Sample records for laterals beneath high

  1. Lateral structural change of the subducting Pacific plate beneath Japan inferred from high-frequency body wave analysis (United States)

    Padhy, S.; Furumura, T.; Maeda, T.


    We studied the detailed lateral structure of the subducting Pacific plate near Honshu by analyzing waveforms from deep earthquakes recorded at fore-arc Hi-net dense high-gain network and F-net broadband stations in Japan. Such waveforms explain the low-frequency precursors followed by high-frequency energies due to the multiple scattering and diffractions of seismic waves in the stochastic waveguide of the Pacific slab (Furumura and Kennett, 2005). However, recent analysis shows that for some particular source-receiver paths, the waveforms exhibit loss of high frequency energy in P-coda, loss of low-frequency precursor and presence of P-to-P or P-to-S converted phases in P-coda for deep earthquakes occurring in the subeducting Pacific plate. Such complexities in the observed waveforms indicate sudden lateral change in the wave guiding properties of the subducting slab, such as expected to be caused by the thinning or tearing the slab in deeper part. To explain the observations, we employ two-dimensional finite-difference method (FDM) simulations of complete high-frequency P-SV wave propagation taking thinning of the Pacific slab into account. We expect that the observed guided wave energy must decouple from waveguide where the slab is deformed or thin. Low frequency energy leaks out of the slab and travels to the receivers along paths in the low velocity and low-Q mantle surrounding the slab, while high frequency signal of shorter wavelength can travel through thin plate. The results of this study, along with the evidence for weak velocity anomaly as inferred from seismic tomography (Obayashi et al., 2009) and observations of slab tear in the Pacific plate (Kennett and Furumura, 2010), we expect a local velocity anomaly or thinning in the oceanic lithosphere along the junction between Izu-Bonin and Honshu arc. It is necessary to examine these effects further with a 3D FDM simulation for different slab geometries and source depths.

  2. Lateral variations of crustal structure beneath the Indochina Peninsula (United States)

    Yu, Youqiang; Hung, Tran D.; Yang, Ting; Xue, Mei; Liu, Kelly H.; Gao, Stephen S.


    Crustal thickness (H) and Vp/Vs (κ) measurements obtained by stacking P-to-S receiver functions recorded at 32 broadband seismic stations covering the Indochina Peninsula reveal systematic spatial variations in crustal properties. Mafic bulk crustal composition as indicated by high κ (>1.81) observations is found to exist along major strike-slip faults and the southern part of the Peninsula, where pervasive basaltic magmatism is found and is believed to be the results of lithospheric thinning associated with the indentation of the Indian into the Eurasian plates. In contrast, crust beneath the Khorat Plateau, which occupies the core of the Indochina Block, has relatively large H values with a mean of 36.9 ± 3 km and small κ measurements with an average of 1.74 ± 0.04, which indicates an overall felsic bulk composition. Those observations for the Khorat Plateau are comparable to the undeformed part of the South China Block. The laterally heterogeneous distribution of crustal properties and its correspondence with indentation-related tectonic features suggest that the Indochina lithosphere is extruded as rigid blocks rather than as a viscous flow.

  3. Microbial life beneath a high arctic glacier. (United States)

    Skidmore, M L; Foght, J M; Sharp, M J


    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.

  4. Lateral variation of Pn velocity beneath northeastern marginal region of Qinghai- Xizang plateau

    Institute of Scientific and Technical Information of China (English)

    许忠淮; 汪素云; 裴顺平


    Pn arrival time data are collected from the bulletins of both national and regional seismological network in China. These data are tomographically inverted to map the lateral variation and anisotropy of Pn velocity in the northeastern marginal region of Qinghai-Xizang plateau. The average Pn velocity in this region is 8.09 km/s, being a little higher than the average for whole China. Higher velocity is found in tectonically stable Qaidam basin, while lower velocity is seen in and around tectonically active Shanxi graben. The region where the 1920 Haiyuan great earthquake occurred shows a slightly low Pn velocity. A noticeable result is that, differing from the tectonically compressive Tianshan region, where Pn velocity is low, the Qilianshan region, where the Neotectonic deformation is also primarily compressive, shows high Pn velocity. In the uppermost mantle beneath the Ordos plateau Pn velocity is inhomogeneous, varying from higher velocity in southwestern part to lower one in northeastern part. This may be attributed to possible movement of the Ordos block, as there are strong earthquakes all around the block.

  5. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf (United States)

    Garabato, Alberto C. Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C.; Heywood, Karen J.; Jenkins, Adrian; Firing, Yvonne L.; Kimura, Satoshi


    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth’s albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  6. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya (United States)

    Molnar, P.; Chen, W.-P.


    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  7. Crustal structure beneath the High Lava Plains of eastern Oregon and surrounding regions from receiver function analysis (United States)

    Eagar, Kevin C.; Fouch, Matthew J.; James, David E.; Carlson, Richard W.


    We analyze teleseismic P-to-S receiver functions to image crustal structure beneath the High Lava Plains (HLP) of eastern Oregon and surrounding regions. Coverage from 206 broadband seismic stations provides the first opportunity to resolve variations in crustal composition, thickness, and heterogeneity on scales of a few km in depth and tens of km laterally across the HLP region. We utilize both H - κ stacking and a new Gaussian-weighted common conversion point stacking technique. We find crust that is ≥40 km thick beneath the Cascades, Idaho Batholith, and Owyhee Plateau and thinner (˜31 km) crust beneath the HLP and northern Great Basin. Low Poisson's ratios of ˜0.240 characterize the granitic crust beneath the Idaho Batholith, while the Owyhee Plateau exhibits values of ˜0.270, typical of average continental crust. The Owyhee Plateau is a thick simple crustal block with distinct edges at depth. The western HLP exhibits high average values of 0.304, typical for regions of widespread basaltic volcanism. Combined with other geological and geophysical observations, the areas of abnormally high Poisson's ratios (˜0.320) and low-velocity zones in the crust beneath north-central and southern Oregon are consistent with the presence of partial melt on either side of the HLP trend, suggesting a central zone where crustal melts have drained to the surface, perhaps enabled by the Brothers Fault Zone. Thicker crust and an anomalous N-S band of low Poisson's ratios (˜0.252) skirting the Steens Mountain escarpment is consistent with residuum from a midcrustal magma source of the massive flood basalts, supporting the view of extensive mafic underplating and intraplating of the crust from Cenozoic volcanism.

  8. Lateral Variation in Seismic Anisotropy Beneath Western Tibet Likely Controlled by the Shape of Subducting Indian Lithosphere (United States)

    Levin, V. L.; Shakhnovich, M.; Janiszewski, H. A.; Roecker, S. W.


    it fast shear wave polarization is ~65°NE, significantly different from the nearly N-S India-Eurasia convergence direction and the nearly east-west "flow" suggested by crustal deformation observations. The area of strong anisotropy appears to be bounded by the Indus-Tsangpo Suture in the south, but cuts across the Bangdong-Nujiang Suture in the north. Flanking the region of strong anisotropy are two areas where individual splitting observations are scattered in direction and have smaller (<0.5 s) delays, and where group inversions yield <2.5% of anisotropy in a 100 km model layer, and nearly E-W fast axis orientation. A very significant finding in our study is the short (10s of km) lateral scale over which changes in apparent anisotropic properties take place. Unlike latitudinal changes in anisotropy reported previously along N-S profiles in eastern and central Tibet, those we document cut across the strike of the main tectonic units (e.g., the Lhasa Block). The dominant period in most of our data is ~10 s, and the corresponding first Fresnel zone is over 100 km wide at depths in excess of 100 km. Therefore lateral changes in apparent anisotropic parameters over distances < 100 km likely originate directly beneath the ~75 km thick crust of the Tibetan plateau. We speculate that these variations reflect the shape of the down-going Indian lithosphere.

  9. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography (United States)

    Bao, X.; Song, X.; Li, J.


    We present a new high-resolution shear-velocity model of the lithosphere (down to about 160 km) beneath China using Rayleigh-wave tomography. We combined ambient noise and earthquake data recorded at 1316 seismic stations, the largest number used for the region to date. More than 700,000 dispersion curves were measured to generate group and phase velocity maps at periods of 10-140s. The resolution of our model is significantly improved over previous models with about 1-2°in eastern China and 2-3°in western China. We also derived models of the study region for crustal thickness and averaged S velocities for upper and mid-lower crust and uppermost mantle. These models reveal important lithospheric features beneath China and provide a fundamental data set for understanding continental dynamics and evolution. Different geological units show distinct features in the Moho depth, lithospheric thickness, and shear velocity. In particular, the North China Craton (NCC) lithosphere shows strong east-west structural variations with thin and low-velocity lithosphere in eastern NCC and thick and high-velocity lithosphere beneath western NCC and the lithosphere of the Ordos Block seems to have undergone strong erosion. The results support the progressive destruction of the NCC lithosphere from east to west at least partly caused by the thermal-chemical erosion of the cratonic lithosphere from the asthenosphere. Another pronounced feature of our model is the strong lateral variations of the mantle lithosphere beneath the Tibetan Plateau (TP). The Indian lithosphere beneath the TP shows variable northward advancement with nearly flat subduction in western and eastern TP and steep subduction in central TP with evidence for the tearing of Indian lithosphere beneath central TP, which may be important for the riftings at the surface in Himalayas and southern TP. The low-velocity zone in northern TP shows strong correlation with the region of the mid-Miocene to Quaternary potassic

  10. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis (United States)

    Gurdak, Jason J.; Roe, Cassia D.


    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  11. Lithospheric structure beneath the High Lava Plains, Oregon, imaged by scattered teleseismic waves (United States)

    Chen, Chin-Wu; James, David E.; Fouch, Matthew J.; Wagner, Lara S.


    We compute high-resolution seismic images from scattered wavefield to detect discontinuities beneath the High Lava Plains (HLP), using data recorded at a dense broadband array. Our images of the HLP and surrounding regions reveal (1) a prominent Moho discontinuity with varying depth, with thinnest crust of 35 km beneath the volcanic track, and thickened crust of ˜45 km beneath the Owyhee Plateau (OP); (2) distinct intracrustal velocity reversals beneath regions of pre-2.0 Ma volcanism and within the OP; and (3) intermittent negative velocity discontinuities in the uppermost mantle beneath regions of Holocene volcanism and volcanic centers near Steens Mountain and Newberry volcano. These features exhibit remarkable similarity with those seen in the surface wave tomography and Ps receiver functions. We fail to find evidence for a ubiquitous regional lithosphere-asthenosphere boundary (LAB). In concert with petrological constraints on the equilibration depths of primitive basaltic melts, our results suggest that the present-day HLP mantle lithosphere is thin or absent, perhaps a consequence of episodes of extensive mantle inflow, lithospheric extension, and possibly melting induced by rapid slab rollback and trench retreat. It remains possible, however, that strong E-W seismic anisotropy reported across this region may reduce the effective S-wave velocity contrast to render the LAB less detectable. In contrast, the Owyhee Plateau exhibits a clear LAB, consistent with it being a block of older preexisting lithosphere. Our images demonstrate the complexity of mantle dynamics in the Cascadian back-arc and the close casual link between subduction-related processes and the origin of HLP volcanism.

  12. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire


    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  13. Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography (United States)

    Jaxybulatov, Kairly; Koulakov, Ivan; Seht, Malte Ibs-von; Klinge, Klaus; Reichert, Christian; Dahren, Börje; Troll, Valentin R.


    Within the KRAKMON project for multiparameter monitoring of Anak Krakatau volcano (Indonesia), a network of temporary stations was installed on the islands of the Krakatau complex as well as in the surrounding areas of the Sunda Strait, Sumatra and Java. The network was operated from June 2005 until January 2006. More than 700 local events were recorded during this experiment, and travel times from these events were used to perform a tomographic inversion for P and S velocities and for the Vp/Vs ratio. In this study, special attention was paid to the validation of the computed model based on different tests, such as inversion of independent data subsets and synthetic modeling. Although the network configuration and the distribution of the events are not favorable for high-quality tomographic imaging, we have obtained some important and robust features which give information about sources of volcanic activity in the Krakatau complex. The most interesting feature of this study is a zone of high Vp/Vs ratio beneath the Krakatau complex. At depths down to 4 km depth we observe anticorrelation of higher P- and lower S-velocities that leads to Vp/Vs ratio higher than 2. This is a probable indicator of the presence of partially molten and/or with high fluid content material with a composition corresponding to deeper layers. It is important that the anomaly of high Vp/Vs ratio beneath the Krakatau complex appears to be separated in two parts at a depth of 5-6 km. This fits to results of geobarometric analysis that presume the existence of several levels of magma chambers beneath Anak Krakatau.

  14. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography (United States)

    Lippitsch, Regina; Kissling, Edi; Ansorge, JöRg


    To understand the evolution of the Alpine orogen, knowledge of the actual structure of the lithosphere-asthenosphere system is important. We perform high-resolution teleseismic tomography with manually picked P wave arrival times from seismograms recorded in the greater Alpine region. The resulting data set consists of 4199 relative P wave arrivals and 499 absolute P wave arrivals from 76 teleseismic events, corrected for the contribution of the Alpine crust to the travel times. The three-dimensional (3-D) crustal model established from controlled-source seismology data for that purpose represents the large-scale Alpine crustal structure. Absolute P wave arrival times are used to compute an initial reference model for the inversion. Tests with synthetic data document that the combination of nonlinear inversion, high-quality teleseismic data, and usage of an a priori 3-D crustal model allows a reliable resolution of cells at 50 km × 50 km × 30 km. Hence structures as small as two cells can be resolved in the upper mantle. Our tomographic images illuminate the structure of the uppermost mantle to depth of 400 km. Along strike of the Alps, the inversion reveals a high-velocity structure that dips toward the SE beneath the Adriatic microplate in the western and central Alps. In the eastern Alps we observe a northeastward dipping feature, subducting beneath the European plate. We interpret this feature in the western and central Alps as subducted, mainly continental European lower lithosphere. For the east, we propose that parts of the Vardar oceanic basin were subducted toward the NE, forcing continental Adriatic lower lithosphere to subduct northeastward beneath the European plate.

  15. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots (United States)

    Sleep, Norman H.


    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm

  16. High-Resolution Imaging of the Mantle Flow Field Beneath Western North America (United States)

    Fouch, M. J.; West, J. D.


    The goal of this study is to provide an improved understanding the nature of deformation in the crust and lithospheric mantle and its relationship to the mantle flow field beneath western North America. We utilize broadband data from regional and portable seismic arrays, including EarthScope's USArray Transportable Array and the ~120 stations of the High Lava Plains seismic array to image seismic anisotropy in the crust and mantle to constrain deformation in the crust, mantle lithosphere, and asthenosphere across the region. Regional shear wave splitting parameters show clear variations with geologic terrane. In the Pacific Northwest, splitting times are large (2.25+ sec) and fast directions are ~E-W with limited variability. Beneath the southern Basin and Range/Colorado Plateau region, splitting times are also large (~1.75+ sec) and fast directions are oriented ~NE-SW (similar to absolute plate motion). Stations near the San Andreas fault exhibit more variability between measurements at individual stations, but regionally exhibit a general rotation toward NW-SE for stations closer to the fault. Analyses from a dense array across the fault near Parkfield exhibit fast direction variations of ~30 degrees over ~15 km, indicating that uppermost crustal structure plays a significant role in some regions. Away from the Pacific-North American plate boundary, and sandwiched between broad regions of simple (i.e., regionally similar fast directions) and strong (i.e., large splitting times) azimuthal anisotropy, stations within the Great Basin exhibit significant complexity. Fast directions show a clear rotation from E-W in the northern Great Basin, to N-S in the eastern Great Basin, to NE-SW in the southeastern Great Basin. Splitting times reduce dramatically, approaching zero within the central Great Basin. At many stations within the Great Basin, particularly those that have been in operation for many years, we observe backazimuthal variations in splitting parameters that

  17. High-resolution seismic attenuation structures beneath Hokkaido corner, northeastern Japan (United States)

    Kita, S.; Nakajima, J.; Okada, T.; Hasegawa, A.; Katsumata, K.; Asano, Y.; Uchida, N.


    1. Introduction In the Hokkaido corner, the Kuril fore-arc sliver collides with the northeastern Japan arc. Using data from the nationwide Kiban seismic network and a temporary seismic network, Kita et al. [2012] determined high-resolution 3D seismic velocity structure beneath this area for deeper understanding of the collision process of two fore-arcs. The results show that a broad low-V zone (crust material) anomalously descends into the mantle wedge at depths of 30-90 km in the west of the Hidaka main thrust. On the other hand, several high-velocity zones having velocities of mantle materials are distributed in the crust at depths of 10-35 km. These high-velocity zones are inclined eastward, being nearly parallel to each other. Two of the western boundaries of these high-V zones correspond to the fault planes of the 1970 Mj 6.7 Hidaka and the 1982 Mj 7.1 Urakawa-oki earthquakes, respectively. In this study, we merged waveform data from the Kiban-network and from a dense temporary seismic network [Katsumata et al., 2002], and estimated the seismic attenuation structure to compare with the seismic velocity images of Kita et al. [2012]. 2. Data and method We estimated corner frequency for each earthquake by the spectral ratio method using the coda waves [e.g. Mayeda et al., 2007]. Then, we simultaneously determined values of t* and the amplitude level at lower frequencies from the observed spectra after correcting for the source spectrum. Seismic attenuation (Q-1 value) structure was obtained, inverting t* values with the tomographic code of Zhao et al. [1992]. We adopted the geometry of the Pacific plate which was precisely estimated by Kita et al. [2010b]. The study region covers an area of 41-45N, 140.5-146E, and a depth range of 0-200 km. We obtained 131,958 t* from 6,186 events (M>2.5) that occurred during the period from Aug. 1999 to Dec. 2012. The number of stations used is 353. Horizontal and vertical grid nodes were set with spacing of 0.10-0.3 degree and

  18. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco) (United States)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha


    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  19. High resolution image of the Lithosphere-Asthenosphere Boundary of the subducting Nazca plate beneath northern Chile (United States)

    Sodoudi, F.; Yuan, X.; Asch, G.; Kind, R.


    Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent IPOC (Integrated Plate boundary Observatory Chile) stations, we were able to obtain new constraints on the shape and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 40 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper and deeper slab to the north of 21° S to the flatter southern segment is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21° S. We have also mapped the continental Moho of the South American plate at depths ranging between 60-70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge. The Lithosphere-Astheonsphere Boundary (LAB) of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The LAB lies at a depth of 80 km beneath the coastal area and dips from a depth of 100 km beneath the Coastal Cordillera to about 150 km underneath the Western Cordillera. High frequency PRF data enabled us to make confident estimates of the top and bottom of the Nazca lithosphere, which results in a lithospheric thickness of 57-60 km. In relation to the age of the Nazca plate, which is assumed to be ~ 50

  20. Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Cascades, USA (United States)

    Kiser, Eric; Levander, Alan; Zelt, Colin; Palomeras, Imma; Schmandt, Brandon; Hansen, Steven; Creager, Kenneth; Ulberg, Carl


    Mount St. Helens is currently the most active volcano along the Cascadia arc. Though several studies investigated the magmatic system beneath Mount St. Helens following the May 18, 1980 eruption, tomographic imaging of the system has been limited to ~10 km depth due to the distribution of earthquakes in the region. This has made it difficult to estimate the volume of the shallow magma reservoir beneath the volcano, the regions of magma entry into the lower crust, and the connectivity of this magma system throughout the crust. The latter is particularly interesting as one interpretation of the Southern Washington Cascades Conductor (SWCC) suggests that the Mount St Helens and Mount Adams volcanic systems are connected in the middle crust (Hill et al., 2009). The multi-disciplinary iMUSH (imaging Magma Under St. Helens) project is designed to investigate these and other fundamental questions associated with Mount St. Helens. Here we present the first high-resolution 2D Vp and Vs models derived from travel-time data from the iMUSH 3D active-source seismic experiment. The experiment consisted of ~6000 seismograph stations which recorded 23 explosions and hundreds of local earthquakes. Directly beneath Mount St. Helens, we observe a high Vp/Vs body, inferred to be the upper/middle crustal magma reservoir, between 4 and 13 km depth. We observe a second high Vp/Vs body, likely of magmatic origin, at roughly the same depth beneath Indian Heaven Volcanic Field, which last erupted 9 ka. Southeast of Mount St. Helens is a low Vp column extending from the middle crust, ~15 km depth, to the Moho at ~40 km depth. A cluster of deep long-period events, typically associated with injection of magma, occurs at the northwestern boundary of this low Vp column. We interpret this as the middle-lower crust magma reservoir. In the lower crust, high Vp features bound the magma reservoir directly beneath Mount St. Helens and the Indian Heaven Volcanic Field. One explanation for these high Vp

  1. Upper mantle low-velocity layers beneath the High Lava Plains imaged by scattered-wavefield migration (United States)

    Chen, C.; James, D. E.; Wagner, L. S.


    The High Lava Plains (HLP) in eastern Oregon represents one of the most active intraplate magmatic provinces on Earth. This region's recent tectonic history is dominated by voluminous mid-Miocene outpourings of the Steens and Columbia River flood basalts, followed by a period of bimodal volcanic activities, generating two roughly orthogonal time-progressive rhyolitic hotspot tracks: the northeastern-trending Snake River Plain and the northwestern-trending High Lava Plains. The causes of this complex tectonomagmatic evolution are not well understood, and geophysical constraints have been lacking regarding the detailed crustal and upper mantle structure in this region. From 2006 to 2009, a passive seismic experiment with the deployment of 118 broadband seismic stations was carried out as part of the multidisciplinary High Lava Plains project, which aims to investigate the causes of continental intraplate tectonomagmatism. These stations covered central and eastern Oregon, northern Nevada, and southwestern Idaho, with average spacing of 15-20 km, yielding unprecedented data density in the HLP region. A number of tomographic and receiver function studies has revealed complex structures beneath HLP. These include irregular Moho topography across the HLP, and concentrated low velocity anomalies in the uppermost mantle beneath regions of Holocene volcanism in southeastern Oregon (including areas of the Owyhee Plateau), as well as beneath volcanic centers near Steens Mountain and Newberry volcano. We complement these previous studies by generating high-resolution seismic images from scattered wavefield to detect seismic discontinuities beneath the HLP. We process 80 high-quality teleseismic events with good azimuthal coverage using a 2-D teleseismic migration algorithm based on the Generalized Radon Transform. The resulting migration images indicate the presence of several main features: 1) a prominent and varying Moho topography: the Moho is at ~40 km depth east of the

  2. High content analysis in amyotrophic lateral sclerosis. (United States)

    Rinaldi, Federica; Motti, Dario; Ferraiuolo, Laura; Kaspar, Brian K


    Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. High velocity anomaly beneath the Deccan volcanic province: Evidence from seismic tomography (United States)

    Iyer, H.M.; Gaur, V.K.; Rai, S.S.; Ramesh, D.S.; Rao, C.V.R.; Srinagesh, D.; Suryaprakasam, K.


    Analysis of teleseismic P-wave residuals observed at 15 seismograph stations operated in the Deccan volcanic province (DVP) in west central India points to the existence of a large, deep anomalous region in the upper mantle where the velocity is a few per cent higher than in the surrounding region. The seismic stations were operated in three deployments together with a reference station on precambrian granite at Hyderabad and another common station at Poona. The first group of stations lay along a west-northwesterly profile from Hyderabad through Poona to Bhatsa. The second group roughly formed an L-shaped profile from Poona to Hyderabad through Dharwar and Hospet. The third group of stations lay along a northwesterly profile from Hyderabad to Dhule through Aurangabad and Latur. Relative residuals computed with respect to Hyderabad at all the stations showed two basic features: a large almost linear variation from approximately +1s for teleseisms from the north to-1s for those from the southeast at the western stations, and persistance of the pattern with diminishing magnitudes towards the east. Preliminary ray-plotting and three-dimensional inversion of the P-wave residual data delineate the presence of a 600 km long approximately N-S trending anomalous region of high velocity (1-4% contrast) from a depth of about 100 km in the upper mantle encompassing almost the whole width of the DVP. Inversion of P-wave relative residuals reveal the existence of two prominent features beneath the DVP. The first is a thick high velocity zone (1-4% faster) extending from a depth of about 100 km directly beneath most of the DVP. The second feature is a prominent low velocity region which coincides with the westernmost part of the DVP. A possible explanation for the observed coherent high velocity anomaly is that it forms the root of the lithosphere which coherently translates with the continents during plate motions, an architecture characteristic of precambrian shields. The low

  4. Crustal thickness and composition beneath the High Lava Plains of Eastern Oregon from teleseismic receiver functions (United States)

    Eagar, K. C.; Fouch, M. J.; James, D. E.; Carlson, R. W.


    The nature of the crust beneath the High Lava Plains of eastern Oregon is fundamental for understanding the origins of widespread Cenozoic volcanism in the region. Eruptions of flood basalts in the southern Cascadian back arc peaked ~17-15 Ma, and were followed by distributed bimodal volcanism along two perpendicular migrating tracks; the Snake River Plain and the High Lava Plains. The orientations of eruptive centers have led to several competing hypotheses about their cause, including a deep mantle plume, slab retreat and asthenospheric inflow, lithospheric delamination, and lithospheric extension. The goal of this project is to constrain the nature, geometry, and depth of the Moho across the High Lava Plains, which will shed light on questions regarding crustal influence on melt generation and differentiation and the degree of magmatic underplating. In this study, we analyze teleseismic receiver functions from 118 stations of the High Lava Plains temporary broadband array, 34 nearby EarthScope/USArray stations, and 5 other regional broadband stations to determine bulk crustal features of thickness (H) and Vp/Vs ratio (κ). Applying the H-κ stacking method, we search for the best-fitting solution of timing predictions for direct and multiple P-to-S conversions from the Moho interface. Converting Vp/Vs to Poisson ratio, which is dependent primarily upon rock composition, allows for comparison with other direct geological observations. Preliminary results show that the crust of the High Lava Plains is relatively thin (~31 km) with a very sharp gradient to thicker crust (~42 km) at the western edge of the Owyhee Plateau in southwestern Idaho. This gradient is co-located with the western margin of Precambrian North America and is in the vicinity of the Jordan Craters volcanic center. The sharp topography of the Moho might have been a factor in melt migration beneath this area. West of the High Lava Plains, the crust thickens to ~40 km into the Cascade volcanic arc

  5. The puzzle of high heads beneath the West Cumbrian coast, UK: a possible solution (United States)

    Black, John H.; Barker, John A.


    A region of high heads within the Borrowdale Volcanic Group (BVG; a fractured crystalline rock) beneath the coastal plain of West Cumbria, England (UK), is identified as a possible relic left over by the Late Devensian ice sheet. It was found during investigations in the 1990s. Contemporary modelling work failed to produce a satisfactory explanation of the high heads compatible with the `cold recharge' isotopic signature of the groundwater. This study has reassessed the original hydraulic testing results. By plotting density-adjusted heads versus their depth below the water table in the immediate vicinity of the borehole in which they were measured, a depth profile resembling a `wave' was revealed with a peak value located at 1,100 m depth. The possibility that this wave represents relic heads from the last major ice sheet has been assessed using one-dimensional mathematical analysis based on a poroelastic approach. It is found that a wet-based ice sheet above the West Cumbrian coast was probably thick enough and sufficiently long-lasting to leave such relic heads providing that the hydraulic diffusivity of the BVG is in the order of 10-6 m s-1. Initial assessment 20 years ago of the long-interval slug tests suggested that such low values are not likely. More recent interpretation argues for such low values of hydraulic diffusivity. It is concluded that ice sheet recharge is the most likely cause of the raised heads, that the BVG contains significant patches of very low conductivity rock, and that long-interval single-hole tests should be avoided in fractured crystalline rock.

  6. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der


    We investigated mantle structure beneath the Indonesian region by means of tomographic inversions of traveltime residuals of direct P and the surface-reflected depth phases pP and pwP. The hypocentres and phase data used in the inversions were derived from the reprocessing of data reported to intern

  7. Five Years of the RoBOT "Rocks Beneath Our Toes" High School Outreach Program (United States)

    Baxter, E. F.


    The "Rocks Beneath Our Toes" or RoBOT Program began in 2006 as part of an NSF CAREER award through the Geochemistry and Petrology Program. The educational outreach program engages Boston area high school students in a hands on study of rocks and minerals collected in their communities. The goal is to provide high school students a unique window into modern scientific methods of geochemistry and mineralogy and create a higher level of interest and awareness of geoscience amongst Massachusetts secondary school students who are less often exposed to earth science coursework. Beginning with a joint field trip to sampling sites identified by participants, high school students work with Boston University undergraduates enrolled in Mineralogy to analyze their samples in thin section. During the field trip, each BU undergraduate is paired with a high school student. The assignment of student pairings (started in year 2) dramatically increased student interactions and enjoyment. The program culminates with a visit by the high school group to tour BU's lab facilities and work with the undergraduates using the petrographic microscopes to explore their rock. At this visit, BU undergraduates present their semester's work in one-on-one powerpoint presentations from which discussion and microscope work follow. Thus far, >50 high school students, >40 undergraduates, and 7 high school educators were involved in the program. This included participants from three different suburban Boston area high schools and with students enrolled in the BU "Upward Bound" program: an existing program designed to enhance educational opportunities for Boston inner city high school students. Participant reviews indicate great success in achieving the program's goals. Notably, both BU undergraduates and high school students rated the opportunities for interaction with eachother among the best aspects of RoBOT. On a scale of 1 to 10, BU undergraduates rated the following four categories highest

  8. High-fat and ketogenic diets in amyotrophic lateral sclerosis. (United States)

    Paganoni, Sabrina; Wills, Anne-Marie


    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. Epidemiologic data suggest that malnutrition is a common feature in amyotrophic lateral sclerosis and being overweight or obese confers a survival advantage in this patient population. In amyotrophic lateral sclerosis mouse models, a high-fat diet has been shown to lead to weight gain and prolonged survival. However, little research has been conducted to test whether nutritional interventions might ameliorate the disease course in humans. Here we review the currently available evidence supporting the potential role of dietary interventions as a therapeutic tool for amyotrophic lateral sclerosis. Ultimately, determining whether a high-fat or ketogenic diet could be beneficial in amyotrophic lateral sclerosis will require large randomized, placebo-controlled clinical trials.

  9. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net (United States)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.


    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  10. High-lateral-tension abdominoplasty with superficial fascial system suspension. (United States)

    Lockwood, T


    Modern abdominoplasty techniques were developed in the 1960s. The advent of liposuction has reduced the need for classic abdominoplasty and allowed more aesthetic sculpting of the entire trunk. However, the combination of significant truncal liposuction and classic abdominoplasty is not recommended due to the increased risk of complications. Although the surgical principles of classic abdominoplasty certainly have stood the test of time, they are based on two theoretical assumptions that may be proved to be inaccurate. The first assumption is that wide direct undermining to costal margins is essential for abdominal flap advancement. In fact, discontinuous undermining allows effective loosening of the abdominal flap while preserving vascular perforators. The second inaccurate assumption is that with aging and weight fluctuations (including pregnancy), abdominal skin relaxation occurs primarily in the vertical direction from the xiphoid to the pubis. This is true in the lower abdomen, but in most patients a strong superficial fascial system adherence to the linea alba in the epigastrium limits vertical descent. Epigastric laxity frequently results from a progressive horizontal loosening due to relaxation of the tissue along the lateral trunk. Experience with the lower-body lift procedure has shown that significant lateral truncal skin resection results in epigastric tightening. In these patients, the ideal abdominoplasty pattern would resect as much or more laterally than centrally, leading to more natural abdominal contours. Fifty patients who underwent high-lateral-tension abdominoplasty with and without significant truncal liposuction and other aesthetic procedures were followed for 4 to 16 months. The primary indication for surgery was moderate to severe laxity of abdominal skin and muscle with or without truncal fat deposits. Complication rates were equal to or less than those of historical controls and did not increase with significant adjunctive liposuction

  11. High resolution velocity structure beneath Mount Vesuvius from seismic array data (United States)

    Scarpa, Roberto; Tronca, Fabrizio; Bianco, Francesca; Del Pezzo, Edoardo


    A high resolution P-wave image of Mt. Vesuvius edifice has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes, land based shots and small aperture array data. The results give details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km below the central crater, distributed in a major cluster, centered at 3 km below the central crater and in a minor group, with diffuse hypocenters inside the volcanic edifice. The two clusters are separated by an anomalously high Vp region at around 1 km depth. A zone with high Vp/Vs in the upper layers is interpreted as produced by the presence of intense fluid circulation. The highest energy quakes (up to M = 3.6) are located in the deeper cluster, in a high P-wave velocity zone. Our results favor an interpretation in terms of absence of shallow magma reservoirs.

  12. High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan (United States)

    Padhy, S.; Furumura, T.


    Thermal models predict that the oceanic crust of the young (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism

  13. Thermal Convection in High-Pressure Ice Layers Beneath a Buried Ocean within Titan and Ganymede (United States)

    Tobie, G.; Choblet, G.; Dumont, M.


    Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean sandwiched between low pressure ice and high-pressure ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices and is ultimately controlled by the amount heat transferred through the surface ice Ih layer. Here, we perform 3D simulations of thermal convection, using the OEDIPUS numerical tool (Choblet et al. GJI 2007), to determine the efficiency of heat and mass transfer through these HP ice mantles. In a first series of simulations with no melting, we show that a significant fraction of the HP layer reaches the melting point. Using a simple description of water production and transport, our simulations demonstrate that the melt generation in the outermost part of the HP ice layer and its extraction to the overlying ocean increase the efficiency of heat transfer and reduce strongly the internal temperature. structure and the efficiency of the heat transfer. Scaling relationships are proposed to describe the cooling effect of melt production/extraction and used to investigate the consequences of internal melting on the thermal history of Titan and Ganymede's interior.

  14. Anomalous electric field changes and high flash rate beneath a thunderstorm in northeast India

    Indian Academy of Sciences (India)

    S D Pawar; P Murugavel; V Gopalakrishnan


    In spite of many experimental and theoretical studies the relationships between storm dynamics, severe weather,and lightning activity have been least understood.Measurements of electric field made under a severe thunderstorm at a northeastern Indian station,Guwahati,India are reported. Lightning flash rate increases drastically to about 84 flashes per minute (fpm)during the active stage which lasted for about 7 minutes,from about 15 flashes per minute during the initial phase of thunderstorm.Sudden increase in lightning flash rate (‘lightning jump ’)of about 65 fpm/min is also observed in the beginning of the active stage.The dissipating stage is marked by slow and steady decrease in lightning frequency.Despite very high flash rate during the active stage, no severe weather conditions are observed at the ground.It is proposed that the short duration of the active stage might be the reason for the non-observance of severe weather conditions at the ground.Analysis of Skew-t graph at Guwahati suggests that vertical distribution of Convective Available Potential Energy (CAPE)also may play some role in non-occurrence of severe weather at ground in spite of large lightning flash rate and lightning jump observed in this thunderstorm.Further,all electric field changes after a lightning discharge indicates the presence of strong Lower Positive Charge Centers (LPCC)in the active and dissipation stages. This suggests that LPCC plays an important role in initiation of lightning discharges in these stages.

  15. High-resolution image of the geometry and thickness of the subducting Nazca lithosphere beneath northern Chile (United States)

    Sodoudi, F.; Yuan, X.; Asch, G.; Kind, R.


    Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along-strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (˜23°) and deeper slab to the north of 21°S to the flatter southern segment (˜19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ˜50 My, is estimated to be ˜50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere-asthenosphere boundary may require another mechanism such as hydration or melting.

  16. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State (United States)

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.


    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  17. High resolution imaging of lithospheric structures beneath the Pyrenees by full waveform inversion of shortperiod teleseismic P waves (United States)

    Wang, Yi; Chevrot, Sébastien; Komatitsch, Dimitri; Monteiller, Vadim; Durochat, Clément


    Thanks to the deployment of permanent and temporary broadband arrays, coverage and data quality have dramatically improved in the last decade, especially for regional-scale studies. In addition, owing to the progress of high-performance resources and numerical simulation techniques, waveform inversion approaches nowadays become a viable alternative to classical asymptotic ray based tomographic approaches. Exploiting full waveforms in seismic tomography requires an efficient and precise method to solve the elastic wave equation in 3D inhomogeneous media. Since resolution of waveform inversion is limited by the seismic wavelength as well as the wavefield sampling density, it is crucial to exploit short-period teleseismic waves recorded by dense regional arrays. However, modeling the propagation of short-period body waves in heterogeneous media is still very challenging, even on the largest modern supercomputers. For this reason, we have developed a hybrid method that couples a global wave propagation method in a 1D Earth to a 3D spectral-element method in a regional domain. This hybrid method restricts the costly 3D computations to inside the regional domain, which dramatically decreases the computational cost, allows us to compute teleseismic wavefields down to 1s period, thus accounting for the complexities that affect the propagation of seismic waves in the regional domain. We present the first application of this new waveform inversion approach to broadband data coming from two dense transects deployed during the PYROPE experiment across the Pyrenees mountains. We obtain the first high-resolution lithospheric section of compressional and shear velocities across an orogenic belt. The tomographic model provides clear evidence for the under-thrusting of the thinned Iberian crust beneath the European plate and for the important role of rift-inherited mantle structures during the formation of the Pyrenees.

  18. High-resolution images of tremor migrations beneath the Olympic Peninsula from stacked array of arrays seismic data (United States)

    Peng, Yajun; Rubin, Allan M.


    Episodic tremor and slip (ETS) in subduction zones is generally interpreted as the manifestation of shear slip near the base of earthquake-generating portion of the plate interface. Here we devise a new method of cross-correlating stacked Array of Arrays seismic data that provides greatly improved tremor locations, a proxy for the underlying slow slip, beneath the Olympic Peninsula. This increased resolution allows us to image many features of tremor that were not visible previously. We resolve the spatial transition between the rupture zones of the inter-ETS and major ETS episodes in 2010, suggesting stress redistribution by the former. Most tremor migrations propagated along the slowly advancing main tremor front during both the inter-ETS and the major ETS episodes, even though the main front of the former deviated strongly from its usual (along-dip) orientation. We find a distinct contrast between along-dip rupture extent of large-scale rapid tremor reversals (RTRs) to the south and that to the north in our study region that anticorrelates with the locations of inter-ETS events. These RTRs originate from the main front, similar to smaller-scale RTRs previously observed at high-resolution, and many start by propagating along the main front. This could be consistent with RTRs being triggered by a cascading failure of brittle asperities. After initiation, the RTRs repeatedly occupy the same source region, and the early repetitions appear not to be tidally driven. Their stress drop may come from continuing fault weakening processes within the tremor zone, or loading by aseismic slip in surrounding regions.

