vacua in an asymptotically Anti-de Sitter (AdS) space-time are classically stable if the mass squared is at or above the Breitenlohner and Freedman (BF) bound. We study the quantum stability of these tachyonic vacua in terms of instantons. We find a series of exact instanton solutions destabilizing tachyonic state at or above the BF bound in asymptotically AdS space. We also give an analytic formula for the decay rate and show that it is finite. Comparing our result with the well-known algebraic condition for the stability, we discuss stability conditions of tachyonic vacua at or above the BF bound.

  18. Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?

    Science.gov (United States)

    Gillespie, Ronald J.

    1998-07-01

    Calculated ionic charges show that BF3 and SiF4 are predominately ionic molecules yet in contrast to BeF2 and AlF3 they exist as gases at room temperature and form molecular solids rather than infinite three-dimensional "ionic" solids at low temperature. Whether or not ionic molecules form a three-dimensional infinite ionic lattice or a molecular solid depends more on relative atomic (ionic) sizes than on the nature of the bonding in the isolated molecule. The ionic model for BF3 and BF4- provides a simple explanation of their bond lengths and for the constancy of interligand nonbonding distances. BF3 and SiF4 should be represented by ionic structures rather than by the conventional structures with bond lines that are normally assumed to indicate covalent bonds. A letter from Lawrence J. Sacks in our April 2000 issue addresses the above.

  19. Working Group Report: Lattice Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  20. Commensurability effects in holographic homogeneous lattices

    OpenAIRE

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to...

  1. Perfect Lattice Actions for Staggered Fermions

    CERN Document Server

    Bietenholz, W; Chandrasekharan, S; Wiese, U J

    1996-01-01

    We construct a perfect lattice action for staggered fermions by blocking from the continuum. The locality, spectrum and pressure of such perfect staggered fermions are discussed. We also derive a consistent fixed point action for free gauge fields and discuss its locality as well as the resulting static quark-antiquark potential. This provides a basis for the construction of (classically) perfect lattice actions for QCD using staggered fermions.

  2. Lattice QCD and the Jefferson Laboratory Program

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos

    2011-06-01

    Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.

  3. Generalized Higher Gauge Theory

    CERN Document Server

    Ritter, Patricia; Schmidt, Lennart

    2015-01-01

    We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.

  4. Gauge symmetry from decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de

    2017-02-15

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  5. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  6. Gauge symmetry from decoupling

    Science.gov (United States)

    Wetterich, C.

    2017-02-01

    Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  7. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  8. Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter

    Directory of Open Access Journals (Sweden)

    Merced Montesinos

    2011-11-01

    Full Text Available A detailed analysis of the BF formulation for general relativity given by Capovilla, Montesinos, Prieto, and Rojas is performed. The action principle of this formulation is written in an equivalent form by doing a transformation of the fields of which the action depends functionally on. The transformed action principle involves two BF terms and the two Lorentz invariants that appear in the original action principle generically. As an application of this formalism, the action principle used by Engle, Pereira, and Rovelli in their spin foam model for gravity is recovered and the coupling of the cosmological constant in such a formulation is obtained.

  9. Equivalent and Alternative Forms for BF Gravity with Immirzi Parameter

    CERN Document Server

    Montesinos, Merced; 10.3842/SIGMA.2011.103

    2011-01-01

    A detailed analysis of the BF formulation for general relativity given by Capovilla, Montesinos, Prieto, and Rojas is performed. The action principle of this formulation is written in an equivalent form by doing a transformation of the fields of which the action depends functionally on. The transformed action principle involves two BF terms and the two Lorentz invariants that appear in the original action principle generically. As an application of this formalism, the action principle used by Engle, Pereira, and Rovelli in their spin foam model for gravity is recovered and the coupling of the cosmological constant in such a formulation is obtained.

  10. Relative weights approach to SU(3) gauge theories with dynamical fermions at finite density

    CERN Document Server

    Höllwieser, Roman

    2016-01-01

    We derive effective Polyakov line actions for SU(3) gauge theories with staggered dynamical fermions, for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. The derivation is via the method of relative weights, and the theories are solved at finite chemical potential by mean field theory. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

  11. Glueball calculations in large-$N_{c}$ gauge theory

    CERN Document Server

    Dalley, S

    1999-01-01

    We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.

  12. Schwinger mechanism in linear covariant gauges

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2017-02-01

    In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.

  13. Quantum Gravity on the Lattice

    CERN Document Server

    Hamber, Herbert W

    2009-01-01

    I review the lattice approach to quantum gravity, and how it relates to the non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief introduction covering the general problem of ultraviolet divergences in gravity and other non-renormalizable theories, I cover the general methods and goals of the lattice approach. An underlying theme is an attempt at establishing connections between the continuum renormalization group results, which are mainly based on diagrammatic perturbation theory, and the recent lattice results, which should apply to the strong gravity regime and are inherently non-perturbative. A second theme in this review is the ever-present natural correspondence between infrared methods of strongly coupled non-abelian gauge theories on the one hand, and the low energy approach to quantum gravity based on the renormalization group and universality of critical behavior on the other. Towards the end of the review I discuss possible observational consequences of path integral q...

  14. Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase.

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R

    2015-12-31

    While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  15. Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.

    2015-12-01

    While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  16. B.F. Skinner's Contributions to Education: A Retrospective Appreciation.

    Science.gov (United States)

    Sparzo, Frank J.

    1992-01-01

    A summary of B.F. Skinner's work presents background information and examples of the great amount of misinformation about the work. The article discusses areas in which Skinner made major contributions to education (consequences, A-B-C analysis, rate of response, explanatory fictions, verbal behavior, programed instruction, social criticism, and…

  17. Electron-impact ionization rates for BF3 fragments

    Science.gov (United States)

    Vuskovic, L.; Raskovic, M.; Popovic, S.

    2007-06-01

    We calculated electron-impact ionization rates of BF3 and its fragments for electron energy distribution present in sheath mode of the repetitively pulsed d.c. diode system [1]. Data are being used for Ar/BF3 discharge modeling. BF3 and its fragments are reactive species that we are using to interact with niobium surface. The aim is to remove oxides and other impurities from the surface in the form of volatile compounds. This procedure of cleaning and smoothening improves the performance of the superconducting radiofrequency cavities used for particle accelerators. In our calculation electronic structures of BF3 and its fragments were described with several empirical basis sets. After geometry optimization using density functional method B3LYP, MO parameters were calculated with UHF, CCSD(T) and OVGF methods [2]. Electron-impact ionization cross-sections were calculated employing the Binary-Encounter-Bethe approximation. Cross-section results were compared with available experimental data. Relative calculation errors were estimated, which was especially important for cross-sections obtained with CEP-31G basis set that is necessary to describe system containing niobium samples. [1] S. Radovanov, et al., J. Appl. Phys. 98, 113307 (2005). [2] Y-K. Kim, K.K. Irikura, AIP conferences proceedings, 543, 220 (2000).

  18. Rain Gauges Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  19. N=4 supersymmetry on a space-time lattice

    DEFF Research Database (Denmark)

    Catterall, Simon; Schaich, David; Damgaard, Poul H.

    2014-01-01

    Maximally supersymmetric Yang–Mills theory in four dimensions can be formulated on a space-time lattice while exactly preserving a single supersymmetry. Here we explore in detail this lattice theory, paying particular attention to its strongly coupled regime. Targeting a theory with gauge group SU...