  19. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)


    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  20. The Structure of The Lithosphere-asthenosphere System Beneath The Alpine Orogen Derived From High-resolution Teleseismic Tomography (United States)

    Lippitsch, R.; Kissling, E.; Ansorge, J.; Transalp Working Group

    In the tectonically complex Alpine region, three different plates (European, Adriatic, and Ligurian) amalgamated when the orogen was formed. To understand the evolution of this orogen and the interactions between the three lithospheric blocks, knowledge of the actual structure of the lithosphere-asthenosphere system is of great importance. To illuminate the structure of the uppermost mantle we perform high-resolution tele- seismic tomography. Our data set consists of 4200 manually picked first P-arrivals from 220 teleseismic events with even azimuthal distribution recorded at permanent and temporary seismic networks in the greater Alpine area. In the first step of this study corrections are calculated for the contribution of the Alpine crust to travel-times of incoming wave fields that may account for up to 50% of the observed travel-time residuals. The 3D crustal model established from controlled-source seismology data represents the large-scale shallow Alpine structure which clearly reflects the effects of the Africa Europe plate collision. Tests with synthetic data document that the combi- nation of non-linear inversion, high-quality teleseismic data, and usage of an a priori 3D crustal model allows a reliable resolution of cells at 50km*50km*30km with a velocity variation in the order of +/- 3% in the upper mantle. Our tomographic images illuminate the structure of the uppermost mantle to depth of 400 km and reflect the cur- rent status of the complex processes that formed the Alpine orogen. Along strike of the Alps, the inversion reveals a fast, slab-like body beneath the orogen. We interpret this feature as the subducted mainly oceanic lithosphere, which is in many places still attached to continental European lower lithosphere. Down to 250 km depths, this slab seems to be rather thin (less than 80 km) and steeply dipping. It significantly broad- ens at greater depth. Our results are in general agreement with earlier tomographic studies. However, the increase

  1. Highly Siderophile Elements as Tracers for the Subcontinental Mantle Evolution Beneath the Southwestern USA: The San Carlos and Kilbourne Hole Peridotite Xenoliths Revisited (United States)

    van Acken, D.; Brandon, A. D.; Peslier, A. H.; Lee, C.


    Peridotite xenoliths from San Carlos, Arizona, and Kilbourne Hole, New Mexico, have been studied since the 1970s to give insights into melting and metasomatism in the subcontinental mantle beneath the southwestern USA. More recently, the highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, and Re) and the included Re-Os isotope system have been established as powerful tools for the study of mantle processes because of their range in compatibility during mantle melting and their siderophile and chalcophile geochemical behavior. Model aluminachron Re-Os ages for San Carlos and Kilbourne Hole, as well as for the nearby Dish Hill and Vulcan’s Throne sites, give consistent depletion ages of around 2.2 Ga. This age can be interpreted as a single large scale mantle melting event linked to crustal formation and continental growth under the southwestern USA. However, recent studies showed that HSE may be added to depleted peridotites via melt-rock interaction, especially the more incompatible and hence mobile Pt, Pd, and Re. This may result in overprinting of the signature of melt extraction, thus abating the usefulness of Re-Os mantle extraction model ages. A comprehensive characterization of the suite of mantle xenoliths from the SW USA in terms of HSE concentrations is thus necessary to re-assess the Re-Os system for dating purposes. San Carlos peridotites are depleted to moderately fertile, as indicated by their bulk Al2O3 contents between 0.66 wt% and 3.13 wt%. Bulk 187Os/188Os in San Carlos peridotites range from 0.1206 to 0.1357. In contrast, Kilbourne Hole peridotites tend to be more fertile with Al2O3 between 2.11 and 3.78 wt%, excluding one extremely depleted sample with 0.30 wt% Al2O3, and have 187Os/188Os between 0.1156 and 0.1272, typical for mantle peridotites. No large fractionation between the more compatible HSE Os, Ir, and Ru is observed. The more incompatible HSE Re, Pd, and to a minor extent, Pt, however, are depleted in a number of samples by

  2. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.


    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  3. High frequency lateral flow affinity assay using superparamagnetic nanoparticles (United States)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.


    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  4. Trench-parallel flow beneath the nazca plate from seismic anisotropy. (United States)

    Russo, R M; Silver, P G


    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  5. Detailed 3-D S-wave velocity beneath the High Lava Plains, Oregon, from 2-plane-wave Rayleigh wave inversions (United States)

    Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.


    The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.

  6. Crustal structure beneath the southern Korean Peninsula from local earthquakes (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon


    The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  7. New interpretation of the deep mantle structure beneath eastern China (United States)

    Ma, Pengfei; Liu, Shaofeng; Lin, Chengfa; Yao, Xiang


    Recent study of high resolution seismic tomography presents a large mass of high velocity abnormality beneath eastern China near the phase change depth, expanding more than 1600km-wide in East-west cross-section across the North China plate. This structure high is generally believed to be the subducted slab of Pacific plate beneath the Eurasia continent, while its origin and dynamic effect on the Cenozoic tectonic evolution of eastern China remain to be controversial. We developed a subduction-driven geodynamic mantle convection model that honors a set of global plate reconstruction data since 230Ma to help understand the formation and evolution of mantle structure beneath eastern China. The assimilation of plate kinematics, continuous evolving plate margin, asymmetric subduction zone, and paleo seafloor age data enables the spatial and temporal consistency between the geologic data and the mantle convection model, and guarantees the conservation of the buoyancy flux across the lithosphere and subducted slabs. Our model achieved a first order approximation between predictions and the observed data. Interestingly, the model suggests that the slab material stagnated above discontinuity didn't form until 15Ma, much later than previous expected, and the fast abnormality in the mid-mantle further west in the tomographic image is interpreted to be the remnants of the Mesozoic Izanagi subduction. Moreover, detailed analysis suggests that the accelerated subduction of Philippine Sea plate beneath Eurasia plate along the Ryukyu Trench and Nankai Trough since 15Ma may largely contribute to extending feature above 670km discontinuity. The long distance expansion of the slab material in the East-west direction may be an illusion caused by the approximate spatial perpendicularity between the cross-section and the subduction direction of the Philippine Sea plate. Our model emphasizes the necessity of the re-examination on the geophysical observation and its tectonic and

  8. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. (United States)

    Ma, Hongcai; Wu, Lin


    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  9. Role of lateral growth on the structural properties of high temperature GaN layer

    Institute of Scientific and Technical Information of China (English)

    GAO ZhiYuan; HAO Yue; LI PeiXian; ZHANG JinCheng


    The role of lateral growth on the structural properties of high temperature (HT) GaN epitaxial layer has been investigated by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD).Variations of the lateral growth rate of HT GaN in metal-organic chemical vapor deposition (MOCVD)can be obtained by changing the Ⅴ/Ⅲ ratio. It is found that under higher lateral growth rate, dislocation is easier to bend into subgrains away from c axis, and the position where bend occurs is closer to the buffer layer, however, dislocation density does not show to monotonically vary with increasing lateral growth rate. A model concerning the GaN growth dynamics and dislocation bending mechanics has been proposed to explain the correlation between lateral growth and the structural properties of GaN.

  10. Role of lateral growth on the structural properties of high temperature GaN layer

    Institute of Scientific and Technical Information of China (English)


    The role of lateral growth on the structural properties of high temperature(HT) GaN epitaxial layer has been investigated by means of transmission electron microscopy(TEM) and X-ray diffraction(XRD).Variations of the lateral growth rate of HT GaN in metal-organic chemical vapor deposition(MOCVD) can be obtained by changing the V/Ⅲ ratio.It is found that under higher lateral growth rate,dislocation is easier to bend into subgrains away from c axis,and the position where bend occurs is closer to the buffer layer,however,dislocation density does not show to monotonically vary with increasing lateral growth rate.A model concerning the GaN growth dynamics and dislocation bending mechanics has been proposed to explain the correlation between lateral growth and the structural properties of GaN.

  11. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia (United States)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.


    In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit

  12. High school Bullying as a Risk for Later Depression and Suicidality


    Klomek, Anat Brunstein; Kleinman, Marjorie; Altschuler, Elizabeth; Marrocco, Frank; Amakawa, Lia; Gould, Madelyn S.


    This is the first study to examine whether high-school students experiencing frequent bullying behaviors are at risk for later depression and suicidality. 236 students who reported frequent bullying behavior without depression or suicidality during a suicide screening were interviewed four years later to reassess depression, suicidal ideation, attempts, substance problems, and functional impairment and were compared to “at-risk” youth identified during the screen, including 96 youth who also ...

  13. Performance Analysis for Lateral-Line-Inspired Sensor Arrays (United States)


    frequency is encoded in the nerve fibers connected to the lateral line [10], indicating that at least some high level information about vortices is being...Mogdans. Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, carassius auratus, under still and running water conditions...M. Humphreys. Wall-pressure-array measure- ments beneath a separating/ reattaching flow region. Physics of Fluids, 15(3):706–717, March 2003. [37

  14. A rare cause of conductive hearing loss: High lateralized jugular bulb with bony dehiscence. (United States)

    Barr, James G; Singh, Pranay K


    We present a rare case of pediatric conductive hearing loss due to a high lateralized jugular bulb. An 8-year-old boy with a right-sided conductive hearing loss of 40 dB was found to have a pink bulge toward the inferior part of the right eardrum. Computed tomography showed a high, lateralized right jugular bulb that had a superolaterally pointing diverticulum that bulged into the lower mesotympanum and posterior external auditory meatus. It was explained to the child's parents that it is important never to put any sharp objects into the ears because of the risk of injury to the jugular vein. A high, lateralized jugular bulb with a diverticulum is a rare anatomic abnormality. Correct diagnosis of this abnormality is important so that inappropriate intervention does not occur.

  15. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daoyuan [Laboratory of Seismology and Physics of Earth' s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei Anhui China; National Geophysics Observatory at Mengcheng, Anhui China; Helmberger, Don [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA; Miller, Meghan S. [Department of Earth Sciences, University of Southern California, Los Angeles California USA; Jackson, Jennifer M. [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA


    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  16. Liquid Crystalline Epoxies with Lateral Substituents Showing a Low Dielectric Constant and High Thermal Conductivity (United States)

    Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei


    In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.

  17. Determinism beneath Quantum Mechanics

    CERN Document Server

    Hooft, G


    Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.

  18. Subduction or delamination beneath the Apennines? Evidence from regional tomography

    NARCIS (Netherlands)

    Koulakov, I.; Jakovlev, A.; Zabelina, I.; Roure, F.; Cloetingh, S.; El Khrepy, S.; Al-Arifi, N.


    In this study we present a new regional tomography model of the upper mantle beneath Italy and the surrounding area derived from the inversion of travel times of P and S waves from the updated International Seismological Centre (ISC) catalogue. Beneath Italy, we identify a high-velocity anomaly whic

  19. Receiver Function Analysis of the Lithospheric Structure Beneath the Western Great Plains (United States)

    Thurner, S.; Zhai, Y.; Levander, A.


    The lithosphere in the western Great Plain region of the Southwestern U.S. has been subject to tectonic deformation from the Proterozoic to present day. Proterozoic island arc terranes accreted onto the North American continent between 1.8 and 1.1 Ga, forming the original continent, and there is evidence for Proterozoic continental extension which formed basement penetrating faults between 1.5 and .6 Ga . This was followed by the uplift of the Ancestral Rockies and, most recently, the subduction of the Farallon plate beneath North America. Extension has occurred throughout the Basin and Range and formed the Rio Grand Rift (RGR). However, the relative impact that large scale tectonic forces, regional asthenospheric upwelling, and preexisting structural weaknesses have on the extension of the RGR is still undetermined. This study seeks to better understand the current tectonic system east of the Colorado Plateau beneath the RGR and western Great Plains. We use teleseismic receiver functions to investigate the nature of extension in the RGR as well as its connection to the small-scale convection thought to be occurring beneath the Colorado Plateau-RGR-Great Plains region. Our receiver function images were generated from 85 earthquake events recorded at 187 USArray Transportable Array seismic stations located throughout the western Great Plains (Latitude: 28-48, Longitude: -105-100). Previous studies have indicated crustal thickness between 39 km and 50 km beneath the Great Plains and as thin as 35 km beneath the RGR (Wilson, 2005). Tomography results have shown high velocity anomalies on both sides of the RGR, extending to 600 km depth beneath the western Great Plains, and a low velocity anomaly directly beneath the RGR (Gok et. al, 2003, Wilson et. al, 2005, Gao et. al, Song and Helmberger, 2007). The western Great Plains high velocity anomaly has been interpreted to be part of the downwelling portion of an edge driven convection system induced by a lateral

  20. Big mantle wedge, anisotropy, slabs and earthquakes beneath the Japan Sea (United States)

    Zhao, Dapeng


    The Japan Sea is a part of the western Pacific trench-arc-backarc system and has a complex bathymetry and intense seismic activities in the crust and upper mantle. Local seismic tomography revealed strong lateral heterogeneities in the crust and uppermost mantle beneath the eastern margin of the Japan Sea, which was determined using P and S wave arrival times of suboceanic earthquakes relocated precisely with sP depth phases. Ambient-noise tomography revealed a thin crust and a thin lithosphere beneath the Japan Sea and significant low-velocity (low-V) anomalies in the shallow mantle beneath the western and eastern margins of the Japan Sea. Observations with ocean-bottom seismometers and electromagnetometers revealed low-V and high-conductivity anomalies at depths of 200-300 km in the big mantle wedge (BMW) above the subducting Pacific slab, and the anomalies are connected with the low-V zone in the normal mantle wedge beneath NE Japan, suggesting that both shallow and deep slab dehydrations occur and contribute to the arc and back-arc magmatism. The Pacific slab has a simple geometry beneath the Japan Sea, and earthquakes occur actively in the slab down to a depth of ∼600 km beneath the NE Asian margin. Teleseismic P and S wave tomography has revealed that the Philippine Sea plate has subducted aseismically down to the mantle transition zone (MTZ, 410-660 km) depths beneath the southern Japan Sea and the Tsushima Strait, and a slab window is revealed within the aseismic Philippine Sea slab. Seismic anisotropy tomography revealed a NW-SE fast-velocity direction in the BMW, which reflects corner flows induced by the fast deep subduction of the Pacific slab. Large deep earthquakes (M > 7.0; depth > 500 km) occur frequently beneath the Japan Sea western margin, which may be related to the formation of the Changbai and Ulleung intraplate volcanoes. A metastable olivine wedge is revealed within the cold core of the Pacific slab at the MTZ depth, which may be related

  1. Study on Evaluation Methods for Lateral Stability of High-Speed Trains

    Institute of Scientific and Technical Information of China (English)

    YAO Jianwei; SUN Lixia; HOU Fuguo


    Taking a high-speed train in China as an example,using computer simulation technology and comparing with the test data,the three current methods including linear stability analysis method,nonlinear stability analysis method and the field testing criterion are studied to evaluate stability of high-speed trains.A new stability evaluation method is proposed which can be used to evaluate lateral stability of high-speed vehicle based on the codes of UIC 515 and UIC 518.From the viewpoint of taking the most unfavorable track conditions into account and improving the safety margin,the new method uses the root mean square of bogie lateral acceleration as a criterion to evaluate the lateral stability of high-speed trains.Numerical example shows that the proposed method not only considers the forced vibration caused by track irregularities in the actual practice,but also takes the instability self-excited vibration into account,so it can realize early warning of bogie slight unstable oscillation,meanwhile the method itself does not involve complex algorithms which has the possibility of engineering applications.

  2. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed


    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the to range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  3. Does television viewing predict dietary intake five years later in high school students and young adults?

    Directory of Open Access Journals (Sweden)

    Neumark-Sztainer Dianne


    Full Text Available Abstract Background Prior research has found that television viewing is associated with poor diet quality, though little is known about its long-term impact on diet, particularly during adolescence. This study examined the associations between television viewing behavior with dietary intake five years later. Methods Survey data, which included television viewing time and food frequency questionnaires, were analyzed for 564 middle school students (younger cohort and 1366 high school students (older cohort who had complete data available at Time 1 (1998–1999 and five years later at Time 2 (mean age at Time 2, 17.2 ± 0.6 and 20.5 ± 0.8 years, respectively. Regression models examined longitudinal associations between Time 1 television viewing behavior and Time 2 dietary intake adjusting for sociodemographic characteristics, Time 1 dietary intake, and Time 2 total daily energy intake. Results Respondents were categorized as limited television users (2 hours/daily, moderately high television viewers (2–5 hours/daily, and heavy television viewers (≥5 hours/daily. Among the younger cohort, Time 1 heavy television viewers reported lower fruit intake and higher sugar-sweetened beverage consumption than the other two groups. Among the older cohort, watching five or more hours of television per day at Time 1, predicted lower intakes of fruits, vegetables, whole grain and calcium-rich foods, and higher intakes of trans fat, fried foods, fast food menu items, snack products, and sugar-sweetened beverages (products commonly advertised on television five years later. Conclusion Television viewing in middle and high school predicted poorer dietary intake five years later. Adolescents are primary targets of advertising for fast food restaurants, snack foods, and sugar-sweetened beverages, which may influence their food choices. Television viewing, especially during high school, may have long-term effects on eating choices and contribute to poor eating

  4. Power lateral pnp transistor operating with high current density in irradiated voltage regulator

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.


    Full Text Available The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.

  5. Invited commentary: Interpreting associations between high birth weight and later health problems. (United States)

    Eriksen, Willy


    High birth weight (>4.0 kg) has been associated with a wide range of health problems later in life. The interpretation of these statistical associations may be difficult, however. These difficulties are closely linked to methodological challenges in this research, such as filtering out confounding from family factors, disentangling associations with prenatal processes from associations with postnatal processes, and uncovering what birth weight actually represents. The well-conducted study by Kristensen et al. (Am J Epidemiol. 2014;180(9):876-884), presented in this issue of the Journal, offers an interesting example of how one can filter out confounding from family factors. In an elegant series of analyses, the authors show how an apparent inverse association between birth weight and later intelligence among those in the highest range of the birth weight scale became a positive association when proper adjustment for family factors was made. Sibling comparisons were important here.

  6. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Kaul Rajinder


    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  7. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential (United States)

    Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.


    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160

  8. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Linda G. Lee


    Full Text Available We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

  9. High spatial resolution zonal wavefront reconstruction with improved initial value determination scheme for lateral shearing interferometry. (United States)

    Dai, Fengzhao; Tang, Feng; Wang, Xiangzhao; Sasaki, Osami; Zhang, Min


    In a recent paper [J. Opt. Soc. Am. A 29, 2038 (2012)], we proposed a generalized high spatial resolution zonal wavefront reconstruction method for lateral shearing interferometry. The test wavefront can be reconstructed with high spatial resolution by using linear interpolation on a subgrid for initial values estimation. In the current paper, we utilize the difference between the Zernike polynomial fitting method and linear interpolation in determining the subgrid initial values. The validity of the proposed method is investigated through comparison with the previous high spatial resolution zonal method. Simulation results show that the proposed method is more accurate and more stable to shear ratios compared with the previous method. A comprehensive comparison of the properties of the proposed method, the previous high spatial resolution zonal method, and the modal method is performed.

  10. High-efficiency tunable X-ray focusing optics using mirrors and laterally-graded multilayers

    CERN Document Server

    Ziegler, E; Morawe, C; Tucoulou, R


    A high-efficiency X-ray microfocusing device covering a 7-30 keV energy range has been developed and tested at the ESRF BM5 beamline. It is composed of a mirror mounted on a 2-moments flexural hinge based bender and coated with 2 laterally-graded multilayers and a single-layer of iridium. With a demagnification factor of 128, focal spot sizes down to 1 mu m were obtained using an on-line shaping procedure having a sub-mu rad precision.

  11. Multi-aperture ultra-high-speed imaging with lateral electric field charge modulators (United States)

    Kagawa, K.; Mochizuki, F.; Seo, M.-W.; Yasutomi, K.; Kawahito, S.


    The time resolution of charge modulation in CMOS image sensors has entered the sub-nano second regime and is still reducing toward tens of pico-second. The lateral electric field modulators (LEFM) invented at Shizuoka University has significantly contributed to the recent progress in the solid-state time-resolved imaging field. Based on the LEFM technology, we are developing ultra-high-speed CMOS image sensors whose frame rate or time resolution is determined only by the charge modulation speed. In this presentation, the concept, architecture, example of implementation, and demonstration of 200Mfps single-shot video capturing based on our scheme are shown.

  12. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin (United States)

    Miao, W.; Li, G.; Niu, F.


    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  13. The Ocean Boundary Layer beneath Hurricane Frances (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.


    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  14. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. (United States)

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F


    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  15. Vertical and lateral forces between a permanent magnet and a high-temperature superconductor (United States)

    Hull, John R.; Cansiz, Ahmet


    The vertical and horizontal forces and associated stiffnesses on a permanent magnet (PM) above a high-temperature superconductor (HTS) were measured during vertical and horizontal traverses in zero-field cooling (ZFC) and in field cooling (FC). In ZFC, the vertical stiffness was greater in the first descent than in the first ascent and second descent, and the stiffness in the second descent was between those of the first descent and the first ascent. At the FC position, the vertical stiffness was two times greater than the lateral stiffness at each height, to within 1% of the vertical stiffness value. The cross stiffness of vertical force with respect to lateral position was positive for FC, but negative for ZFC. Free-spin-down experiments of a PM levitated above a HTS were also performed. These results showed that the coefficient of friction is double valued at frequencies just below the rotor resonance, a result attributed to cross stiffness in the PM/HTS interaction. A frozen-image model was used to calculate the vertical and horizontal forces and stiffnesses, and reasonable agreement with the data occurred for vertical or horizontal movements of the PM less than several mm from the FC position.

  16. Remote Oil Spill Detection and Monitoring Beneath Sea Ice (United States)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.


    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  17. Cord Blood Metabolome Is Highly Associated with Birth Weight, but Less Predictive for Later Weight Development

    Directory of Open Access Journals (Sweden)

    Christian Hellmuth


    Full Text Available Background/Aims: Fetal metabolism may be changed by the exposure to maternal factors, and the route to obesity may already set in utero. Cord blood metabolites might predict growth patterns and later obesity. We aimed to characterize associations of cord blood with birth weight, postnatal weight gain, and BMI in adolescence. Methods: Over 700 cord blood samples were collected from infants participating in the German birth cohort study LISAplus. Glycerophospholipid fatty acids (GPL-FA, polar lipids, non-esterified fatty acids (NEFA, and amino acids were analyzed with a targeted, liquid chromatography-tandem mass spectrometry based metabolomics platform. Cord blood metabolites were related to growth factors by linear regression models adjusted for confounding variables. Results: Cord blood metabolites were highly associated with birth weight. Lysophosphatidylcholines C16:1, C18:1, C20:3, C18:2, C20:4, C14:0, C16:0, C18:3, GPL-FA C20:3n-9, and GPL-FA C22:5n-6 were positively related to birth weight, while higher cord blood concentrations of NEFA C22:6, NEFA C20:5, GPL-FA C18:3n-3, and PCe C38:0 were associated with lower birth weight. Postnatal weight gain and BMI z-scores in adolescents were not significantly associated with cord blood metabolites after adjustment for multiple testing. Conclusion: Potential long-term programming effects of the intrauterine environment and metabolism on later health cannot be predicted with profiling of the cord blood metabolome.

  18. Control of lateral divergence in high-power, broad-area photonic crystal lasers (United States)

    Rong, Jiamin; Xing, Enbo; Wang, Lijie; Shu, Shili; Tian, Sicong; Tong, Cunzhu; Wang, Lijun


    One-dimensional photonic bandgap crystal (PBC) lasers have demonstrated ultra-low vertical divergence and record brightness; however, their future development is limited by their lateral beam quality. In this paper, a fishbone microstructure is proposed to control the lateral modes in broad-area PBC lasers. The findings reveal that the introduction of the microstructure improves the full width at half maximum of the lateral far field by 22.2% and increases the output power to a small extent. The detailed measurements show that the lateral beam parameter product decreases by 15.9%.

  19. High Efficiency, Low Power-Consumption DFB Quantum Cascade Lasers Without Lateral Regrowth. (United States)

    Jia, Zhi-Wei; Wang, Li-Jun; Zhang, Jin-Chuan; Liu, Feng-Qi; Zhou, Yu-Hong; Wang, Dong-Bo; Jia, Xue-Feng; Zhuo, Ning; Liu, Jun-Qi; Zhai, Shen-Qiang; Wang, Zhan-Guo


    Very low power-consumption distributed feedback (DFB) quantum cascade lasers (QCLs) at the wavelength around 4.9 μm were fabricated by conventional process without lateral regrowth of InP:Fe or using sidewall grating. Benefitted from the optimized materials and low waveguide loss, very low threshold current density of 0.5 kA/cm(2) was obtained for a device with cavity length of 2 mm. Combined with the partial-high-reflection coating, the 1-mm-long DFB QCL achieved low power-consumption continuous wave (CW) operation up to 105 °C. The CW threshold power-consumptions were 0.72 and 0.78 W at 15 and 25 °C, respectively. The maximum CW output power was over 110 mW at 15 °C and still more than 35 mW at 105 °C. At 15 °C, wall-plug efficiency of 5.5% and slope efficiency of 1.8 W/A were deduced, which were very high for low power-consumption DFB QCLs.

  20. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device. (United States)

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja


    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Association of Playing High School Football With Cognition and Mental Health Later in Life. (United States)

    Deshpande, Sameer K; Hasegawa, Raiden B; Rabinowitz, Amanda R; Whyte, John; Roan, Carol L; Tabatabaei, Andrew; Baiocchi, Michael; Karlawish, Jason H; Master, Christina L; Small, Dylan S


    any of the secondary outcomes, such as the likelihood of heavy alcohol use at 65 years of age (odds ratio, 0.68; 95% CI, 0.32-1.43). Cognitive and depression outcomes later in life were found to be similar for high school football players and their nonplaying counterparts from mid-1950s in Wisconsin. The risks of playing football today might be different than in the 1950s, but for current athletes, this study provides information on the risk of playing sports today that have a similar risk of head trauma as high school football played in the 1950s.

  2. Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Zhiyong Chen


    Full Text Available As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.

  3. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats (United States)

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex


    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  4. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Xin Fang


    Full Text Available More and more evidences indicate that diseases of the central nervous system (CNS have been seriously affected by faecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS and faecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis (PCoA, Venn and unweighted pair-group method using arithmetic averages (UPGMA showed an obvious microbial changes between healthy people (group H and ALS patients (group A, and the average ratios of Bacteroides, Faecalibacterium, Anaerostipes, Prevotella, Escherichia and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79 and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA >4.0, together with the significant increased genus Dorea (harmful microorganisms and significant reduced genus Oscillibacter, Anaerostipes, Lachnospiraceae (beneficial microorganisms in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS.

  5. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji


    A new high-voltage and low-specific on-resistance (Ron,sp) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed.The MOSFET features are that the electrodes are in the buried oxide (BOX) layer,the negative drain voltage Vd is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source.Because the interface silicon layer potentials are lower than the neighboring electrode potentials,the electronic potential wells are formed above the electrode regions,and the hole poteutial wells are formed in the spacing of two neighbouring electrode regions.The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials.Based on the interface charge enhanced dielectric layer field theory,the electric field strength in the buried layer is enhanced.The vertical electric field EI and the breakdown voltage (BV) of ABE SOI are 545 V/μm and -587 V in the 50 μm long drift region and the 1 tm thick dielectric layer,and a low Ron,sp is obtained.Furthermore,the structure also alleviates the self-heating effect (SHE).The analytical model matches the simulation results.

  6. Evaluation of the Microbial Diversity in Amyotrophic Lateral Sclerosis Using High-Throughput Sequencing (United States)

    Fang, Xin; Wang, Xin; Yang, Shaoguo; Meng, Fanjing; Wang, Xiaolei; Wei, Hua; Chen, Tingtao


    More and more evidences indicate that diseases of the central nervous system have been seriously affected by fecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS) and fecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis, Venn and unweighted pair-group method using arithmetic averages (UPGMA) showed an obvious microbial changes between healthy people (group H) and ALS patients (group A), and the average ratios of Bacteroides, Faecalibacterium, Anaerostipes, Prevotella, Escherichia, and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA > 4.0), together with the significant increased genus Dorea (harmful microorganisms) and significant reduced genus Oscillibacter, Anaerostipes, Lachnospiraceae (beneficial microorganisms) in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS. PMID:27703453

  7. Open-wedge high tibial osteotomy: incidence of lateral cortex fractures and influence of fixation device on osteotomy healing. (United States)

    Dexel, Julian; Fritzsche, Hagen; Beyer, Franziska; Harman, Melinda K; Lützner, Jörg


    Open-wedge high tibial osteotomy (HTO) is an established treatment for young and middle-aged patients with medial compartment knee osteoarthritis and varus malalignment. Although not intended, a lateral cortex fracture might occur during this procedure. Different fixation devices are available to repair such fractures. This study was performed to evaluate osteotomy healing after fixation with two different locking plates. Sixty-nine medial open-wedge HTO without bone grafting were followed until osteotomy healing. In patients with an intact lateral hinge, no problems were noted with either locking plate. A fracture of the lateral cortex occurred in 21 patients (30.4 %). In ten patients, the fracture was not recognized during surgery but was visible on the radiographs at the 6-week follow-up. Lateral cortex fracture resulted in non-union with the need for surgical treatment in three out of eight (37.5 %) patients using the newly introduced locking plate (Position HTO Maxi Plate), while this did not occur with a well-established locking plate (TomoFix) (0 out of 13, p = 0.023). With regard to other adverse events, no differences between both implants were observed. In cases of lateral cortex fracture, fixation with a smaller locking plate resulted in a relevant number of non-unions. Therefore, it is recommended that bone grafting, another fixation system, or an additional lateral fixation should be used in cases with lateral cortex fracture. III.

  8. High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: Actuation processes (United States)

    Koh, Soo Jin Adrian; Keplinger, Christoph; Kaltseis, Rainer; Foo, Choon-Chiang; Baumgartner, Richard; Bauer, Siegfried; Suo, Zhigang


    A dielectric elastomer transducer is a deformable capacitor, and is under development as a sensor, actuator, or generator. Among various geometric configurations, laterally-constrained transducer, also known as pure-shear transducer, is easy to implement and effective to couple mechanical force and electrical voltage. This analytical study reveals that lateral pre-stretch enhances actuation, far exceeding previously reported actuation strokes. Laterally-constrained transducers exhibit complex electromechanical behavior. As voltage increases, an actuator may undergo electromechanical instability, or form wrinkles, or suffer electrical breakdown. We survey the behavior of actuators under all possible states of pre-stretches, and identify five modes of actuation. Our analysis predicts that laterally-constrained actuators can achieve actuation stroke of 1000% for an acrylic elastomer, and 230% for natural rubber. This analysis opens the door to design actuators of simple geometry capable of a very large range of electromechanical actuation.

  9. Highly Efficient Photocurrent Generation from Nanocrystalline Graphene-Molybdenum Disulfide Lateral Interfaces. (United States)

    Lee, Kang Hyuck; Kim, Tae-Ho; Shin, Hyun-Jin; Kim, Sang-Woo


    Nanocrystalline graphene-MoS2 lateral interfaces reveal distinct current-rectified characteristics, similar to a p-n diode, that are seldom observed for the monolayer graphene-MoS2 vertical interface. It is found that the lateral interfaces can increase the Schottky barrier between the graphene and the MoS2 because the metallic MoS2 edges cause charge reordering and a potential shift in the graphene.

  10. Numerical study of the electron and muon lateral distribution in atmospheric showers of high energy cosmic rays (United States)

    Georgios, Atreidis


    The lateral distribution of an atmospheric shower depends on the characteristics of the high energy interactions and the type of the primary particle. The influence of the primary particle in the secondary development of the shower into the atmosphere, is studied by analyzing the lateral distribution of electron and muon showers having as primary particle, proton, photon or iron nucleus. This study of the lateral distribution can provide useful conclusions for the mass and energy of the primary particle. This paper compares the data that we get from simulations with CORSIKA program with experimental data and the theoretical NKG function expressing lateral electron and muon distribution. Then we modify the original NKG function to fit better to the simulation data and propose a method for determining the mass of the original particle started the atmospheric shower.

  11. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, James B


    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  12. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    Directory of Open Access Journals (Sweden)

    Se Woon Choi


    Full Text Available The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS. To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements.

  13. Long term effects of high intensity laser therapy in lateral epicondylitis patients. (United States)

    Akkurt, Ekrem; Kucuksen, Sami; Yılmaz, Halim; Parlak, Selman; Sallı, Ali; Karaca, Gülten


    The objective of this study is to investigate short- and long-term effects of high-intensity laser therapy (HILT) in lateral epicondylitis (LE) patients. Thirty patients with LE diagnosis (23 unilateral and 7 bilateral in total 37 elbows) were treated using HILT. LE patients were evaluated before, right after, and 6 months following HILT intervention post-treatment using visual analogue scale for pain (VAS) during activity and resting. Disabilities of the Arm, Shoulder, and Hand (DASH) Score and hand grip strength test (HGST) were used. The participants of the present study were also evaluated using Short-Form 36 (SF-36) before and 6 months after the treatment. Out of the 30 patients, 8 were male and 22 female with a mean age of 47.2 ± 9.7. The activity and resting VAS, DASH, and HGST scores revealed statistically significant improvement (p = 0.001) following treatment. Whereas VAS activity, DASH, and HGST scores increased after treatment until post-treatment 6 months significantly (p = 0.001), VAS resting scores remained stable (p = 0.476). A statistically significant improvement was also evident in the physical and mental components of SF-36 scores following treatment until post-treatment 6 months compared to pre-treatment scores (p = 0.001). In conclusion, the results of the present study suggest that HILT is a reliable, safe, and effective treatment option in LE patients in the short and long term considering pain, functional status, and quality of life.

  14. High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. (United States)

    Corrado, Lucia; Ratti, A; Gellera, C; Buratti, E; Castellotti, B; Carlomagno, Y; Ticozzi, N; Mazzini, L; Testa, L; Taroni, F; Baralle, F E; Silani, V; D'Alfonso, S


    Recent studies identified rare missense mutations in amyotrophic lateral sclerosis (ALS) patients in the TARDBP gene encoding TAR DNA binding protein (TDP)-43, the major protein of the ubiquitinated inclusions (UBIs) found in affected motor neurons (MNs). The aim of this study was to further define the spectrum of TARDBP mutations in a large cohort of 666 Italian ALS patients (125 familial and 541 sporadic cases). The entire coding region was sequenced in 281 patients, while in the remaining 385 cases only exon 6 was sequenced. In 18 patients, of which six are familial, we identified 12 different heterozygous missense mutations (nine novel) all locating to exon 6, which were absent in 771 matched controls. The c.1144G>A (p.A382T) variation was observed in seven patients, thus representing the most frequent TARDBP mutation in ALS. Analysis of microsatellites surrounding the TARDBP gene indicated that p.A382T was inherited from a common ancestor in 5 of the 7 patients. Altogether, the frequency of TARDBP gene mutations appears to be particularly high in Italian ALS patients compared to individuals of mainly Northern European origin (2.7% vs. 1%). Western blot analysis of lymphocyte extracts from two patients carrying the p.A382T and p.S393L TARDBP mutations showed the presence of lower molecular weight TDP-43 bands, which were more abundant than observed in healthy controls and patients negative for TARDBP mutations. In conclusion, this report contributes to the demonstration of the causative role of the TARDBP gene in ALS pathogenesis and indicates that mutations may affect the stability of the protein even in nonneuronal tissues. (c) 2009 Wiley-Liss, Inc.

  15. Potential methane reservoirs beneath Antarctica. (United States)

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H


    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  16. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.


    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...... these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated...

  17. Imaging magma plumbing beneath Askja volcano, Iceland (United States)

    Greenfield, Tim; White, Robert S.


    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  18. Social Smiling and Its Components in High-Risk Infant Siblings without Later ASD Symptomatology (United States)

    Nichols, Caitlin McMahon; Ibañez, Lisa V.; Foss-Feig, Jennifer H.; Stone, Wendy L.


    Impaired affective expression, including social smiling, is common in children with autism spectrum disorder (ASD), and may represent an early marker for ASD in their infant siblings (Sibs-ASD). Social smiling and its component behaviors (eye contact and non-social smiling) were examined at 15 months in Sibs-ASD who demonstrated later ASD…

  19. Feasibility of Lateral Emplacement in Very Deep Borehole Disposal of High Level Nuclear Waste (United States)


    including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson...81 FIGURE 3-32: CANDU GEOLOGIC DISPOSAL OVER-PACK by Number of Laterals 46 2.6.4 Second Narrowing of the Trade-space Further inspecting the pared-down trade-space results suggested further

  20. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor


    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  1. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system (United States)

    Song, Honghai; de Haas, Oliver; Beyer, Christoph; Krabbes, Gernot; Verges, Peter; Schultz, Ludwig


    After the levitation force relaxation was studied for different field-cooling height and working-levitation height, the high-temperature superconductor (HTS) bulk was horizontally moved in the lateral direction above the permanent magnet guideway. Both levitation and guidance force were collected by the measurement system at the same time. It was found that the decay of levitation force is dependent on both the maximum lateral displacement and the movement cycle times, while the guidance force hysteresis curve does not change after the first cycle. This work provided scientific analysis for the HTS maglev system design.

  2. Lithospheric thinning beneath rifted regions of Southern California. (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M


    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  3. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. (United States)

    Tilmann, Frederik; Ni, James


    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  4. Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: statistical parametric mapping with high resolution MRI. (United States)

    Long, Xiaojing; Zhang, Lijuan; Liao, Weiqi; Jiang, Chunxiang; Qiu, Bensheng


    Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high-resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimer's disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high-resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region-specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD.

  5. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)


    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  6. Strong lateral variations of S-wave velocity in the upper mantle across the western Alps (United States)

    Lyu, Chao; Pedersen, Helle; Paul, Anne; Zhao, Liang


    Absolute S-wave velocity gives more insight into temperature and mineralogy than relative P-wave velocity variations (ΔV p/ V p) imaged by teleseismic traveltime tomography. Moreover, teleseismic P-wave tomography has poor vertical but good horizontal resolution. By contrast, the inversion of surface waves dispersion data gives absolute S-wave velocity with a good vertical but relatively poor horizontal resolution. However, the horizontal resolution of surface wave imaging can be improved by using closely spaced stations in mini-arrays. In this work, we use Rayleigh wave phase velocity dispersion data to measure absolute S-wave velocities beneath the CIFALPS profile across the French-Italian western Alps. We apply the array processing technique proposed by Pedersen et al. (2003) to derive Rayleigh wave phase dispersion curves between 20 s and 100 s period in 15 mini-arrays along the CIFALPS line. We estimate a 1-D S-wave velocity model at depth 50-150 km beneath each mini-array by inverting the dispersion curves jointly with receiver functions. The joint inversion helps separating the crustal and mantle contributions in the inversion of dispersion curves. Distinct lithospheric structures and marked lateral variations are revealed beneath the study region, correlating well with regional geological and tectonic features. The average S-wave velocity from 50 to 150 km depth beneath the CIFALPS area is ˜4.48km/s, almost the same as in model AK135, indicating a normal upper mantle structure in average. Lateral variations are dominated by relatively low velocities (˜4.4km/s) in the mantle of the European plate, very low velocities (4.0km/s, i.e. approximately 12% lower than AK135) beneath the Dora Maira internal crystalline massif and high velocities (˜ 5.0km/s, i.e. 12% higher than AK135) beneath the Po plain. The lateral variations of S-wave velocity perturbation show the same features as the P wave tomography (Zhao et al., submitted), but with different amplitudes

  7. High resolution receiver function Images of the lithosphere beneath the Central Andes between 19°and 24° S using data of Integrated Plate boundary Observatory Chile (IPOC) (United States)

    Sodoudi, F.; Asch, G.; Kind, R.; Oncken, O.; Vilotte, J.; Barrientos, S. E.; Salazar Reinoso, P.


    -Asthenosphere Boundary (LAB). This boundary could not be observed by P receiver functions due to the crustal multiples, which arrive at the same time and mask the conversion from this boundary. By combining our P and S receiver function results a high-resolution image of the subduction was provided. The resulted LAB topography map could clearly demonstrate the Nazca lithosphere subducting beneath the South American lithosphere.

  8. Fine structure of Pn velocity beneath Sichuan-Yunnan region

    Institute of Scientific and Technical Information of China (English)

    黄金莉; 宋晓东; 汪素云


    We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.

  9. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada (United States)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu


    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  10. Laterally Spreading Tumors of the Colon During High Resolution Colonoscopy with Narrow Band Imaging and Acetic Acid Chromoscopy

    Directory of Open Access Journals (Sweden)

    V.A. Yakovenko


    Materials and Methods. 1632 colonoscopy protocols were studied: 735 — by using video colonoscope Olympus CF-HQ190L and 897 — Olympus CF-150. Results and Discussion. In study group, adenoma detection rate was higher than in control one: 0.78 (571/735 vs. 0.47 (422/897, p < 0.00001; c2 = 157.9. Adenoma detection index was 3.6 times higher in study group than in control one: 2.9 (2,104/735 vs. 0.8 (708/897. Laterally spreading tumors were diagnosed 2.2 times more often in study group than in control one: 22 % (187/735 vs. 10 % (85/897, p < 0.00001; c2 = 53.6. Conclusions. High resolution colonoscopy with narrow band imaging and acetic acid chromoscopy has a high diagnostic value for detection of laterally spreading tumors of the colon.

  11. Later school start times for supporting the education, health, and well-being of high school students. (United States)

    Marx, Robert; Tanner-Smith, Emily E; Davison, Colleen M; Ufholz, Lee-Anne; Freeman, John; Shankar, Ravi; Newton, Lisa; Brown, Robert S; Parpia, Alyssa S; Cozma, Ioana; Hendrikx, Shawn


    A number of school systems worldwide have proposed and implemented later school start times as a means of avoiding the potentially negative impacts that early morning schedules can have on adolescent students. Even mild sleep deprivation has been associated with significant health and educational concerns: increased risk for accidents and injuries, impaired learning, aggression, memory loss, poor self-esteem, and changes in metabolism. Although researchers have begun to explore the effects of delayed school start time, no one has conducted a rigorous review of evidence to determine whether later school start times support adolescent health, education, and well-being. We aimed to assess the effects of a later school start time for supporting health, education, and well-being in high school students.Secondary objectives were to explore possible differential effects of later school start times in student subgroups and in different types of schools; to identify implementation practices, contextual factors, and delivery modes associated with positive and negative effects of later start times; and to assess the effects of later school start times on the broader community (high school faculty and staff, neighborhood, and families). We conducted the main search for this review on 28 October 2014 and updated it on 8 February 2016. We searched CENTRAL as well as 17 key electronic databases (including MEDLINE, Embase, ERIC, PsycINFO, and Sociological Abstracts), current editions of relevant journals and organizational websites, trial registries, and Google Scholar. We included any randomized controlled trials, controlled before-and-after studies, and interrupted time series studies with sufficient data points that pertained to students aged 13 to 19 years and that compared different school start times. Studies that reported either primary outcomes of interest (academic outcomes, amount or quality of sleep, mental health indicators, attendance, or alertness) or secondary

  12. Subduction system and flat slab beneath the Eastern Cordillera of Colombia (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Faccenna, Claudio; Speranza, Fabio; Seccia, Danilo; Dionicio, Viviana; Prieto, Germán. A.


    Seismicity at the northern terminus of the Nazca subduction is diffused over a wide area containing the puzzling seismic feature known as the Bucaramanga nest. We relocate about 5000 earthquakes recorded by the Colombian national seismic network and produce the first 3-D velocity model of the area to define the geometry of the lithosphere subducting below the Colombian Andes. We found lateral velocity heterogeneities and an abrupt offset of the Wadati-Benioff zone at 5°N indicating that the Nazca plate is segmented by an E-W slab tear, that separates a steeper Nazca segment to the south from a flat subduction to the north. The flat Nazca slab extends eastward for about 400 km, before dip increases to ˜50° beneath the Eastern Cordillera, where it yields the Bucaramanga nest. We explain this puzzling locus of intermediate-depth seismicity located beneath the Eastern Cordillera of Colombia as due to a massive dehydration and eclogitization of a thickened oceanic crust. We relate the flat subducting geometry to the entrance at the trench at ca. 10 Ma of a thick - buoyant oceanic crust, likely a volcanic ridge, producing a high coupling with the overriding plate. Sub-horizontal plate subduction is consistent with the abrupt disappearance of volcanism in the Andes of South America at latitudes > 5°N.

  13. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens. (United States)

    Hansen, S M; Schmandt, B; Levander, A; Kiser, E; Vidale, J E; Abers, G A; Creager, K C


    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams.

  14. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions (United States)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.


    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  15. Lateral flow immunoassay for diagnosis of Trypanosoma cruzi infection with high correlation to the radioimmunoprecipitation assay. (United States)

    Houghton, Raymond L; Stevens, Yvonne Y; Hjerrild, Kathryn; Guderian, Jeff; Okamoto, Masahiko; Kabir, Mazbahul; Reed, Steven G; Leiby, David A; Morrow, W John W; Lorca, Myriam; Raychaudhuri, Syamal


    The incidence of blood donors seropositive for Trypanosoma cruzi in North America has increased with population migration and more rigorous surveillance. The United States, considered nonendemic for T. cruzi, could therefore be at risk to exposure to parasite transmission through blood or organ donations. Current tests show variable reactivity, especially with Central American sera. Here we describe the development of a lateral flow immunoassay for the rapid detection of T. cruzi infection that has a strong correlation to the radioimmunoprecipitation assay (RIPA) "gold standard" in the United States. Such a test could have utility in small blood banks for prescreening donors, as well as in cardiac transplantation evaluation. T. cruzi consensus and/or RIPA-positive sera from Central and South America were evaluated in enzyme immunoassays (EIAs). These included commercial panels from Boston Biomedica, Inc. (BBI) (n = 14), and HemaBio (n = 21). Other sources included RIPA-positive sera from the American Red Cross (ARC) (n = 42), as well as from Chile. Sera were tested with the multiepitope recombinant TcF. All but one of the BBI samples were positive and 7 of 21 HemaBio samples and 6 of 42 ARC samples were low positive or negative. This observation indicated the need for additional antigens. To complement TcF reactivity, we tested the sera with peptides 30, 36, SAPA, and 1.1, 1.2, and 1.3 His fragments of 85-kDa trans-sialidase. We identified a promising combination of the tested antigens and constructed a single recombinant protein, ITC6, that enhanced the relative sensitivity in U.S. blood donor sera compared to that of TcF. The data on its evaluation using RIPA-confirmed positive sera in EIA and lateral flow immunoassay studies are presented, along with an additional recombinant protein, ITC8.2, with two additional sequences for peptide 1 and Kmp-11. The latter, when evaluated in a dipstick assay with consensus positive sera, had a sensitivity of 99.2% and a

  16. Three-dimensional shallow velocity structure beneath Taal Volcano, Philippines (United States)

    You, Shuei-Huei; Konstantinou, Konstantinos I.; Gung, Yuancheng; Lin, Cheng-Horng


    Based on its numerous historical explosive eruptions and high potential hazards to nearby population of millions, Taal Volcano is one of the most dangerous "Decade Volcanoes" in the world. To provide better investigation on local seismicity and seismic structure beneath Taal Volcano, we deployed a temporary seismic network consisting of eight stations from March 2008 to March 2010. In the preliminary data processing stage, three periods showing linear time-drifting of internal clock were clearly identified from noise-derived empirical Green's functions. The time-drifting errors were corrected prior to further data analyses. By using VELEST, 2274 local earthquakes were manually picked and located. Two major earthquake groups are noticed, with one lying beneath the western shore of Taal Lake showing a linear feature, and the other spreading around the eastern flank of Taal Volcano Island at shallower depths. We performed seismic tomography to image the 3D structure beneath Taal Volcano using the LOTOS algorithm. Some interesting features are revealed from the tomographic results, including a solidified magma conduit below the northwestern corner of Taal Volcano Island, indicated by high Vp, Vs, and low Vp/Vs ratio, and a large potential hydrothermal reservoir beneath the center of Taal Volcano Island, suggested by low Vs and high Vp/Vs ratio. Furthermore, combining earthquake distributions and tomographic images, we suggest potential existence of a hydrothermal reservoir beneath the southwestern corner of Taal Lake, and a fluid conduit extending to the northwest. These seismic features have never been proposed in previous studies, implying that new hydrothermal activity might be formed in places away from the historical craters on Taal Volcano Island.

  17. Lateral-crack-free, buckled, inkjet-printed silver electrodes on highly pre-stretched elastomeric substrates (United States)

    Lee, Jaemyon; Chung, Seungjun; Song, Hyunsoo; Kim, Sangwoo; Hong, Yongtaek


    We report the formation of lateral-crack-free silver electrodes on highly pre-stretched poly(dimethylsiloxane) (PDMS) substrates using the inkjet-printing method followed by an annealing process under the pre-stretched state. Due to Poisson's effect, cracks are easily obtained in the direction lateral to the pre-stretching and releasing directions when the highly pre-stretched substrate is released after the electrode formation. In our method, however, Poisson's effect is suppressed significantly from the PDMS thermal expansion perpendicular to the pre-stretched direction during the annealing process. In order to prevent the formation of a lateral crack, the annealing temperature needs to be optimized for each pre-stretching condition. We modelled their relationship using Poisson's ratios and thermal expansion coefficients of the substrate and silver materials. Our measurement results showed consistent result with the simulation. The resistance of the fabricated silver electrodes negligibly changes under up to 17% strain and even after 1000 time stretching cycle tests.

  18. Compressional and Shear Wave Structure of the Upper Crust Beneath the Endeavour Segment, Juan De Fuca Ridge (United States)

    Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.


    We present tomographic images of the compressional (Vp) and shear (Vs) wave velocity structure of the upper crust beneath the Endeavour segment of the Juan de Fuca Ridge. This ridge segment is bounded by the Endeavour and Cobb overlapping spreading centers (OSCs) to the north and south, respectively. Near the segment center an axial magma chamber (AMC) reflector underlies 5 hydrothermal vent fields. Our analysis uses data from the Endeavour tomography (ETOMO) experiment. A prior study of the Vp structure indicates that the shallow crust of the Endeavour segment is strongly heterogeneous [Weekly et al., 2014]. Beneath the OSCs Vp is anomalously low, indicating tectonic fracturing. Near the segment center, upper crustal Vp is relatively high beneath the hydrothermal vent fields, likely due to infilling of porosity by mineral precipitation. Lower velocities are observed immediately above the AMC, reflecting increased fracturing or higher temperatures. Anisotropic tomography reveals large amplitude ridge-parallel seismic anisotropy on-axis (>10%), but decreases in the off-axis direction over 5-10 km. Here we use crustal S-wave phases (Sg) — generated by P-to-S conversions near the seafloor — to better constrain crustal properties. Over half the OBSs in the ETOMO experiment recorded horizontal data on two channels that are of sufficiently high quality that we can orient the geophones using the polarizations of water waves from shots within 12 km. For these OBSs, crustal Sg phases are commonly visible out to ranges of ~20-25 km. We invert the Sg data separately for Vs structure, and also jointly invert Pg and Sg data to constrain the Vp/Vs ratio. Preliminary inversions indicate that Vs and Vp/Vs varies both laterally and vertically. These results imply strong lateral variations in both the physical (e.g., crack density and aspect ratio) and chemical (e.g., hydration) properties of oceanic crust.

  19. Crustal structure beneath northeast India inferred from receiver function modeling (United States)

    Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju


    We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.

  20. SEMICONDUCTOR DEVICES: Double gate lateral IGBT on partial membrane (United States)

    Xiaorong, Luo; Lei, Lei; Wei, Zhang; Bo, Zhang; Zhaoji, Li


    A new SOI LIGBT (lateral insulated-gate bipolar transistor) with cathode- and anode-gates on partial membrane is proposed. A low on-state resistance is achieved when a negative voltage is applied to the anode gate. In the blocking state, the cathode gate is shortened to the cathode and the anode gate is shortened to the anode, leading to a fast switching speed. Moreover, the removal of the partial silicon substrate under the drift region avoids collecting charges beneath the buried oxide, which releases potential lines below the membrane, yielding an enhanced breakdown voltage (BV). Furthermore, a high switching speed is obtained due to the absence of the drain-substrate capacitance. Lastly, a combination of uniformity and variation in lateral doping profiles helps to achieve a high BV and low special on-resistance. Compared with a conventional LIGBT, the proposed structure exhibits high current capability, low special on-resistance, and double the BV.

  1. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR. (United States)

    Zhang, Guang-Ying; Zheng, Lei; Ding, Hong-Yu; Li, En-Miao; Sun, Bai-Sheng; Shi, Hao


    The purpose of this study was to compare the diagnostic performance of high-frequency ultrasound with MR in the evaluation of medial patellofemoral ligament (MPFL) lesions after acute lateral patellar dislocation (LPD). High-frequency ultrasound and MR images were prospectively obtained in 97 consecutive patients with acute LPD. Images were acquired using standardised protocols and were independently evaluated by two radiologists. The MPFL was assessed at three sites (patellar insertion, femoral attachment, and mid-substance) for signs of injury. Of a total of 291 sites in 97 MPFLs, 127 showed proven MPFL tear at surgery, including 51 sites of complete tear and 76 sites of partial tear. In a site-based analysis, the sensitivity, specificity, and accuracy of high-frequency ultrasound was 90.8%, 96.3%, and 94.6%, respectively, for partial MPFL tear and 86.3%, 96.3%, and 94%, respectively, for complete tear. For MR, the sensitivity, specificity, and accuracy was 81.6%, 95.7%, and 91.3%, respectively, for partial MPFL tear and 80.4%, 95.7%, and 92.1%, respectively, for complete tear. There was no statistical difference between high-frequency ultrasound and MR in the assessment of partial (P = 0.1, 0.777, 0.155) or complete (P = 0.425, 0.777, 0.449) MPFL lesions. Interobserver agreement was very good for high-frequency ultrasound and good for MR. Data suggest that high-frequency ultrasound and MR have similar diagnostic performance in the evaluation of MPFL lesions after acute LPD. • High-frequency ultrasound and MR were able to detect MPFL lesions after acute lateral patellar dislocation. • High-frequency ultrasound and MR showed similarly high accuracy in diagnosing MPFL lesions. • Interobserver agreement was very good for high-frequency ultrasound and good for MR.

  2. High ligation of the fistula track by lateral approach: a modified sphincter-saving technique for advanced anal fistulas. (United States)

    Chen, T-A; Liu, K-Y; Yeh, C-Y


    Ligation of the intersphincteric fistula track is a novel surgical procedure with the advantage of avoiding anal incontinence. We conducted a preliminary investigation of a modified technique for complicated trans-sphincteric anal fistula by high ligation of the track using a lateral approach. From June 2010 to May 2011, 10 patients received high ligation of the fistula track using a lateral approach. Patients selected for the procedure had a mature trans-sphincteric type of anal fistula that involved a significant amount of the external sphincter. Patients with early fistulous abscess or with a history of previous anal surgery were excluded. The surgical technique involved making an incision from the external opening and extending this towards the direction of the internal opening, dissection of the fistula from the underlying soft tissue, high ligation above the internal sphincter and removal of the distal part of the fistula track for pathological examination. Of the 10 patients, eight were men and the mean ± SD age was 40.5 ± 7.23 years. The median (range) duration of follow-up was 7 (6-10) months. In all patients, the wound was completely healed by the sixth postoperative week. Two cases of recurrence were noted later and were successfully managed by traditional fistulotomy. High-ligation surgery of the fistula track for trans-sphincteric anal fistula, aimed at total anal sphincter preservation, has shown encouraging early results. Long-term follow-up and randomized controlled trials are necessary. © 2012 The Authors. Colorectal Disease © 2012 The Association of Coloproctology of Great Britain and Ireland.

  3. Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency

    KAUST Repository

    Tsai, Meng-Lin


    The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe-MoS lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.

  4. Child sexual abuse, links to later sexual exploitation/high-risk sexual behavior, and prevention/treatment programs. (United States)

    Lalor, Kevin; McElvaney, Rosaleen


    This paper reviews the literature on the nature and incidence of child sexual abuse, explores the link between child sexual abuse and later sexual exploitation, and reviews the literature on prevention strategies and effective interventions in child sexual abuse services. Our understanding of the international epidemiology of child sexual abuse is considerably greater than it was just 10 years ago, and studies from around the world are examined. Childhood sexual abuse can involve a wide number of psychological sequelae, including low self-esteem, anxiety, and depression. Numerous studies have noted that child sexual abuse victims are vulnerable to later sexual revictimization, as well as the link between child sexual abuse and later engagement in high-risk sexual behaviour. Survivors of child sexual abuse are more likely to have multiple sex partners, become pregnant as teenagers, and experience sexual assault as adults. Various models which attempt to account for this inter-relationship are presented; most invoke mediating variables such as low self-esteem, drug/alcohol use, PTSD and distorted sexual development. Prevention strategies for child sexual abuse are examined including media campaigns, school-based prevention programmes, and therapy with abusers. The results of a number of meta-analyses are examined. However, researchers have identified significant methodological limitations in the extant research literature that impede the making of recommendations for implementing existing therapeutic programmes unreservedly.

  5. Lithospheric instability beneath the Transverse Ranges of California


    Houseman, Gregory A.; Neil, Emily A.; Kohler, Monica D.


    Recent high-resolution seismic experiments reveal that the crust beneath the San Gabriel Mountains portion of the Transverse Ranges thickens by 10–15 km (contrary to earlier studies). Associated with the Transverse Ranges, there is an anomalous ridge of seismically fast upper mantle material extending at least 200 km into the mantle. This high-velocity anomaly has previously been interpreted as a lithospheric downwelling. Both lithospheric downwelling and crustal thickening are associated wit...

  6. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.


    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  7. Shear wave anisotropy in D" region beneath the western Pacific

    Institute of Scientific and Technical Information of China (English)

    DAI Zhi-yang; LIU Bin; WANG Xiao-xiang; ZHA Xian-jie; ZHANG Hu; YANG Feng-qin


    Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy in D" region beneath the western Pacific utilizing the ScS-S differential travel time method and obtained the splitting time values between the radial and transverse components of each ScS wave corresponding to each core-mantle boundary (CMB) reflection point. We found that most shear waves involved horizontally polarized shear wave components traveling faster than vertically polarized shear wave components through the D" region. The splitting time values of ScS wave range from (0.91 s to 3.21 s with an average value of 1.1 s. The strength of anisotropy varies from (0.45% to 1.56% with an average value of 0.52%. The observations and analyses show that in the D" region beneath the western Pacific the lateral flow is expected to be dominant and the vertical transverse isotropy may be the main anisotropic structure. This structure feature may be explained by the shape preferred orientation of the CMB chemical reaction products or partial melt and the lattice preferred orientation of the lower mantle materials caused by the lateral flow at lowermost mantle.

  8. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains

    Directory of Open Access Journals (Sweden)

    Malacrida Giorgio


    Full Text Available Abstract Background Oceans cover approximately 70% of the Earth's surface with an average depth of 3800 m and a pressure of 38 MPa, thus a large part of the biosphere is occupied by high pressure environments. Piezophilic (pressure-loving organisms are adapted to deep-sea life and grow optimally at pressures higher than 0.1 MPa. To better understand high pressure adaptation from a genomic point of view three different Photobacterium profundum strains were compared. Using the sequenced piezophile P. profundum strain SS9 as a reference, microarray technology was used to identify the genomic regions missing in two other strains: a pressure adapted strain (named DSJ4 and a pressure-sensitive strain (named 3TCK. Finally, the transcriptome of SS9 grown under different pressure (28 MPa; 45 MPa and temperature (4°C; 16°C conditions was analyzed taking into consideration the differentially expressed genes belonging to the flexible gene pool. Results These studies indicated the presence of a large flexible gene pool in SS9 characterized by various horizontally acquired elements. This was verified by extensive analysis of GC content, codon usage and genomic signature of the SS9 genome. 171 open reading frames (ORFs were found to be specifically absent or highly divergent in the piezosensitive strain, but present in the two piezophilic strains. Among these genes, six were found to also be up-regulated by high pressure. Conclusion These data provide information on horizontal gene flow in the deep sea, provide additional details of P. profundum genome expression patterns and suggest genes which could perform critical functions for abyssal survival, including perhaps high pressure growth.

  9. Seismic evidence for the depression of the D″ discontinuity beneath the Caribbean: Implication for slab heating from the Earth's core (United States)

    Ko, Justin Yen-Ting; Hung, Shu-Huei; Kuo, Ban-Yuan; Zhao, Li


    The lowermost 100-300 km of the Earth's mantle commonly regarded as the thermal boundary layer (TBL) of mantle circulation is characterized by its complex physical properties. Beneath the Caribbean this so-called D″ layer features relatively high velocities and abrupt impedance increase at the top (designated as the D″ discontinuity). These seismic characteristics have been attributed to the accumulation of ancient subducted slab material and the phase transition in the major lower mantle mineral of pervoskite. Geodynamic models predict that the blanketing cold slabs may trap enough heat from core to be buoyantly destabilized, and eventually broken apart and entrained into the bottom of the convection cell. Here we explore the D″ structure with unprecedented resolution through modeling traveltimes, amplitudes, and waveform shapes from the USArray. We find an east-to-west asymmetrical undulation of the D″ discontinuity with a V-shaped depression of ∼70-160 km over a lateral distance of 600 km beneath northern South America. The shear velocity perturbations vary in the same trend showing the most pronounced reduction of ∼3-4% below the thinnest D″ layer in close proximity to an intermittently undetected discontinuity. The strong correlation between the D″ topography and velocity variations indicates the phase transition boundary has been perturbed or even disrupted by the large lateral temperature gradient of slab material which has been reheated from the core over extended periods of time.

  10. Learn from the burn: The High Park Fire 5 years later (United States)

    Sue Miller; Charles Rhodes; Pete Robichaud; Sandra Ryan; Jen Kovecses; Carl Chambers; Sara Rathburn; Jared Heath; Stephanie Kampf; Codie Wilson; Dan Brogan; Brad Piehl; Mary Ellen Miller; John Giordanengo; Erin Berryman; Monique Rocca


    It has been 5 years since the High Park Fire burned over 85,000 acres in Northern Colorado, causing extensive property damage, loss of life, and severe impacts to the water quality of the Poudre River. In the fall of 2016, a conference was organized by the USFS Rocky Mountain Research Station and the Coalition for the Poudre River Watershed to discuss what has been...

  11. Constraining deformation at the lithosphere-asthenosphere boundary beneath the San Andreas fault with Sp phases (United States)

    Fischer, K. M.; Ford, H. A.; Lekic, V.


    The geometry of deformation in the deep mantle lithosphere beneath strike-slip plate boundaries has been enigmatic, with models ranging from localized shear zones that are deep extensions of individual crustal faults to broad zones of diffuse, distributed shear with widths of hundreds of kilometers. Using seismic phases that convert from shear to compressional motion (Sp) at the base of the lithosphere beneath California, we find evidence for strike-slip deformation in the deepest mantle lithosphere beneath the central San Andreas fault that occurs over a horizontal width of 50 km or less. This study is based on over 135,000 Sp receiver functions from 730 seismic stations, including the Northern and Southern California Seismic Networks and the NSF EarthScope Transportable and Flexible Arrays. Individual Sp receiver functions were calculated using an extended-time multi-taper method and were migrated and stacked according to their three-dimensional conversion point locations using a model for crust (Lowry and Pérez-Gussinyé, 2011) and mantle (Obrebski et al., 2010 and 2011) velocity structure beneath each station and a spline-function representation of the Sp Fresnel zone. Sp conversion points at lithosphere-asthenosphere boundary depths are very dense on both sides of the San Andreas fault, and we interpreted the Sp common conversion point stack only at those nodes with information from more than 300 receiver functions. To the east of the plate boundary, a strong coherent Sp phase, indicative of a decrease in shear-wave velocity with depth, is present in the depth range where tomographic studies image the transition from high velocity lithosphere to low velocity asthenosphere. This phase, interpreted as the seismological lithosphere-asthenosphere boundary, has systematically lower amplitudes on the western side of the plate boundary, indicating that the drop in shear velocity from lithosphere to asthenosphere is either smaller or is distributed over a larger

  12. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons (United States)

    Eaton, David W.; Darbyshire, Fiona; Evans, Rob L.; Grütter, Herman; Jones, Alan G.; Yuan, Xiaohui


    The lithosphere-asthenosphere boundary (LAB) is a first-order structural discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Although it is the most extensive type of plate boundary on the planet, its definitive detection, especially beneath cratons, is proving elusive. Different proxies are used to demarcate the LAB, depending on the nature of the measurement. Here we compare interpretations of the LAB beneath three well studied Archean regions: the Kaapvaal craton, the Slave craton and the Fennoscandian Shield. For each location, xenolith and xenocryst thermobarometry define a mantle stratigraphy, as well as a steady-state conductive geotherm that constrains the minimum pressure (depth) of the base of the thermal boundary layer (TBL) to 45-65 kbar (170-245 km). High-temperature xenoliths from northern Lesotho record Fe-, Ca- and Ti-enrichment, grain-size reduction and globally unique supra-adiabatic temperatures at 53-61 kbar (200-230 km depth), all interpreted to result from efficient advection of asthenosphere-derived melts and heat into the TBL. Using a recently compiled suite of olivine creep parameters together with published geotherms, we show that beneath cratons the probable deformation mechanism near the LAB is dislocation creep, consistent with widely observed seismic and electrical anisotropy fabrics. If the LAB is dry, it is probably diffuse (> 50 km thick) and high levels of shear stress (> 2 MPa or > 20 bar) are required to accommodate plate motion. If the LAB is wet, lower shear stress is required to accommodate plate motion and the boundary may be relatively sharp (≤ 20 km thick). The seismic LAB beneath cratons is typically regarded as the base of a high-velocity mantle lid, although some workers infer its location based on a distinct change in seismic anisotropy. Surface-wave inversion studies provide depth-constrained velocity models, but are relatively insensitive to the sharpness of the LAB

  13. Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies.

    Directory of Open Access Journals (Sweden)

    Ivan de Carlos Cáceres

    Full Text Available C. elegans is an excellent model system for studying neuroscience using genetics because of its relatively simple nervous system, sequenced genome, and the availability of a large number of transgenic and mutant strains. Recently, microfluidic devices have been used for high-throughput genetic screens, replacing traditional methods of manually handling C. elegans. However, the orientation of nematodes within microfluidic devices is random and often not conducive to inspection, hindering visual analysis and overall throughput. In addition, while previous studies have utilized methods to bias head and tail orientation, none of the existing techniques allow for orientation along the dorso-ventral body axis. Here, we present the design of a simple and robust method for passively orienting worms into lateral body positions in microfluidic devices to facilitate inspection of morphological features with specific dorso-ventral alignments. Using this technique, we can position animals into lateral orientations with up to 84% efficiency, compared to 21% using existing methods. We isolated six mutants with neuronal development or neurodegenerative defects, showing that our technology can be used for on-chip analysis and high-throughput visual screens.

  14. Suicidal adolescents' experiences with bullying perpetration and victimization during high school as risk factors for later depression and suicidality. (United States)

    Klomek, Anat Brunstein; Kleinman, Marjorie; Altschuler, Elizabeth; Marrocco, Frank; Amakawa, Lia; Gould, Madelyn S


    This is the first study to examine the extent to which frequent involvement in high-school bullying (as a bullying perpetrator, victim of bullying, or bully-victim) increases the risk for later depression and suicidality beyond other well-established risk factors of suicide. The study included 96 students who reported being a bully, a victim, or a bully-victim, and also reported depression, suicidality, or substance problems during an initial suicide screen. These students were interviewed 2 years later and were compared with 142 youth identified during the initial screen as "suicide-at-risk" by virtue of their depression, suicidal ideation, attempts, and substance problems, but who did not report any involvement in bullying behavior. Students who reported both bullying others and other suicide-related behaviors at baseline had higher suicide ideation and were more functionally impaired at follow-up than students who reported suicide-related behaviors but were not involved in bullying. Preventive efforts in high school should target those children who are characterized by both psychological disturbance and bullying, especially the frequent bullies.

  15. Lateral-torsional buckling of compressed and highly variable cross section beams (United States)

    Mascolo, Ida; Pasquino, Mario


    In the critical state of a beam under central compression a flexural-torsional equilibrium shape becomes possible in addition to the fundamental straight equilibrium shape and the Euler bending. Particularly, torsional configuration takes place in all cases where the line of shear centres does not correspond with the line of centres of mass. This condition is obtained here about a z-axis highly variable section beam; with the assumptions that shear centres are aligned and line of centres is bound to not deform. For the purpose, let us evaluate an open thin wall C-cross section with flanges width and web height linearly variables along z-axis in order to have shear centres axis approximately aligned with gravity centres axis. Thus, differential equations that govern the problem are obtained. Because of the section variability, the numerical integration of differential equations that gives the true critical load is complex and lengthy. For this reason, it is given an energetic formulation of the problem by the theorem of minimum total potential energy (Ritz-Rayleigh method). It is expected an experimental validation that proposes the model studied.

  16. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang


    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  17. Preserved Ross-age(?) root beneath the Transantarctic Mountains and origin of the thinner crust beneath the northern Wilkes Subglacial Basin (United States)

    Jordan, Tom; Ferraccioli, Fausto; Armadillo, Egidio; Bozzo, Emanuele


    The Wilkes Subglacial Basin, in the hinterland of the Transantarctic Mountains, represents one of the least understood continental-scale features in Antarctica. Aeromagnetic data suggests that this basin was imposed on a much earlier Ross age back arc region that developed along the former active margin of the East Antarctic Craton (Ferraccioli et al., 2009, Tectonophysics). However, the deeper crustal structure of the basin and its relation with tectonic evolution remains both disputed and poorly constrained. Here, we present new airborne gravity data that reveal the crustal architecture of the northern Wilkes Subglacial Basin. Our gravity models indicate that the crust under the northern Wilkes Subglacial Basin is likely to be 30-35 km thick, i.e. 5-10 km thinner than imaged under the adjacent Transantarctic Mountains, and ~15 km thinner than predicted from some previous flexural and passive seismic models beneath the southern Wilkes Subglacial Basin region. We infer that crustal thickening under northern Victoria Land reflects Ross-age (ca 500 Ma) orogenic events and accretion, followed by partial preservation of the orogenic root since then, as opposed to reflecting the edge of a Mesozoic plateau, which has previously been inferred to have occupied West Antarctica (Bialas et al. 2007, Geology). Airy isostatic anomalies along both flanks of the Wilkes Basin reveal major inherited tectonic structures, which likely controlled the basin location and hence support aeromagnetic interpretations of the Wilkes Subglacial Basin as a structurally controlled basin. The positive anomaly along the western margin of the basin appears to define the tectonic boundary between the East Antarctic Craton and the Ross Orogen, and the anomaly along its eastern flank is interpreted as reflecting high-grade and denser rocks of the central Wilson Terran,e with respect to lower grade meta-sediments and magmatic arc rocks of the western Wilson Terrane and Wilkes Basin region. Our forward

  18. Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin (United States)

    Brasse, Heinrich; Eydam, Diane


    A long-period magnetotelluric data set was obtained during 2002 and 2004 in the central Andes to study the deep electrical conductivity structure in the region of the Bolivian Orocline between latitudes 17°S and 19°S. The profile extends from the Coastal Cordillera in northernmost Chile, crosses the volcanic arc and the Altiplano high plateau in central Bolivia, and ends in the Eastern Cordillera. Two-dimensional inversion revealed several well-defined conductivity anomalies: in upper crustal levels the conductive sedimentary basins of the central Altiplano and the resistive Arequipa block beneath the western Altiplano are imaged. Earlier seismological and magnetotelluric investigations on the southern Altiplano inferred a large, highly conductive (partially molten) body in the mid to deep crust. It was assumed that this structure would be underlying the entire plateau, but this is not the case according to the new models. Instead, the most prominent feature in the new investigation area is a high-conductivity zone at upper mantle depths below the high plateau, which may be interpreted as an image of partial melts and fluids triggered by water supply from the subducting Nazca slab. This conductor would be in accordance with the standard subduction scenario; it is, however, laterally offset by almost 100 km from the volcanic arc. In contrast, the deep crust and upper mantle beneath the arc is moderately resistive. Both observations may hint at an emerging shift of the magmatic/fluid system in the central Andes.

  19. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)


    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  20. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers (United States)

    Matano, T.; Machida, M.; Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K.; Navia, C. E.; Matinic, N.; Aquirre, C.


    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  1. A stimulated Raman scattering imager using high-speed lateral electric field modulator and lock-in pixels amplifiers (United States)

    Mars, Kamel; Guseul, Beak; Han, Sang Man; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji


    A high speed Lateral Electric Field Modulator (LEFM) and lock-in pixels amplifiers for stimulated Raman scattering (SRS)imager is presented. Since the generated signal from the SRS process is very small compared to the offset signal, a technique suitable for extracting and amplifying the SRS signal is needed. The offset can be canceled by tuning the phase delay between the demodulated pixel output signal and the sampling clock. The small SRS signal in large offset is amplified by the differential integration. The proposed technique has been investigated with an implementation of 64x8 pixels array using a pinned photodiode LEFM an lock-in pixels amplifiers. Very small signal can be extracted from large offset signal. A ratio of the detected small SRS to offset signal of less 10-5 is achieved.

  2. Lateral Concepts

    Directory of Open Access Journals (Sweden)

    Christopher Gad


    Full Text Available This essay discusses the complex relation between the knowledges and practices of the researcher and his/her informants in terms of lateral concepts. The starting point is that it is not the prerogative of the (STS scholar to conceptualize the world; all our “informants” do it too. This creates the possibility of enriching our own conceptual repertoires by letting them be inflected by the concepts of those we study. In a broad sense, the lateral means that there is a many-to-many relation between domains of knowledge and practice. However, each specific case of the lateral is necessarily immanent to a particular empirical setting and form of inquiry. In this sense lateral concepts are radically empirical since it locates concepts within the field. To clarify the meaning and stakes of lateral concepts, we first make a contrast between lateral anthropology and Latour’s notion of infra-reflexivity. We end with a brief illustration and discussion of how lateral conceptualization can re-orient STS modes of inquiry, and why this matters.

  3. Progression of medial compartmental osteoarthritis 2-8 years after lateral closing-wedge high tibial osteotomy. (United States)

    Huizinga, M R; Gorter, J; Demmer, A; Bierma-Zeinstra, S M A; Brouwer, R W


    The primary purpose of this study is to investigate the progression of medial osteoarthritis (OA) following lateral closing-wedge high tibial osteotomy (HTO). Secondary outcomes included functional and pain scores. This prospective cohort study analysed 298 patients treated with lateral closing-wedge HTO surgery for medial compartmental OA. OA progression was measured by comparing the minimum joint space width (mJSW) and Kellgren-Lawrence (KL) score on radiographs preoperatively and postoperatively. The WOMAC score and NRS score for pain were obtained preoperatively and postoperatively to assess secondary outcomes. Failure was defined as revision surgery; survival was estimated. Mean follow-up was 5.2 ± 1.8 years (range 2-8.5). Mean preoperative mJSW was 3.4 ± 1.6 mm, which changed nonsignificantly (p = 0.51) to 3.4 ± 1.7 mm postoperatively. Mean annual joint space narrowing was 0.02 ± 0.34 mm/year. Progression to 1 KL grade or more was seen in 132 (44 %) patients, and annual risk of KL progression was 8.6 %. No KL progression was seen in 56 % of patients. Mean NRS decreased from 7.3 ± 1.5 to 3.5 ± 2.5 (p < 0.001). WOMAC scores decreased from 48.0 ± 17.2 to 23.6 ± 19.7 (p < 0.001). Failure was seen in 21 patients. Compared to demographic data in the literature, valgus high tibial osteotomy seems to reduce the progression of OA, reduces pain and improves knee function in patients with medial compartment OA and a varus alignment. III.