  20. Comment on Pauli-Villars Lagrangian on the Lattice

    CERN Document Server

    Haga, K; Okuyama, K; Suzuki, H; Haga, Kazunobu; Igarashi, Hiroshi; Okuyama, Kiyoshi; Suzuki, Hiroshi

    1997-01-01

    It is interesting to superimpose the Pauli--Villars regularization on the lattice regularization. We illustrate how this scheme works by evaluating the axial anomaly in a simple lattice fermion model, the Pauli--Villars Lagrangian with a gauge non-invariant Wilson term. The gauge non-invariance of the axial anomaly, caused by the Wilson term, is remedied by a compensation between Pauli--Villars regulators in the continuum limit. A subtlety in Frolov--Slavnov's scheme for an {\\it odd\\/} number of chiral fermions in an anomaly free complex gauge representation, which requires an infinite number of regulators, is briefly mentioned.

  1. A Lattice Study of the Glueball Spectrum

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan

    2001-01-01

    Glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3)gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the continuum limit more reliable. In particular, attention is paid to the scalar glueball mass which is known to have problems in the extrapolation. Converting our lattice results to physical units using the scale set by the static quark potential,we obtain the following results for the glueball masses: MG(0++) = 1730(90) MeV for the scalar glueball mass and MG(2++) = 2400(95) MeV for the tensor glueball.

  2. Investigating jet quenching on the lattice

    CERN Document Server

    Panero, Marco; Schäfer, Andreas

    2014-01-01

    Due to the dynamical, real-time, nature of the phenomenon, the study of jet quenching via lattice QCD simulations is not straightforward. In this contribution, however, we show how one can extract information about the momentum broadening of a hard parton moving in the quark-gluon plasma, from lattice calculations. After discussing the basic idea (originally proposed by Caron-Huot), we present a recent study, in which we estimated the jet quenching parameter non-perturbatively, from the lattice evaluation of a particular set of gauge-invariant operators.

  3. The vortex-finding property of maximal center (and other) gauges

    Energy Technology Data Exchange (ETDEWEB)

    Faber, M.; Greensite, J.; Olejnik, S.; Yamada, D.

    1999-10-01

    The authors argue that the vortex-finding property of maximal center gauge, i.e. the ability of this gauge to locate center vortices inserted by hand on any given lattice, is the key to its success in extracting the vortex content of thermalized lattice configurations. The authors explain how this property comes about, and why it is expected not only in maximal center gauge, but also in an infinite class of gauge conditions based on adjoint-representation link variables. In principle, the vortex-finding property can be foiled by Gribov copies. This fact is relevant to a gauge-fixing procedure devised by Kovacs and Tomboulis, where they show that the loss of center dominance, found in their procedure, is explained by a corresponding loss of the vortex-finding property. The dependence of center dominance on the vortex-finding property is demonstrated numerically in a number of other gauges.

  4. Coulomb branches for rank 2 gauge groups in 3d N=4 gauge theories

    CERN Document Server

    Hanany, Amihay

    2016-01-01

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  5. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)

    2016-08-02

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  6. Vacuum polarization and chiral lattice fermions

    Science.gov (United States)

    Randjbar-Daemi, S.; Strathdee, J.

    1996-02-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge-invariant regularization of the fermion vacuum amplitude. Its low-energy-long-wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters.

  7. Vacuum polarization and chiral lattice fermions

    CERN Document Server

    Strathdee, J A

    1995-01-01

    The vacuum polarization due to chiral fermions on a 4--dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy -- long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan--Symanzik RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson--type mass parameters.

  8. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  9. Monte Carlo methods in continuous time for lattice Hamiltonians

    CERN Document Server

    Huffman, Emilie

    2016-01-01

    We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.

  10. Crystalline Scaling Geometries from Vortex Lattices

    CERN Document Server

    Bao, Ning

    2013-01-01

    We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.

  11. Lattice theory

    CERN Document Server

    Donnellan, Thomas; Maxwell, E A; Plumpton, C

    1968-01-01

    Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti

  12. Dark matter from one-flavor SU(2) gauge theory

    CERN Document Server

    Francis, Anthony; Lewis, Randy; Tulin, Sean

    2016-01-01

    SU(2) gauge theory with a single fermion in the fundamental representation is a minimal non-Abelian candidate for the dark matter sector, which is presently missing from the standard model. Having only a single flavor provides a natural mechanism for stabilizing dark matter on cosmological timescales. Preliminary lattice results are presented and discussed in the context of dark matter phenomenology.

  13. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  14. QCD thermodynamics on a lattice

    Science.gov (United States)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  15. Aspects of confinement in QCD from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Daniel

    2011-01-12

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  16. A lattice QCD calculation of the transverse decay constant of the b1(1235) meson

    CERN Document Server

    Jansen, K; Michael, C; Urbach, C

    2009-01-01

    We review various B meson decays that require knowledge of the transverse decay constant of the b1(1235) meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b1 meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used.

  17. Four Fermion Interactions in Non-Abelian Gauge Theory

    CERN Document Server

    Catterall, Simon

    2013-01-01

    We continue our earlier study of the phase structure of a SU(2) gauge theory whose action contains additional chirally invariant four fermion interactions. Our lattice theory uses a reduced staggered fermion formalism to generate two Dirac flavors in the continuum limit. In the current study we have tried to reduce lattice spacing and taste breaking effects by using an improved fermion action incorporating stout smeared links. As in our earlier study we observe two regimes; for weak gauge coupling the chiral condensate behaves as an order parameter differentiating a phase at small four fermi coupling where the condensate vanishes from a phase at strong four fermi coupling in which chiral symmetry is spontaneously broken. This picture changes qualitatively when the gauge coupling is strong enough to cause confinement; in this case we observe a first order phase transition for some critical value of the four fermi coupling associated with a strong enhancement of the chiral condensate. We observe that this criti...

  18. Large-Nc Gauge Theory and Chiral Random Matrix Theory

    Science.gov (United States)

    Hanada, Masanori; Lee, Jong-Wan; Yamada, Norikazu

    Effective theory approaches and the large-Nc limit are useful for studying the strongly coupled gauge theories. In this talk we consider how the chiral random matrix theory (χRMT) can be used in the study of large-Nc gauge theories. It turns out the parameter regions, in which each of these two approaches are valid, are different. Still, however, we show that the breakdown of chiral symmetry can be detected by combining the large-Nc argument and the χRMT with some cares. As a demonstration, we numerically study the four dimensional SU(Nc) gauge theory with Nf = 2 heavy adjoint fermions on a 24 lattice by using Monte-Carlo simulations, which is related to the infinite volume lattice through the Eguchi-Kawai equivalence.

  19. BF gravity with Immirzi parameter and matter fields

    CERN Document Server

    Montesinos, Merced

    2011-01-01

    We perform the coupling of the scalar, Maxwell, and Yang-Mills as well as the cosmological constant to BF gravity with Immirzi parameter. The proposed action principles employ auxiliary fields in order to keep a polynomial dependence on the two-forms. By handling the equations of motion for the B field and for the auxiliary fields, the latter can be expressed in terms of the physical fields and by substituting these expressions into the original action principles we recover the first-order (Holst) and second-order actions for gravity coupled to the physical matter fields. We consider these results a relevant step towards the understanding of the coupling of matter fields to gravity in the theoretical framework of BF theory.