  4. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton (United States)

    Smith, Chris B.; Pearson, D. Graham; Bulanova, Galina P.; Beard, Andrew D.; Carlson, Richard W.; Wittig, Nadine; Sims, Keith; Chimuka, Lovemore; Muchemwa, Ellah


    Inclusion-bearing diamonds, mantle xenoliths, and kimberlite concentrates from the Cambrian-aged Murowa and Sese kimberlites have been studied to characterise the nature of the lithospheric mantle beneath the southern Zimbabwe Craton. The diamonds are mostly octahedral, moderately rich in nitrogen with moderate to high aggregation, and contain mainly dunite-harzburgite mineral inclusions. Similarly, dunite xenoliths predominate over harzburgite and lherzolite and carry olivines with Mg/Mg + Fe (Mg#) values of 0.92-0.95, spanning the average signatures for Kaapvaal Craton peridotites. Eclogitic xenoliths are extremely rare, in contrast to the Kaapvaal mantle lithosphere. The Zimbabwe mantle assemblage has been only slightly affected by later silicic metasomatism and re-fertilisation with re-introduction of pyroxenes in contrast to the Kaapvaal and many cratonic lithospheric blocks elsewhere where strong metasomatism and re-fertilisation is widespread. Pyroxene, garnet and spinel thermobarometry suggests an ambient 40 mW m - 2 geotherm, with the lithosphere extending down to 210 km at the time of kimberlite eruption. Whole rock peridotite Re-Os isotope analyses yield T RD model ages of 2.7 to 2.9 Ga, providing minimum estimates of the time of melt depletion, are slightly younger in age than the basement greenstone formation. These model ages coincide with the mean T RD age of > 200 analyses of Kaapvaal Craton peridotites, whereas the average Re-Os model age for the Zimbabwe peridotites is 3.2 Ga. The Os data and low Yb n/Lu n ratios suggest a model whereby thick lithospheric mantle was stabilised during the early stages of crustal development by shallow peridotite melting required for formation of residues with sufficiently high Cr/Al to stabilise chromite which then transforms to low Ca, high Cr garnet. Sulphide inclusions in diamond produce minimum T RD model ages of 3.4 Ga indicating that parts of the lithosphere were present at the earliest stages of crust

  5. Seismic structure beneath the Gulf of California: a contribution from group velocity measurements (United States)

    Di Luccio, F.; Persaud, P.; Clayton, R. W.


    Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broad-band stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ˜28ºN which extends east-south-eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California. We also observe a high-velocity anomaly at 50-km depth extending down to ˜130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.

  6. Mantle Structure Beneath Central South America (United States)

    Vandecar, J. C.; Silver, P. G.; James, D. E.; Assumpcao, M.; Schimmel, M.; Zandt, G.


    Making use of 60 digital broadband seismic stations that have operated across central South America in recent years, we have undertaken an inversion for the upper- and uppermost lower-mantle P- and S-wave velocity structures beneath the region. We have combined data from four portable PASSCAL-type experiments as well as the 3 GTSN permanent stations (LPAZ, BDFB and CPUP) and 1 Geoscope station (SPB) located in the region. The portable data were deployed at various times between 1992 and 1999 and include: 28 sites from the Brazilian Lithosphere Seismic Project (BLSP: Carnegie Institution of Washington and Universidade de Sao Paulo), 16 sites from the Broadband ANdean JOint experiment (BANJO: Carnegie Institution of Washington and University of Arizona), 8 sites from the Seismic Exploration of the Deep Altiplano project (SEDA: Lawrence Livermore National Laboratory) and 4 sites from the University of Brasilia. The P- and S-wave relative delay times are independently obtained via a multi-channel cross correlation of band-passed waveforms for each teleseismic event. These data are then inverted using an iterative, robust, non-linear scheme which parameterizes the 3-D velocity variations as splines under tension constrained at over 120,000 nodes across South America between latitudes of 15 and 30 degrees South. Amongst other features, we robustly image the high-velocity subducting Nazca plate penetrating into the lower mantle and the high-velocity root of the ~3.2 Gyr old Sao Francisco Craton extending to depths of 200-300 km. We will discuss the consistency between our tomographic models and predictions of dynamic mantle models based on plate tectonic reconstructions of subduction.

  7. Monolithic integration of optical mode-size converter and high-speed electroabsorption modulators using laterally undercut waveguide (United States)

    Wu, Tsu-Hsiu; Lin, Fang-Zheng; Yan, Hung-Jung; Wu, Jui-Pin; Chiu, Yi-Jen


    A new monolithic integration scheme of fabricating optical spot-size converter (SSC) is realized in this work. High-speed electroabsorption modulator (EAM) is used to integrate such SSC. By laterally tapering the active region of an optical waveguide through undercut active region, a vertically asymmetric waveguide coupler can be defined to form an SSC, where the top is a tapered active waveguide, and the bottom is a large core of passive waveguide mode-matched to single-mode fiber (SMF). Through the top tapered active waveguide, the effective index can be gradually varied in the propagation direction, momentarily matching the bottom low-index passive waveguide. It not only performs the resonant coupling in such asymmetric waveguide coupler, but also locks the transferred power by the tapered structure. InGaAsP/InP multiple quantum wells are used as active region of active waveguide. Based on the highly selective etching properties between InGaAsP and InP, the tapered active waveguide can be fabricated by a method, called selectively undercut-etching-active-region (UEAR), enabling the processing a narrow waveguide structure (up to submicron) by general wet etching from a large waveguide ridge. It also leads to good microwave performance of waveguide. By taking this advantage, a SSC-integrated EAM can perform high-speed electrical-to-optical (EO) response as well as low-insertion loss properties. A mode transfer efficiency of 70% is obtained in such SSC. By narrowing waveguide by UEAR, over 40 GHz of -3dB electrical-to-optical (EO) response is obtained from this device. The high efficient SSC integrated with high-speed EAM suggests that the UEAR technique can have potential for applications in high-speed optoelectronic fields.

  8. Imaging of subducted lithosphere beneath South America

    NARCIS (Netherlands)

    Engdahl, E.R.; Hilst, R.D. van der; Berrocal, J.


    Tomographic images are produced for the deep structure of the Andean subduction zone beneath western South America. The data used in the imaging are the delay times of P, pP and pwP phases from relocated teleseismic earthquakes in the region. Regionally, structural features larger than about 150 km

  9. High Gain Lateral Semi-Insulating GaAs Photoconductive Switch Triggered by 1064 nm Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    施卫; 张显斌; 李琦; 陈二柱; 赵卫


    We report on the experimental results of a lateral semi-insulating GaAs photoconductive switch, with a gap of 8mm between two electrodes, triggered by 1064nm laser pulses at a wavelength beyond the GaAs absorption edge. Both the linear and nonlinear modes of the switch were observed when it was triggered by light pulses with an energy of l.9mJ and a pulse width of 60ns, and operated at high voltages of 3 and 5kV. The results show that when the semi-insulating GaAs photoconductive switch operates under an electrical field of 4.37 k V/cm, it will enter into the linear mode first, and then the switch will undergo the nonlinear mode (lock-on) after a delay of about 20 - 100 ns. It is worth noticing that the delay time under high light energy is longer than that in the low optical energy. The non-intrinsic absorption mechanism is discussed. EL2 deep level defects and double-photon absorption in GaAs may play a key part in the absorption process.

  10. Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals

    Directory of Open Access Journals (Sweden)

    Hong eYin


    Full Text Available Social anhedonia (SA is a debilitating characteristic of schizophrenia and a vulnerability for developing schizophrenia among people at risk. Prior work (Hooker et al, 2014 has revealed neural deficits in ventral lateral prefrontal cortex (VLPFC during processing of positive emotion in a community sample of people with high social anhedonia. Deficits in VLPFC neural activity are related to worse self-reported schizophrenia-spectrum symptoms and worse mood and behavior after social stress. In the current study, psychophysiological interaction (PPI analysis was applied to investigate the neural mechanisms mediated by VLPFC during emotion processing. PPI analysis revealed that, compared to low SA controls, participants with high SA displayed reduced VLPFC integration, specifically reduced connectivity between VLPFC and premotor cortex, inferior parietal and posterior temporal regions when viewing positive relative to neutral emotion. Across all participants, connectivity between VLPFC and inferior parietal region when viewing positive (versus neutral emotion was significantly correlated with measures of emotion management and attentional control. Additionally connectivity between VLPFC and superior temporal sulcus was related to reward and pleasure anticipation, and connectivity between VLPFC and inferior temporal sulcus correlated with attentional control measure. Our results suggest that impairments to VLPFC mediated neural circuitry underlie the cognitive and emotional deficits.

  11. Infrared response of the lateral PIN structure of a highly titanium-doped silicon-on-insulator material

    Institute of Scientific and Technical Information of China (English)

    Ma Zhi-Hua; Cao Quan; Zuo Yu-Hua; Zheng Jun; Xue Chun-Lai; Cheng Bu-Wen; Wang Qi-Ming


    The intermediate band (IB) solar cell is a promising third-generation solar cell that could possibly achieve very high efficiency above the Shockley-Queisser limit.One of the promising ways to synthesize IB material is to introduce heavily doped deep level impurities in conventional semiconductors.High-doped Ti with a concentration of 1020 cm-3- 1021 cm-3 in the p-type top Si layer of silicon-on-insulator (SOI) substrate is obtained by ion implantation and rapid thermal annealing (RTA).Secondary ion mass spectrometry measurements confirm that the Ti concentration exceeds the theoretical Mott limit,the main requirement for the formation of an impurity intermediate band.Increased absorption is observed in the infrared (IR) region by Fourier transform infrared spectroscopy (FTIR) technology.By using a lateral p-i-n structure,an obvious infrared response in a range of 1100 nm-2000 nm is achieved in a heavily Ti-doped SOl substrate,suggesting that the improvement on IR photoresponse is a result of increased absorption in the IR.The experimental results indicate that heavily Ti-implanted Si can be used as a potential kind of intermediate-band photovoltaic material to utilize the infrared photons of the solar spectrum.

  12. Window into the Caledonian orogen: Structure of the crust beneath the East Shetland platform, United Kingdom (United States)

    McBride, J.H.; England, R.W.


    Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated

  13. The prevention of a lateral hinge fracture as a complication of a medial opening wedge high tibial osteotomy: a case control study. (United States)

    Ogawa, H; Matsumoto, K; Akiyama, H


    We aimed to investigate factors related to the technique of medial opening wedge high tibial osteotomy which might predispose to the development of a lateral hinge fracture. A total of 71 patients with 82 osteotomies were included in the study. Their mean age was 62.9 years (37 to 80). The classification of the type of osteotomy was based on whether it extended beyond the fibular head. The level of the osteotomy was classified according to the height of its endpoint. At a mean follow-up of 20 months (6 to 52), a total of 15 lateral hinge fractures (18.3%) were identified. A sufficient osteotomy, in which both anterior and posterior tibial cortices were involved with extension into the lateral aspect of the plateau in relation to an anteroposterior line tangential to the medial edge of the fibular head in the CT axial plane, was seen in 48 knees (71.6%) in those without a lateral hinge fracture and in seven (46.7%) in those with a lateral hinge fracture. An osteotomy which ended above the level of the fibular head was seen in nine (13.4%) of the knees without a lateral hinge fracture and seven (46.7%) of the those with a lateral hinge fracture. There was a significant relationship between the absence of a lateral hinge fracture and both a sufficient osteotomy and one whose endpoint was at the level of the fibular head (p = 0.0451 and p = 0.0214, respectively). A sufficient osteotomy involving both the anterior and posterior cortices, whose endpoint is at the level of the fibular head, should be performed when undertaking a medial opening wedge high tibial osteotomy if a lateral hinge fracture is to be avoided as a complication. Cite this article: Bone Joint J 2017;99-B:887-93. ©2017 The British Editorial Society of Bone & Joint Surgery.

  14. Lateral migration of a foundering high-density root: Insights from numerical modeling applied to the southern Sierra Nevada (United States)

    Valera, J. L.; Negredo, A. M.; Billen, M. I.; Jiménez-Munt, I.


    The southern Sierra Nevada is a geodynamically complex region where several models have been proposed to explain the rapid removal of lithospheric mantle occurring sometime between 8.0 and 3.5 Ma. Tomographic studies show the presence of an east-dipping slab-shaped fast seismic anomaly reaching to about 300 km depth below the western Sierras and Great Valley, and receiver function studies indicate a broad region of lithosphere removal. This work presents thermo-mechanical modeling of asymmetric foundering of a high-density batholithic root with lateral intrusion of asthenospheric material. The predicted evolution is controlled by: a) the upwelling of buoyant asthenosphere facilitated by the presence of a weakened lithospheric mantle adjacent to a dense batholitic root, b) the westward inflow enabled by a low viscosity lower crust, and c) negative buoyancy of a batholithic dense root. The dynamics of these models can be characterized as a slowly migrating lithosphere foundering process driven by the density anomaly of the ultramafic root, but controlled by the magnitude of the lower crustal viscosity, which determines the rate at which asthenospheric material can flow into the opening lower crustal gap. Final model-predicted upper-mantle structure is compatible with existing tomographic images and the observed V-shape geometry of the Moho below the western margin of the southern Sierra Nevada. Model-predicted topography is also generally consistent with observations, and shows a monotonous uplift of the high region since 7 Ma and presently ongoing, and an area of maximum subsidence west of the area of the V-shaped Moho, due to the pull exerted by the sinking of the high-density root.

  15. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham


    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  16. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

    CERN Document Server

    Abreu, P; Ahn, E J; Albuquerque, I F M; Allard, D; Allekotte, I; Allen, J; Allison, P; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Antičić, T; Anzalone, A; Aramo, C; Arganda, E; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Bäcker, T; Balzer, M; Barber, K B; Barbosa, A F; Bardenet, R; Barroso, S L C; Baughman, B; Bäuml, J; Beatty, J J; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Caballero-Mora, K S; Caramete, L; Caruso, R; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Cheng, S H; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Clay, R W; Coluccia, M R; Conceição, R; Contreras, F; Cook, H; Cooper, M J; Coppens, J; Cordier, A; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; del Río, M; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Diaz, J C; Castro, M L Díaz; Diep, P N; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; Ebr, J; Engel, R; Erdmann, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Tapia, I Fajardo; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fröhlich, U; Fuchs, B; Gaior, R; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Gascon, A; Gemmeke, H; Gesterling, K; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Gonzalez, D; Gonzalez, J G; Gookin, B; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Griffith, N; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Guzman, A; Hague, J D; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Herve, A E; Hojvat, C; Hollon, N; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Insolia, A; Ionita, F; Italiano, A; Jarne, C; Jiraskova, S; Josebachuili, M; Kadija, K; Kampert, K H; Karhan, P; Kasper, P; Kégl, B; Keilhauer, B; Keivani, A; Kelley, J L; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapp, J; Koang, D -H; Kotera, K; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, J K; Kunka, N; La Rosa, G; Lachaud, C; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, J; Marin, V; Maris, I C; Falcon, H R Marquez; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Mertsch, P; Meurer, C; Mićanović, S; Micheletti, M I; Miller, W; Miramonti, L; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, E; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mueller, S; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; ‡, G Navarra; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nhung, P T; Niemietz, L; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Parente, G; Parizot, E; Parra, A; Parsons, R D; Pastor, S; Paul, T; Pech, M; Pękala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Phan, N; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rivera, H; Rizi, V; Roberts, J; Robledo, C; de Carvalho, W Rodrigues; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Rühle, C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schröder, F; Schulte, S; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Lopez, H H Silva; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Stanic, S; Stapleton, J; Stasielak, J; Stephan, M; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Šuša, T; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Tamashiro, A; Tapia, A; Tartare, M; Taşcău, O; Ruiz, C G Tavera; Tcaciuc, R; Tegolo, D; Thao, N T; Thomas, D; Tiffenberg, J; Timmermans, C; Tiwari, D K; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Varela, E; Cárdenas, B Vargas; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Winnick, M G; Wommer, M; Wundheiler, B; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Silva, M Zimbres; Ziolkowski, M


    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an extensive air shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10^{17} and 10^{19} eV and zenith angles up to 65 degs. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte-Carlo results sho...

  17. Duration of observation required in detecting fasciculation potentials in amyotrophic lateral sclerosis using high-density surface EMG

    Directory of Open Access Journals (Sweden)

    Zhou Ping


    Full Text Available Abstract Background High-density surface electromyography (HD-SEMG has recently emerged as a potentially useful tool in the evaluation of amyotrophic lateral sclerosis (ALS. This study addresses a practical constraint that arises when applying HD-SEMG for supporting the diagnosis of ALS; specifically, how long the surface EMG should be recorded before one can be confident that fasciculation potentials (FPs are absent in a muscle being tested. Methods HD-SEMG recordings of 29 muscles from 11 ALS patients were analyzed. We used the distribution of intervals between FPs, and estimated the observation duration needed to record from one to five FPs with a probability approaching unity. Such an approach was previously tested by Mills with a concentric needle electrode. Results We found that the duration of recording was up to 70 s in order to record a single FP with a probability approaching unity. Increasing recording time to 2 minutes, the probability of recording five FPs approached approximately 0.95. Conclusions HD-SEMG appears to be a suitable method for capturing FPs comparable to intramuscular needle EMG.

  18. The Lateral Trigger Probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST /Lisbon, LIFEP; Aglietta, M.; /INFN, Turin /Turin Observ. /Turin U.; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Balseiro Inst., San Carlos de Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /INFN, Naples /Naples U. /Nijmegen U., IMAPP


    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10{sup 17} and 10{sup 19} eV and zenith angles up to 65{sup o}. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  19. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory (United States)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.


    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  20. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine


    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  1. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai


    Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However...... an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD......, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level....

  2. Obesity and excess weight in early adulthood and high risks of arsenic-related cancer in later life. (United States)

    Steinmaus, Craig; Castriota, Felicia; Ferreccio, Catterina; Smith, Allan H; Yuan, Yan; Liaw, Jane; Acevedo, Johanna; Pérez, Liliana; Meza, Rodrigo; Calcagno, Sergio; Uauy, Ricardo; Smith, Martyn T


    Elevated body mass index (BMI) is a risk factor for cardiovascular disease, diabetes, cancer, and other diseases. Inflammation or oxidative stress induced by high BMI may explain some of these effects. Millions of people drink arsenic-contaminated water worldwide, and ingested arsenic has also been associated with inflammation, oxidative stress, and cancer. To assess the unique situation of people living in northern Chile exposed to high arsenic concentrations in drinking water and investigate interactions between arsenic and BMI, and associations with lung and bladder cancer risks. Information on self-reported body mass index (BMI) at various life stages, smoking, diet, and lifetime arsenic exposure was collected from 532 cancer cases and 634 population-based controls. In subjects with BMIs lung and bladder cancer combined for arsenic concentrations of 800 µg/L were 1.00, 1.64 (95% CI, 1.19-2.27), and 3.12 (2.30-4.22). In subjects with BMIs ≥90th percentile in early adulthood, the corresponding ORs were higher: 1.00, 1.84 (0.75-4.52), and 9.37 (2.88-30.53), respectively (synergy index=4.05, 95% CI, 1.27-12.88). Arsenic-related cancer ORs >20 were seen in those with elevated BMIs in both early adulthood and in later life. Adjustments for smoking, diet, and other factors had little impact. These findings provide novel preliminary evidence supporting the notion that environmentally-related cancer risks may be markedly increased in people with elevated BMIs, especially in those with an elevated BMI in early-life. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Magma beneath Yellowstone National Park (United States)

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.


    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  4. Upper crustal structure beneath Southwest Iberia north of the convergent boundary between the Eurasian and African plates

    Institute of Scientific and Technical Information of China (English)

    Mohamed K. Salah


    The 3-D P-and S-wave velocity models of the upper crust beneath Southwest Iberia are determined by inverting arrival time data from local earthquakes using a seismic tomography method. We used a total of 3085 P- and 2780 S-wave high quality arrival times from 886 local earthquakes recorded by a per-manent seismic network, which is operated by the Institute of Meteorology (IM), Lisbon, Portugal. The computed P- and S-wave velocities are used to determine the 3-D distributions of Vp/Vs ratio. The 3-D velocity and Vp/Vs ratio images display clear lateral heterogeneities in the study area. Significant veloc-ity variations up to ?6%are revealed in the upper crust beneath Southwest Iberia. At 4 km depth, both P-and S-wave velocity take average to high values relative to the initial velocity model, while at 12 km, low P-wave velocities are clearly visible along the coast and in the southern parts. High S-wave velocities at 12 km depth are imaged in the central parts, and average values along the coast;although some scattered patches of low and high S-wave velocities are also revealed. The Vp/Vs ratio is generally high at depths of 4 and 12 km along the coastal parts with some regions of high Vp/Vs ratio in the north at 4 km depth, and low Vp/Vs ratio in the central southern parts at a depth of 12 km. The imaged low velocity and high Vp/Vs ratios are related to the thick saturated and unconsolidated sediments covering the region;whereas the high velocity regions are generally associated with the Mesozoic basement rocks.

  5. Lateral Mixing (United States)


    being made on their analysis. A process we became very curious about was the separation of tendrils of warm salty water from the north wall figure 7...structure, and to remove the effect of internal waves by mapping this structure onto isopycnals. This has been very successful in elucidating lateral...we passed through the same water on multiple passes, and that changes in the horizontal structure of the water mas should be readily apparent from

  6. A clinical pilot study: high frequency chest wall oscillation airway clearance in patients with amyotrophic lateral sclerosis. (United States)

    Chaisson, Kathleen Marya; Walsh, Susan; Simmons, Zachary; Vender, Robert L


    Respiratory complications are common in patients with amyotrophic lateral sclerosis (ALS) with respiratory failure representing the most common cause of death. Ineffective airway clearance resultant from deficient cough frequently contributes to these abnormalities. We sought to evaluate the effectiveness of high frequency chest wall oscillation (HFCWO) administered through the Vest Airway Clearance System when added to standard care in preventing pulmonary complications and prolonging the time to death in patients with ALS. This is a single center study performed at the Penn State Milton S. Hershey Medical Center (HMC). Nine patients with a diagnosis of ALS and concurrently receiving non-invasive ventilatory support with bi-level positive airway pressure (BiPAP) were recruited from the outpatient clinic at HMC. Four patients were randomized to receive standard care and five patients to receive standard care plus the addition of HFCWO administered twice-daily for 15 min duration. Longitudinal assessments of oxyhemoglobin saturation, forced vital capacity (FVC), and adverse events were obtained until time of death. Pulmonary complications of atelectasis, pneumonia, hospitalization for a respiratory-related abnormality, and tracheostomy with mechanical ventilation were monitored throughout the study duration. No differences were observed between treatment groups in relation to the rate of decline in FVC. The addition of HFCWO airway clearance failed to improve time to death compared to standard treatment alone (340 days +/- 247 vs. 470 days +/- 241; p = 0.26). The random allocation of HFCWO airway clearance to patients with ALS concomitantly receiving BiPAP failed to attain any significant clinical benefits in relation to either loss of lung function or mortality. This study does not exclude the potential benefit of HFCWO in select patients with ALS who have coexistent pulmonary diseases, pre-existent mucus-related pulmonary complications, or less severe levels of

  7. Analysis of the thin-film SOI lateral bipolar transistor and optimization of its output characteristics for high-temperature applications (United States)

    Adriaensen, S.; Flandre, D.


    In this paper, we investigate and optimize the static characteristics of NPN lateral bipolar transistors implemented in a thin-film fully-depleted SOI CMOS process for high-temperature analog applications. The basic lateral SOI bipolar device, which shows good behaviour in high-temperature circuits in spite of its relatively poor performances, is firstly described regarding its process and layout parameters. Then the concept of the graded-base bipolar transistor is introduced. This device presents significantly improved output characteristics while preserving standard current gain and CMOS process compatibility. Measurements and simulations are used to demonstrate the improvements of the breakdown voltage and the Early voltage of the bipolar device.

  8. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling (United States)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver


    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  9. Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling (United States)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver


    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E-W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above

  10. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. (United States)

    Yu, Hui; Pantouvaki, Marianna; Van Campenhout, Joris; Korn, Dietmar; Komorowska, Katarzyna; Dumon, Pieter; Li, Yanlu; Verheyen, Peter; Absil, Philippe; Alloatti, Luca; Hillerkuss, David; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim


    Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.

  11. Global lateral transfer and evasion of C in freshwater systems - a revised high-resolution budget analysis (United States)

    Lauerwald, Ronny; Laruelle, Goulven; Hartmann, Jens; Ciais, Philippe; Regnier, Pierre


    The net CO2 evasion from rivers (FCO2) is an important component when quantifying the lateral displacement of biologically fixed carbon from terrestrial systems and wetlands through the river network. Here, we present global maps of FCO2 from stream orders 3 and higher at 0.5° resolution (Lauerwald et al., 2015 - GBC). This resolution is comparable to that of Earth System Model simulations of vegetation and soil C dynamics and is also compatible with GlobalNEWS simulations of fluvial DOC and POC exports to the sea (Mayorga et al., 2010 - Environmental Modeling and Software). A GIS based approach was used to derive an empirical pCO2 model trained on data from 1182 sampling locations. While only few sampling data are available for Asia and Africa, the sampling locations cover the full spectrum from high to low latitudes. The empirical model predicts pCO2 from terrestrial net primary production, population density, and slope gradient within the river catchment and mean air temperature at the sampling location (r² = 0.47). The predicted pCO2 map was combined with spatially explicit estimates of stream surface area and gas exchange velocity calculated from published empirical equations and data sets to derive the FCO2 map. We used Monte Carlo simulations to assess the uncertainties of our estimates. At the global scale, we estimate an average river pCO2 of 2400 (2019-2826) μatm and a FCO2 of 650 (483-846) Tg C yr-1 (5th and 95th percentiles of confidence interval). Our maps reveal strong latitudinal gradients in pCO2, stream surface area, and FCO2. The zone between 10°N and 10°S contributes about half of the global CO2 evasion. Combining riverine FCO2 with the estimated fluvial DOC and POC exports from GlobalNEWS and FCO2 from lakes (downscaled from Raymond et al. 2013 - Nature), the total lateral transfer of biologically fixed C on land and in wetlands adds up to 1.3 Pg C yr-1. This estimate is likely conservative because CO2 evasion from smaller streams is not

  12. Anelastic properties beneath the Niigata-Kobe Tectonic Zone, Japan (United States)

    Nakajima, Junichi; Matsuzawa, Toru


    We estimate the three-dimensional (3D) P-wave attenuation structure beneath the Niigata-Kobe Tectonic Zone (NKTZ), central Japan, using high-quality waveform data from a large number of stations. The obtained results confirm the segmentation of the NKTZ into three regions, as suggested by 3D seismic velocity models, and reveal characteristic structures related to surface deformation, shallow subduction of the Philippine Sea slab, and magmatism. The lower crust beneath the NKTZ west of the Itoigawa-Shizuoka Tectonic Line (ISTL) is overall characterized by distinct high attenuation, whereas the upper crust shows marked high attenuation to the east of the ISTL. Differences in the depths of anelastically weakened parts of the crust probably result in a first-order spatial variation in surface deformation, forming wide (width of 100 km) and narrow (width of 25-40 km) deformation zones on the western and eastern sides of the ISTL, respectively. Many M ≥ 6.5 earthquakes occur in the upper crust where seismic attenuation in the underlying lower crust varies sharply, suggesting that spatial variations in rates of anelastic deformation in the lower crust result in stress concentration in the overlying brittle crust. We interpret a moderate- to low-attenuation zone located in the lower crust at the northeast of Biwa Lake to reflect low-temperature conditions that are developed locally as a result of shallow subduction of the cold Philippine Sea slab.

  13. Photoacoustic tomography with a high lateral resolution and a large field of view using a rectangular focused ultrasound transducer (United States)

    Zhang, Shangyu; Cheng, Renxiang; Tao, Chao; Liu, Xiaojun


    The enlargement of the field of view (FOV) of a photoacoustic (PA) tomography (PAT) system and the improvement of its lateral resolution are often two conflicting goals. A rectangular focused transducer is proposed to solve this problem. An asymmetric geometry of the transducer results in its asymmetric characteristics of the ultrasound (US) field. Both simulation and experiments confirm that the rectangular focused transducer can improve the FOV and lateral resolution of PAT systems simultaneously. The US transducer proposed in this study has the potential to improve the performance of a PAT system for practical biomedical applications.

  14. High proportions of FOXP3+CD25high T cells in neonates are positively associated with allergic sensitization later in childhood (United States)

    Strömbeck, A; Rabe, H; Lundell, A-C; Andersson, K; Johansen, S; Adlerberth, I; Wold, A E; Hesselmar, B; Rudin, A


    Background The role of FOXP3+ regulatory T cells in the prevention against sensitization and allergy development is controversial. Objective We followed 65 newborn Swedish children from farming and non-farming families from birth to 3 years of age and investigated the relation between CD4+ T cell subsets in blood samples and development of sensitization and allergic disease. Methods The proportions of FOXP3+CD25high, CTLA-4+CD25+, CD45RO+, HLA-DR+, CCR4+ or α4β7+ within the CD4+ T cell population were examined by flow cytometry of blood samples at several time-points. Mononuclear cells were isolated from blood and stimulated with birch allergen, ovalbumin or the mitogen PHA, and the levels of IL-1β, IL-6, TNF, IFN-γ, IL-5 and IL-13 were measured. A clinical evaluation regarding the presence of allergen-specific IgE and allergy was performed at 18 and 36 months of age. Results Multivariate discriminant analysis revealed that children who were sensitized at 18 or 36 months of age had higher proportions of FOXP3+CD25high T cells at birth and at 3 days of life than children who remained non-sensitized, whereas allergy was unrelated to the neonatal proportions of these cells. The proportions of CTLA-4+CD25+ T cells were unrelated to both sensitization and allergy. The association between higher proportions of FOXP3+CD25high T cells and sensitization persisted after exclusion of farmer's children. Finally, a farming environment was associated with lower proportions of FOXP3+CD25high T cells in early infancy and to a more prominent T cell memory conversion and cytokine production. Conclusion & Clinical Relevance Our results indicate that high proportions of FOXP3+CD25high T cells in neonates are not protective against later sensitization or development of allergy. PMID:24528482

  15. A Bed-Deformation Experiment Beneath Engabreen, Norway (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.


    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  16. A magmatic probe of dynamic topography beneath western North America (United States)

    Klöcking, M.; White, N. J.; Maclennan, J.


    A region centered on the Yellowstone hotspot and encompassing the Colorado Plateau sits at an elevation 2 km higher than the cratonic North America. This difference broadly coincides with tomographically observed variations in lithospheric thickness: ~120 km beneath western North America, ~240 km beneath the craton. Thermochronology of the Grand Canyon area, sedimentary flux to the Gulf of Mexico, and river profile inversion all suggest that regional uplift occurred in at least two separate stages. High resolution seismic tomographic models, using USArray data, have identified a ring of low velocity material beneath the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows distinct phases: an overall increase in volume around 40 Ma and a change from lithospheric to asthenospheric signatures around 5 Ma. Volcanism is also observed to migrate north-east with time. Here, we attempt to integrate these different observations with lithospheric thickness. A dynamic topography model of progressive lithospheric erosion over a hot mantle plume might account for uplift as well as the temporal and spatial distribution of magmatism across western North America. Thinning of the lithosphere around the edges of the Colorado Plateau in combination with the hotter mantle potential temperature of a plume could create isostatic and dynamic uplift as well as allowing for melt production. To test this model, we have analysed around 100 samples from volcanic centers across western North America by ICP-MS for rare earth elements (REE). Most of the samples are younger than 5 Ma, and all of them have previously been analysed by XRF. Using trace element ratios such as La/Yb and Nb/Y we assess depth of melting and melt fraction, respectively. In addition, we use REE inversion modelling to estimate melt fractions as a function of depth and temperature of melting. The results are compared to existing constraints on lithospheric thickness and mantle potential

  17. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. (United States)

    Wang, Xiao; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Wollenweber, Bernd; Jiang, Dong


    Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However, plants experienced priming (PH) up-regulated the Rubisco activase B encoding gene RcaB, which was in accordance with the higher photosynthesis rate in relation to the non-primed plants (NH) under the later high temperature stress. In relation to NH, the major chlorophyll a/b-binding protein gene Cab was down-regulated in PH plants, implying a reduction of the light absorption to protect the photosystem II from excitation energy under high temperature stress. At the same time, under the later high temperature stress PH plants showed significantly higher actual photochemical efficiency, indicating an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD) in mitochondria, which contributed to the lower superoxide radical production rate and malondialdehyde concentration in both chloroplasts and mitochondria. The improved antioxidant capacity in chloroplasts and mitochondria was related to the up-regulated expressions of Cu/Zn-SOD, Mn-SOD and GR in PH. Collectively, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level.

  18. The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Baecker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, T. J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Cold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marini, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mitanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nazka, L.; Nyklicek, M.; Oehischlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossier, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovaneky, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Scilltto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cardenas, B.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Martin, L.


    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the

  19. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada (United States)

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.


    newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths. Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.

  20. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications

    Institute of Scientific and Technical Information of China (English)

    汪素云; 许忠淮; 裴顺平


    20301 Pn arrival time data are collected from the seismological bulletins of both national and regional seismic networks. Pn travel time residuals are tomographically inverted for the Pn velocity structure of uppermost mantle beneath North China. The result indicates that the average Pn velocity in North China is 7.92 km/s, and the velocity varies laterally from ?0.21 to +0.29 km/s around the average. The approximately NNE trending high and low velocity regions arrange alternatively west-eastward. From west to east we can see high velocity in the middle Ordos region, the Shanxi graben low, the Jizhong depression high, the west Shandong uplift and Bohai Sea low, and the high velocity region to the east of the Tanlu fault. In the southern boundary zone of the North China block, except for the high velocity in the Qingling Mountains region, the velocity is generally lower than the average. Obvious velocity anisotropy is seen in the Datong Cenozoic volcanic region, with the fast velocity direction in NNE-SSW. Notable velocity anisotropy is also seen around the Bay of Bohai Sea, and the fast velocity directions seem to show a rotation pattern, possibly indicating a flow-like deformation in the uppermost mantle there. The Pn velocity variations show a reversed correlation with the Earth's heat flow. The low Pn velocity regions generally show high heat flow, e.g., the Shanxi graben and Bohai Sea region. While the high Pn velocity regions usually manifest low heat flow, e.g., the region of Jizhong depression. This indicates that the Pn velocity variation in the study region is mainly aroused by the regional temperature difference in the uppermost mantle. Strong earthquakes in the crust tend to occur in the region with the abnormal low Pn velocity, or in the transition zone between high and low Pn velocity regions. The earthquakes in the low velocity region are shallower, while that in the transition zone are deeper.

  1. Climate variability effects on urban recharge beneath low impact development (United States)

    Newcomer, M. E.; Gurdak, J. J.


    Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Niño year, recharge calculated by a water budget does not increase compared with current El Niño recharge rates. In comparison, simulated recharge rates were

  2. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics


    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  3. Lithosphere-Asthenosphere Boundary Beneath Regions of Recent Volcanism in the Basin and Range Province and Mojave Desert (United States)

    Forsyth, D. W.; Rau, C. J.; Plank, T.; Gazel, E.; Bendersky, C.


    Melt in the asthenosphere may contribute strongly to the development of the lithosphere-asthenosphere boundary (LAB) in some settings. We have compiled a set of vertical shear-velocity profiles beneath centers of recent (<1.0 Ma) volcanic activity in the Basin and Range province based on Rayleigh wave tomography. The classic pattern of a high-velocity lid overlying a low-velocity zone (LVZ) is clear beneath many of the centers. Cima, for example, has a high velocity lid extending to a depth of about 60 km. Beneath Dish Hill and Amboy in the southern Mojave, the lithospheric lid extends to a depth of ~ 90 km. Minimum velocities in the LVZs beneath the higher velocity lids typically are 4.00-4.05 km/s, similar to that beneath the East Pacific Rise and too low to be caused by temperature alone without unreasonably high attenuation. Beneath other centers, like Big Pine, Lathrop Wells and Tahoe, there is no resolvable lid. The lid is either missing or too thin to resolve, but the absence of the lid/LVZ pattern seems to be due to a combination of lower velocities immediately beneath the Moho and higher velocities in the LVZ. Petrological indicators of temperature and depth of melting from basalt composition are in general agreement with the seismological observations, with the depth of last equilibration typically occurring near the top of the LVZ. Beneath Big Pine, for example, the equilibration temperatures are unusually low and the equilibration depth is 40 to 50 km, just below the Moho, in agreement with the lack of a distinct lid. Beneath Cima, equilibration depths are 60-70 km. Beneath Coso, equilibration depths are only slightly deeper than Big Pine, but the temperatures are higher, in agreement with the more pronounced LVZ and the presence of a thin lid. Beneath the Tabernacle Hill/Black Rock volcanic field in west-central Utah, there is a well-developed lid/LVZ structure, but the "high" velocity lid is only ~ 4.10 km/s while the underlying LVZ reaches as low as

  4. Lateral IBIC characterization of single crystal synthetic diamond detectors

    CERN Document Server

    Giudice, A Lo; Manfredotti, C; Marinelli, M; Milani, E; Picollo, F; Prestopino, G; Re, A; Rigato, V; Verona, C; Verona-Rinati, G; Vittone, E


    In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross-sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift-diffusion model.

  5. Velocity structure of uppermost mantle beneath China continent from Pn tomography

    Institute of Scientific and Technical Information of China (English)


    39473 Pn travel times are inverted to tomographically image both lateral variation and anisotropy of uppermost mantle velocities beneath China continent. The result indicates that the overall average Pn velocity of uppermost mantle in the studied region is 8.0 km/s and the regional velocity fluctuation varies from -0.30 km/s to +0.35 km/s. Pn velocities higher than 8.2 km/s are found in the regions surrounding Qingzang Plateau, such as Junggar Basin, Tarim Basin, Qaidam Basin and Sichun Basin. Pn velocities slightly lower than the average are found in western Sichuan and Yunnan, Shanxi Graben and Bohai Bay region. A Pn velocity as low as 7.8 km/s may exist in the region striding the boundary between Guangxi and Guangdong provinces. In general, Pn velocity in tectonically stable region like cratonic platform tends to be high, while that in tectonically active region tends to be low. The regions in compressive setting usually show higher Pn velocity, while extensional basins or grabens generally display lower one. Anisotropy of Pn velocity is seen in some regions. In the southeastern region of Qingzang Plateau the directions of fastest Pn velocity show a rotation pattern, which may be related to southeastward escape of the plateau material due to the collision and compression of Indian Plate to Asia along Himalaya arc. Notable anisotropy also exists around Bohai Bay region, likely indicating crustal extending and possible magma activity therein.

  6. Snowboard, wakeboard, dashboard? Isolated fracture of the lateral process of the talus in a high-speed road traffic accident. (United States)

    Ng, Evangeline Shimei; O'Neill, Barry James; Cunningham, Laurence Patrick; Quinlan, John Francis


    We present a 23-year-old man who sustained an isolated fracture of the lateral process of the talus (LPT) in a head-on vehicle collision at a combined speed of 200 km/h. The driver of the other vehicle sustained fatal injuries at the scene. The LPT was openly reduced and fixed with successful outcome at 3 months. This case is unusual in the method of injury, in particular in relation to the isolated relatively minor injury sustained.

  7. Experimental Investigation of the Hysteretic Behavior of Wide-Flange Steel Columns under High Axial Load and Lateral Drift Demands


    Lignos, Dimitrios; Cravero, Julien; Elkady, Ahmed Mohamed Ahmed


    This paper discusses the findings from a large-scale experimental program that characterized the hysteretic behavior of typical steel wide-flange columns in steel moment-resisting frames (MRFs). The test specimens were tested in a cantilever configuration with a fixed point of inflection. The main testing parameters included various lateral and axial loading histories, the applied axial compressive load and the local slenderness of the cross-section. It is shown that (a) steel columns subject...

  8. Snowboard, wakeboard, dashboard? Isolated fracture of the lateral process of the talus in a high-speed road traffic accident.

    LENUS (Irish Health Repository)

    Ng, Evangeline Shimei


    We present a 23-year-old man who sustained an isolated fracture of the lateral process of the talus (LPT) in a head-on vehicle collision at a combined speed of 200 km\\/h. The driver of the other vehicle sustained fatal injuries at the scene. The LPT was openly reduced and fixed with successful outcome at 3 months. This case is unusual in the method of injury, in particular in relation to the isolated relatively minor injury sustained.

  9. Upper Mantle Flow Beneath the Subducted Nazca Plate: Slab Contortions and Flattening (Invited) (United States)

    Russo, R. M.


    The form of asthenospheric flow beneath subducted lithospheric slabs can be discerned using splitting of shear waves emanating from earthquakes in the slabs themselves. However, the subducted Nazca plate’s abrupt changes in morphology from a planar slab dipping 30° ENE beneath the central Andes to large areas of flat-lying slab beneath Peru, to the north, and Argentina, to the south, are a potential complication to the sub-slab mantle flow. S waves from earthquakes in the Nazca slab reveal details of the upper mantle flow field below and in the vicinity of the slab. Nazca slab earthquakes large enough to be well recorded (M > 5.4, typically), and deep enough to separate S from pS and sS (30-40 km or more), are suitable for such study, and, for events between 1990 and 2010, recording stations are mostly well-distributed azimuthally about the source event. The S waves were recorded at seismic stations at teleseismic distances from the events, and were corrected for known sub-station seismic anisotropy. Thus, the shear wave splitting engendered during their passage through the asthenospheric upper mantle beneath the slab was isolated, and asthenospheric deformation fabrics resulting from plastic flow beneath the slab mapped in some detail. Shear wave splitting fast directions and upper mantle flow beneath the Nazca plate are most often trench-parallel, consistent with trench-parallel upper mantle flow beneath the slab. Fast splitting polarizations at high angle to the strike of the slab occur in the transition regions from flat to normally dipping slab. Upper mantle flow beneath the slab in these regions appears to be channeled by the slab contortion. Upper mantle flow oceanward of the Nazca slab also appears to change abruptly from trends at a high angle to the Peru-Chile trench to trench-parallel as the top of the Nazca slab attains a depth of around 75 km. Trench-parallel sub-slab flow appears to develop once the asthenosphere beneath the Nazca plate is affected

  10. Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia (United States)

    Sims, N. E.; Christensen, D. H.; Moore-Driskell, M. M.


    Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.

  11. Subglacial Sediment Deformation: An Experiment Beneath Engabreen, Norway (United States)

    Fischer, U. H.; Iverson, N. R.; Hooyer, T. S.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    A detailed study of sediment deformation processes was carried out beneath Engabreen, Norway, by taking advantage of unique access to the bed of the glacier beneath 230 m of temperate ice via the Svartisen Subglacial Laboratory. One of the strengths of this novel approach is that many interpretive limitations caused by un- certainties inherent in similarly motivated borehole investigations are eliminated. A trough (approx. 2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 per cent sand and gravel, 20 per cent silt, 5 per cent clay). Instruments were placed in the sediment to record shear deformation, dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding wa- ter to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sed- iment, shear deformation and volume change stopped, and total normal stress became constant at 2.1 MPa. Pump tests conducted subsequently, which lasted several hours, induced pore-water pressures > 70 per cent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice sep- arated from the sediment when effective pressure was lowest, and shear deformation stopped. Velocity profiles averaged over the duration of pump tests indicate that rates of shear strain increase upward toward the glacier sole.

  12. D'' beneath the Arctic from inversion of shear waveforms (United States)

    Kawai, Kenji; Geller, Robert J.; Fuji, Nobuaki


    The structure of the D'' region beneath the Arctic has not previously been studied in detail. Using waveform inversion, we find that the average S-wave velocity in D'' beneath the Arctic is about 0.04 km/s higher than PREM, which is consistent with the existence of post-perovskite (ppv) in D''. It is difficult to strongly constrain the fine structure of S-velocity within D'' due to the small number of stations at epicentral distances Δ weighting those stations heavily in the inversion, we show that the data suggest the existence of high S-velocity in the upper half of D'' and low S-velocity in the lower half, consistent with the possibility of a double crossing (ppv -> pv reverse phase transition) within D''. We conduct a computational experiment to show that resolution of the velocity structure within D'' could be significantly improved by temporary installation of a portable array of seismographs in northern Canada, which would greatly increase the number of stations in the range 70° < Δ < 90°.

  13. Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica (United States)

    Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry


    Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL

  14. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.


    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  15. Laterally coupled distributed feedback lasers emitting at 2 μm with quantum dash active region and high-duty-cycle etched semiconductor gratings (United States)

    Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim


    Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.

  16. Shear-wave velocity structure of the crust and upper mantle beneath the Kola Peninsula (United States)

    Dricker, I. G.; Roecker, S. W.; Kosarev, G. L.; Vinnik, L. P.

    We determined the shear-wave velocity structure of the crust and upper mantle beneath the central part of the Kola peninsula from the analysis of P-wave receiver functions and mantle P-SV converted phases recorded at stations Apatity (APA) and Lovozero (LVZ). The times of P-SV converted phases from the 410 and 660 km discontinuities are close to those predicted by the IASP91 model. Phase conversions at the crust-mantle boundary beneath the Baltic shield northeast of LVZ and southwest of APA are consistent with a sharp transition from crust to mantle at a depth of 40 km, while conversions from the intervening Khibina plutonic region are consistent with a gradual transition between depths of 20 and 40 km. We infer that short (∼50 km) wavelength lateral variations in the crust-mantle transition persist in this region, despite the inactivity of the Kola peninsula since Devonian times.

  17. Snowboard, wakeboard, dashboard? Isolated fracture of the lateral process of the talus in a high-speed road traffic accident



    We present a 23-year-old man who sustained an isolated fracture of the lateral process of the talus (LPT) in a head-on vehicle collision at a combined speed of 200 km/h. The driver of the other vehicle sustained fatal injuries at the scene. The LPT was openly reduced and fixed with successful outcome at 3 months. This case is unusual in the method of injury, in particular in relation to the isolated relatively minor injury sustained.

  18. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii (United States)

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.


    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  19. Channelling of Melt Above Plumes and Beneath MORs (United States)

    Mueller, K.; Schmeling, H.


    We investigate melt transportation in partially molten rocks under different stress fields above the head of a mantle plume or beneath a spreading mid-oceanic ridge under hydrous and anhydrous conditions. We model such aggregates with the 2D-FD code FDCON [1] by means of a porous deformable matrix with melt under the influence of a given stress field to clarify the following key questions: Could channeling occur in a matrix containing a random melt distribution under a given stress field? Which orientation does it take? Is it possible to achieve a focusing of melt towards a MOR (dykes)? Does applying simple or pure shear to the matrix result in a difference in the formation and orientation of channels? How does the channel instability evolve during finite simple shear? In a deforming partially molten aggregate, weakening of the solid matrix due to the presence of melt creates an instability in which melt is localized by the following mechanism: regions of initially high melt fraction are areas of low viscosity and pressure, so that melt is drawn into these regions from higher pressure surroundings. This further enhances the melt weakening, producing a self-excited localization mechanism [2]. The channeling developing in models with a random melt distribution of 3.5 +/- 0.5% shows that melt is accumulated preferably in inclined channels. For both, simple as well as pure shear, the growth rate is highest for an orientation parallel to the direction of the maximum compressive stress and proportional to applied stress and the reverse of the Melt Retention Number. This also confirms the theoretical growth rate found by Stevenson [2]. In our isothermal models we found that the influence of water reduces the growth rate, in contrast to non-isothermal models of Hall [3]. Under simple shear melt channels evolve from an irregular melt distribution at angles of 45 degrees to the direction of shear. Upon further straining they rotate out of the orientation of maximum growth

  20. Deep Background of Wenchuan Earthquake and the Upper Crust Structure beneath the Longmen Shan and Adjacent Areas

    Institute of Scientific and Technical Information of China (English)

    LI Qiusheng; GAO Rui; WANG Haiyan; ZHANG Jisheng; LU Zhanwu; LI Pengwu; GUAN Ye; HE Rizheng


    By analyzing the deep seismic sounding profiles across the Longmen Shan, this paper focuses on the study of the relationship between the upper crust structure of the Longmen Shan area and the Wenchuan earthquake. The Longmen Shan thrust belt marks not only the topographical change, but also the lateral velocity variation between the eastern Tibetan Plateau and the Sichuan Basin. A low-velocity layer has consistently been found in the crust beneath the eastern edge of the Tibetan Plateau, and ends beneath the western Sichuan Basin. The low-velocity layer at a depth of -20 km beneath the eastern edge of the Tibetan Plateau has been considered as the deep condition for favoring energy accumulation that formed the great Wenchuan earthquake.

  1. S-wave attenuation structure beneath the northern Izu-Bonin arc (United States)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi


    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  2. Pn anisotropic tomography and mantle dynamics beneath China (United States)

    Zhou, Zhigang; Lei, Jianshe


    We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In

  3. Crust and upper mantle structure beneath the Pacific Northwest from joint inversions of ambient noise and earthquake data (United States)

    Wagner, Lara S.; Fouch, Matthew J.; James, David E.; Hanson-Hedgecock, Sara


    We perform a joint inversion of phase velocities from both earthquake and ambient noise induced Rayleigh waves to determine shear wave velocity structure in the crust and upper mantle beneath the Pacific Northwest. We focus particularly on the areas affected by mid-Miocene to present volcanic activity. The joint inversion, combined with the high density seismic network of the High Lava Plains seismic experiment and data from the EarthScope Transportable Array, provides outstanding resolution for this area. In Oregon, we find that the pattern of low velocities in the crust and uppermost mantle varies between the High Lava Plains physiographic province and the adjacent northwestern Basin and Range. These patterns may be due to the presence of the Brothers Fault Zone which separates the clockwise rotating northwest Basin and Range from the relatively undeformed areas further north. Further to the east, the Owyhee Plateau, Snake River Plain (SRP) and northeastern Basin and Range are characterized by high crustal velocities, though the depth extent of these fast wave speeds varies by province. Of particular interest is the mid-crustal high velocity sill, previously only identified within the SRP. We show this anomaly extends significantly further south into Utah and Nevada. We suggest that one possible explanation is lateral crustal extrusion due to the emplacement of the high density mafic mid-crustal sill structures within the SRP.

  4. Active convection beneath ridges: a new spin (United States)

    Katz, R. F.


    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, interesting symmetry-breaking behavior is predicted. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  5. Seismic evidence for slab graveyards atop the Core Mantle Boundary beneath the Indian Ocean Geoid Low (United States)

    Padma Rao, B.; Ravi Kumar, M.


    The Indian Ocean Geoid Low (IOGL) that spans a vast areal extent south of the Indian subcontinent is a spectacular feature on the Earth, whose origin still remains ambiguous. In this study, we investigate the seismic character of the lower mantle below this geoid low utilizing the travel time and amplitude residuals of high quality S and ScS phases from 207 earthquakes recorded at 276 stations in the epicentral distance range of 36°-90°. For comparison, we also perform a similar exercise for a region of geoid high in the vicinity. Results reveal large variations in the ScS travel times indicating that the lowermost mantle beneath the IOGL region is heterogeneous. The ScS-S differential travel times are ∼3 s slower than those predicted by the IASP91 model, primarily due to velocity increase in the lowermost mantle beneath the IOGL region and ∼2 s higher than the IASP91 beneath the geoid high region, due to velocity decrease in the lowermost mantle. The largest negative residuals from manual method (-7.72 s) are concentrated below the IOGL. Iterative matching of differential travel time residuals reveals that the maximum positive and negative residuals can be explained in terms of a reduction in shear velocity of 0.9% and an increase of 1.6% respectively in a ∼1000 km thick layer above the Core Mantle Boundary. Further, the ScS/S amplitude residuals beneath the IOGL are positive, implying high impedance contrast at the Core Mantle Boundary, owing to the presence of high velocity material. We attribute these high velocities to the presence of dehydrated high density slab graveyards atop the Core Mantle Boundary beneath the Indian Ocean. Release of water at the mid-to-upper mantle depths due to the dehydration of subducted slabs causing a reduction in density and velocity of the ambient mantle, could be responsible for the geoid low.

  6. Modified C1 lateral mass screw insertion using a high entry point to avoid postoperative occipital neuralgia. (United States)

    Lee, Sun-Ho; Kim, Eun-Sang; Eoh, Whan


    For the past decade, a screw-rod construct has been used commonly to stabilize the atlantoaxial joint, but the insertion of the screw through the C1 lateral mass (LM) can cause several complications. We evaluated whether using a higher screw entry point for C1 lateral mass (LM) fixation than in the standard procedure could prevent screw-induced occipital neuralgia. We enrolled 12 consecutive patients who underwent bilateral C1 LM fixation, with the modified screw insertion point at the junction of the C1 posterior arch and the midpoint of the posterior inferior portion of the C1 LM. We measured postoperative clinical and radiological parameters and recorded intraoperative complications, postoperative neurological deficits and the occurrence of occipital neuralgia. Postoperative plain radiographs were used to check for malpositioning of the screw or failure of the construct. Four patients underwent atlantoaxial stabilization for a transverse ligament injury or a C1 or C2 fracture, six patients for os odontoideum, and two patients for C2 metastasis. No patient experienced vertebral artery injury or cerebrospinal fluid leak, and all had minimal blood loss. No patient suffered significant occipital neuralgia, although one patient developed mild, transient unilateral neuralgia. There was also no radiographic evidence of construct failure. Twenty screws were positioned correctly through the intended entry points, but three screws were placed inferiorly (that is, below the arch), and one screw was inserted too medially. When performing C1-C2 fixation using the standard (Harms) construct, surgeons should be aware of the possible development of occipital neuralgia. A higher entry point may prevent this complication; therefore, we recommend that the screw should be inserted into the arch of C1 if it can be accommodated.

  7. Imaging Transition Zone Thickness Beneath South America from SS Precursors (United States)

    Schmerr, N.; Garnero, E.


    We image detailed upper mantle discontinuity structure beneath a number of geologically active regions, including the South American subduction zone, the Scotia plate subduction zone, and several volcanic hotspots (e.g., the Galapagos Islands), in a region ~10,000 km by 10,000 km wide, spanning 70° S to 20° N and 20° W to 110° W. Precursors to the seismic phase SS are analyzed, which form as a result of underside reflections off seismic discontinuities beneath the midpoint of the SS path and are highly sensitive to discontinuity depth and sharpness. Our SS dataset consists of over 15,000 high-quality transverse component broadband displacement seismograms collected from the Incorporated Research Institutions for Seismology (IRIS), the Canadian National Seismic Network (CNSN), as well as data from EarthScope seismic stations, and from the Canadian Northwest Experiment (CANOE) temporary broadband array deployment. This dataset densely samples several regions in our study area and significantly improves the sampling for this area compared to previous precursor studies. Data with common central SS bouncepoints are stacked to enhance precursory phases. Solution discontinuity structure depends on a number of factors, including dominant seismic period, crustal correction, signal-to-noise ratio threshold, and tomography model used for mantle heterogeneity correction. We exclude precursor data predicted to interfere with other seismic phases, such as topside reflections (e.g., s670sS), which have been demonstrated to contaminate final stacks. Solution transition zone thickness is at least 20 km thicker than global average estimates of 242 km along the northwestern portion of the South American subduction complex (Peru, Ecuador, and Columbia); this thickening extends 1000-1500 km to the east beneath the continent, but does not appear to continue south of -20° latitude along the convergent margin. A minimum of 10 km of thickening is imaged to the west of the Scotia

  8. A high energy intake from dietary fat among middle-aged and older adults is associated with increased risk of malnutrition 10 years later. (United States)

    Söderström, Lisa; Rosenblad, Andreas; Adolfsson, Eva T; Wolk, Alicja; Håkansson, Niclas; Bergkvist, Leif


    A higher fat content in the diet could be an advantage for preventing malnutrition among older adults. However, there is sparse scientific evidence to determine the optimal fat intake among older adults. This prospective cohort study examined whether a high energy intake of dietary fat among middle-aged and older adults is associated with the risk of malnutrition 10 years later. The study population comprised 725 Swedish men and women aged 53-80 years who had completed a questionnaire about dietary intake and lifestyle factors in 1997 (baseline) and whose nutritional status was assessed when admitted to the hospital in 2008-2009 (follow-up). At the follow-up, 383 (52.8%) participants were identified as being at risk of malnutrition and fifty-two (7.2%) were identified as malnourished. Multinomial logistic regression models were used to analyse the association between previous dietary fat intake and nutritional status later in life. Contrary to what was expected, a high energy intake from total fat, saturated fat and monounsaturated fat among middle-aged and older adults increased the risk of exhibiting malnutrition 10 years later. However, this applied only to individuals with a BMImalnutrition in older adults should focus on limiting the intake of total fat in the diet by reducing consumption of food with a high content of saturated and monounsaturated fat.

  9. Upper mantle discontinuity beneath the SW-Iberia peninsula: A multidisciplinary view. (United States)

    Palomeras, Imma; de Lis Mancilla, Flor; Ayarza, Puy; Afonso, Juan Carlos; Diaz, Jordi; Morales, Jose; Carbonell, Ramon; Topoiberia Working Group


    Evidence for an upper mantle discontinuity located between 60 and 70 km depth have been provided by different seismic data sets acquired in the Southern Iberian peninsula. First indications of such a discontinuity were obtained by the very long offsets seismic refraction shot gathers acquired within the DSS ILIHA project in the early 90's. Clear seismic events recoded by the dense wide-angle seismic reflection shot gathers of the IBERSEIS experiment (2003) provided further constraints on the depth of the discontinuity and first-order estimates of its physical properties beneath the Ossa Morena Zone. Furthermore, the normal incidence Vibroseis deep seismic reflection images of the ALCUDIA transect (2007) extends this structure to the northeast beneath the Central Iberian Zone. This transect images deep laterally discontinuous reflections at upper mantle travel times (19 s) that roughly correspond to depths within the range of 60-70 km. Receiver function studies of the passive seismic recordings acquired by the IBERARRAY (TOPOIBERIA projects) provides additional support for the existence of this upper mantle structure and suggests that this is a relatively large scale regional feature. Two major scenarios need to be addressed when discussing the origin and nature of this deep structure. One is the tectonic scenario in which the structure maybe be related to a major tectonic event such as an old subduction process and therefore represent an ancient slab. A second hypothesis, would relate this feature to a phase change in the mantle. This latter assumption requires this feature ought to be a broader scale boundary which could be identified by different seismic techniques. Reflectivity modeling carried out over the IBERSEIS wide angle reflection data concludes that the observed phase is consistent with an heterogeneous gradient zone located at, approximately, 61-72 km depth. A layered structure with alternating velocities within ranges 8.1 to 8.3 km/s is necessary in

  10. "DOBREfraction'99" - Velocity Model of the Crust and Upper Mantle Beneath the Donbas Foldbelt (east Ukraine) (United States)

    Omelchenko, V.; Starostenko, V. I.; Stephenson, R. A.; Guterch, A.; Janik, T.; Grad, M.; Stovba, S. M.; Tolkunov, A.; Thybo, H.; Lang, R.; Lyngsie, S. B.; Keller, G. R.


    The East European Craton (EEC) contains a classic example of the tectonic inversion of a continental rift zone. The Donbas Foldbelt (DF) is the uplifted and deformed part of the up to 20-km thick Dniepr-Donets Basin that formed as the result of rifting of the EEC in the Late Devonian. The DF, especially its southern margin, was uplifted in Early Permian times, in a (trans)tensional tectonic stress regime while folding and reverse faulting mainly occurred later primarily during the Late Cretaceous. A seismic refraction/wide-angle reflection survey was carried out in 1999 to complement existing Deep Seismic Sounding data from the area that, because maximum offsets were generally not greater than about 150 km, did not record significant Pn phase arrivals. The 1999 main survey comprised some 245 recording stations along a line of 360 km length, with 11 in-line shotpoints, extending from the shores of the Azov Sea in the south, across the Azov Massif of the Ukrainian Shield and the DF, ending at the Ukraine-Russia border in the Voronezh Massif of the EEC. Particular scientific targets included the nature of the crust-mantle transition and the geometry of crustal/upper mantle structures related to rifting and subsequent basin inversion. Tomographic inversion as well as ray-trace based velocity modeling has been carried out. The velocity signature of the sedimentary basin itself is well resolved, indicating an asymmetric form (basement surface dipping more gently towards the center of the basin from the north than from the south) and a total thickness of about 20-km, comparable to estimates derived from previous seismic studies and geological interpretations. A thick ( more 10-km), high velocity (more than 6.9 km/s) lower crustal body lies beneath the rift basin itself (DF) but is offset slightly to the north compared to the main basin depocenter. This layer is most likely related to the earlier rifting processes and may represent magmatic underplating. Velocities in the

  11. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe (United States)

    Jenkins, J.; Deuss, A.; Cottaar, S.


    Until recently, most of the lower mantle was generally considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometres above the core-mantle boundary, known as the D″ layer. However several recent studies have started to hint at a potential change in Earth's structure at mid-mantle depths beneath the transition zone. Here we present a continental-wide search of Europe and the North Atlantic for mid-mantle P-to-s wave converted phases. Our data set consists of close to 50,000 high quality receiver functions. These are combined in slowness and depth stacks to identify seismic discontinuities in the range of 800-1400 km depth to determine at which depths and in which tectonic settings these features exist. Receiver functions are computed in different frequency bands to resolve the sharpness of the observed discontinuities. We find most seismic velocity jumps are observed between 975-1050 km depth, localised beneath western Europe and Iceland. The shear wave velocity jumps are roughly 1-2.5% velocity increase with depth occurring over less than 8 km in width. The most robust observations are coincident with areas of active upwelling (under Iceland) and an elongate lateral low velocity anomaly imaged in recent tomographic models which has been interpreted as diverted plume material at depth. The lack of any suggested phase change in a normal pyrolitic mantle composition at around 1000 km depth indicates the presence of regional chemical heterogeneity within the mid-mantle, potentially caused by diverted plume material. We hypothesise that our observations represent either a phase change within chemically distinct plume material itself, or are caused by small scale chemical heterogeneities entrained within the upwelling plume, either in the form of recycled basaltic material or deep sourced chemically distinct material from LLSVPs. Our observations, which cannot be directly linked to an area of either active or ancient

  12. Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track (United States)

    Kelbert, A.; Egbert, G. D.


    We have used high-quality electromagnetic data obtained through the EarthScope USArray project to obtain detailed three-dimensional images of electrical resistivity / conductivity in the crust and upper mantle beneath the Snake River Plain/Yellowstone (SRP/Y) volcanic province (Idaho and Wyoming, United States). The lowest resistivities in the area can only plausibly be explained by partial melt and/or fluids, providing valuable new information about the distribution of these phases deep within the Earth beneath the volcanic system. Unexpectedly, in light of the mantle plume models often used to explain Yellowstone volcanism, the electromagnetic data imply that there is no interconnected melt in the lower crust and uppermost mantle directly beneath the modern Yellowstone caldera. Instead, low resistivities consistent with 1-3% melt in the uppermost mantle (depths of 40-80 km) extend at least 200 km southwest of Yellowstone. Shallower areas of reduced resistivity extend upward into the mid-crust around the edges of the seemingly impermeable Snake River Plain province, including beneath Yellowstone. We suggest that the elevated temperatures beneath the active volcanic center have resulted in greater permeability, allowing magma to ascend to shallower depths and pool in the crust. Little melt is entering the system from below at present, perhaps due to intermittency of supply. We describe these results in the context of larger scale electrical resistivity and seismic tomography models of the western US and employ joint interpretation to formulate hypotheses that would explain this unexpected melt distribution beneath the SRP/Y. Our 3-D model is available at

  13. Can slabs melt beneath forearcs in hot subduction zones? (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.


    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  14. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.


    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  15. Comparison the Effect of Extra Corporeal Shockwave Therapy with Low Dosage Versus High Dosage in Treatment of the Patients with Lateral Epicondylitis

    Directory of Open Access Journals (Sweden)

    Parisa Taheri


    Full Text Available Background: One of the most common reasons of elbow and forearm pain is lateral epicondylitis diagnosed based on clinical examination. The extracorporeal shock wave therapy is applied for less invasive treatments with different dosages. This study aimed to investigate the effects of high- and low-dose ESW in treating the lateral epicondylitis. Materials and Methods: This clinical trial was done in Al Zahra medical center on 40 patients who were selected randomly and divided into two groups. After VAS, the first group was treated by Duolith SD1 shock wave, energy of 0.25 mj/mm2, 1000 shocks; the second was treated by focus with the energy of 0.10 mj/mm2, 1000 shocks per session for 15 minutes with weekly intervals in three sessions. The patients were also treated with drugs (NSAIDs and the visual analog scale (VAS was reassessed 1 week after the last session and 12 weeks after finishing the treatment. Results: The mean of pain intensity during study was decreased in the two groups but reduction of pain intensity in the low-dose groups was higher than the high-dose groups (P = 0.001. Changes in other parameters including wrist extension test, middle finger extension test and PG was also similar. Conclusion: Extra corporeal shockwave therapy can be effective in treating lateral epicondylitis, but its effects usually appear in after 2 or 3 months and using the low dose of this treating method has more desirable therapeutic effects.

  16. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola; Creissen, Alain V.; Pasa-Tolic, Ljiljana


    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  17. Minimizing Platelet Activation-Induced Clogging in Deterministic Lateral Displacement Arrays for High-Throughput Capture of Circulating Tumor Cells (United States)

    D'Silva, Joseph; Loutherback, Kevin; Austin, Robert; Sturm, James


    Deterministic lateral displacement arrays have been used to separate circulating tumor cells (CTCs) from diluted whole blood at flow rates up to 10 mL/min (K. Loutherback et al., AIP Advances, 2012). However, the throughput is limited to 2 mL equivalent volume of undiluted whole blood due to clogging of the array. Since the concentration of CTCs can be as low as 1-10 cells/mL in clinical samples, processing larger volumes of blood is necessary for diagnostic and analytical applications. We have identified platelet activation by the micro-post array as the primary cause of this clogging. In this talk, we (i) show that clogging occurs at the beginning of the micro-post array and not in the injector channels because both acceleration and deceleration in fluid velocity are required for clogging to occur, and (ii) demonstrate how reduction in platelet concentration and decrease in platelet contact time within the device can be used in combination to achieve a 10x increase in the equivalent volume of undiluted whole blood processed. Finally, we discuss experimental efforts to separate the relative contributions of contact activated coagulation and shear-induced platelet activation to clogging and approaches to minimize these, such as surface treatment and post geometry design.

  18. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures (United States)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolić, Nikola; Creissen, Alain; Paša-Tolić, Ljiljana


    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  19. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. (United States)

    Gajdusek, D C; Salazar, A M


    Amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD) occur in the highest recorded incidence among primitive Auyu and Jakai people on the southern coastal plain of West New Guinea, in association with a heretofore unrecognized subacute, often recurrent, paralytic "poliomyeloradiculitis" (PMR). Ninety-seven cases of ALS, 19 cases of PD and 18 cases of PMR were recorded, with mean ages of onset of 33, 43, and 26, respectively, in a small affected population of only about 7000. The ecology, culture, and diet of the remote, primitive ALS- and PD-affected people are indistinguishable from that of their unaffected neighbors, except for a remarkable deficiency of calcium and magnesium in their soil and drinking water. The distribution of affected and nonaffected villages indicates that communicable infectious or genetic etiology is unlikely. As a result of the isolation and primitive technology, domestic animals (except dogs and pigs) were not found among the Auyu and Jakai, and no manufactured products (including metals, ceramics, textiles, petrochemicals, medicines, food additives, condiments, paints, dyes, or solvents) were available to them.

  20. Imaging Lithospheric-scale Structure Beneath Northern Altiplano in Southern Peru and Northern Bolivia (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.


    The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly

  1. Evidence for Along-Strike Variations in the Crustal Deformation beneath the Bhutan Himalaya from Receiver Function Imaging and Seismicity (United States)

    Singer, J.; Kissling, E. H.; Diehl, T.; Hetényi, G.


    In the Bhutan Himalaya seismicity and geologic surface features like the Kuru Chu Spur (an embayment of the Main Central Thrust) or the Paro window indicate along-strike variations in the collisional structure. The deeper structure of the orogenic wedge and associated deformation processes, however, are poorly understood partly due to the lack of seismic images of the crust. To better understand these differences in structure and deformation, we use data of a temporary seismic broadband network in Bhutan to image the crustal structure with receiver functions (RF). We apply an iterative 3D wave-based migration scheme including a high-frequency ray approximation, which satisfies Snell's law for dipping interfaces. With this approach we image variably dipping intra-crustal interfaces and the Moho topography across the Bhutan Himalaya, and identify lateral variations in the orogenic structure, which we interpret jointly with a new local earthquake catalog. In West Bhutan, RF imaging depicts a northward dipping Moho at ~50 km depth. The low-angle dip steepens north of ~27.6°N which matches well observations by wide-angle seismics in South Tibet and the hypocenter of a deep crustal earthquake recorded by our network. We also identify the Main Himalayan Thrust (MHT) at ~14 km depth in West Bhutan with a ramp-like structure north of ~27.6°N. The ramp is characterized by a negative impedance contrast in the RF signals and coincides with a concentration of seismicity. In the East, the Moho appears to be almost flat at a depth of ~50 km without clear indications of steepening towards north. Beneath the Kuru Chu Spur in East Bhutan, we observe listric-shaped structures reaching from the upper crust beneath the Lesser Himalaya down to the Moho beneath the Greater Himalaya, which we interpret as a stack of crustal material typical for an accretionary wedge. While these structures appear aseismic, a horizontal alignment of seismicity at ~12 km depth suggests an active MHT in

  2. Magma heating by decompression-driven crystallization beneath andesite volcanoes. (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine


    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  3. Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic regionn, California ( USA). (United States)

    Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori


    We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors

  4. Simulation of flow in the unsaturated zone beneath Pagany Wash, Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Kwicklis, E.M.; Healy, R.W. [Geological Survey, Lakewood, CO (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)


    A one-dimensional numerical model was created to simulate water movement beneath Pagany Wash, Yucca Mountain, Nevada. Model stratigraphy and properties were based on data obtained from boreholes UE-25 UZ No. 4 and UE-25 UZ No. 5, which was drilled in the alluvial channel and bedrock sideslope of Pagany Wash. Although unable to account for multidimensional or preferential flowpaths beneath the wash, the model proved a useful conceptual tool with which to develop hypotheses and, in some cases, provide bounding calculations. The model indicated that liquid flux decreases with depth in the upper 120 m beneath the wash, with fluxes of several tens mm/yr in the nonwelded base of the Tiva Canyon Member and fluxes on the order of a tenth mm/yr in the upper Topopah Spring Member. Capillary barrier effects were indicated by the model to significantly delay the entry of large fluxes into the potential repository horizon during periods of increasing net infiltration, and to inhibit rapid drainage of water from the nonwelded and bedded intervals into the potential repository horizon during periods of moisture redistribution. Lateral moisture redistribution can be expected to be promoted by these effects.

  5. Simulation of flow in the unsaturated zone beneath Pagany Wash, Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Thamir, F.; Kwicklis, E.M. [Geological Survey, Denver, CO (United States); Hampson, D. [Foothills Engineering Consultants Inc., Golden, CO (United States); Anderton, S. [ROCKTECH, West Jordan, UT (United States)


    A one-dimensional numerical model was created simulate water movement beneath Pagany Wash, Yucca Mountain, Nevada. Model stratigraphy and properties were on data obtained from boreholes UE-25 UZ {number_sign}4 UE-25 UZ {number_sign}5, which were drilled in the alluvial channel and bedrock sideslope of Pagany Wash. Although unable to account for multidimensional or preferential flowpaths beneath the wash, the model proved a useful conceptual tool with which to develop hypotheses and, in some cases, provide bounding calculations. The model indicated that liquid flux decreases with depth in the upper 120 m beneath the wash, with fluxes of several tens mm/yr in the nonwelded base of the Tiva Canyon Member and fluxes on the order of a tenth mm/yr in the upper Topopah Spring Member. Capillary barrier effects were indicated by the model to significantly delay the entry of large fluxes into the potential repository horizon during periods of increasing net infiltration, and to inhibit rapid drainage of water from the nonwelded and bedded intervals into the potential repository horizon during periods of moisture redistribution. Lateral moisture redistribution can be expected to be promoted by these effects.

  6. Zircon U-Pb ages of the basement rocks beneath the Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)


    The basement of the Songliao Basin is mainly composed of slightly-metamorphosed or unmetamorphosed Paleozoic strata, granites and gneiss. Petrographical studies indicate that the gneiss was originally the granitic intrusions which were deformed in the later stage. One undeformed granitic rock sample gives a U-Pb age of (305±2) Ma, and the mylonitic granite yields a U-Pb age of (165±3) Ma. Both of the two samples contain no inherited zircon, which suggests that there is no large-scale Precambrian crystalline basement beneath the Songliao Basin.

  7. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts (United States)

    Graham, D. W.; Reid, M. R.; Jordan, B. T.; Grunder, A. L.; Leeman, W. P.; Lupton, J. E.


    We report new He, Nd and Sr isotope results for basalts from the northwestern United States. The new 3He/ 4He results for olivine phenocrysts in basalts from the eastern Snake River Plain (SRP), the Owyhee Plateau (OP) and the Oregon High Lava Plains (HLP), together with published He isotope data for Yellowstone and the Cascades volcanic arc, delineate distinct mantle sources for each of these sub-provinces. All basalts from the eastern SRP (8 Quaternary localities plus 1 Miocene locality) have 3He/ 4He ratios higher than observed in normal mid-ocean ridge basalts, but overlapping with ranges observed in hotspot-related oceanic islands. For a lateral distance of some 400 km along the SRP, 3He/ 4He ranges from ~ 11 RA in the west to > 19 RA adjacent to Yellowstone. Such high ratios have not been observed elsewhere in the western U.S., and are consistent with the presence of a mantle plume. The lateral gradient in 3He/ 4He suggests that the proportion of plume-derived He decreases westward, but this interpretation is complicated by possible addition of crustal helium during open-system crystal fractionation in some SRP basaltic magmas. Although crustal contamination may modulate 3He/ 4He in basalts along the SRP, the effect is not strong and it does not obscure the elevated 3He/ 4He mantle source signature. In contrast, young basalts from the HLP and the OP have 3He/ 4He values of 8.8-9.3 RA, within the range for mid-ocean ridge basalts; these data reflect a shallow asthenospheric source with no discernible influence from the Yellowstone hotspot. Basalts from Newberry volcano have slightly lower 3He/ 4He (7.6-8.3 RA), within the range for other Cascades arc lavas (7.0-8.4 RA). Three alternative explanations are possible for the origin of the high 3He/ 4He signature along the SRP: (1) multi-component mixing of (a) magmas and/or CO 2-rich fluids derived from plume mantle having high 3He/ 4He, (b) continental lithosphere having low 3He/ 4He, and (c) shallow

  8. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.


    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  9. [Guided bone regeneration beneath titanium foils]. (United States)

    Otto, Katharina; Schopper, Christian; Ewers, Rolf; Lambrecht, J Thomas


    The aim of this study was to examine the clinical and histological bony healing process beneath titanium foils used for guided tissue regeneration as well as of the Frios Algipore graft which was applied with autologous bone. 66 sinus floor elevations were carried out and examined over a period of three years and eight months. A success rate of 64% was recorded with foil incorporation. Complications occurred in form of primary and secondary disturbances in the healing process caused by exposure of the foil. 12 of the 66 foils had to be removed early. In all but one case, the augmented bone material was macroscopically well integrated despite the loss of the foil. Primary stability of the inserted dental implants into the ossified augmented site after operations of the sinus maxillaris was reached in all cases with absence of post-operative complications, and in 94% when there was postoperative exposure of the membrane. Histologically, a thin layer of connective tissue poor in cells but rich in collagen fibers appeared underneath the titanium foil. This was followed by newly-formed bony tissue transforming into osseous lamella parallel to the membrane underneath the new periost. In 65 out of 66 cases a sufficient amount of stable bone was built up locally suggesting good bio-compatibility and barrier function. Further, the foil also provided mechanical rest and supporting function for the space underneath. However, the occurrence of healing complications in 36% of the cases showed a need to improve on the titanium foils.