  20. Gauge coupling unification in gauge-Higgs grand unification

    Science.gov (United States)

    Yamatsu, Naoki

    2016-04-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  1. Basis Tensor Gauge Theory

    CERN Document Server

    Chung, Daniel J H

    2016-01-01

    We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.

  2. CogGauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...

  3. Gauge theories and holisms

    Science.gov (United States)

    Healey, Richard

    Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.

  4. Schwinger mechanism in linear covariant gauges

    CERN Document Server

    Aguilar, A C; Papavassiliou, J

    2016-01-01

    In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully-dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modelled by means of certain physically motivated Ans\\"atze. The gauge-dependent terms contributing to this ke...

  5. Improved Lattice Renormalization Group Techniques

    CERN Document Server

    Petropoulos, Gregory; Hasenfratz, Anna; Schaich, David

    2013-01-01

    We compute the bare step-scaling function $s_b$ for SU(3) lattice gauge theory with $N_f = 12$ massless fundamental fermions, using the non-perturbative Wilson-flow-optimized Monte Carlo Renormalization Group two-lattice matching technique. We use a short Wilson flow to approach the renormalized trajectory before beginning RG blocking steps. By optimizing the length of the Wilson flow, we are able to determine an $s_b$ corresponding to a unique discrete $\\beta$ function, after a few blocking steps. We carry out this study using new ensembles of 12-flavor gauge configurations generated with exactly massless fermions, using volumes up to $32^4$. The results are consistent with the existence of an infrared fixed point (IRFP) for all investigated lattice volumes and number of blocking steps. We also compare different renormalization schemes, each of which indicates an IRFP at a slightly different value of the bare coupling, as expected for an IR-conformal theory.

  6. Investigations on landmine detection by BF3 detector

    Institute of Scientific and Technical Information of China (English)

    D.Rezaei OCHBELAGH; H.Miri HAKIMABAD; R.Izadi NAJAFABADI

    2007-01-01

    Experiments were carried out to investigate the possible use of neutron backscattering for the detection of polyethylene (PE) sample buried in the soil. In detection of landmine by neutrons, the neutron detector and its shield play an important role. In this paper, the effects of graphite, heavy water, polyethylene and boric acid moderators on the flux of back scattered neutrons were investigated. We have also experimentally verified the effect of BF3 detector shield and obtained good agreement with theory.

  7. Landing Procedure in Model Ditching Tests of Bf 109

    Science.gov (United States)

    Sottorf, W.

    1949-01-01

    The purpose of the model tests is to clarify the motions in the alighting on water of a land plane. After discussion of the model laws, the test method and test procedure are described. The deceleration-time-diagrams of the landing of a model of the Bf 109 show a high deceleration peek of greater than 20g which can be lowered to 4 to 6g by radiator cowling and brake skid.

  8. Fuzzy Prediction of Silicon Content for BF Hot Metal

    Institute of Scientific and Technical Information of China (English)

    LI Qi-hui; LIU Xiang-guan

    2005-01-01

    Some key operation variables influencing hotmetal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.

  9. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  10. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  11. Matrix product states for gauge field theories.

    Science.gov (United States)

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  12. Heavy Dynamical Fermions in Lattice QCD

    CERN Document Server

    Hasenfratz, Anna; Hasenfratz, Anna; Grand, Thomas A. De

    1994-01-01

    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by $N_f$ flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and $N_f$. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at $\\beta=0$ induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.

  13. Curious Variables Experiment (CURVE). Three Periodicities of BF Ara

    CERN Document Server

    Olech, A; Schwarzenberg-Czerny, A

    2008-01-01

    We report CCD photometry of the dwarf nova BF Ara throughout fifteen consecutive nights in quiescence. Light curve in this interval is dominated by a large amplitude around 0.8 mag modulation consisting two periods. Higher amplitude signal is characterized by period of 0.082159(4) days, which was increasing at the rate of dotP/Psh = 3.8(3)* 10^{-5}. Weaker and stable signal has period of 0.084176(21) days. Knowing the superhump period of BF Ara determined by Kato et al. (2003) and equal to 0.08797(1) days, the first modulation is interpreted as quiescent negative superhump arising from retrograde precesion of titled accretion disk and the latter one as an orbital period of the binary. The respective period excess and defect are epsilon_+ = 4.51% +/- 0.03% and epsilon_- = -2.44% +/- 0.02%. Thus BF Ara is yet another in-the-gap nova with mass ratio q of around 0.21.

  14. RgBF2(+) complexes (Rg = Ar, Kr, and Xe): the cations with large stabilities.

    Science.gov (United States)

    Lv, Zhi; Chen, Guang-Hui; Li, Dan; Wu, Di; Huang, Xiao-Chun; Li, Zhi-Ru; Liu, Wen-Guang

    2011-04-21

    Rare gas containing cations with general formula [Rg, B, 2F](+) have been investigated theoretically by second-order Mo̸ller-Plesset perturbation, coupled cluster, and complete active space self-consistent field levels of theory with correlation-consistent basis sets. Totally two types of minima, i.e., boron centered C(2) (v) symmetried RgBF(2) (+) (Rg = Ar, Kr, and Xe) which can be viewed as loss of F(-) from FRgBF(2) and linear FRgBF(+) (Rg = Kr and Xe) are obtained at the CCSD(T)∕aug-cc-pVTZ∕SDD and CASSCF(10,8)∕aug-cc-pVTZ∕SDD levels, respectively. It is shown that the RgBF(2) (+) are global minima followed by FRgBF(+) at 170.9 and 142.2 kcal∕mol on the singlet potential-energy surfaces of [Rg, B, 2F](+) (Rg = Kr and Xe) at the CASPT2(10,8) ∕aug-cc-pVTZ∕SDD∕∕CASSCF(10,8)∕aug-cc-pVTZ∕SDD, respectively. The interconversion barrier heights between RgBF(2) (+) and FRgBF(+) (Rg = Kr and Xe) are at least 39 kcal∕mol. In addition, no dissociation transition state associated with RgBF(2) (+) and FRgBF(+) can be found. This suggests that RgBF(2) (+) (Rg = Ar, Kr, and Xe) can exist as both thermodynamically and kinetically stable species, while linear FRgBF(+) (Rg = Kr and Xe) can exist as metastable species compared with the lowest dissociation limit energies just like isoelectronic linear FRgBO and FRgBN(-). From natural bond orbital and atoms-in-molecules calculations, it is found that the positive charge is mainly located on Rg and boron atoms for both types of minima, the Rg-B bonds of ArBF(2) (+), KrBF(2) (+), and XeBF(2) (+) are mostly electrostatic, thus can be viewed as ion-induced dipole interaction; while that of linear FKrBF(+) and FXeBF(+) are covalent in nature. The previous experimental observation of ArBF(2) (+) by Pepi et al. [J. Phys. Chem. B. 110, 4492 (2006)] should correspond to C(2) (v) minimum. The presently predicted spectroscopies of KrBF(2) (+), XeBF(2) (+), FKrBF(+), and FXeBF(+) should be helpful for their experimental

  15. Measurement of the ratio of branching fractions BF(B^+/- --> J/psi pi^+/-)/BF(B^+/- --> J/psi K^+/-)

    CERN Document Server

    Aubert, Bernard

    2001-01-01

    We present a measurement of the ratio of branching fractions BF(B^+/- --> J/psi pi^+/-)/BF(B^+/- --> J/psi K^+/-). The data were collected in 1999-2000 with the BABAR detector at the PEP-II asymmetric B Factory at SLAC and correspond to an integrated luminosity of 20.7 fb^{-1}. We observe a signal of 51 +/- 10 B^+/- --> J/psi pi^+/- events and determine the ratio BF(B^+/- --> J/psi pi^+/-)/BF(B^+/- --> J/psi K^+/-) to be [3.91+/-0.78 (stat.) +/-0.19 (syst.)]%.