  10. High-fat/fructose feeding during prenatal and postnatal development in female rats increases susceptibility to renal and metabolic injury later in life. (United States)

    Flynn, Elizabeth R; Alexander, Barbara T; Lee, Jonathan; Hutchens, Zachary M; Maric-Bilkan, Christine


    Accumulating evidence suggests that both an adverse prenatal and early postnatal environment increase susceptibility to renal and metabolic dysfunction later in life; however, whether exposure to adverse conditions during both prenatal and postnatal development act synergistically to potentiate the severity of renal and metabolic injury remains unknown. Sprague-Dawley rats were fed either a standard diet or a diet high in fat/fructose throughout pregnancy and lactation. After being weaned, female offspring were randomized to either standard diet or the high-fat/high-fructose diet, resulting in the following treatment groups: NF-NF, offspring of mothers fed a standard diet and fed a standard diet postnatally; NF-HF, offspring of mothers fed a standard diet and fed a high-fat/fructose diet postnatally; HF-NF, offspring of mothers fed a high-fat/fructose diet and fed a standard diet postnatally; HF-HF, offspring of mothers fed a high-fat/fructose diet and fed a high-fat/fructose diet postnatally. At the time of euthanasia (17 wk of age), HF-HF offspring weighed 30% more and had 110% more visceral fat than NF-NF offspring. The HF-HF offspring also had elevated blood glucose levels, glucose intolerance, 286% increase in urine albumin excretion, and 60% increase in glomerulosclerosis compared with NF-NF. In addition, HF-HF offspring exhibited a 100% increase in transforming growth factor-β protein expression and 116% increase in the abundance of infiltrated macrophages compared with the NF-NF offspring. These observations suggest that high-fat/fructose feeding during prenatal and throughout postnatal life increases the susceptibility to renal and metabolic injury later in life.

  11. Classic high lateral tension and triangular resection methods to prevent dog ear and elongation scar in patients undergoing abdominoplasty: A comparative open-label clinical trial

    Directory of Open Access Journals (Sweden)

    Hossein Abdali


    Full Text Available Background: One of the most common operations in the plastic surgery curse is abdominoplasty. Several methods were recommended for achieving better results. In the present study, efficacy of a new method compared with classical high lateral tension on preventing dog ear and elongation scar was evaluated. Materials and Methods: in an open-label, randomized clinical trial, seventy patients who were candidates for abdominoplasty were selected and randomly divided into two groups. The first group was operated by classic high lateral method and the second group was operated by a new method concentrating on changing incision line and angle. Dog ear prevention, length of scar, improvement, and postoperative complications were compared between the two groups. Results: The mean ± standard deviation (SD length of scar in treated patients with classical and new abdominoplasty surgical methods was 53.68 ± 6.34 and 41.71 ± 1.78 cm, respectively, and the length of scar in the group treated with the new method was significantly shorter (P < 0.001. The mean ± SD distance between two anterior superior iliac spine in group treated by new method was significantly decreased after surgery (31.3 ± 1.3 cm compared to before intervention (36.7 ± 3.9 cm (P < 0.01. Conclusion: The new method is more likely to be successful in patients with high lateral tension abdominoplasty. However, according to the lack of similar studies in this regard and the fact that this method was introduced for the first time, it is recommended that further studies in this area are needed and patients in term of complications after surgery need a longer period of follow-up.

  12. Depth variations of P-wave azimuthal anisotropy beneath Mainland China. (United States)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin


    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  13. A Longitudinal Study of the Effects of Child Maltreatment on Later Outcomes among High-Risk Adolescents (United States)

    Tyler, Kimberly A.; Johnson, Katherine A.; Brownridge, Douglas A.


    The current study longitudinally examines the effects of child maltreatment, parenting, and disadvantaged neighborhood on victimization, delinquency, and well-being via running away and school engagement among a sample of 360 high-risk adolescents. Results of a path analysis revealed that parenting was associated with school engagement, running…

  14. Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy

    Institute of Scientific and Technical Information of China (English)

    LI Weiping; LUO Yong; XIA Kun; LIU Xin


    A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence snow accumulation and ablation under the canopy. Mass balance and energetics of snow beneath a Scots pine canopy in Finland at different stages of the 2003-2004 and 2004-2005 snow seasons are analyzed. For the fairly dense Scots pine forest, drop-off of the canopy-intercepted snow contributes, in some cases, twice as much to the underlying snowpack as the direct throughfall of snow. During early winter snow melting, downward turbulent sensible and condensation heat fluxes play a dominant role together with downward net longwave radiation. In the final stage of snow ablation in middle spring, downward net all-wave radiation dominates the snow melting. Although the downward sensible heat flux is comparable to the net solar radiation during this period, evaporative cooling of the melting snow surface makes the turbulent heat flux weaker than net radiation. Sensitivities of snow processes to leaf area index (LAI) indicate that a denser canopy speeds up early winter snowmelt, but also suppresses melting later in the snow season. Higher LAI increases the interception of snowfall, therefore reduces snow accumulation under the canopy during the snow season; this effect and the enhancement of downward longwave radiation by denser foliage outweighs the increased attenuation of solar radiation, resulting in earlier snow ablation under a denser canopy. The difference in sensitivities to LAI in two snow seasons implies that the impact of canopy density on the underlying snowpack is modulated by interannual variations of climate regimes.

  15. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.


    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.


    Directory of Open Access Journals (Sweden)

    Moira Yip


    Full Text Available When laterals are the targets of phonological processes, laterality may or may not survive. In a fixed feature geometry, [lateral] should be lost if its superordinate node is eliminated by either the spreading of a neighbouring node, or by coda neutralization. So if [lateral] is under Coronal (Blevins 1994, it should be lost under Place assimilation, and if [lateral] is under Sonorant Voicing (Rice & Avery 1991 it should be lost by rules that spread voicing. Yet in some languages lateral survives such spreading intact. Facts like these argue against a universal attachment of [lateral] under either Coronal or Sonorant Voicing, and in favour of an account in terms of markedness constraints on feature-co-occurrence (Padgett 2000. The core of an OT account is that IFIDENTLAT is ranked above whatever causes neutralization, such as SHARE-F or *CODAF. laterality will survive. If these rankings are reversed, we derive languages in which laterality is lost. The other significant factor is markedness. High-ranked feature co-occurrence constraints like *LATDORSAL can block spreading from affecting laterals at all.

  17. Constraining the crustal root geometry beneath the Rif Cordillera (North Morocco) (United States)

    Diaz, Jordi; Gil, Alba; Carbonell, Ramon; Gallart, Josep; Harnafi, Mimoun


    The analyses of wide-angle reflections of controlled source experiments and receiver functions calculated from teleseismic events provide consistent constraints of an over-thickened crust beneath the Rif Cordillera (North Morocco). Regarding active source data, we investigate now offline arrivals of Moho-reflected phases recorded in RIFSIS project to get new estimations of 3D crustal thickness variations beneath North Morocco. Additional constrains on the onshore-offshore transition are derived from onland recording of marine airgun shots from the coeval Gassis-Topomed profiles. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain teleseismic receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. The use of a larger dataset including new stations covering the complex areas beneath the Rif Cordillera allow us to improve the resolution of previous contributions, revealing abrupt crustal changes beneath the region. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large modest root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favor models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area

  18. Mantle structure beneath the western edge of the Colorado Plateau (United States)

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.


    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  19. Geometric and oceanographic controls on melting beneath Pine Island Glacier

    National Research Council Canada - National Science Library

    De Rydt, J; Holland, P. R; Dutrieux, P; Jenkins, A


    .... As a result, a large ocean cavity has formed behind the ridge, strongly controlling the ocean circulation beneath the ice shelf and modulating the ocean water properties that cause ice melting...

  20. Three-dimensional velocity structure and earthquake locations beneath the northern Tien Shan of Kyrgyzstan, central Asia (United States)

    Ghose, Sujoy; Hamburger, Michael W.; Virieux, Jean


    that extend from the surface down to midcrustal depths. The range-bounding fault zone can be identified by a sharp lateral gradient in seismic velocities with a pronounced southward dip combined with a zone of seismicity that also deepens to the south and reverse fault source mechanisms from moderate-sized events. A pronounced low-velocity zone (LVZ) is imaged in the P wave field, at midcrustal depths, beneath the western part of the Kyrgyz Range. This LVZ is presumably correctable with reported high-conductivity zones in this region that have been proposed to mark active fault zones along which fluid migration occurs. The location of the LVZ, which is closely coincident with the depth of maximum earthquake generation, might imply that it is a crustal decoupling zone at the brittle-ductile transition.

  1. Investigation of upper crustal structure beneath eastern Java (United States)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummnins, Phil; Saygin, Erdinc; Masturyono


    The complexity of geology structure in eastern Java causes this region has many potential resources as much as the disasters. Therefore, the East Java province represents an interesting area to be explored, especially regarding its upper crustal structure. To investigate this structure, we employ the Ambient Noise Tomography (ANT) method. We have used seismic waveform data from 25 Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 26 portable seismographs installed for 2 to 8 weeks. Inter-station cross-correlation produces more than 800 Rayleigh wave components, which depict the structure beneath eastern Java. Based on the checkerboard resolution test, we found that the optimal grid size is 0.25ox0.25o. Our inversion results for the periods of 1 to 10 s indicate a good agreement with geological and Bouguer anomaly maps. Rembang high depression, most of the southern mountains zone, the northern part of Rembang zone and the central part of the Madura Island, the area of high gravity anomaly and areas dominated with igneous rocks are associated with high velocity zones. On the other hand, Kendeng zone and most of the basin in the Rembang zone are associated with low velocity zones.

  2. Mid-Miocene thermal Impact on the Lithosphere of Asia by sub-lithospheric convective Mantle Material: Temporal Transition from high- to moderate-Mg Magmatism beneath Vitim Plateau, Southern Siberia (United States)

    Chuvashova, Irina; Rasskazov, Sergei


    In Inner Asia, high-Mg lavas is characteristic of the Middle Miocene volcanism. In the Vitim plateau, we studied the high- and moderate-Mg volcanics, erupted at 16-14 and 14-13 Ma, respectively. In the former (small volume) unit, initial basaltic melts, contaminated by crustal material, were followed by uncontaminated high-Mg basanites and basalts of transitional (K-Na-K) compositions and afterwards by picrobasalts and basalts of K series. In the latter (high-volume) unit, initial basalts and basaltic andesites of transitional (Na-K-Na) compositions and basalts of Na series were overlain by basalts and trachybasalts of K-Na series. From pressure estimates after equation [Scarrow, Cox, 1995], we infer that the high-Mg melts were derived from the sub-lithospheric mantle as deep as 115-150 km, unlike the moderate-Mg ones that were produced by melting of the shallow lithospheric mantle. We suggest that the studied transition from high- and moderate-Mg magmatism reflected the mid-Miocene thermal impact on the lithosphere by a hot sub-lithospheric mantle material from the Transbaikalian low-velocity domain with potential temperature estimates up to 1510 oC. This thermal impact triggered rifting in the lithosphere of the Baikal Rift System. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328).

  3. Mantle seismic anisotropy beneath NE China and implications for the lithospheric delamination hypothesis beneath the southern Great Xing'an range (United States)

    Chen, Haichao; Niu, Fenglin; Obayashi, Masayuki; Grand, Stephen P.; Kawakatsu, Hitoshi; John Chen, Y.; Ning, Jieyuan; Tanaka, Satoru


    We measured shear wave splitting from SKS data recorded by the transcontinental NECESSArray in NE China to constrain lithosphere deformation and sublithospheric flows beneath the area. We selected several hundreds of high quality SKS/SKKS waveforms from 32 teleseismic earthquakes occurring between 09/01/2009 and 08/31/2011 recorded by 125 broadband stations. These stations cover a variety of tectonic terranes, including the Songliao basin, the Changbaishan mountain range and Zhangguancai range in the east, the Great Xing'an range in the west and the Yanshan orogenic belt in the southwest. We assumed each station is underlaid by a single anisotropic layer and employed a signal-to-noise ratio (SNR) weighted multi-event stacking method to estimate the two splitting parameters (the fast polarization direction φ, and delay time, δt) that gives the best fit to all the SKS/SKKS waveforms recorded at each station. Overall, the measured fast polarization direction lies more or less along the NW-SE direction, which significantly differs from the absolute plate motion direction, but is roughly consistent with the regional extension direction. This suggests that lithosphere deformation is likely the general cause of the observed seismic anisotropy. The most complicated anisotropic structure is observed beneath the southern Great Xing'an range and southwest Songliao basin. The observed large variations in splitting parameters and the seismic tomographic images of the area are consistent with ongoing lithospheric delamination beneath this region.

  4. Optimal Lateral Guidance for Automatic Landing of a Lightweight High Altitude Long Endurance Unmanned Aerial System with Crosswind Rejection (United States)

    Smith, Nathan Allen

    Unmanned aerial systems will be the dominant force in the aviation industry. Among these aircraft the use of high altitude long endurance unmanned aerial systems has increased dramatically. Based on the geometry of these types of aircraft the possible changing weather conditions during long flights poses many problems. These difficulties are compounded by the push towards fully autonomous systems. Large wingspan and, typically, small in-line landing gear make a landing in crosswind exceedingly difficult. This study uses a modified gain scheduling technique for optimizing the landing attitude for a generic vehicle based on geometry and crosswind speed. This is performed by directly utilizing the crosswind estimation to calculate a desired crab and roll angle that gives the lowest risk attitude for landing. An extended Kalman filter is developed that estimates the aircraft states as well as the 3D wind component acting on the aircraft. The aircraft used in this analysis is the DG808S, a large wingspan lightweight electric glider. The aircraft is modelled using Advanced Aircraft Analysis software and a six degree of freedom nonlinear simulation is implemented for testing. The controller used is a nonlinear model predictive controller. The simulations show that the extended Kalman filter is capable of estimating the crosswind and can therefore be used in the full aircraft simulation. Different crosswind settings are used which include both constant crosswind and gust conditions. Crosswind landing capabilities are increased by 35%. Deviation from the desired path in the cruise phase is reduced by up to 68% and time to path convergence is reduced by up to 53%.

  5. Treatment of lateral epicondylitis. (United States)

    Johnson, Greg W; Cadwallader, Kara; Scheffel, Scot B; Epperly, Ted D


    Lateral epicondylitis is a common overuse syndrome of the extensor tendons of the forearm. It is sometimes called tennis elbow, although it can occur with many activities. The condition affects men and women equally and is more common in persons 40 years or older. Despite the prevalence of lateral epicondylitis and the numerous treatment strategies available, relatively few high-quality clinical trials support many of these treatment options; watchful waiting is a reasonable option. Topical nonsteroidal anti-inflammatory drugs, corticosteroid injections, ultrasonography, and iontophoresis with nonsteroidal anti-inflammatory drugs appear to provide short-term benefits. Use of an inelastic, nonarticular, proximal forearm strap (tennis elbow brace) may improve function during daily activities. Progressive resistance exercises may confer modest intermediate-term results. Evidence is mixed on oral nonsteroidal antiinflammatory drugs, mobilization, and acupuncture. Patients with refractory symptoms may benefit from surgical intervention. Extracorporeal shock wave therapy, laser treatment, and electromagnetic field therapy do not appear to be effective.

  6. Electromagnetic evidence for volatile-rich upwelling beneath the society hotspot, French Polynesia (United States)

    Tada, Noriko; Tarits, Pascal; Baba, Kiyoshi; Utada, Hisashi; Kasaya, Takafumi; Suetsugu, Daisuke


    We have conducted a seafloor magnetotelluric survey that images, for the first time, three-dimensional electrical conductivity structure in the upper mantle beneath the Society hotspot. A striking feature in our model is a high-conductivity anomaly a few hundred kilometers in diameter, which is continuous from the lowest part of the upper mantle to a depth of approximately 50 km below sea level. Using theoretical and experimental results from mineral physics, we interpret the high-conductivity anomaly as evidence of the melt fraction up to 2.2 vol.%, which is robust regardless of assumed temperature, and the existence of carbonated silicate melt beneath the hotspot. Our results suggest that the Society hotspot is a pathway for ascending volatiles from the deeper part of the upper mantle to the surface.

  7. Application of teleseismic tomography to the study of shallow structure beneath Shizigou in the western Qaidam basin

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Xu; Yinsheng Ma; Danian Shi; Xiaofeng Wang; Chengming Yin


    Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation data on a small seismic array of stations deployed during 2004-2007. The tomographic results obtained indicate that a NW-trending low velocity anomaly just beneath the target region insert northeastwards with a high dip angle, to the north, northeast and east of the low velocity anomaly, some high-velocity anomalies distribute with the same strike and coverage as those of Shizigou anticline.

  8. Sources and sinks of methane beneath polar ice (United States)

    Priscu, J. C.; Adams, H. E.; Hand, K. P.; Dore, J. E.; Matheus-Carnevali, P.; Michaud, A. B.; Murray, A. E.; Skidmore, M. L.; Vick-Majors, T.


    Several icy moons of the outer solar system carry subsurface oceans containing many times the volume of liquid water on Earth and may provide the greatest volume of habitable space in our solar system. Functional sub-ice polar ecosystems on Earth provide compelling models for the habitability of extraterrestrial sub-ice oceans. A key feature of sub-ice environments is that most of them receive little to no solar energy. Consequently, organisms inhabiting these environments must rely on chemical energy to assimilate either carbon dioxide or organic molecules to support their metabolism. Methane can be utilized by certain bacteria as both a carbon and energy source. Isotopic data show that methane in Earth's polar lakes is derived from both biogenic and thermogenic sources. Thermogenic sources of methane in the thermokarst lakes of the north slope of Alaska yield supersaturated water columns during winter ice cover that support active populations of methanotrophs during the polar night. Methane in the permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica varies widely in concentration and is produced either by contemporary methanogenesis or is a relic from subglacial flow. Rate measurements revealed that microbial methane oxidation occurs beneath the ice in both the arctic and Antarctic lakes. The first samples collected from an Antarctic subglacial environment beneath 800 m of ice (Subglacial Lake Whillans) revealed an active microbial ecosystem that has been isolated from the atmosphere for many thousands of years. The sediments of Lake Whillans contained high levels of methane with an isotopic signature that indicates it was produced via methanogenesis. The source of this methane appears to be from the decomposition of organic carbon deposited when this region of Antarctica was covered by the sea. Collectively, data from these sub-ice environments show that methane transformations play a key role in microbial community metabolism. The discovery of

  9. [Determinations of silicon and phosphorus in rice planted in a district of high incidence of amyotrophic lateral sclerosis by neutron activation and X-ray fluorescence analyses]. (United States)

    Mizumoto, Y; Ishikawa, T; Kusakabe, T; Katsurayama, K; Iwata, S


    Silicon and phosphorus contents in polished and unpolished rice planted in a district of high incidence of amyotrophic lateral sclerosis (ALS) have been determined by neutron activation and X-ray fluorescence methods, and compared with those from control areas. In the neutron activation analysis, beta-ray spectra of 32P produced by the 31P(n, gamma)32P reaction on polished and unpolished rice were measured with a low background beta-ray spectrometer. In the X-ray fluorescence analysis, characteristic X-rays were analyzed with a wavelength dispersive X-ray fluorescence spectrometer. Silicon contents in polished and unpolished rice from the ALS area are 42 micrograms.g-1 and 370 micrograms.g-1, respectively, and the corresponding phosphorus contents are 1,210 micrograms.g-1, and 3,370 micrograms.g-1, respectively. The data for ALS area are equal to those for the control area within standard deviation.

  10. Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array.

    Directory of Open Access Journals (Sweden)

    Caroline May

    Full Text Available Amyotrophic lateral sclerosis (ALS, the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.

  11. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula (United States)

    Breitsprecher, Katrin; Thorkelson, Derek J.


    The Patagonian slab window is a subsurface tectonic feature resulting from subduction of the Nazca-Antarctic spreading-ridge system (Chile Rise) beneath southern South America. The geometry of the slab window had not been rigorously defined, in part because of the complex nature of the history of ridge subduction in the southeast Pacific region, which includes four interrelated spreading-ridge systems since 20 Ma: first, the Nazca-Phoenix ridge beneath South America, then simultaneous subduction of the Nazca-Antarctic and the northern Phoenix-Antarctic spreading-ridge systems beneath South America, and the southern Phoenix-Antarctic spreading-ridge system beneath Antarctica. Spreading-ridge paleo-geographies and rotation poles for all relevant plate pairs (Nazca, Phoenix, Antarctic, South America) are available from 20 Ma onward, and form the mathematical basis of our kinematic reconstruction of the geometry of the Patagonia and Antarctic slab windows through Neogene time. At approximately 18 Ma, the Nazca-Phoenix-Antarctic oceanic (ridge-ridge-ridge) triple junction enters the South American trench; we recognize this condition as an unstable quadruple junction. Heat flow at this junction and for some distance beneath the forearc would be considerably higher than is generally recognized in cases of ridge subduction. From 16 Ma onward, the geometry of the Patagonia slab window developed from the subduction of the trailing arms of the former oceanic triple junction. The majority of the slab window's areal extent and geometry is controlled by the highly oblique (near-parallel) subduction angle of the Nazca-Antarctic ridge system, and by the high contrast in relative convergence rates between these two plates relative to South America. The very slow convergence rate of the Antarctic slab is manifested by the shallow levels achieved by the slab edge (< 45 km); thus no point on the Antarctic slab is sufficiently deep to generate "normal" mantle-derived arc-type magmas

  12. Subduction of fore-arc crust beneath an intra-oceanic arc: The high-P Cuaba mafic gneisess and amphibolites of the Rio San Juan Complex, Dominican Republic (United States)

    Escuder-Viruete, Javier; Castillo-Carrión, Mercedes


    The Rio San Juan metamorphic complex (RSJC) exposes a segment of a high-P accretionary prism, built during Late Cretaceous subduction below the intra-oceanic Caribbean island-arc. In this paper we present new detailed maps, tectonostratigraphy, large-scale structure, mineral chemistry, in situ trace element composition of clinopyroxene (Cpx), and bulk rock geochemical data for representative garnet-free peridotites and mafic metaigneous rocks of the Cuaba and Helechal tectonometamorphic units of the southern RSJC. The Cuaba subcomplex is composed of upper foliated amphibolites and lower garnet amphibolites, retrograded (coronitic) eclogites, and heterogeneous metagabbros metamorphosed to upper amphibolite and eclogite-facies conditions. The lenticular bodies of associated peridotites are Cpx-poor harzburgites. The underlying Helechal subcomplex is composed of Cpx-poor harzburgites, Cpx-rich harzbugites, lherzolites and rare dunites. The presented data allow us to argue that the Cuaba subcomplex: (a) represents tectonically deformed and metamorphosed crust of the Caribbean island-arc, (b) contains fragments of its supra-subduction zone mantle, and (c) includes different geochemical groups of mafic protoliths generated by varying melting degrees of diverse mantle sources. These geochemical groups include mid-Ti tholeiites (N-MORB), normal IAT and calc-alkaline rocks, low-Ti IAT, metacumulates of boninitic affinity, and HREE-depleted IAT, that collectively record a multi-stage magmatic evolution for the Caribbean island-arc, prior to the Late Cretaceous high-P metamorphism. Further, these mafic protoliths present comparable geochemical features to mafic igneous rocks of the Puerca Gorda Schists, Cacheal and Puerto Plata complexes, all of them related to the Caribbean island-arc. These relations suggest that the southern RSJC complex represents part of the subducted fore-arc of the Caribbean island-arc, which experienced initial subduction, underplating below the arc

  13. Crawling beneath the free surface: Water snail locomotion (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric


    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  14. Lateral shear-moraines and lateral marginal-moraines of palaeo-ice streams (United States)

    Batchelor, C. L.; Dowdeswell, J. A.


    An understanding of the nature of sedimentation at ice-stream lateral margins is important in reconstructing the dynamics of former ice sheets and modelling the mechanisms by which sediment is transported beneath contemporary ice streams. Theories of the formation of ice-stream lateral moraines (ISLMs) have hitherto been based on a relatively limited number of terrestrial and marine examples. Here, an inventory of ISLMs is compiled from available studies, together with independent analysis of seismic-reflection and bathymetric datasets. The locations and dimensions of 70 ISLMs, alongside a synthesis of their key architectural and geomorphic characteristics, are presented. Two different types of ISLMs are identified. Type 1 ISLMs are up to 3.5 km wide and 60 m thick. They maintain a constant width, thickness and cross-sectional shape along their length. Type 1 ISLMs are interpreted and referred to as ice-stream lateral shear-moraines that form subglacially in the shear zone between ice streams and slower-flowing regions of an ice sheet. In contrast, Type 2 ISLMs are up to 50 km wide and 300 m thick. They are only identified close to the shelf break in the marine environment. Type 2 ISLMs exhibit an increase in width and thickness along their length and their distal slopes become steeper in a seaward direction. They contain internal dipping reflections that indicate sediment progradation away from the former ice stream. Type 2 ISLMs are interpreted and referred to as ice-stream lateral marginal-moraines that were formed at the lateral boundary between ice streams and seafloor terrain that was free of grounded ice. We suggest that, using bathymetric images and acoustic profiles, it is possible to differentiate between ice-stream lateral shear-moraines and lateral marginal-moraines in the geological record. This distinction is important for understanding the mechanisms of sediment transfer beneath ice streams and for making inferences about the conditions that existed

  15. Effects of lateral variations in megaregolith thickness on predicted lunar seismic signals (United States)

    Blanchette-Guertin, J.-F.; Johnson, C. L.; Lawrence, J. F.


    We use a modified phonon synthetic seismogram method to investigate the effects of laterally varying megaregolith thickness on the propagation of seismic energy and on the resulting seismic signals recorded at various epicentral distances from the source. We show that receivers located in large impact structures, with thin crust and thinner megaregolith, can record seismic signals that are less affected by high levels of scattering. In particular, receivers located away from the basin edge by a distance greater than or equal to the thickness of the surrounding megaregolith can record seismograms in which secondary arrivals containing important information about interior structure can be more readily identified. Seismic sources located beneath the near-surface scattering layer, such as deep lunar quakes, are also advantageous because the resulting seismograms are less affected by high levels of scattering than those from sources within the scattering layer or surface impacts.

  16. Compositions of Upper Mantle Fluids Beneath Eastern China:Implications for Mantle Evolution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mingjie; WANG Xianbin; LIU Gang; ZHANG Tongwei; BO Wenrui


    The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in lherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometry.These xenoliths are hosted in alkali basalts and considered as residues of partial melting of the upper mantle, and may contain evidence of mantle evolution. The results show that various kinds of fluid inclusions in lherzolite xenoliths have been released at distinct times, which could be related to different stages of mantle evolution. In general, primitive fluids of the upper mantle (PFUM) beneath eastern China are dominated by H2, CO2 and CO, and are characterized by high contents of H2 and reduced gases. The compositions of PFUM are highly variable and related to tectonic settings. CO, CO2 and H2 are the main components of the PFUM beneath cratons; the PFUM in the mantle enriched in potassic metasomatism in the northern part of northeastern China has a high content of H2, while CO2 and SO2 are the dominant components of the PFUM in the Su-Lu-Wan (Jiangsu-Shandong-Anhui) region, where recycled crustal fluids were mixed with deeper mantle components. There are several fluids with distinct compositions beneath eastern China, such as primitive fluids of upper mantle (CO, CO2 and H2), partial melting fluids (CO2 and CO) and metasomatic fluids mixed with recycled crustal fluids (CO2, N2, 8O2 and CH4) etc. Fluids of the upper mantle beneath the North China craton are different from that of the South China craton in total gases and chemical compositions: the contents of the reduced gases of the PFUM in the NCC are higher than those in the SCC.

  17. Mid-lithosphere discontinuities beneath the western and central North China Craton (United States)

    Sun, Weijia; Kennett, B. L. N.


    By analyzing P reflectivity extracted from stacked autocorrelograms for teleseismic events on a dense seismic profile, we obtain a detailed image of the mid-lithosphere discontinuity (MLD) beneath western and central North China Craton (NCC). This seismic daylight imaging exploits a broad high-frequency band (0.5-4 Hz) to reveal the fine-scale component of multi-scale lithospheric heterogeneity. The depth of the MLD beneath the western and central parts of the NCC ranges 80-120 km, with a good match to the transition to negative S velocity gradient with depth from Rayleigh wave tomography. The MLD inferred from seismic daylight imaging also has good correspondence with the transition from conductive to convective regimes estimated from heat flow data indicating likely thermal control within the seismological lithosphere.

  18. Comparison of Lateral Closing-Wedge Versus Medial Opening-Wedge High Tibial Osteotomy on Knee Joint Alignment and Kinematics in the ACL-Deficient Knee. (United States)

    Ranawat, Anil S; Nwachukwu, Benedict U; Pearle, Andrew D; Zuiderbaan, Hendrik A; Weeks, Kenneth D; Khamaisy, Saker


    Lateral closing-wedge (LCW) and medial opening-wedge (MOW) high tibial osteotomies (HTOs) correct varus knee alignment and stabilize the anterior cruciate ligament (ACL)-deficient knee. Tibiofemoral and patellofemoral alignment and kinematics after HTO are not well quantified. To compare the effect of LCW and MOW HTO on tibiofemoral and patellofemoral alignment in the ACL-deficient knee. Controlled laboratory study. Anterior drawer, Lachman, and pivot-shift tests were performed on cadaveric specimens (N = 16), and anterior tibial translation and tibial rotation were measured for the native and ACL-sectioned knee. The right and left knee of each cadaveric specimen underwent an LCW and MOW HTO, respectively, and stability testing was repeated. All cadavers underwent pre- and postosteotomy computerized tomography with 3-dimensional computer modeling to determine the effect of HTO on posterior tibial slope, as well as tibial and patellofemoral axial plane alignment (tibial axial rotation and patellar axial tilt). Correction to neutral coronal alignment was obtained with both osteotomy techniques; however, larger posterior tibial slope neutralization was achieved with LCW compared with MOW (mean ± SD, 11° ± 3.8° vs 5° ± 5°). LCW demonstrated a greater decrease in anterior tibial translation (P rotation with pivot shift. Relative to MOW, LCW resulted in greater tibial axial rotation and patellar axial tilt (7.7° ± 4° and 5.6° ± 3.9° [LCW], 2.8° ± 2.3° and 2.4° ± 0.9° [MOW], respectively; P rotation and lateral patellar tilt, which may adversely affect the patellofemoral joint. More work is needed to understand the clinical and functional outcome of these biomechanical findings in the ACL-deficient knee. © 2016 The Author(s).

  19. Rayleigh wave dispersion measurements reveal low-velocity zones beneath the new crust in the Gulf of California (United States)

    Persaud, Patricia; Di Luccio, Francesca; Clayton, Robert W.


    Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50 km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift.

  20. Seismic velocity variations beneath central Mongolia: Evidence for upper mantle plumes? (United States)

    Zhang, Fengxue; Wu, Qingju; Grand, Stephen P.; Li, Yonghua; Gao, Mengtan; Demberel, Sodnomsambuu; Ulziibat, Munkhuu; Sukhbaatar, Usnikh


    Central Mongolia is marked by wide spread recent volcanism as well as significant topographic relief even though it is far from any plate tectonic boundaries. The cause of the recent magmatism and topography remains uncertain partially because little is known of the underlying mantle seismic structure due to the lack of seismic instrumentation in the region. From August 2011 through August 2013, 69 broadband seismic stations were deployed in central Mongolia. Teleseismic traveltime residuals were measured using waveform correlation and were inverted to image upper mantle P and S velocity variations. Significant lateral variations in seismic velocity are imaged in the deep upper mantle (100 to 800 km depth). Most significant are two continuous slow anomalies from the deep upper mantle to near the surface. One slow feature has been imaged previously and may be a zone of deep upwelling bringing warm mantle to beneath the Hangay Dome resulting in uplift and magmatism including the active Khanuy Gol and Middle Gobi volcanoes. The second, deep low velocity anomaly is seen in the east from 800 to 150 km depth. The anomaly ends beneath the Gobi Desert that is found to have fast shallow mantle indicating a relatively thick lithosphere. We interpret the second deep slow anomaly as a mantle upwelling that is deflected by the thick Gobi Desert lithosphere to surrounding regions such as the Hentay Mountains to the north. The upwellings are a means of feeding warmer than normal asthenospheric mantle over a widely distributed region beneath Mongolia resulting in distributed volcanic activity and uplift. There is no indication that the upwellings are rooted in the deep lower mantle i.e. classic plumes. We speculate the upwellings may be related to deep subduction of the Pacific and Indian plates and are thus plumes anchored in the upper mantle.

  1. The lithospheric movements and state beneath northeastern margin of the Tibetan Plateau:constraints form density structures (United States)

    Wang, Xinsheng; Fang, Jian; Hsu, Houtse; Jia, Lulu


    Tibetan Plateau (TP) has been a research hotspot by geoscientists over the years. As its tectonic succession density structure is significant to the study on movements and evolution of lithosphere, crustal-mantle interreaction and deep dynamic processes. 3D density distribution of lithosphere in the northeastern margin of the TP was obtained in this study using gravity data and seismic data. Firstly, 3D P wave velocity model was determined by seismic tomography using seismic wave data from local earthquakes and teleseismics. Then the velocity model was transformed into initial density model to provide a constraint for the following gravity inversion. Gravity anomalies result from density heterogeneity of lithosphere were separated from the integrated observed gravity anomalies after the gravity effects induced by interface (Moho and deposit) undulations and deep density inhomogeneity under lithosphere were removed. We applied Algebraic Reconstruction Technique (ART) to realize the inversion solution. Our density model shows and reveals that: distinctly lateral density heterogeneity exists in the study area. A mosaic of high and low density anomaly is visible in the upper-middle crust while prominent low density anomaly is observed beneath in the lower crust beneath the study area. The crustal density structures provide a good condition for the generation and occurrence of earthquakes as well as the lower crustal flow. The trend of density isopleths is coherent with that of surface fractures in the crust. However, it presents a clockwise rotation in the mantle. This phenomenon indicated that the TP was obstructed by rigid Alashan and ordos blocks when it flowed to the northeast. In 80km-100km depth, there are explicit amplitude differences between density model and P wave velocity model. We confer that the high temperature and strong tectonic squeezing may have induced partial melting or changes of rock structures and compositions, which further affect the seismic

  2. Mantle discontinuities beneath Izu-Bonin and the implications

    Institute of Scientific and Technical Information of China (English)

    臧绍先; 周元泽; 蒋志勇


    The SdP, pdP and sdP phases are picked up with the Nth root slant stack method from the digital waveform data recorded by the networks and arrays in USA, Germany and Switzerland for the earthquakes occurring beneath Izu-Bonin and Japan Sea. The mantle discontinuities and the effects of subducting slab on the 660 km and 410 km discontinuities are studied. It is found that there are mantle discontinuities existing at the depths of 170, 220, 300, 410, 660, 850 and 1150 km. Beneath Izu-Bonin, the 410 km discontinuity is elevated, while the 660 km discontinuity is depressed; for both discontinuities, there are regionalized differences. Beneath Japan Sea, however, there is no depth variation of the 410 km discontinuity, and the 660 km discontinuity is depressed without obvious effect of the subducting slab.

  3. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed (United States)

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel


    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10‑2 for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III–V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  4. Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision (United States)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B.; Ionescu, C.; Hegedüs, E.; Radovanović, S.; Shen, Y.; South Carpathian Project Working Group


    The Carpathian-Pannonian system of Eastern and Central Europe represents a unique opportunity to study the interaction between surface tectonic processes involving convergence, extension and convective overturn in the upper mantle. Here, we present high-resolution images of upper mantle structure beneath the region from P-wave finite-frequency teleseismic tomography to help constrain such geodynamical interactions. We have selected earthquakes with magnitude greater than 5.5 in the distance range 30°-95°, which occurred between 2006 and 2011. The data were recorded on 54 temporary stations deployed by the South Carpathian Project (2009-2011), 56 temporary stations deployed by the Carpathian Basins Project (2005-2007), and 131 national network broadband stations. The P-wave relative arrival times are measured in two frequency bands (0.5-2.0 Hz and 0.1-0.5 Hz), and are inverted for Vp perturbation maps in the upper mantle. Our images show a sub-vertical slab of fast material beneath the eastern Alps which extends eastward across the Pannonian basin at depths below ˜300km. The fast material extends down into the mantle transition zone (MTZ), where it spreads out beneath the entire basin. Above ˜300km, the upper mantle below the Pannonian basin is dominated by relatively slow velocities, the largest of which extends down to ˜200km. We suggest that cold mantle lithospheric downwelling occurred below the Pannonian Basin before detaching in the mid-Miocene. In the Vrancea Zone of SE Romania, intermediate-depth (75-180 km) seismicity occurs at the NE end of an upper mantle high velocity structure that extends SW under the Moesian Platform, oblique to the southern edge of the South Carpathians. At greater depths (180-400 km), a sub-circular high velocity anomaly is found directly beneath the seismicity. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the MTZ. No clear evidence of a residual slab is

  5. CT navigated lateral interbody fusion. (United States)

    Drazin, Doniel; Liu, John C; Acosta, Frank L


    Lateral interbody fusion techniques are heavily reliant on fluoroscopy for retractor docking and graft placement, which expose both the patient and surgeon to high doses of radiation. Use of image-guided technologies with CT-based images, however, can eliminate this radiation exposure for the surgeon. We describe the surgical technique of performing lateral lumbar interbody fusion using CT navigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, E.C.


    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  7. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, E.C.


    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  8. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves (United States)

    Lee, V.; Payne, A. J.; Gregory, J. M.


    We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  9. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Directory of Open Access Journals (Sweden)

    V. Lee


    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  10. Searching for structure in the mid-mantle: Observations of converted phases beneath Iceland and Europe (United States)

    Jenkins, J.; Deuss, A. F.; Cottaar, S.