  16. Landau gauge Yang-Mills correlation functions

    Science.gov (United States)

    Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2016-09-01

    We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.

  17. Gauge Model with Massive Gravitons

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.

  18. Covariant gauges without Gribov ambiguities in Yang-Mills theories

    CERN Document Server

    Serreau, Julien; Tresmontant, Andréas

    2013-01-01

    We propose a formulation of a certain class of nonlinear covariant gauges as an extremization procedure that can be implemented on the lattice. At high energies, where the Gribov ambiguities can be ignored, this reduces to the Curci-Ferrari-Delbourgo-Jarvis gauges. We further propose a continuum formulation in terms of a local action which is free of Gribov ambiguities and avoids the Neuberger zero problem of the standard Faddeev-Popov construction. This involves an averaging over Gribov copies with a nonuniform weight, which introduces a new gauge-fixing parameter. We show that the proposed gauge-fixed action is perturbatively renormalizable in four dimensions and we provide explicit expressions of the renormalization factors at one loop. We discuss the possible implications of the present proposal for the calculation of Yang-Mills correlators.

  19. Covariant gauges without Gribov ambiguities in Yang-Mills theories

    Science.gov (United States)

    Serreau, J.; Tissier, M.; Tresmontant, A.

    2014-06-01

    We propose a one-parameter family of nonlinear covariant gauges which can be formulated as an extremization procedure that may be amenable to lattice implementation. At high energies, where the Gribov ambiguities can be ignored, this reduces to the Curci-Ferrari-Delbourgo-Jarvis gauges. We further propose a continuum formulation in terms of a local action which is free of Gribov ambiguities and avoids the Neuberger zero problem of the standard Faddeev-Popov construction. This involves an averaging over Gribov copies with a nonuniform weight, which introduces a new gauge-fixing parameter. We show that the proposed gauge-fixed action is perturbatively renormalizable in four dimensions and we provide explicit expressions of the renormalization factors at one loop. We discuss the possible implications of the present proposal for the calculation of Yang-Mills correlators.

  20. Two-color gauge theory with novel infrared behavior.

    Science.gov (United States)

    Appelquist, T; Brower, R C; Buchoff, M I; Cheng, M; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Schroeder, C; Syritsyn, S; Voronov, G; Vranas, P; Witzel, O

    2014-03-21

    Using lattice simulations, we study the infrared behavior of a particularly interesting SU(2) gauge theory, with six massless Dirac fermions in the fundamental representation. We compute the running gauge coupling derived nonperturbatively from the Schrödinger functional of the theory, finding no evidence for an infrared fixed point up through gauge couplings g(2) of order 20. This implies that the theory either is governed in the infrared by a fixed point of considerable strength, unseen so far in nonsupersymmetric gauge theories, or breaks its global chiral symmetries producing a large number of composite Nambu-Goldstone bosons relative to the number of underlying degrees of freedom. Thus either of these phases exhibits novel behavior.

  1. N=4 Supersymmetric Yang-Mills Theory on Orbifold-$T^4/{\\bf Z}_2$

    CERN Document Server

    Jinzenji, M; Jinzenji, Masao; Sasaki, Toru

    2001-01-01

    We derive the partition function of N=4 supersymmetric Yang-Mills theory on orbifold-$T^4/{\\bf Z}_2$. In classical geometry, K3 surface is constructed from the orbifold-$T^4/{\\bf Z}_2$. Along the same way as the orbifold construction, we construct the partition function of K3 surface from orbifold-$T^4/{\\bf Z}_2$. The partition function is given by the product of the contribution of the untwisted sector of $T^4/{\\bf Z}_2$, and that of the twisted sector of $T^4/{\\bf Z}_2$ i.e., ${\\cal O}(-2)$ curve blow-up formula.

  2. Lattice Stern-Gerlach experiment

    CERN Document Server

    Luschevskaya, E V; Teryaev, O V

    2016-01-01

    We investigate the dependence of ground state energies of charged vector $\\rho$ and $K^{*}$ mesons on the value of magnetic field in the $SU(3)$ lattice gauge theory. It has been shown that the energy of a vector particle strongly depends on its spin projection on the field axis, and the magnetic dypole polarizability and hyperpolarizabilities give a large contribution to the meson energy at large fields. We calculate the g-factor of $\\rho^{\\pm}$ and $K^{*\\pm}$ mesons. Tensor of the dypole magnetic polarizability of the charged $\\rho$ meson at rest has been found.

  3. Characterization of HIV-1 CRF90_BF1 and putative novel CRFs_BF1 in Central West, North and Northeast Brazilian regions.

    Science.gov (United States)

    Reis, Mônica Nogueira da Guarda; Bello, Gonzalo; Guimarães, Monick Lindenmeyer; Stefani, Mariane Martins Araújo

    2017-01-01

    The Brazilian AIDS epidemic has been characterized by an increasing rate of BF1 recombinants and so far eight circulating recombinant forms/CRFs_BF1 have been described countrywide. In this study, pol sequences (protease/PR, reverse transcriptase/RT) of 87 BF1 mosaic isolates identified among 828 patients living in six Brazilian States from three geographic regions (Central West, North, Northeast) were analyzed. Phylogenetic and bootscan analyses were performed to investigate the evolutionary relationship and mosaic structure of BF1 isolates. Those analyses showed that 20.7% of mosaics (18 out of 87) were CRFs-like isolates, mostly represented by CRF28/CRF29_BF-like viruses (14 out of 18). We also identified five highly supported clusters that together comprise 42 out of 87 (48.3%) BF1 sequences, each cluster containing at least five sequences sharing a similar mosaic structure, suggesting possible new unidentified CRFs_BF1. The divergence time of these five potential new CRFs_BF1 clusters was estimated using a Bayesian approach and indicate that they probably originated between the middle 1980s and the middle 1990s. DNA was extracted from whole blood and four overlapping fragments were amplified by PCR providing full/near full length genomes (FLG/NFLG) and partial genomes. Eleven HIV-1 isolates from Cluster # 5 identified in epidemiologically unlinked individuals living in Central West and North regions provided FLG/NFLG/partial genome sequences with identical mosaic structure. These viruses differ from any known CRF_BF1 reported to date and were named CRF90_BF1 by the Los Alamos National Laboratory. This is the 9th CRF_BF1 described in Brazil and the first one identified in Central West and North regions. Our results highlight the importance of continued molecular screening and surveillance studies, especially of full genome sequences to understand the evolutionary dynamics of the HIV-1 epidemic in a country of continental dimensions as Brazil.

  4. Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport.

    Science.gov (United States)

    Choi, Yeji; Hong, Gil Hwan; Kang, Sang Wook

    2016-03-01

    The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4)/LiBF4 electrolyte was prepared for highly selective facilitated CO2 transport membranes. When LiBF4 was incorporated into BMIM BF4, synergy effects by free Li+ ion and imidazolium cations is expected to enhance the separation performance for CO2/N2 and CO2/CH4. The free state of BF4- ions in BMIM BF4/LiBF4 solutions was investigated by FT-Raman spectroscopy. For the coordination of LiBF4 with BMIMBF4, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) was utilized. Electrolyte membranes consisting of BMIM BF4 and LiBF4 showed selectivities of 8.40 and 8.25 for CO2/N2 and CO2/CH4, respectively. Neat BMIM BF4 membrane showed selectivities of 5.0 and 4.8, respectively. Enhanced separation performance was attributed to increased free Li+ and abundant free imidazolium cations.

  5. Gauge Fields and Inflation

    CERN Document Server

    Maleknejad, A; Soda, J

    2012-01-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors "scalar driven" early Universe inflationary models. Non-scalar fields, and in particular gauge fields, are on the other hand commonplace in all high energy particle physics models proposed to be at work at the upper bound on energy scale of inflation set by the current CMB observations. In this review we consider the role and consequences, theoretical and observational, that gauge fields can have during inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main class of models with gauge fields in the background, models which show violation of cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of the...

  6. Strong Coupling Gauge Theories in LHC ERA

    Science.gov (United States)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  7. Coulomb crystals in the harmonic lattice approximation

    CERN Document Server

    Baiko, D A; De Witt, H E; Slattery, W L

    2000-01-01

    The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...

  8. I - Conservation of Gravitational Energy-Momentum and Inner Diffeomorphism Group Gauge Invariance

    CERN Document Server

    Wiesendanger, C

    2011-01-01

    Viewing gravitational energy momentum $p_G^\\mu$ as equal by observation, but different in essence from inertial energy-momentum $p_I^\\mu$ requires two different symmetries to account for their independent conservations - spacetime and inner translation invariance. Gauging the latter a generalization of non-Abelian gauge theories of compact Lie groups is developed resulting in the gauge theory of the non-compact group of volume-preserving diffeomorphisms of an inner Minkowski space ${\\bf M}^{\\sl 4}$. As usual the gauging requires the introduction of a covariant derivative, a gauge field and a field strength operator. An invariant and minimal gauge field Lagrangian is derived. The classical field dynamics and the conservation laws for the new gauge theory are developed. Finally, the theory's Hamiltonian in the axial gauge is expressed by two times six unconstrained independent canonical variables obeying the usual Poisson brackets and the positivity of the Hamiltonian is related to a condition on the support of...

  9. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model

    Science.gov (United States)

    Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-12-01

    In this paper, we study theoretically atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice by using an extended Bose-Hubbard model with intersite repulsions on a 3D optical lattice. Here, the phase and density fluctuations of the boson variable on each site of the optical lattice describe the vector potential and the electric field on each link of the gauge-model lattice, respectively. The target gauge model is different from the standard Wilson-type U(1) gauge-Higgs model because it has plaquette and Higgs interactions with asymmetric couplings in the space-time directions. Nevertheless, the corresponding quantum simulation is still important as it provides us with a platform to study unexplored time-dependent phenomena characteristic of each phase in the general gauge-Higgs models. To determine the phase diagram of the gauge-Higgs model at zero temperature, we perform Monte Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the confinement and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time evolution of an electric flux that initially is put on a straight line connecting two external point charges. We also calculate the potential energy between this pair of charges and obtain the string tension in the confinement phase. Finally, we propose a feasible experimental setup for the atomic simulations of this quantum gauge-Higgs model on the 3D optical lattice. These results may serve as theoretical guides for future experiments.

  10. Gauge/Liouville Triality

    CERN Document Server

    Aganagic, Mina; Kozcaz, Can; Shakirov, Shamil

    2013-01-01

    Conformal blocks of Liouville theory have a Coulomb-gas representation as Dotsenko-Fateev (DF) integrals over the positions of screening charges. For q-deformed Liouville, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in DF representation, as the partition functions of a class of 3d U(N) gauge theories with N=4 supersymmetry, mass deformed to N=2, in the Omega-background. Coupling the 3d gauge theory to a hypermultiplet in fundamental representation corresponds to inserting a Liouville vertex operator; the two real mass parameters determine the momentum and position of the puncture. The DF integrals can be computed by residues. The result is the instanton sum of a five dimensional N=1 gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.

  11. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  12. Gauged Q balls

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.

    1989-03-15

    Classical nontopological soliton configurations are considered within the theory of a complex scalar field with a gauged U(1) symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U(1) symmetry is broken, the gauge field becomes massive, and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q matter in bulk form. We also briefly discuss solitons with fermions in a U(1) gauge theory.

  13. Gauged Q-balls

    Science.gov (United States)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  14. Gauged Q-balls

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.

    1988-09-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  15. Locality properties of Neuberger's lattice Dirac operator

    Science.gov (United States)

    Hernández, Pilar; Jansen, Karl; Lüscher, Martin

    1999-07-01

    The gauge covariant lattice Dirac operator D which has recently been proposed by Neuberger satisfies the Ginsparg-Wilson relation and thus preserves chiral symmetry. The operator also avoids a doubling of fermion species, but its locality properties are not obvious. We now prove that D is local (with exponentially decaying tails) if the gauge field is sufficiently smooth at the scale of the cutoff. Further analytic and numerical studies moreover suggest that the locality of the operator is in fact guaranteed under far more general conditions.

  16. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  17. Holographic Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study

    2009-06-19

    We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.

  18. Commensurability effects in holographic homogeneous lattices

    CERN Document Server

    Andrade, Tomas

    2015-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous ...

  19. Lattice field theory applications in high energy physics

    Science.gov (United States)

    Gottlieb, Steven

    2016-10-01

    Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.

  20. Lattice field theory applications in high energy physics

    CERN Document Server

    Gottlieb, Steven

    2016-01-01

    Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.

  1. BF gravity with Immirzi parameter and cosmological constant

    CERN Document Server

    Montesinos, Merced; 10.1103/PhysRevD.81.044033

    2010-01-01

    The action principle of the BF type introduced by Capovilla, Montesinos, Prieto, and Rojas (CMPR) which describes general relativity with Immirzi parameter is modified in order to allow the inclusion of the cosmological constant. The resulting action principle is on the same footing as the original Plebanski action in the sense that the equations of motion coming from the new action principle are equivalent to the Holst action principle plus a cosmological constant without the need of imposing additional restrictions on the fields. We consider this result a relevant step towards the coupling of matter fields to gravity in the framework of the CMPR action principle.

  2. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  3. Perfect and Imperfect Gauge Fixing

    CERN Document Server

    Shirzad, A

    2006-01-01

    Gauge fixing may be done in different ways. We show that using the chain structure to describe a constrained system, enables us to use either a perfect gauge, in which all gauged degrees of freedom are determined; or an imperfect gauge, in which some first class constraints remain as subsidiary conditions to be imposed on the solutions of the equations of motion. We also show that the number of constants of motion depends on the level in a constraint chain in which the gauge fixing condition is imposed. The relativistic point particle, electromagnetism and the Polyakov string are discussed as examples and perfect or imperfect gauges are distinguished.