    Until recently, most of the lower mantle was considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometers above the core-mantle boundary, also known as the D'' layer. However, several recent studies have started to hint at a potential change in earth structure at mid-mantle depths, with evidence from both seismic tomography (Fukao and Obayashi 2013, French and Romanowichz, 2015) and global viscosity structure (Rudolph et al., 2015). We present the first continental-wide search for mid-mantle P to S wave converted phases and find most observations come from approximately 1000 km depth beneath Iceland and Western Europe. Conversions are identified using a data set of 50,000 high quality receiver functions which are systematically searched for robust signals from the mid-mantle. Potential P to s conversions are analysed in terms of slowness to determine whether they are true observations from depth or simply surface multiples arriving at similar times. We find broad regions with robust signals from approximately 1000 km depth in several locations; beneath Iceland and across Western Europe, beneath Ireland, Scotland, Eifel and south towards NW Italy and Spain. Similar observations have previously been observed mainly in subduction zone settings, and have been hypothesised to be caused by down-going oceanic crustal material. Here we present observations which correlate with slow seismic velocities in recent tomographic models (Rickers et al., (2013); French and Romanowicz, (2015)). These low velocities appear to be a channel deviating from the broad mantle plume beneath Iceland at mid-mantle depths. We hypothesise that the mid-mantle seismic signals we observe are caused by either a phase transition occurring locally in a specific composition or by small-scale chemical heterogeneities swept along with upwelling material and ponding around 1000 km.

  11. Imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography (United States)

    Bohm, Mirjam; Haberland, Christian; Asch, Günter


    We use local earthquake data observed by the amphibious, temporary seismic MERAMEX array to derive spatial variations of seismic attenuation (Qp) in the crust and upper mantle beneath Central Java. The path-averaged attenuation values (t∗) of a high quality subset of 84 local earthquakes were calculated by a spectral inversion technique. These 1929 t∗-values inverted by a least-squares tomographic inversion yield the 3D distribution of the specific attenuation (Qp). Analysis of the model resolution matrix and synthetic recovery tests were used to investigate the confidence of the Qp-model. We notice a prominent zone of increased attenuation beneath and north of the modern volcanic arc at depths down to 15 km. Most of this anomaly seems to be related to the Eocene-Miocene Kendeng Basin (mainly in the eastern part of the study area). Enhanced attenuation is also found in the upper crust in the direct vicinity of recent volcanoes pointing towards zones of partial melts, presence of fluids and increased temperatures in the middle to upper crust. The middle and lower crust seems not to be associated with strong heating and the presence of melts throughout the arc. Enhanced attenuation above the subducting slab beneath the marine forearc seems to be due to the presence of fluids.

  12. Magmatic underplating beneath the Rajmahal Traps: Gravity signature and derived 3-D configuration

    Indian Academy of Sciences (India)

    A P Singh; Niraj Kumar; Bijendra Singh


    The early Cretaceous thermal perturbation beneath the eastern continental margin of the Indian shield resulted in the eruption of the Rajmahal Traps. To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the conspicuous gravity anomalies observed over the region have been modelled integrating with available geophysical information. The 3-D gravity modelling has delineated 10–15km thick high-density ( = 3.02 g/cm3) accreted igneous layer at the base of the crust beneath the Rajmahal Traps. Thickness of this layer varies from 16km to the west of the Rajmahal towards north to about 12km near Kharagpur towards south and about 18km to the east of the Raniganj in the central part of the region. The greater thickness of the magmatic body beneath the central part of the region presents itself as the locus of the potential feeder channel for the Rajmahal Traps. It is suggested that the crustal accretion is the imprint of the mantle thermal perturbation, over which the eastern margin of the eastern Indian shield opened around 117Ma ago. The nosing of the crustal accretion in the down south suggests the possible imprint of the subsequent magmatic intrusion along the plume path.

  13. Mohorovicic discontinuity depth analysis beneath North Patagonian Massif (United States)

    Gómez Dacal, M. L.; Tocho, C.; Aragón, E.


    The North Patagonian Massif is a 100000 km2, sub-rectangular plateau that stands out 500 to 700 m higher in altitude than the surrounding topography. The creation of this plateau took place during the Oligocene through a sudden uplift without noticeable internal deformation. This quite different mechanical response between the massif and the surrounding back arc, the short time in which this process took place and a regional negative Bouguer anomaly in the massif area, raise the question about the isostatic compensation state of the previously mentioned massif. In the present work, a comparison between different results about the depth of the Mohorovicic discontinuity beneath the North Patagonian Massif and a later analysis is made. It has the objective to analyze the crustal thickness in the area to contribute in the determination of the isostatic balance and the better understanding of the Cenozoic evolution of the mentioned area. The comparison is made between four models; two of these were created with seismic information (Feng et al., 2006 and Bassin et al., 2000), another model with gravity information (Barzaghi et al., 2011) and the last one with a combination of both techniques (Tassara y Etchaurren, 2011). The latter was the result of the adaptation to the work area of a three-dimensional density model made with some additional information, mainly seismic, that constrain the surfaces. The work of restriction and adaptation of this model, the later analysis and comparison with the other three models and the combination of both seismic models to cover the lack of resolution in some areas, is presented here. According the different models, the crustal thickness of the study zone would be between 36 and 45 Km. and thicker than the surrounding areas. These results talk us about a crust thicker than normal and that could behave as a rigid and independent block. Moreover, it can be observed that there are noticeable differences between gravimetric and seismic

  14. Tennis Elbow (Lateral Epicondylitis) (United States)

    .org Tennis Elbow (Lateral Epicondylitis) Page ( 1 ) Tennis elbow, or lateral epicondyliti s, is a painful condition of the elbow caused by overuse. Not surprisingly, playing tennis or other racquet sports can cause ...

  15. Sensitivity studies of high-resolution RegCM3 simulations of precipitation over the European Alps: the effect of lateral boundary conditions and domain size (United States)

    Nadeem, Imran; Formayer, Herbert


    A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.

  16. Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts (United States)

    Ashchepkov, I. V.; Vladykin, N. N.; Ntaflos, T.; Kostrovitsky, S. I.; Prokopiev, S. A.; Downes, H.; Smelov, A. P.; Agashev, A. M.; Logvinova, A. M.; Kuligin, S. S.; Tychkov, N. S.; Salikhov, R. F.; Stegnitsky, Yu. B.; Alymova, N. V.; Vavilov, M. A.; Minin, V. A.; Babushkina, S. A.; Ovchinnikov, Yu. I.; Karpenko, M. A.; Tolstov, A. V.; Shmarov, G. P.


    Single-grain thermobarometric studies of xenocrysts were used to compile local SCLM transects through the major regions of kimberlite magmatism in Siberia and longer transects through the subcontinental mantle lithosphere (SCLM) beneath the Siberian craton. The mantle structure was obtained using P-Fe#, Ca in garnets, oxygen fugacity values fO2 and calculated temperatures T°C. The most detail transect obtained for the Daldyn field on the Udachnaya-Zarnitsa reveals layering showing an inclination of > 35° to Udachnaya. Mantle layering beneath the Alakit field determined from the Krasnopresnenskaya-Sytykanskaya transect shows a moderate inclination from N to S. The inflection near Yubileinaya-Aykhal is also supported by the extreme depletion in peridotites with low-Fe sub-Ca garnets. Beneath the Malo-Botuobinsky field the sharply layered mantle section starts from 5.5 GPa and reveals step-like P-Fe#Ol trends for garnets and ilmenites. The deeper part of SCLM in this field was originally highly depleted but has been regenerated by percolation of protokimberlites and hybrid melts especially beneath Internationalnaya pipe. The three global transects reveal flat layering in granite-greenstone terranes and fluctuations in the granulite-orthogneiss Daldyn collision terranes. The mantle layering beneath the Daldyn - Alakite region may have been created by marginal accretion. Most of southern fields including the Malo-Botuobinsky field reveal flat layering. The primary subduction layering is smoothed beneath the Alakit field. Lower Jurassic kimberlites from the Kharamai-Anabar kimberlite fields reveal a small decrease of the thickness of the SCLM and heating of its base. The Jurassic Kuoyka field shows an uneven base of the SCLM inclined from west to east. SCLM sequences sampled at this time started mainly from depths of 130 km, but some pipes still showed mantle roots to 250 km. The garnet series demonstrates an inclined straight line pyroxenite P-Fe# trend due to

  17. Determinations of silicon and phosphorus in rice planted on a district of high incidence of amyotrophic lateral sclerosis by neutron activation and X-ray fluorescence analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Yoshihiko; Ishikawa, Teruumi; Kusakabe, Toshio; Katsurayama, Kousuke (Kinki Univ., Higashi-Osaka, Osaka (Japan)); Iwata, Shiro


    Silicon and phosphorus contents in polished and unpolished rice planted on a district of high incidence of amyotrophic lateral sclerosis (ALS) have been determined by neutron activation and X-ray fluorescence methods, and compared with those from control areas. In the neutron activation analysis, {beta}-ray spectra of {sup 32}P produced by the {sup 31}P(n, {gamma}){sup 32}P reaction on polished and unpolished rice were measured with a low background {beta}-ray spectrometer. In the X-ray fluorescence analysis, characteristic X-ray were analyzed with a wavelength dispersive X-ray fluorescence spectrometer. Silicon contents in polished and unpolished rice from the ALS area are 42 {mu}g.g{sup -1} and 370 {mu}g.g{sup -1}, respectively, and the corresponding phosphorus contents are 1210 {mu}g.g{sup -1}, and 3370 {mu}g.g{sup -1}, respectively. The data for ALS area are equal to those for the control area within atandard deviation. (author).

  18. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life. (United States)

    Stachowiak, Ewa K; Srinivasan, Malathi; Stachowiak, Michal K; Patel, Mulchand S


    Fetal development in an obese maternal intrauterine environment has been shown to predispose the offspring for a number of metabolic disorders in later life. The observation that a large percentage of women of child-bearing age in the US are overweight/obese during pregnancy is therefore a source of concern. A high fat (HF) diet-induced obesity in female rats has been used as a model for maternal obesity. The objective of this study was to determine cellular development in brains of term fetuses of obese rats fed a HF diet from the time of weaning. Fetal brains were dissected out on gestational day 21 and processed for immunohistochemical analysis in the hypothalamic as well as extra-hypothalamic regions. The major observation of this study is that fetal development in the obese HF female rat induced several alterations in the HF fetal brain. Marked increases were observed in orexigenic signaling and a significant decrease was observed for anorexigenic signaling in the vicinity of the 3rd ventricle in HF brains. Additionally, our results indicated diminished migration and maturation of stem-like cells in the 3rd ventricular region as well as in the brain cortex. The results from the present study indicate developmental alterations in the hypothalamic and extra-hypothalamic regions in the HF fetal brain suggestive of a predisposition for the development of obesity and possibly neurodevelopmental abnormalities in the offspring.

  19. Subduction beneath Eurasia in connection with the Mesozoic Tethys

    NARCIS (Netherlands)

    Spakman, W.


    In this paper we present new results concerning the existence and subduction of Meso-Tethyan oceanic lithosphere in the upper mantle beneath Europe, the Mediterranean and the Middle-East. The results arise from a large scale body wave tomographic analysis of the upper mantle in this region. It is sh

  20. Deep long-period earthquakes beneath Washington and Oregon volcanoes (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.


    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  1. Buckling instabilities of subducted lithosphere beneath the transition zone

    NARCIS (Netherlands)

    Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der


    A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic

  2. Slab melting and magma generation beneath the southern Cascade Arc (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.


    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  3. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    Directory of Open Access Journals (Sweden)

    A. M. Brisbourne


    Full Text Available Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.

  4. Seabed topography beneath Larsen C Ice Shelf from seismic soundings (United States)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.


    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.

  5. Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys (United States)

    Diaz, Jordi; Gallart, Josep; Carbonell, Ramon


    The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera

  6. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. (United States)

    Jones, James M C; Clairmont, Lindsey; Macdonald, Emily S; Weiner, Catherine A; Emery, R J Neil; Guinel, Frédérique C


    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Right prefrontal laterality of Chinese boys during a Chinese high conflict Stroop task measured by multi-channel near-infrared spectroscopy imaging

    Institute of Scientific and Technical Information of China (English)


    Some studies have shown that native Chinese speakers have different laterality in matched Stroop tasks from native English speakers. Recently, many imaging data, which show left laterality of English-matched Stroop interference, have been reported. And a few functional imaging studies have been conducted to investigate the phenomenon of the Chinese version of Stroop task. In this study,functional activity in the lateral prefrontal cortex of a group of normal Chinese boys with functional near-infrared imaging during a Stroop color-word task was measured to show different Stroop interferences in the prefrontal cortex. The results show obvious fluctuation of the cerebral blood volume in the right prefrontal cortex in all boys, which agrees with the finding of previous studies, that is, Chinese native boys have right laterality in their brain when the Chinese version of Stroop color-word task is applied.

  8. The elastic properties of the lithosphere beneath Scotian basin (United States)

    Zheng, Ying; Arkani-Hamed, Jafar


    To assess the possibility that the North Atlantic Ocean may subduct at Scotian basin east of Canada, we investigate the present compensation state of this deep basin. A Fourier domain analysis of the bathymetry, depth to basement and observed gravity anomalies over the oceanic area east of Nova Scotia indicates that the basin is not isostatically compensated. Moreover, the analysis emphasizes that in addition to the sediments, density perturbations exist beneath the basin. The load produced by the sediments and these density perturbations must have been supported by the lithosphere. We simulate the flexure of the lithosphere under this load by that of a thin elastic plate overlying an inviscid interior. It is shown that a plate with a uniform rigidity does not adequately represent the lithosphere beneath the basin as well as the oceanic lithosphere far from the basin, rather the rigidity of the lithosphere directly beneath the basin is about one to two orders of magnitude smaller than elsewhere. We relate this weakening to the thermal blanketing effects of the thick sediments and the fact that the lithosphere has a temperature-dependent rheology. We suggest that this weak zone would have a controlling effect on the reactivation of normal faults at the hinge zone of the basin, that were formed during the break-up of Africa and North America and were locked in the early stages after the break-up. The weak zone would facilitate reactivation of the faults if tensional stresses were produced by possible reorientation of the spreading direction of the North Atlantic Ocean in the future. The reactivation of the faults would create a free boundary condition at the hinge zone, allowing further bending of the lithosphere beneath the basin and juxtaposition of this lithosphere to the mantle beneath the continent. This may provide a favorable situation for initiation of slow subduction due to subsequent compressional forces.

  9. Differential Expression of Phosphorylated Mitogen-Activated Protein Kinase (pMAPK) in the Lateral Amygdala of Mice Selectively Bred for High and Low Fear (United States)


    stimulus and a nociceptive unconditioned foot shock stimulus converge in the lateral amygdala (LA) via auditory thalamus and cortex and somatosensory...shows how an auditory conditioned stimulus and a nociceptive unconditioned foot shock stimulus converge in the lateral amygdala (LA) via auditory...the US is noxious or mildly painful . Generally, in vertebrates, the US can be as simple as a puff of air into the face or a brief electric shock

  10. Upper-crustal structure beneath the strait of Georgia, Southwest British Columbia (United States)

    Dash, R.K.; Spence, G.D.; Riedel, M.; Hyndman, R.D.; Brocher, T.M.


    We present a new three-dimensional (3-D) P-wave velocity model for the upper-crustal structure beneath the Strait of Georgia, southwestern British Columbia based on non-linear tomographic inversion of wide-angle seismic refraction data. Our study, part of the Georgia Basin Geohazards Initiative (GBGI) is primarily aimed at mapping the depth of the Cenozoic sedimentary basin and delineating the near-surface crustal faults associated with recent seismic activities (e.g. M = 4.6 in 1997 and M = 5.0 in 1975) in the region. Joint inversion of first-arrival traveltimes from the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS) and the 2002 Georgia Basin experiment provides a high-resolution velocity model of the subsurface to a depth of ???7 km. In the southcentral Georgia Basin, sedimentary rocks of the Cretaceous Nanaimo Group and early Tertiary rocks have seismic velocities between 3.0 and 5.5 km s-1. The basin thickness increases from north to south with a maximum thickness of 7 (??1) km (depth to velocities of 5.5 km s-1) at the southeast end of the strait. The underlying basement rocks, probably representing the Wrangellia terrane, have velocities of 5.5-6.5 km-1 with considerable lateral variation. Our tomographic model reveals that the Strait of Georgia is underlain by a fault-bounded block within the central Georgia Basin. It also shows a correlation between microearthquakes and areas of rapid change in basin thickness. The 1997/1975 earthquakes are located near a northeast-trending hinge line where the thicknesses of sedimentary rocks increase rapidly to the southeast. Given its association with instrumentally recorded, moderate sized earthquakes, we infer that the hinge region is cored by an active fault that we informally name the Gabriola Island fault. A northwest-trending, southwest dipping velocity discontinuity along the eastern side of Vancouver Island correlates spatially with the surface expression of the Outer Island fault. The Outer Island

  11. Study on S wave velocity structure beneath part stations in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    张学民; 束沛镒; 刁桂苓


    Based on S wave records of deep teleseisms on Digital Seismic Network of Shanxi Province, shear wave velocity structures beneath 6 stations were obtained by means of S wave waveform fitting. The result shows that the crust is thick in the studied region, reaching 40 km in thickness under 4 stations. The crust all alternatives high velocity layer with low velocity one. There appear varied velocity structures for different stations, and the stations around the same tectonic region exhibit similar structure characteristics. Combined with dominant depth distribution of many small-moderate earthquakes, the correlation between seismogenic layers and crustal structures of high and low velocity layers has been discussed.

  12. Seismic tomography reveals the upper-mantle structure beneath the Carpathian-Pannonian system (United States)

    Dando, B. D.; Houseman, G.; Stuart, G. W.; Hegedus, E.; Kovacs, A.; Brueckl, E. P.; Hausmann, H.; Radovanovic, S.


    The Carpathian Basins Project (CBP) aims to understand the formation of the Miocene-age extensional basins contained within the convergent arc of the Alpine-Carpathian system. To test competing models for the recent geological evolution of the Carpathian-Pannonian lithosphere and upper mantle, we present a new tomographic determination of P-wave velocity structure to depths of 700 km beneath this region. This model is based on inversion of seismic travel-time residuals from 97 broadband seismic stations. We include CBP data from a 15-month deployment of a high resolution network of 46 stations deployed NW-SE across the Vienna and western Pannonian basins through Austria, Hungary and Serbia, together with 10 broadband stations spread across the Pannonian basin and a further 41 permanent broadband stations. We use P-wave arrival times from 232 teleseismic events. To avoid contamination of our inversion results from crustal velocity variations, deterministic corrections are applied to our travel-time residuals using crustal velocity models obtained from controlled source experiments and sediment thickness maps. Our 3-D velocity model images the fast velocity structure of the eastern Alps down to ~350 km. Beneath the Pannonian basin the velocity variation at 300 km depth is dominated by a fast region which extends eastward from the Alpine anomaly and reaches down into the mantle transition zone (MTZ). This fast structure is limited on the North side by slow material beneath the North Carpathians. At depths greater than 450 km, below the eastern Pannonian basin, a slow anomaly extends to the base of the model. Beneath the same region Hetenyi et al. (submitted to GRL), used receiver functions from the CBP dataset, to show a localised depression of the 660 km discontinuity of up to ~40 km. We aim to address how the depression of the 660 km discontinuity and its associated density and velocity variations affect our tomographic images. Our results will help to provide

  13. Crustal Structure Beneath the Luangwa Rift, Zambia: Constraints from Potential Field Data (United States)

    Atekwana, E. A.; Matende, K.; Abdelsalam, M. G.; Mickus, K. L.; Atekwana, E. A.; Gao, S. S.; Sikazwe, O.; Liu, K. H.; Evans, R. L.


    We used gravity and magnetic data to examine the thermal and crustal structure beneath the Luangwa Rift Valley (LRV) in Zambia in order to examine the geodynamic controls of its formation.. The LRV lies at the boundary between the Mesoproterozoic-Neoproterozoic Irumide and Southern Irumide orogenic belts between the Zimbabwe craton and the Bangwelu Block. We computed the Curie Point Depth (CPD) using two-dimensional (2D) power spectrum analysis of the aeromagnetic data, and these results were used to estimate heat flow beneath the LRV. We also inverted the aeromagnetic data for three-dimensional (3D) magnetic susceptibility distribution. We further determined the depths to the Moho using 2D power spectrum analysis of the satellite gravity data and 2D forward modeling of the terrestrial gravity data. We found that: (1) there is no consistent pattern of elevated CPD beneath the LRV, and as such no consistent pattern of elevated heat flow anomaly, (2) there are numerous 5-15 km wide magnetic bodies at shallow depth (5-20 km) beneath the LRV and the 2D forward gravity modeling suggests these to be dense intrusive bodies, (3) a thick crust (49-52 km) underlies the northwestern margin of the rift centered beneath the ~ 1 km high Muchinga escarpment which represents the main border fault of the LRV. This thick crust contrasts with the thinner crust (35-45 km) outside the rift, and (4) the thickened crust coincides with a NE-SE elongated belt of 1.05-1.0 Ga granitoids previously interpreted as manifestations of the metacratonization of the southeastern edge of the Bangweulu Block. Our 2D forward gravity model suggests that the thickened crust is due to the presence of possibly Karoo-aged magmatic under-plated mafic body (UPMB) whose thermal anomaly has since decayed. We suggest that the initiation of the LRV was associated with this deep magmatic activity that introduced rheological weaknesses that facilitated strain localization although it never breached the surface. It

  14. Mantle plumes beneath the South Pacific superswell revealed by finite frequency P tomography using regional seafloor and island data (United States)

    Obayashi, M.; Yoshimitsu, J.; Sugioka, H.; Ito, A.; Isse, T.; Shiobara, H.; Reymond, D.; Suetsugu, D.


    We present a new tomographic image beneath the South Pacific superswell, using finite frequency P wave travel time tomography with global and regional data. The regional stations include broadband ocean-bottom seismograph stations. The tomographic image shows slow anomalies of 200-300 km in diameter beneath most hot spots in the studied region, extending continuously from the shallow upper mantle to 400 km depth. Narrow and weak slow anomalies are detected at depths of 500-1000 km, connecting the upper mantle slow anomalies with large-scale slow anomalies with lateral dimension of 1000-2000 km prevailing below 1000 km depth down to the core-mantle boundary. There are two slow anomalies around the Society hot spot at depths shallower than 400 km, which both emerge from the same slow anomaly at 500 km depth. One of them is located beneath the Society hot spot and the other underlies 500 km east of the Society hot spot, where no volcanism is observed.

  15. Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data (United States)

    Comeau, Matthew; Käufl, Johannes; Becken, Michael; Kuvshinov, Alexey; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg; Tserendug, Shoovdor; Nasan, Ochir


    The Hangai Dome in west-central Mongolia is an unusual high-elevation intra-continental plateau located far from tectonic plate boundaries and characterized by dispersed, low-volume, basaltic volcanism. This region is an ideal natural laboratory for studying intra-continental orogenic and magmatic processes resulting from crust-mantle interactions. The processes responsible for developing the Hangai Dome remain unexplained, due in part to a lack of high resolution geophysical data over the area. Here we present newly acquired broadband (0.008 - 3,000 s) magnetotelluric (MT) data from a large-scale ( 200 x 450 km) and high resolution (site spacing > 5 km) survey across the Hangai Dome. A total of 125 sites were collected and include full MT sites and telluric-only sites where inter-station transfer functions were computed. The MT data are used to generate an electrical resistivity model of the crust and upper mantle below the Hangai Dome. The model shows that the lower crust ( 30 - 50 km; below the brittle-ductile transition zone) beneath the Hangai Dome contains anomalous discrete pockets of low-resistivity ( 30 ohm-m) material that indicate the presence of local accumulations of fluids and/or low-percent partial melts. These anomalous regions appear to be spatially associated with the surface expressions of past volcanism, hydrothermal activity, and an increase in heat flow. They also correlate with observed crustal low-density and low-velocity anomalies. However they are in contrast to some geochemical and petrological studies which show long-lived crustal melt storage is impossible below the Hangai due to limited crustal assimilation and crustal contamination, arguing for a single parent-source at mantle depths. The upper mantle ( 6%) at this location. The results are consistent with modern geochemical and geophysical data, which show a thin lithosphere below the Hangai region. Furthermore the results agree with geodynamic models that require a low-heat flux

  16. Alterations of lateral temporal cortical gray matter and facial memory as vulnerability indicators for schizophrenia: an MRI study in youth at familial high-risk for schizophrenia (United States)

    Brent, Benjamin K.; Rosso, Isabelle M.; Thermenos, Heidi W.; Holt, Daphne J.; Faraone, Stephen V.; Makris, Nikos; Tsuang, Ming T.; Seidman, Larry J.


    Background Structural alterations of the lateral temporal cortex (LTC) in association with memory impairments have been reported in schizophrenia. This study investigated whether alterations of LTC structure were linked with impaired facial and/or verbal memory in young first-degree relatives of people with schizophrenia and, thus, may be indicators of vulnerability to the illness. Methods Subjects included 27 non-psychotic, first-degree relatives of schizophrenia patients, and 48 healthy controls, between the ages of 13 and 28. Participants underwent high-resolution magnetic resonance imaging (MRI) at 1.5 Tesla. The LTC was parcellated into superior temporal gyrus, middle temporal gyrus, inferior temporal gyrus, and temporal pole. Total cerebral and LTC volumes were measured using semi-automated morphometry. The Wechsler Memory Scale – Third Edition and the Children’s Memory Scale – Third Edition assessed facial and verbal memory. General linear models tested for associations among LTC subregion volumes, familial risk and memory. Results Compared with controls, relatives had significantly smaller bilateral middle temporal gyri. Moreover, right middle temporal gyral volume showed a significant positive association with delayed facial memory in relatives. Conclusion These results support the hypothesis that smaller middle temporal gyri are related to the genetic liability to schizophrenia and may be linked with reduced facial memory in persons at genetic risk for the illness. The findings add to the growing evidence that children at risk for schizophrenia on the basis of positive family history have cortical and subcortical structural brain abnormalities well before psychotic illness occurs. PMID:26621001

  17. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors (United States)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin


    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  18. High temperature behavior of multi-region direct current current-voltage spectroscopy and relationship with shallow-trench-isolation-based high-voltage laterally diffused metal-oxide-semiconductor field-effect-transistors reliability (United States)

    He, Yandong; Zhang, Ganggang; Zhang, Xing


    With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.

  19. Imaging magma storage reservoirs beneath Sierra Negra volcano, Galápagos, Ecuador (United States)

    Tepp, G.; Belachew, M.; Ebinger, C. J.; Seats, K.; Ruiz, M. C.; Lawrence, J. F.


    Ocean island volcanoes initiate and grow through repeated eruptions and intrusions of primarily basaltic magma that thicken the oceanic crust above melt production zones within the mantle. The movement of oceanic plates over the hot, melt-rich upwellings produces chains of progressively younger basaltic volcanoes, as in the Galapagos Islands. Rates of surface deformation along the chain of 7 active volcanoes in the western Galápagos are some of the most rapid in the world, yet little is known of the subsurface structure of the active volcanic systems. The 16-station SIGNET array deployed between July 2009 and June 2011 provides new insights into the time-averaged structure beneath Sierra Negra, Cerro Azul, and Alcedo volcanoes, and the ocean platform. We use wavespeed tomography to image volcanic island structure, with focus on the magmatic plumbing system beneath Sierra Negra volcano, which has a deep, ~10 km-wide caldera and last erupted in 2005. We compare our results to those of ambient noise tomography. Our 120 x 100 km grid has a variable mesh of 2.5 - 10 km. We have good resolution at depths between 3 and 15 km, with poorer resolution beneath Cerro Azul volcano. Events from Alcedo volcano, which is just outside our array, cause some N-S smearing. Results from wavespeed tomography provide insights into the major island building processes: accretion through extrusive magmatism, magma chamber geometry and depth, radial dike intrusions, and magmatic underplating/sill emplacement. The wide caldera of Sierra Negra is underlain by high velocity (~7 %) material from depths of 5 - 15, and the flanks correspond to low velocity material at all depths. A high velocity zone corresponds to Cerro Azul (~3%). Aligned chains of eruptive centers correlate with elongate high velocity zones, suggesting that radial dikes are the sites of repeated dike intrusions. These chains are preferentially located along ridges linking nearby volcanoes. A comparison of well-resolved zones

  20. Simulation of longwave enhancement beneath coniferous forests (United States)

    Todt, Markus; Rutter, Nick; Fletcher, Christopher; Wake, Leanne; Loranty, Michael


    CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent, a substantial fraction of which is covered by boreal forests. Forest coverage shades the ground and enhances longwave radiation thereby impacting the radiation budget of the ground which is dominating the snow energy balance in forests. Longwave enhancement is a potential mechanism that contributes to uncertainty in snowmelt modelling. Here we use radiation measurements from an alpine forest to assess the simulation of sub-canopy longwave radiation by CLM4.5, the land component of the NCAR Community Earth System Model. CLM4.5 overestimates the diurnal cycle of sub-canopy longwave radiation and consequently longwave enhancement. Overestimation results from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improve through the implementation of a heat mass parameterisation, i.e. including the thermal inertia effect due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.

  1. Extensive, water-rich magma reservoir beneath southern Montserrat (United States)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.


    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  2. Bed-Deformation Experiments Beneath a Temperate Glacier (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.


    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  3. Mantle transition zone shear velocity gradients beneath USArray (United States)

    Schmandt, Brandon


    Broadband P-to-s scattering isolated by teleseismic receiver function analysis is used to investigate shear velocity (VS) gradients in the mantle transition zone beneath USArray. Receiver functions from 2244 stations were filtered in multiple frequency bands and migrated to depth through P and S tomography models. The depth-migrated receiver functions were stacked along their local 410 and 660 km discontinuity depths to reduce stack incoherence and more accurately recover the frequency-dependent amplitudes of P410s and P660s. The stacked waveforms were inverted for one-dimensional VS between 320 and 840 km depth. First, a gradient-based inversion was used to find a least-squares solution and a subsequent Monte Carlo search about that solution constrained the range of VS profiles that provide an acceptable fit to the receiver function stacks. Relative to standard references models, all the acceptable models have diminished VS gradients surrounding the 410, a local VS gradient maximum at 490-500 km depth, and an enhanced VS gradient above the 660. The total 410 VS increase of 6.3% is greater than in reference models, and it occurs over a thickness of 20 km. However, 60% of this VS increase occurs over only 6 km. The 20 km total thickness of the 410 and diminished VS gradients surrounding the 410 are potential indications of high water content in the regional transition zone. An enhanced VS gradient overlying the 660 likely results from remnants of subduction lingering at the base of the transition zone. Cool temperatures from slabs subducted since the late Cretaceous and longer-term accumulation of former ocean crust both may contribute to the high gradient above the 660. The shallow depth of the 520 km discontinuity, 490-500 km, implies that the regional mean temperature in the transition zone is 110-160 K cooler than the global mean. A concentrated Vs gradient maximum centered near 660 km depth and a low VS gradient below 675 km confirms that the ringwoodite to

  4. Receiver function images from the Moho and the slab beneath the Altiplano and Puna plateaus in the Central Andes (United States)

    Wölbern, I.; Heit, B.; Yuan, X.; Asch, G.; Kind, R.; Viramonte, J.; Tawackoli, S.; Wilke, H.


    Teleseismic data recorded during one and a half years are investigated with the receiver function technique to determine the crustal and upper-mantle structures underneath the highly elevated Altiplano and Puna plateaus in the central Andes. A series of converting interfaces are determined along two profiles at 21°S and 25.5°S, respectively, with a station spacing of approximately 10 km. The data provide the highest resolution gained from a passive project in this area, so far. The oceanic Nazca plate is detected down to 120 km beneath the Altiplano whereas beneath the Puna, the slab can unexpectedly be traced down to 200 km depth at longer periods. A shallow crustal low-velocity zone is determined beneath both plateaus exhibiting segmentation. In the case of the Altiplano, the segments present vertical offsets and are separated by inclined interfaces, which coincide with major fault systems at the surface. An average depth to Moho of about 70 km is determined for the Altiplano plateau. A strong negative velocity anomaly located directly below the Moho along with local crustal thinning is interpreted beneath the volcanic arc of the Altiplano plateau between 67°W and 68.5°W. A deep section of the Puna profile reveals thinning of the mantle transition zone. Although poorly resolved, the detected anomaly may suggest the presence of a mantle plume, which may constitute the origin of the anomalous temperatures at the depth of the upper-mantle discontinuities.

  5. Dating Metasomatism in the Lithosphere Beneath North China Craton (United States)

    Chen, L.; Zhou, X.


    Dating of mantle metasomatism had been carried out using zircons in metasomatized mantle xenoliths entrained in kimberlites (Kinny and Dawson, 1992; Rudnick et al., 1999; Konzett et al., 1998, 2000; Liati et al., 2004), because the U-Pb system in zircon can remain closed at high temperature (>900-)(Lee et al., 1997). Here we report a SHRIMP U-Pb dating analysis of zircons from a unique dunite-orthopyroxenite xenolith entrained in Cretaceous high-Mg diorite of Shandong province, which provides a timing constraint for the multi-stage metasomatism in the lithosphere beneath North China craton (NCC). Abundant ultramafic xenoliths had been found in the Tietonggou intrusion, one of the Cretaceous high-Mg diorite-dominated plutons in North China (Chen and Zhou, 2004). The lithology, mineral chemistry, equilibrium temperature (690-790A), and metasomatic characteristics of the ultramafic xenoliths indicate that they might be derived from the shallow lithosphere (the crust-mantle transitional zone or the uppermost lithospheric mantle) and had suffered multi-stage metasomatism (Chen and Zhou, 2004, 2005). Xenolith LW0006 is the most extremely metasomatized sample found so far in the xenolith suite of the Tietonggou pluton. The petrography, mineral chemistry, and major element compositions provide a clear metasomatic record of the composite xenolith: K (and/or Ca) metasomatism, and Si (Na) metasomatism (Chen and Zhou). We found seven zircons range from 100-170 Im in longest dimension, which is reflected in the unusually high Zr content of the bulk rock (49 ppm) of this sample. SHRIMP U-Pb dating reveals that these zircons might be grouped three kinds: Mesozoic (concordia age of 127-A3 Ma, 5 zircons), Paleozoic (430-470 Ma, 1 zircon only) and Mesoproterozoic (1310-1540 Ma, 1 zircon only). Cathodoluminescence (CL) images reveal that a few Mesozoic zircons and the Paleozoic zircons retain oscillatory zoning. The Mesozoic zircons are characterized with high Th, U contents and high

  6. Microbial Energetics Beneath the Taylor Glacier, Antarctica (United States)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.


    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  7. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves (United States)

    Quirchmayr, Ronald


    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  8. Detection of Cracks in Aluminum Structure Beneath Inconel Repair Bushings (United States)


    conductivity (i.e. Inconel 718 ) – Primary challenge then becomes detecting the weak eddy current field in the structure beyond the bushing wall...was able to be selected with inspectability as a goal. – Inconel 718 • low permeability (~μ0) • low conductivity (< 2% IACS) • Combined with...Detection of Cracks in Aluminum Structure beneath Inconel Repair Bushings Mr. Kenneth J. LaCivita (USAF) AFRL/RXSA Air Force Research Laboratory

  9. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves (United States)

    Quirchmayr, Ronald


    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  10. Kelvin-Helmholtz wave generation beneath hovercraft skirts (United States)

    Sullivan, P. A.; Walsh, C.; Hinchey, M. J.


    When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.

  11. The Dumbarton Oaks Tlazolteotl: looking beneath the surface


    MacLaren Walsh, Jane


    The Dumbarton Oaks Tlazolteotl: looking beneath the surface. Some of the earliest and most revered pre-Columbian artifacts in the world’s major museum and private collections were collected prior to the advent of systematic, scientific archaeological excavation, and have little or no reliable provenience data. They have consistently posed problems for researchers due to anomalies of theme, material, size, technical virtuosity and iconography. This paper offers a historical and scientific appr...

  12. Lateral violence in the perioperative setting. (United States)

    Bigony, Lorraine; Lipke, Tammy G; Lundberg, Ashley; McGraw, Carrie A; Pagac, Gretchen L; Rogers, Anne


    Lateral violence is disruptive, bullying, intimidating, or unsettling behavior that occurs between nurses in the workplace. The perioperative setting fosters lateral violence because of the inherent stress of performing surgery; high patient acuity; a shortage of experienced personnel; work demands; and the restriction and isolation of the OR, which allows negative behaviors to be concealed more easily. Lateral violence affects nurses' health and well-being and their ability to care for patients. Interventions to reduce lateral violence include empowerment of staff members and zero tolerance for lateral violence.

  13. Lithospheric radial anisotropy beneath the Gulf of Mexico (United States)

    Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don


    The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.

  14. Why are there few seedlings beneath the myrmecophyte Triplaris americana? (United States)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.


    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  15. Descending lithosphere slab beneath the Northwest Dinarides from teleseismic tomography (United States)

    Šumanovac, Franjo; Dudjak, Darko


    The area of study covers the marginal zone between the Adriatic microplate (African plate) and the Pannonian segment (Eurasian plate). We present a tomography model for this area, with special emphasis on the northwest Dinarides. A dense distribution of temporary seismic stations in the area of the Northern Dinarides along with permanent seismic stations located in the area, allowed us to construct this P-wave tomographic model. We assembled our travel-time dataset based on 26 seismic stations were used to collect the dataset. Teleseismic events were recorded for a period of 18 months and a set of 76 distant earthquakes were used to calculate the P-wave travel-time residuals. We calculated relative rather than absolute arrival-time residuals in the inversion to obtain depths of 0-400 km. We imaged a pronounced fast velocity anomaly below the NW Dinarides which directly indicates a lithosphere slab downgoing beneath the Dinarides. This fast anomaly extends towards the NW direction to at least 250 km depth, and we interpreted it as a descending lithosphere slab. The thrusting of the Adriatic microplate may be brought about by sub-lithosphere rising movement beneath the Pannonian region, along with a push from African plate. In our interpretation, the Adriatic lower lithosphere has been detached from the crust, and steeply sinks beneath the Dinarides. A lithosphere model of the contact between the Adriatic microplate and Pannonian tectonic segment was constructed based on the tomographic velocity model and results of previous crustal studies.