  4. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  5. Quantum Engineering of Dynamical Gauge Fields on Optical Lattices

    Science.gov (United States)

    2016-07-08

    exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian

  6. Finite Density Lattice Gauge Theories with Positive Fermion Determinants

    CERN Document Server

    Sinclair, D K; Toublan, D

    2004-01-01

    We perform simulations of (3-colour) QCD with 2 quark flavours at a finite chemical potential $\\mu_I$ for isospin($I_3$), and of 2-colour QCD at a finite chemical potential $\\mu$ for quark number. At zero temperature, QCD at finite $\\mu_I$ has a mean-field phase transition at $\\mu_I=m_\\pi$ to a superfluid state with a charged pion condensate which spontaneously breaks $I_3$. We study the finite temperature transition as a function of $\\mu_I$. For $\\mu_I m_\\pi$ this becomes a true phase transition where the pion condensate evaporates. For $\\mu_I$ just above $m_\\pi$ the transition seems to be second order, while for larger $\\mu_I$ it appears to become first order. At zero temperature, 2-colour QCD also possesses a superfluid state with a diquark condensate. We study its spectrum of Goldstone and pseudo-Goldstone bosons associated with chiral and quark-number symmetry breaking.

  7. Finite quantum gauge theories

    Science.gov (United States)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  8. Gauge Theories of Gravitation

    CERN Document Server

    Blagojević, Milutin

    2012-01-01

    During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...

  9. Thermally favourable gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Dalianis, Ioannis, E-mail: Ioannis.Dalianis@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: Zygmunt.Lalak@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)

    2011-03-14

    We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.

  10. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  11. Gauging without Initial Symmetry

    CERN Document Server

    Kotov, Alexei

    2016-01-01

    The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...

  12. Emergent Gauge Fields

    CERN Document Server

    Freund, Peter G O

    2010-01-01

    Erik Verlinde's proposal of the emergence of the gravitational force as an entropic force is extended to abelian and non-abelian gauge fields and to matter fields. This suggests a picture with no fundamental forces or forms of matter whatsoever.

  13. Dissociative Ionization of BF3 and its fragments

    Science.gov (United States)

    Nikolic, Milka; Raskovic, Marija; Popovic, Svetozar; Vuskovic, Leposava

    2009-05-01

    Dominant contribution of particular molecular orbitals to the individual fragment production exists, in some cases, in the dissociative ionization by electron impact [1]. We have calculated the electron-impact ionization rates of BF3 and its fragments. In our calculation electronic structures of BF3 and its fragments were described with several empirical basic sets. After geometry optimization using density functional method B3LYP, MO parameters were calculated with UHF, CCSD(T) and OVGF methods [2]. Electron-impact ionization cross-sections were calculated employing the Binary-Encounter-Bethe approximation and results were compared with available experimental data. In the absence of clear-cut assignment, the fractional MO-fragment correlation was made using geometry considerations. As the final test of the method, we compared the ionization rates for electron energy distribution present in sheath mode of the repetitively pulsed d.c. diode system with those obtained experimentally. [1] S. Popovic, S. Williams, and L.Vuskovic, Phys. Rev. A 73, 022711, (2006). [2] Y-K Kim, K. K. Irikura, AIP conferences proceedings 543, 220 (2000).

  14. Lattice QCD based on OpenCL

    CERN Document Server

    Bach, Matthias; Philipsen, Owe; Pinke, Christopher

    2012-01-01

    We present an OpenCL-based Lattice QCD application using a heatbath algorithm for the pure gauge case and Wilson fermions in the twisted mass formulation. The implementation is platform independent and can be used on AMD or NVIDIA GPUs, as well as on classical CPUs. On the AMD Radeon HD 5870 our double precision dslash implementation performs at 60 GFLOPS over a wide range of lattice sizes. The hybrid Monte-Carlo presented reaches a speedup of four over the reference code running on a server CPU.

  15. A Lattice Calculation of Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins; Univ. of Southern Denmark, Odense (Denmark). Danish IAS; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Hadjiyiannakou, Kyriakos [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2015-04-15

    We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N{sub f}=2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.

  16. String Breaking in Four Dimensional Lattice QCD

    CERN Document Server

    Duncan, A; Thacker, H

    2001-01-01

    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O($a^2$) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R $\\geq$ approximately 1 fm.

  17. A Lattice Calculation of Parton Distributions

    CERN Document Server

    Alexandrou, Constantia; Drach, Vincent; Garcia-Ramos, Elena; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian

    2015-01-01

    We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using Nf = 2 + 1 + 1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.

  18. Gluon and Ghost Dynamics from Lattice QCD

    CERN Document Server

    Oliveira, O; Dudal, D; Silva, P J

    2016-01-01

    The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.

  19. Gluon and Ghost Dynamics from Lattice QCD

    Science.gov (United States)

    Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.

    2017-03-01

    The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.

  20. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  1. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  2. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  3. Magnetic vortices in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Migael

    2014-07-18

    We study strongly-coupled phenomena using gauge/gravity duality, with a particular focus on vortex solutions produced by magnetic field and time-dependent problems in holographic models. The main result is the discovery of a counter-intuitive effect where a strong non-abelian magnetic field induces the formation of a triangular vortex lattice ground state in a simple holographic model. Gauge/gravity duality is a powerful theoretical tool that has been used to study strongly-coupled systems ranging from the quark-gluon plasma produced at particle colliders to condensed matter theories. The most important idea is that of duality: a strongly coupled quantum field theory can be studied by investigating the properties of a particular gravity background described by Einstein's equations. One gravity background we study in this dissertation is AdS-Schwarzschild with an SU(2) gauge field. We switch on the gauge field component that gives the field theory an external magnetic field. When the magnetic field is above a critical value, we find that the system is unstable, indicating a superconducting phase transition. We find the instability in two ways. Firstly, we do a quasinormal mode analysis, studying fluctuations about the background. Secondly, we rewrite the equations in Schroedinger form and numerically find that, as the magnetic field is increased, the potential deepens until it is capable of supporting a bound state. Next we show that the resulting superconducting ground state is a triangular vortex lattice. This is done by performing a perturbative expansion in a small parameter proportional to the condensate size. After solving the equations to third order, we use the holographic dictionary to calculate the total energy of different lattice solutions and identify the minimum energy state. In addition, we show that the result holds in an AdS-hard wall model as well, which is dual to a confining theory. Next we extend the simple gravity model to include a

  4. How to do mean field theory in Feynman gauge and doing it for U(1) with corrections to fourth order

    Energy Technology Data Exchange (ETDEWEB)

    Flyvbjerg, H.

    1984-07-02

    It is demonstrated how mean field theory with corrections from fluctuations may be applied to lattice gauge theories in covariant gauges. By fixing the gauge at tree level, the importance of fluctuations is decreased. This is understood as inclusion of terms of next-to-leading-order in d in the definition of the mean field tree approximation, d being the dimension of the lattice. The gauge group U(1) and Wilson's action are used as testing ground. Tree and one-loop results comparable to those previously obtained in axial gauge are obtained in for d=4. The next three correction terms to the free and plaquette energies are evaluated in Feynmann gauge. The truncated asympotic series thus obtained is compared to that of the ordinary weak coupling expansion. The mean field series gives, to those orders studied, a much better approximation. The location of phase transitions in 4d and 5d are predicted with 1% error bars.

  5. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    Science.gov (United States)

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone.

  6. Dual Lattice of ℤ-module Lattice

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-07-01

    Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].

  7. Renormalisation group flows for gauge theories in axial gauges

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.

  8. Analysis of HIV type 1 BF recombinant sequences from South America dates the origin of CRF12_BF to a recombination event in the 1970s.

    Science.gov (United States)

    Dilernia, Dario A; Jones, Leandro R; Pando, Maria A; Rabinovich, Roberto D; Damilano, Gabriel D; Turk, Gabriela; Rubio, Andrea E; Pampuro, Sandra; Gomez-Carrillo, Manuel; Salomón, Horacio

    2011-05-01

    HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants.

  9. Possibility of the BF Ori rotation slowdown due to the orbital synchronization

    Science.gov (United States)

    Shulman, S. G.

    2016-11-01

    BF Ori is an UX Ori type star with a very slow projected rotational velocity. We analyzed a possibility of the slowdown due to the synchronization in close binary systems. We hypothesized that BF Ori has a companion and estimated its properties as it might be massive and close enough to make this slowdown possible. The conclusion that the rotational velocity of BF Ori is apparently not a result of the tidal interaction with a low mass companion is made.

  10. QCD-like technicolor on the lattice

    CERN Document Server

    Rummukainen, Kari

    2011-01-01

    This talk gives an overview, aimed at non-experts, of the recent progress on the studies of technicolor models on the lattice. Phenomenologically successful technicolor models require walking coupling; thus, an emphasis is put on the determination of the beta-function of various models. As a case study we consider SU(2) gauge field theory with two adjoint representation fermions, so-called minimal walking technicolor theory.

  11. Gravitation Gauge Group

    CERN Document Server

    Ter-Kazarian, G T

    1997-01-01

    Suggested theory involves a drastic revision of a role of local internal symmetries in physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries is generalized. The gravitation gauge group is proposed, which is generated by hidden local internal symmetries. The developed mechanism enables one to infer Einstein's equation of gravitation, but only with strong difference from Einstein's theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as general distortion of manifold G(2.2.3) with hidden group U(1) was considered.

  12. Gauged Flavor Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Heeck, Julian

    2013-04-15

    Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.

  13. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  14. Are gauge shocks really shocks?

    CERN Document Server

    Alcubierre, M

    2005-01-01

    The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.

  15. Gauging Variational Inference

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2017-05-25

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.

  16. Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice

    CERN Document Server

    Hietanen, Ari; Sannino, Francesco; Søndergaard, Ulrik Ishøj

    2012-01-01

    We study the gauge dynamics of an SO(4)-gauge theory with two Dirac Wilson fermions transforming according to the vector representation of the gauge group. We determine the lattice phase diagram by locating the strong coupling bulk phase transition line and the zero PCAC mass line. We present results for the spectrum of the theory. In particular we measure the pseudoscalar, vector and axial meson masses. The data are consistent with a chiral symmetry breaking scenario rather than a conformal one. When used to break the electroweak symmetry dynamically the model leads to a natural dark matter candidate.

  17. Diquark correlations in baryons on the lattice with overlap quarks

    Energy Technology Data Exchange (ETDEWEB)

    Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik

    2007-01-15

    We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)

  18. Finite-temperature study of eight-flavor SU(3) gauge theory

    CERN Document Server

    Schaich, David; Rinaldi, Enrico

    2015-01-01

    We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 \\lesssim 20$ on lattice volumes as large as $48^3 \\times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupled lattice phase as the mass decreases. That is, finite-temperature studies with this lattice action require even larger $N_T > 24$ to directly confirm spontaneous chiral symmetry breaking.

  19. Computer modeling of piezoresistive gauges

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, G. L.; Hallquist, J. O.

    1981-08-07

    A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.

  20. On non-trivial spectra of trivial gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Korcyl, Piotr [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics; Koren, Mateusz; Wosiek, Jacek [Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics

    2012-08-15

    In this Letter we point out that the analytic solution of the two dimensional U(1) gauge theory, on a finite lattice, reveals in the continuum limit the renowned Manton's spectrum of topological electric fluxes together with their effective hamiltonian and wave functions. We extend this result for the system with strings and external charges providing also a novel interpretation of the {Theta} parameter. Some further generalizations are also outlined.

  1. Zero-momentum modes and chiral limit in compact lattice QED

    CERN Document Server

    Bogolubsky, I L; Müller-Preussker, M; Zverev, N V

    2001-01-01

    The influence of zero-momentum gauge modes on physical observables is investigated for compact lattice QED with dynamical and quenched Wilson fermions. Within the Coulomb phase, zero-momentum modes are shown to hide the critical behaviour of gauge invariant fermion observables near the chiral limit. Methods for eliminating zero-momentum modes are discussed.

  2. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ionic liquid [EMIM][BF4]-based polymer electrolyte films

    Science.gov (United States)

    Saroj, A. L.; Singh, R. K.; Chandra, S.

    2014-07-01

    Free-standing polymer electrolyte membranes based on poly(vinyl) pyrrolidone (PVP)/salt(LiBF4) having different amounts of ionic liquid (IL) [EMIM][BF4] were prepared and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and alternating current (AC) impedance spectroscopic techniques. The DSC results show a shift in Tm of PVP with salt/or IL content. TGA and DTGA (first derivative of TGA) results give evidence of the presence of uncomplexed PVP, PVP/salt, and PVP/IL complexes. Signatures of these entities are also present in the dielectric spectra. Complexation of PVP with salt and IL has been confirmed by FT-IR analysis. Electrical conductivity as a function of temperature has been studied for PVP/LiBF4/IL [EMIM][BF4]. Role of IL in changing phase transition, conductivity, and dielectric relaxation frequency has been discussed.

  3. Ideal walking dynamics via a gauged NJL model

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-01-01

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu-Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. We therefore study the SU(2......) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling......, reaching γm∼1 close to the chiral symmetry breaking transition, de facto making the present model the first explicit realization of the ideal walking scenario....

  4. Coulomb gauge ghost propagator and the Coulomb form factor

    CERN Document Server

    Quandt, M; Chimchinda, S; Reinhardt, H

    2008-01-01

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  5. Coulomb gauge ghost propagator and the Coulomb form factor

    Science.gov (United States)

    Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.

    The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.

  6. Towards the spectrum of a GUT from gauge invariance

    CERN Document Server

    Törek, Pascal

    2015-01-01

    The description of electroweak physics using perturbation theory is highly successful. Though not obvious, this is due to a subtle field-theoretical effect, the Fr\\"ohlich-Morchio-Strocchi mechanism, which links the physical spectrum to that of the elementary particles. This works because of the special structure of the standard model, and it is not a priori clear whether it works for structurally different theories. Candidates for conflicts are, e.g., grand unified theories. We study this situation in a toy model, a $SU(3)$ gauge theory with two Higgs fields and a breaking pattern $SU(3) \\rightarrow SU(2) \\rightarrow 1$. This mimics the weak-Higgs sector of the standard model. We determine the leading order predictions for the gauge invariant spectrum in this theory, and discuss a setup to test them using lattice gauge theory.

  7. Asymptotic behavior of large polygonal Wilson loops in confining gauge theories

    CERN Document Server

    Pobylitsa, P V

    2016-01-01

    In the framework of effective string theory (EST), the asymptotic behavior of a large Wilson loop in confining gauge theories can be expressed via Laplace determinant with Dirichlet boundary condition on the Wilson contour. For a general polygonal region, Laplace determinant can be computed using the conformal anomaly and Schwarz-Christoffel transformation. One can construct ratios of polygonal Wilson loops whose large-size limit can be expressed via computable Laplace determinants and is independent of the (confining) gauge group. These ratios are computed for hexagon polygons both in EST and by Monte Carlo (MC) lattice simulations for the tree-dimensional lattice Z2 gauge theory (dual to Ising model) near its critical point. For large hexagon Wilson loops a perfect agreement is observed between the asymptotic EST expressions and the lattice MC results.

  8. Second-order Gauge-invariant Cosmological Perturbation Theory 2; Perturbations of energy momentum tensors and equations of motion for matter fields

    CERN Document Server

    Nakamura, Kouji

    2008-01-01

    Some formulae for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four dimensional homogeneous isotropic universe, which is developed in the papers [K. Nakamura, Prog. Theor. Phys. {\\bf 117} (2005), 17.]. We derive the formulae for the perturbations of the energy momentum tensors and equations of motion in the cases of a perfect fluid, an imperfect fluid, and a signle scalar field, and show that all equations are derived in terms of gauge-invariant variables without any gauge fixing.

  9. Properties of the Faddeev-Popov operator in the Landau gauge, matter confinement and soft BRST breaking

    CERN Document Server

    Capri, M A L; Justo, I F; Palhares, L F; Sorella, S P

    2014-01-01

    In light of the development of the Gribov issue for pure Euclidean gauge theories and of the recent lattice measurement of soft breaking of the BRST invariance in Yang-Mills theories in the Landau gauge, we consider non-perturbative features in the gauge-interacting matter sector and their relation with general properties of the Faddeev-Popov operator. A signature for BRST breaking in the matter sector is proposed and a local and renormalizable framework is constructed, accommodating this signature and predicting non-perturbative matter propagators that are consistent with available lattice data for adjoint scalars and quarks.

  10. Visualization Tools for Lattice QCD - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.

  11. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  12. Gauge Mediation with Gauge Messengers in SU(5)

    CERN Document Server

    Matos, Luis

    2010-01-01

    The inclusion of gauge messengers in models of gauge mediation allows for more general predictions that those described by the framework of general gauge mediation. Motivated by this, we explore some models of gauge mediation with gauge messengers in SU(5) GUTs. In most previous attempts of building viable models where gauge messengers play a role in determining the soft terms, squark and/or slepton masses turned out to be tachyonic. The objective of this paper is to address this problem and propose two possible solutions, one of which has a natural realization in the solution of the doublet-triplet problem. Another interesting result is that in these models the association of SUSY breaking with the breaking of the GUT group provides a simple mechanism that can explain why $SU(5)\\rightarrow SU(3)\\times SU(2) \\times U(1)$ is preferred over other symmetry breaking patterns.

  13. Effect of adding Ar gas on the pulse height distribution of BF3-filled neutron detectors

    Indian Academy of Sciences (India)

    M Padalakshmi; A M Shaikh

    2008-11-01

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter gas. Worsening of plateau characteristics is observed with increasing radius due to impurities in gas. To overcome this problem, counters are filled with BF3 with an admixture of a more suitable gas such as argon. The dilution of BF3 with argon causes a decrease in detection efficiency, but the pulse height spectrum shows sharper peaks and more stable plateau characteristics than counters filled with pure BF3. The present investigations are under-taken to study the pulse height distribution and other important factors in BF3+Ar filled signal counters for neutron beam applications. Tests are performed with detectors with cylindrical geometry filled with BF3 gas enriched in 10B to 90%, and high purity Ar in different proportions. By analysing pulse height spectra, a value of 6.1 ± 0.2 has been obtained for the branching ratio of the 10B(,) reaction.

  14. Microcalorimetric investigation of the toxic action of berberine on Tetrahymena thermophila BF(5).

    Science.gov (United States)

    Kong, Weijun; Li, Zulun; Xiao, Xiaohe; Zhao, Yanling

    2010-10-01

    Tetrahymena thermophila (T. thermophila) BF(5) produces heat through growth and metabolism. By microcalorimetry, the power-time curves of the metabolism of T. thermophila BF(5) at 28 °C were measured and some quantitative parameters were obtained from these curves. Then the action of berberine on this microbe was investigated. Furthermore, the minimum inhibitory concentration (MIC) of berberine against T. thermophila BF(5) growth was obtained by tube dilution method. Berberine of different concentrations had various actions on T. thermophila BF(5) growth: a low concentration (25 μg/ml) of berberine began to inhibit the growth of T. thermophila BF(5) and a high concentration (450 μg/ml) of berberine completely inhibited T. thermophila BF(5) growth. The toxic action of berberine could also be expressed as half-inhibitory concentration IC(50), i.e., 50% effective in this inhibition. The value of IC(50) was 175.60 μg/ml, while the MIC of this compound against T. thermophila BF(5) was 20.76 mg/ml. Berberine has strong toxic action on T. thermophila BF(5) growth. The microcalorimetric method for the assay of toxic action is quantitative, inexpensive and versatile.

  15. The Infrared Behaviour of the Running Coupling in Landau Gauge QCD

    CERN Document Server

    Alkofer, R; Von Smekal, L

    2002-01-01

    Approximate solutions for the gluon and ghost propagators as well as the running coupling in Landau gauge Yang-Mills theories are presented. These propagators obtained from the corresponding Dyson-Schwinger equations are in remarkable agreement with those of recent lattice calculations. The resulting running coupling possesses an infrared fixed point, $\\alpha_S(0) = 8.92/N_c$ for all gauge groups SU($N_c$). Above one GeV the running coupling rapidly approaches its perturbative form.

  16. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...

  17. Free µ-Lattices

    DEFF Research Database (Denmark)

    Santocanale, Luigi

    2002-01-01

    A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...

  18. The gauging of BV algebras

    CERN Document Server

    Zucchini, Roberto

    2010-01-01

    A BV algebra is a formal framework within which the BV quantization algorithm is implemented. In addition to the gauge symmetry, encoded in the BV master equation, the master action often exhibits further global symmetries, which may be in turn gauged. We show how to carry this out in a BV algebraic set up. Depending on the nature of the global symmetry, the gauging involves coupling to a pure ghost system with a varying amount of ghostly supersymmetry. Coupling to an N=0 ghost system yields an ordinary gauge theory whose observables are appropriately classified by the invariant BV cohomology. Coupling to an N=1 ghost system leads to a topological gauge field theory whose observables are classified by the equivariant BV cohomology. Coupling to higher $N$ ghost systems yields topological gauge field theories with higher topological symmetry. In the latter case, however, problems of a completely new kind emerge, which call for a revision of the standard BV algebraic framework.

  19. Another look at the Landau-gauge gluon and ghost propagators at low momentum

    CERN Document Server

    Sternbeck, Andre

    2013-01-01

    We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (\\lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for \\lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.

  20. Resummation of Cactus Diagrams in the Clover Improved Lattice Formulation of QCD

    CERN Document Server

    Panagopoulos, H

    1999-01-01

    We extend to the clover improved lattice formulation of QCD the resummation of cactus diagrams, i.e. a certain class of tadpole-like gauge invariant diagrams. Cactus resummation yields an improved perturbative expansion. We apply it to the lattice renormalization of some two-fermion operators improving their one-loop perturbative estimates.