  16. What lies beneath the Cerro Prieto geothermal field?

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Williams, A.E.; Biehler, S. [Univ. of California, Riverside, CA (United States)


    Although the Cerro Prieto geothermal reservoir is one of the world`s largest geothermal developments, conflicting ideas persist about the basement beneath it. The current plan to drill a 6 km deep exploratory well in the eastern part of the field has brought this controversy into sharper focus. This paper discusses criteria which any model of what lies beneath the reservoir must meet, in terms of regional tectonics and geophysics, of the metamorphic and igneous rocks thus far encountered in drilling, and of models of possible heat sources and coupling between the hydrothermal and magmatic systems. Our analysis confirms the interpretation that the crystalline basement beneath the sediments, rather than being granitic, is oceanic in character, resembling an ophiolite complex. The heat source is most likely a cooling gabbroic intrusion, several kilometers in diameter, overlain by a sheeted dike swarm. A 6 km deep bore-hole centered over such an intrusion would not only be one of the world`s deepest geothermal wells but could also be one of the hottest.

  17. Tomographic imaging beneath Alboran sea and surrounding areas (southern Iberian Peninsula and northern Morocco) (United States)

    Serrano, I.; Morales, J.


    results in the western Alboran Sea is the low-velocity anomaly in the upper mantle in the shape of a slab that runs from the Spanish to the Moroccan coast, reaching a depth of 130 km on the southern side which is interpreted as the result of an active continental subduction in the region. In general, low-velocity anomalies characterize the lithosphere of the Alboran basin and could reflect the thickness of the lithosphere. As a general rule the Alboran Sea shows low seismic velocities from 15 to 100 km which are underlain by an irregular fast seismic anomaly in the western part. Beneath Alboran Sea and southern Spain, this body, laterally discontinuous, shows a maximum width of 300 km at a depth of 400 km. The most remarkable characteristics of the shallowest layers of the region west of the Strait of Gibraltar are the high seismic velocity anomalies trending NE-SW, located on the Guadalquivir Bank, interpreted as a basement high of mid-crustal rocks.

  18. Cathodic protection beneath thick external coating on flexible pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Festy, Dominique; Choqueuse, Dominique; Leflour, Denise; Lepage, Vincent [Ifremer - Centre de Brest, BP 70 29280 Plouzane (France); Condat, Carol Taravel; Desamais, Nicolas [Technip- FLEXIFRANCE - PED/PEC - Rue Jean Hure, 76580 Le Trait (France); Tribollet, Bernard [UPR 15 du CNRS, Laboratoire LISE, 4 Place Jussieu, 75252 Paris Cedex (France)


    Flexible offshore pipelines possess an external polymer sheath to protect the structure against seawater. In case of an accidental damage of the outer sheath, the annulus of the flexible pipe is flooded with seawater. Far from the damage, corrosion and/or corrosion fatigue of armour steel wires in the annulus occur in a strictly deaerated environment; this has been studied for a few years. At the damage location, the steel wires are in direct contact with renewed seawater. In order to protect them against corrosion, a cathodic protection is applied using sacrificial anodes located at the end fittings. The goal of this work is to evaluate the extent of the cathodic protection as well as the electrolyte oxygen concentration beneath the coating around the damage, to know whether or not there is a non protected area with enough oxygen where corrosion and corrosion fatigue can occur. The experimental work was performed with a model cell (2000 x 200 mm{sup 2}), composed of a mild steel plate and a PMMA coat (transparent poly-methyl-methacrylate). The thickness of the gap between the steel plate and the PMMA coat was 0.5 mm. The potential and current density were monitored all along the cell (70 sensors). The oxygen concentration was also recorded. The experiments were performed with natural sea water, and cathodic protection was applied in a reservoir at one extremity of the cell. Another reservoir at the other cell extremity enabled carbon dioxide bubbling to simulate pipeline annular conditions. PROCOR software was used to simulate potential and current density within the gap and a mathematical model was developed to model oxygen concentration evolution. Both model and experimental results show that the extent of the cathodic protection is much greater than that of oxygen. Oxygen depletion is very quick within the gap when seawater fills it and the oxygen concentration is close to zero a few milli-metres from the gap opening. On the other hand, the cathodic protection

  19. Spaced planar laminations formed by repetitive basal erosion and resurgence to high-sedimentation-rate regime: new insight from a bedform-like structures and laterally continuous exposures (United States)

    Ishihara, Yoshiro; Yuri, Onishi; Tsuda, Keisuke; Yokokawa, Miwa


    Spaced planar laminations (SPL), or so-called traction carpet deposits, are frequently observed in deposits of sediment gravity flows. Several sedimentation models for a succession of inversely graded units have been suggested from field observations and flume experiments. The formation of the inversely graded unit could be summarized as follows: (1) abrupt sedimentation on freezing of an inversely graded layer, or (2) interruptions in flow causing a freezing of an inversely graded layer at the most basal part of flow. In either case, traction carpets as a bed load overlying the erosive boundary at the base of flow are required. Although some descriptions have reported SPLs forming antidune bedform-like structures and the association of SPLs with structureless massive deposits have not been clearly explained. In this study, we suggest a novel model of SPL formation by repetition of basal erosion and resurgence to high-sedimentation rates, based on detail examinations of SPLs both showing bedform-like structures and lateral extents of hundreds of meters. SPLs were investigated in the Mio-Pliocene Kiyosumi Formation in central Japan and the Miocene Aoshima Formation in southwest Japan. In a turbidite in the Kiyosumi Formation, SPLs show three mound-like structures, suggesting antidune bedforms with wavelengths of about 6 to 7 m. On the upcurrent flanks, SPLs show lenticular cross laminations or pinching out of units; those units do not show clear inverse grading. Rip-up mud clasts and relatively high-angle imbrications are also observed. On the other hand, SPLs on the downcurrent flanks show relatively clear inverse grading and transition downcurrent into a massive structureless bed. In the Aoshima Formation, SPLs with ca. 1 cm unit thickness continue approximately 50 m along a palaeocurrent direction without changes in thickness. These SPLs gradually transition upward into a massive structureless unit. From the observations described above, in addition to

  20. Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar (United States)

    Saikia, Utpal; Das, Ritima; Rai, S. S.


    The shear wave velocity of the crust along a ∼660 km profile from the west to the east coast of South India is mapped through the joint inversion of receiver functions and Rayleigh wave group velocity. The profile, consisting of 38 broadband seismic stations, covers the Archean Dharwar craton, Proterozoic Cuddapah basin, and rifted margin and escarpment. The Moho is mapped at a depth of ∼40 km beneath the mid-Archean Western Dharwar Craton (WDC), Cuddapah Basin (CB), and the west and east coasts formed through the rifting process. This is in contrast with a thin (∼35 km) crust beneath the late-Archean Eastern Dharwar Craton (EDC). Along the profile, the average thickness of the upper, middle and lower crust is ∼4 km, 12 ± 4 km and 24 ± 4 km respectively. Above the Moho, we observe a high-velocity layer (HVL, Vs > 4 km/s) of variable thickness increasing from 3 ± 1 km beneath the EDC to 11 ± 3 km beneath the WDC and the CB, and 18 ± 2 km beneath the west coast of India. The seismic wave velocity in this layer is greater than typical oceanic lower crust. We interpret the high-velocity layer as a signature of magmatic underplating due to past tectonic processes. Its significant thinning beneath the EDC may be attributed to crustal delamination or relamination at 2.5 Ga. These results demonstrate the dual signature of the Archean Dharwar crust. The change in the geochemical character of the crust possibly occurred at the end of Archean when Komatiite volcanism ceased. The unusually thick HVL beneath the west coast of India and the adjoining region may represent underplated material formed due to India-Madagascar rifting, which is supported by the presence of seaward dipping reflectors and a 85-90 Ma mafic dyke in the adjoining island.

  1. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.


    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  2. 3-D Teleseismic Tomography of the Crust and Upper Mantle Beneath Northern Tasmania, Australia (United States)

    Rawlinson, N.; Kennett, B. L.; Reading, A. M.


    The TIGGER project is a multi-faceted seismic study of Tasmania and southern Victoria (SE Australia) undertaken by the Australian National University in 2001/2002. As part of this project, an array of 72 short period and broadband seismic recorders with a nominal spacing of 15 km was deployed across northern Tasmania for a period of five months. To date, nearly 6,000 relative arrival times from 100 earthquakes have been picked using a newly developed and robust adaptive stacking technique. The azimuthal coverage of teleseisms is generally good, with many events to the north and east (e.g.~Indonesia, Papua New Guinea, New Zealand, Fiji), although fewer from the south and west(e.g.~South Sandwich Islands, mid- Indian ridge). A new iterative non-linear tomographic inversion procedure based on the fast marching method (FMM), a grid based eikonal solver, and a subspace inversion scheme, is used to map traveltime residual patterns as P-wave velocity anomalies from an ak135 reference model. The 3-D model volume beneath the array is parameterized using cubic B-spline functions in spherical coordinates; a total of nearly 10,000 vertices at approximately 15 km grid spacing is used to describe the TIGGER model. Preliminary tomographic results from the TIGGER experiment show significant lateral variations in P-wave velocity structure within the Tasmanian lithosphere. Geological inferences made from these early results include: (1) Within the crust, the first-order E-W velocity variations strongly support the idea that eastern Tasmania is underlain by dense rocks with an oceanic crustal affinity, contrasting with the continentally derived lower crustal rocks of western Tasmania; (2) the Tamar Fracture System, often defined as a lithospheric scale discontinuity, probably does not exist; (3) the elevated crustal velocities beneath the Rocky Cape Group and Arthur Lineament, compared to the Tyennan Element and Mt. Read Volcanics to the east, also support a mafic

  3. Dynamics of Caribbean and Nazca Plate Subduction Beneath Colombia from Receiver Function Analysis (United States)

    Porter, R. C.; Warren, L. M.


    The tectonics of northwestern South America are controlled by the complex interactions of the South American, Nazca, and Caribbean plates. In order to better understand subduction within the region, we utilize data recorded by the Colombian National Seismic Network to calculate P-to-S receiver functions at a range of frequencies across the nation of Colombia. Where the station spacing was dense enough, receiver functions were stacked using the Common Conversion Point (CCP) method in order to better image lateral changes in crustal and upper mantle structure. Along the Pacific margin of Colombia, where the Nazca plate is subducting beneath South America, the subducting slab dips too steeply to image it with receiver functions. However, layering and strong negative arrivals are observed in the crust above the subducting slab where active volcanoes are present. The presence of these arrivals is possibly indicative of slab dehydration and the presence of partial melt within the crust. In northeastern Colombia, the Caribbean plate is subducting beneath South America at an oblique angle. Along the direction of convergence, the slab extends ~500 km inland with a relatively shallow dip before steepening. Preliminary receiver function images from this region show a shallowly-dipping negative arrival, interpreted as the top of the slab. This arrival is underlain by a positive conversion, interpreted as the down-going oceanic Moho. As the dip of the seismicity associated with the subducting slab steepens, these arrivals are no longer observed within the receiver function stacks. These cross sections of the Caribbean plate subduction are consistent with the idea that phase changes within the downgoing oceanic crust and mantle are controlling the slab buoyancy and, as a result, the angle of subduction. As the receiver functions are refined and further combined with local earthquake locations, we will better be able to understand the location of earthquakes within the subducting

  4. Broadband Seismic Investigations of the Upper Mantle Beneath the Vienna and Pannonian Basins (United States)

    Dando, B. D.; Stuart, G. W.; Houseman, G. A.; Team, C.


    The Carpathian Basins Project (CBP) aims to understand the origin of the Miocene-age extensional basins contained within the compressional arc of the Alpine-Carpathian system. To test competing models for the recent geological evolution of the Carpathian-Pannonian lithosphere and upper mantle, we present a new determination of P-wave velocity structure to depths of 700 km beneath this region. This model is based on inversion of seismic travel-time residuals from 97 broadband seismic stations. We include CBP data from a 15-month deployment of a high resolution network of 46 stations deployed NW-SE across the Vienna and western Pannonian basins through Austria, Hungary and Serbia, together with 10 broadband stations spread across the Pannonian basin and a further 41 permanent broadband stations. We use P-wave arrival times from approximately 341 teleseismic events. The 3-D velocity variation obtained by tomographic inversion of the P-wave travel-time residuals shows an approximately linear belt of fast material of width about 100 km, orientated WNW-ESE beneath the western Pannonian Basin at sub-lithospheric depths. This feature is apparently continuous with structure beneath the Eastern Alps, but becomes more diffuse into the transition zone. Our initial interpretation of these fast velocities is in terms of mantle downwelling related to the early collision of Adria and Europe. We use receiver functions to assess crustal structure variations. We also determine SKS anisotropy; regionally SKS varies systematically in direction, with a delay time of about 1.0s. E-W fast directions above the fast tomographic anomaly change to NW-SE across the Great Hungarian Plane and the Vienna Basin.

  5. A journey to the seismic low velocity zone beneath the ocean (Beno Gutenberg Medal Lecture) (United States)

    Kawakatsu, Hitoshi


    The seismic low velocity zone (LVZ), first proposed by Beno Gutenberg, is an enigmatic layer of the Earth that has been drawing attention of earth scientists, most-likely because of its close association with the asthenosphere that enables plate motions in the plate tectonics context. "A journey to the LVZ", therefore, is equivalent to a journey to elucidate the lithosphere-asthenosphere system (LAS) beneath the ocean (at least that is what I mean by this title). Plate tectonics started as a theory of ocean basins nearly 50 years ago, but the mechanical details of how it works are still highly debated. It has been hampered partly by our inability to characterize the physical properties of the LAS beneath the ocean. I will discuss existing observational constraints, including our own results, on the physical properties of the LAS for normal oceanic regions, where plate tectonics is expected to present its simplest form. While a growing number of seismic data on land have provided remarkable advances in large scale pictures, seafloor observations have been shedding new light on the essential details. Particularly, recent advances in ocean bottom broadband seismometry, together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire LAS, from the surface to a depth of 200km, including seismic anisotropy (azimuthal), with deployments of 15 broadband ocean bottom seismometers for 1 2 years. We have thus succeeded to model the entire oceanic LAS without a priori assumption for the shallow-most structure, the assumption often made for the global surface wave tomography. I hope to convince the audience that we are now at an exciting stage that a large-scale array experiment in the ocean (e.g., Pacific Array: is becoming approachable to elucidate the enigma of the LVZ, thus the lithosphere-asthenosphere system, beneath the ocean.

  6. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan (United States)

    Liu, Xin; Zhao, Dapeng


    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  7. Stress in the contorted Nazca Plate beneath southern Peru from local earthquakes (United States)

    Schneider, John F.; Sacks, I. Selwyn


    We study earthquake focal mechanisms in a region of highly contorted subducting lithosphere to identify dominant sources of stress in the subduction process. We observe a stress pattern in the contorted Nazca plate beneath southern Peru from an analysis of hypocentral trend and focal mechanisms of intermediate-depth earthquakes. Expanding on previous studies, we examine the hypocentral trend using 1673 of 2178 well-located local events from the nine-station Arequipa network. The dip of the plate beneath southern Peru averages 25°-30° from 25- to 100-km depth. Below this depth there is an 80- to 100-km-wide contortion between a zone of increasing dip (convex) to the southeast and a flat lying (concave) zone to the northwest. Using more than 6000 P wave first motions of events deeper than 50 km, we derive stress orientations from a moving average of composite focal mechanisms across a 200 by 350 km region including the contortion. The in-plate distribution of tension (T) and compression (P) axes reveals a coherent stress pattern. The trend is most clear beneath south-central Peru (NW section) and below 100- km depth in southernmost Peru (SE section). Both T and P axes tend to be dominantly in plate, especially below 100-km depth. T axes orient toward the contortion in a fan-shaped trend, which suggests that the deepest part of the seismic zone, within the convex SE section, is sinking and pulling the more buoyant NW section. We conclude that from 50- to 200-km depth, slab-pull forces are dominant in the observed stress. Our results suggest that a significant amount of plate extension occurs in this region of intermediate-depth subduction.

  8. Rayleigh Wave Phase Velocity in the Upper Mantle Beneath the Indian Ocean (United States)

    Godfrey, K. E.; Dalton, C. A.; Ritsema, J.


    Most of what is currently understood about the seismic properties of oceanic upper mantle is based on either global studies or regional studies of the upper mantle beneath the Pacific Ocean. However, global seismic models and geochemical studies of mid-ocean ridge basalts indicate differences in the properties of the upper mantle beneath the Pacific, Atlantic, and Indian oceans. Though the Indian Ocean is not as well studied seismically, it is host to a number of geologically interesting features including 16,000 km of mid-ocean ridge with a range of spreading rates from 14 mm/yr along the Southwest Indian Ridge to 55-75 mm/yr along the Southeast Indian Ridge. The Indian Ocean also contains multiple volcanic hotspots, the Australian-Antarctic Discordance, and a low geoid anomaly south of India, and it overlies a portion of a large low-shear-velocity province. We are using Rayleigh waves to construct a high-resolution seismic velocity model of the Indian Ocean upper mantle. We utilize a global dataset of phase delays measured at 20 periods, between 37 and 375 seconds; the dataset includes between 700 and 20,000 that traverse our study region exclusively, with a larger number of paths at shorter periods. We explore variations in phase velocity using two separate approaches. One, we allow phase velocity to vary only as a function of seafloor age. Two, we perform a damped least-squares inversion to solve for 2-D phase velocity maps at each period. Preliminary results indicate low velocities along the Southeast Indian Ridge and Central Indian Ridge, but the expected low velocities are less apparent along the slow-spreading Southwest Indian Ridge. We observe a region of fast velocities extending from Antarctica northward between the Kerguelen and Crozet hotspots, and lower than expected velocities beneath the Reunion hotspot. Additionally, we find low velocities associated with a region of extinct seafloor spreading in the Wharton basin.

  9. Diamond heteroepitaxial lateral overgrowth (United States)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  10. Amyotrophic Lateral Sclerosis (ALS) (United States)

    ... ALS Neurons' broken machinery piles up in ALS Esclerosis Lateral Amiotrófica Dormant viral genes may awaken to ... Dementia Information Page Multifocal Motor Neuropathy Information Page Multiple Sclerosis Information Page Muscular Dystrophy Information Page Myasthenia ...

  11. Amyotrophic lateral sclerosis (ALS) (United States)

    Lou Gehrig disease; ALS; Upper and lower motor neuron disease; Motor neuron disease ... 98. Shaw PJ. Amyotrophic lateral sclerosis and other motor neuron diseases. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  12. Mapping the subducted Nazca plate in the lower mantle beneath South America (United States)

    Contenti, S. M.; Gu, Y. J.; Okeler, A.


    Recent improvements in data coverage have enabled high-resolution imaging of the morphology of subduction zones and mantle plumes. In this study, we migrate the SS precursors from over 5000 seismograms to obtain a detailed map of mid- and upper-mantle reflectors beneath the northern portion of the South American subduction zone, where the oceanic Nazca plate is descending below the South American plate. In addition to an elevated 410 and depressed 660 (as expected for a subduction zone), strong mid-mantle reflectors at 800-1100 km depth are also apparent. The amplitudes of these steeply dipping reflectors are comparable to that of the 660-kilometer discontinuity. This anomaly outlines a high-velocity (therefore presumably cold) region present in recent finite-frequency based mantle velocity models, suggesting the extension of slab material into the lower mantle. The strength of the reflection is interpreted to be caused by a relatively sharp velocity change, likely due to a strong temperature gradient in combination with mineral phase transitions, the presence of water, or other chemical heterogeneities. Significant mass and heat exchange is therefore expected between the upper- and lower-mantle beneath the study region.

  13. Repeating deep tremors on the plate interface beneath Kyushu, southwest Japan (United States)

    Yabe, Suguru; Ide, Satoshi


    In the subduction zone south of Kyushu Island, at the western extension of the Nankai subduction zone, southwest Japan, the age of the oceanic crust increases toward the south across the subducting Kyushu-Palau ridge. While tremor activity is very high in Nankai, tectonic tremors have only recently been discovered in Kyushu. In this study, we examined tremors beneath Kyushu using an improved version of the envelope correlation method. In doing so, we distinguished tremors from normal earthquakes and background noise using the criteria of source duration and the spectrum ratio between low and high frequencies. Accurate measurement of S- P times, using cross-correlation between vertical and horizontal seismograms, constrains the tremor depth precisely. Tremor activity is low and within a small region in southern Kyushu, where thick crust of the Kyushu-Palau ridge is being subducted, at depths between 35 and 45 km (i.e., shallower than intra-slab earthquakes by about 20 km), which is consistent with the location of the plate interface within uncertainties proposed in previous studies. Establishing precise depth estimates for tectonic tremors beneath Kyushu, which results from shear slip along the plate interface, is useful in defining the plate interface within the Nankai subduction zone.

  14. Imaging of magma intrusions beneath Harrat Al-Madinah in Saudi Arabia (United States)

    Abdelwahed, Mohamed F.; El-Masry, Nabil; Moufti, Mohamed Rashad; Kenedi, Catherine Lewis; Zhao, Dapeng; Zahran, Hani; Shawali, Jamal


    High-resolution tomographic images of the crust and upper mantle beneath Harrat Al-Madinah, Saudi Arabia, are obtained by inverting high-quality arrival-time data of local earthquakes and teleseismic events recorded by newly installed borehole seismic stations to investigate the AD 1256 volcanic eruption and the 1999 seismic swarm in the study region. Our tomographic images show the existence of strong heterogeneities marked with low-velocity zones extending beneath the AD 1256 volcanic center and the 1999 seismic swarm area. The low-velocity zone coinciding with the hypocenters of the 1999 seismic swarm suggests the presence of a shallow magma reservoir that is apparently originated from a deeper source (60-100 km depths) and is possibly connected with another reservoir located further north underneath the NNW-aligned scoria cones of the AD 1256 eruption. We suggest that the 1999 seismic swarm may represent an aborted volcanic eruption and that the magmatism along the western margin of Arabia is largely attributed to the uplifting and thinning of its lithosphere by the Red Sea rifting.

  15. Grain-size dynamics beneath mid-ocean ridges: Implications for permeability and melt extraction

    CERN Document Server

    Turner, Andrew J; Behn, Mark D


    Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady-state mean grain size beneath a mid-ocean ridge. The mantle rheology is modelled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the piezometric relationship of Austin and Evans [2007]. We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean mean grain-size field in the context of permeability. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions forms a boundary that is steeply sloped toward the ridge axis. We hypothesise that such a permeability str...

  16. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements (United States)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun


    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  17. On the Turbulence Beneath Finite Amplitude Water Waves

    CERN Document Server

    Babanin, Alexander V


    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  18. Lateral variation of seismic attenuation in Sikkim Himalaya (United States)

    Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo


    We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.

  19. Lithospheric Mantle heterogeneities beneath northern Santa Cruz province, Argentina (United States)

    Mundl, Andrea; Ntaflos, Theodoros; Bjerg, Ernesto


    Mantle xenoliths from Don Camilo, an area located on the North margin of the Deseado Masiff in Patagonia, comprise spinel bearing lherzolites, harburgites and dunites, wehrlites, clinopyroxenites and gabbros. The most common rock type in our collection is spinel-lherzolite followed by dunites. Harzurgites, wehrlites and gabbros are less widespread. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle dunites and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range, from 90.5 to 91.5 and the NiO content from 0.39 to 0.42 wt%, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt%. Both types of dunites contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunitesare LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances, group II is highly enriched in LREE (La=20-30 x C1) and group 3 has moderate LREE enrichments. The core of some clinopyroxenes in group II has depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Clinopyroxene Sr and Nd isotopic ratios vary largely from 0.702671 to 0.705788 and from 0.51229 to 0.513251 respectively. Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunites the

  20. [An autopsy case of amyotrophic lateral sclerosis with prominent muscle cramps, fasciculation, and high titer of anti-voltage gated potassium channel (VGKC) complex antibody]. (United States)

    Sato, Aki; Sakai, Naoko; Shinbo, Junsuke; Hashidate, Hideki; Igarashi, Shuichi; Kakita, Akiyoshi; Yamazaki, Motoyoshi


    The patient was a 55-year-old male who had prominent fasciculation and muscle cramps. Muscle weakness and atrophy of the trunk, respiratory system, and extremities gradually progressed. On the basis of these features, we diagnosed this patient as having amyotrophic lateral sclerosis (ALS), however, the upper motor neuron signs were not significant. Following the detection of the anti-voltage gated potassium channel (VGKC) complex antibody at 907.5 pM (normal VGKC complex antibody in the development of cramp-fasciculation syndrome has been speculated. In this ALS patient, the antibodies might be associated with pathomechanisms underlying the characteristic symptoms.

  1. Highly extended terrains, lateral segmentation of the substratum, and basin development: The middle-late Miocene Radicondoli Basin (inner northern Apennines, Italy) (United States)

    Brogi, Andrea; Liotta, Domenico


    This paper deals with the evolution of sedimentary basins not delimited by normal faults, with a substratum characterized by an upward concave shape and with infilling sediments synclinally deformed. We describe the middle-late Miocene Radicondoli Basin, representing an example of such bowl-shaped basins. Its tectonic origin is controversial, being related both to compression and extension; these opposite interpretations bear significant consequences on the geodynamic context in which the inner northern Apennines developed during the middle-late Miocene. The results of our structural studies, carried out in the substratum and infilling sediments, indicate that the Radicondoli Basin is an example of a hanging wall basin developed in an extensional setting. Extensional tectonics determined the lateral segmentation of the substratum competent levels (i.e., Tuscan Nappe and Verrucano Group) and the consequent collapse of overlying less competent levels (i.e., the Ligurian units) with the formation of a bowl-shaped tectonic depression. Here, the syntectonic sediments (Serravallian-late Messinian) are deformed in a large syncline, characterized by minor gravity-driven folds, with vergences toward the depocenter and traces of their axial planes parallel to the basin margins. This paper highlights the role of the competence contrast during the postcollisional tectonic evolution and the influence of substratum lateral segmentation for the accommodation of syntectonic sediments.

  2. Crustal and upper-mantle structure beneath the western Atlas Mountains in SW Morocco derived from receiver functions (United States)

    Spieker, Kathrin; Wölbern, Ingo; Thomas, Christine; Harnafi, Mimoun; El Moudnib, Lahcen


    The High Atlas and the Anti Atlas are fold-belts linked to former and still ongoing continent-continent collisions. Despite their high elevation, studies indicate a lack of a deep crustal root (Morocco to analyse teleseismic P- and S-wave receiver functions. Our study yields a crustal thickness ranging from 24 km near the Atlantic coast to 44 km beneath the High Atlas with an average crustal Vp/Vs ratio of 1.77 in the entire region. A crustal thickness of 40 km cannot entirely support the topography in this region. Furthermore, we find the lithosphere-asthenosphere boundary at ˜80 km depth. The lithosphere beneath SW Morocco is thinner than beneath northern Morocco (>150 km). This lithospheric thinning supports the theory of thermal compensation of the mountain ranges. The mantle transition zone thickness amounts to 240 ± 10 km. The transition zone seems to be slightly thinned which might indicate a higher mantle temperature in this region.

  3. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting (United States)

    Paul, Jonathan D.; Eakin, Caroline M.


    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  4. S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

    Institute of Scientific and Technical Information of China (English)

    Jianping Wu; Yuehong Ming; Lihua Fang; Weilai Wang


    The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic re-gion, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldem. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con-sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.

  5. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)


    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  6. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis (United States)

    Syuhada, Hananto, Nugroho D.; Puspito, Nanang T.; Anggono, Titi; Handayani, Lina; Yudistira, Tedi


    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  7. Lateral variation of differential stress in the uppermost mantle across the island arc of southwest Japan (United States)

    Toriumi, Mitsuhiro


    The dislocation density and the subgrain size of olivine in peridotite xenoliths in southwest Japan were investigated in order to draw out the lateral variation of the differential stress in the upper mantle of the island arc. Alkali basaltic and andesitic dykes including peridotite xenoliths of Dogo, Kikuma, and Shingu are situated about 200 km behind the Nankai Trough, and those of Oki-Dogo and Takashima located at the portions 400-500 km apart from the trough. The mean dislocation densities of olivine are 2 × 10 6 cm -2 for Oki-Dogo, 8 × 10 6 cm -2 for Takashima, 1 × 10 7 cm -2 for Hamada, 5 × 10 7 cm -2 for Aratoyama, 4 × 10 7 cm -2 for Kikuma, 3 × 10 7 cm -2 for Dogo, and 5 × 10 6 cm -2 for Shingu peridotites. It is concluded that the differential stress is high in the uppermost mantle beneath the island arc and low in the back-arc and the mantle wedge behind the plate boundary. The lateral variation of stress may be due to the diapiric upwelling of upper mantle materials under the island arc. The size of the diapir is suggested to be 200 km in width and 60-150 km in depth.

  8. Lateral human-structure interaction on footbridges

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór; Georgakis, Christos; Ricciardelli, Francesco


    In recent years, several high-profile footbridges have suffered from unexpected excessive pedestrian-induced lateral vibrations. There is a commonly accepted view that the synchronisation of pedestrians to the lateral movement of a structure is necessary for the onset of a form of instability which....... The tests reveal that synchronisation is not a pre-condition for the development of large amplitude lateral vibrations on footbridges, as walking frequencies and phase angles remain largely unaffected by lateral motion at most frequencies and amplitudes. Instead, large amplitude vibrations are the result...

  9. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu


    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...... and suspended load descriptions forming the basis for seabed morphology. The model was successfully validated against experimental measurements involving scour development and eventual equilibrium in pure-current flows over a range of Shields parameters characteristic of both clear-water and live-bed regimes....... This validation complements previously demonstrated accuracy for the same model in simulating pipeline scour processes in pure-wave environments. The model was subsequently utilized to simulate combined wave-plus-current scour over a wide range of combined Keulegan–Carpenter numbers and relative current strengths...

  10. Locating voids beneath pavement using pulsed electromagnetic waves (United States)

    Steinway, W. J.; Echard, J. D.; Luke, C. M.


    The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.

  11. Synchrotron X-ray tests of an L-shaped laterally graded multilayer mirror for the analyzer system of the ultra-high-resolution IXS spectrometer at NSLS-II. (United States)

    Honnicke, Marcelo G; Keister, Jeffrey W; Conley, Raymond; Kaznatcheev, Konstantine; Takacs, Peter Z; Coburn, David Scott; Reffi, Leo; Cai, Yong Q


    Characterization and testing of an L-shaped laterally graded multilayer mirror are presented. This mirror is designed as a two-dimensional collimating optics for the analyzer system of the ultra-high-resolution inelastic X-ray scattering (IXS) spectrometer at National Synchrotron Light Source II (NSLS-II). The characterization includes point-to-point reflectivity measurements, lattice parameter determination and mirror metrology (figure, slope error and roughness). The synchrotron X-ray test of the mirror was carried out reversely as a focusing device. The results show that the L-shaped laterally graded multilayer mirror is suitable to be used, with high efficiency, for the analyzer system of the IXS spectrometer at NSLS-II.

  12. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...

  13. Lateral Thinking of Prospective Teachers (United States)

    Lawrence, A. S. Arul; Xavier, S. Amaladoss


    Edward de Bono who invented the term "lateral thinking" in 1967 is the pioneer of lateral thinking. Lateral thinking is concerned with the generation of new ideas. Liberation from old ideas and the stimulation of new ones are twin aspects of lateral thinking. Lateral thinking is a creative skills from which all people can benefit…

  14. Magma source beneath the Bezymianny volcano and its interconnection with Klyuchevskoy inferred from local earthquake seismic tomography (United States)

    Ivanov, A. I.; Koulakov, I. Yu.; West, M.; Jakovlev, A. V.; Gordeev, E. I.; Senyukov, S.; Chebrov, V. N.


    We present a new 3D model of P and S wave velocities and Vp/Vs ratio to 20 km depth beneath the active Klyuchevskoy and Bezymianny volcanoes (Kamchatka, Russia). In this study, we use travel time data from local seismicity recorded by temporary stations of the PIRE experiment from October 24 to December 15, 2009 and permanent stations operated by the Kamchatkan Branch of Geophysical Survey (KBGS). The calculations were performed using the LOTOS code (Koulakov, 2009). The resolution limitations were explored using a series of synthetic tests with checkerboard patterns in the horizontal and vertical sections. At shallow depths, the resulting Vp and Vs anomalies tend to alternate on opposite sides of the lineation connecting the most active volcanic centers of the Klyuchevskoy Volcanic Group (KVG). This prominent lineation suggests the presence of a large fault zone passing throughout the KVG, consistent with regional tectonics. We suggest that this fault zone weakens the crust creating a natural pathway for magmas to reach the upper crust. Beneath Bezymianny volcano we observe a shallow anomaly of high Vp/Vs ratio extending to 5-6 km depth. Beneath Klyuchevskoy another high Vp/Vs anomaly is observed, at deeper depths of 7 and 15 km. These findings are consistent with the regional-scale model of Koulakov et al. (2013a) and provide some explanation for how very different eruption styles can be maintained at two volcanoes in close proximity over numerous eruption cycles.

  15. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)


    We used 71670 P-wave arrival times from 3594 earthquakes recorded by the Sichuan and Yunnan seismic networks to determine the three-dimensional P-wave velocity structure in the crust and uppermost mantle beneath the southeastern Tibetan Plateau. Our results show that prominent low P-wave velocity (low-Vp) anomalies exist in the midto lower crust of the Song- pan-Ganze and Sichuan-Yunnan blocks. In contrast, a high P-wave velocity (high-Vp) anomaly is resolved in the middle and lower crust beneath the Sichuan Basin. Our tomographic results provide seismic evidence for a dynamic model of lower crustal flow. Ongoing lower crustal flow beneath the central and eastern Tibetan Plateau abuts against the mechanically strong Si- chuan Basin resulting in accumulated strain in the Longmen Shan region. When a critical accumulation of strain energy was reached, its sudden release led to the occurrence of 2008 Wenchuan earthquake. Pronounced low-Vp anomalies are observed in the uppermost mantle in the region south of ~26°N. Combining these results with shear-wave splitting investigations, we suggest that the flow of asthenospheric material has impacted the velocity structure of the uppermost mantle and caused the thinning of the southwestern Yangtze Craton.

  16. Decoupling of Pacific subduction zone guided waves beneath central Japan: Evidence for thin slab (United States)

    Padhy, Simanchal; Furumura, Takashi; Maeda, Takuto


    The fine-scale seismic structure of the northeast Japan subduction zone is studied based on waveform analyses of moderate-sized (M4.5-6), deep-focus earthquakes (h >350 km) and the finite difference method (FDM) simulation of high-frequency (up to 8 Hz) wave propagation. Strong regional S wave attenuation anomalies for specific source-receiver paths connecting the cluster of events occurring in central part of the Sea of Japan recorded at fore arc stations in northern and central Japanese Islands (Honshu) are used to model the deeper structure of the subducting Pacific Plate, where recent teleseismic tomography has shown evidence for a possible slab tear westward beneath the Sea of Japan. The character of the observed anomalous S wave attenuation and the following high-frequency coda can be captured with the two-dimensional (2-D) FDM simulation of seismic waves in heterogeneous plate model, incorporating the thinning of the plate at depth, which is also compared with other possible causes of dramatic attenuation of high-frequency S wave due to low-Q or much weaker heterogeneities in the slab. The results of simulation clearly demonstrate that the dramatic loss of high-frequency S wavefield from the plate into the surrounding mantle occurred due to the variation in the plate geometry (i.e., thinning of the plate) at depth near the source rather than due to variation in physical properties, such as due to the lowered-Q and weaker heterogeneities in the plate. The presence of such a thin zone defocuses the high-frequency slab-guided S wave energy from the subducting plate into the surrounding mantle and acts as a geometric antiwaveguide. Based on the sequence of simulation results obtained, we propose thinning of Pacific Plate at depth subducting beneath northeastern Japan, localized to central part of Honshu, in agreement with the observations.

  17. Onset dominance in lateralization. (United States)

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C


    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  18. Laterality and reproductive indices. (United States)

    Kalichman, Leonid; Kobyliansky, Eugene


    Several previous studies support the association between manual dominance and age at menarche or age at menopause. The aim of the present study was to estimate the association between indices of laterality and reproductive indices. The studied sample comprised 650 Chuvashian women aged 18 to 80 years (mean, 46.9; SD = 16.2). The independent-sample t test was used to compare the age at menarche or age at menopause between individuals with right or left dominance of handedness, dominant eye, hand clasping, and arm folding. No significant differences in age at menarche or age at menopause between women with right and left dominance in any of the studied laterality indices were found. This is the first study that simultaneously evaluates the association between dominance in four laterality indices (handedness, dominant eye, hand clasping, and arm folding) and two reproductive indices (age at menarche and age at menopause). Result of our study do not support the hypothesis of a possible association between handedness (and other indices of laterality) and an early age at menarche or age at natural menopause.

  19. Double layering of a thermochemical plume in the upper mantle beneath Hawaii (United States)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Cadio, C.; Solomon, S. C.


    Volcanism far from plate boundaries has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (Iceland, are indeed well explained by near-classical thermal plumes. High-resolution seismic velocity images obtained from the PLUME project support the concept of a deep-rooted mantle plume beneath the Hawaiian hotspot. However, in detail these images challenge traditional concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a classical pancake. Classical plume theory is, moreover, inconsistent with several geochemical characteristics of Hawaiian magmas, which point to a heterogeneous mantle source involving mafic lithologies such as eclogite and not an exclusively thermal (i.e., isochemical) origin¹. To explore the dynamical and melting behavior of plumes containing a substantial fraction (~15%) of eclogite, we performed three-dimensional numerical simulations of thermochemical convection. Relative to ambient-mantle peridotite, eclogite is intrinsically dense. This density contrast is sensitive to phase changes in the upper mantle; the contrast peaks at 410-300 km and lessens at about 250-190 km depth, where eclogite is subsequently removed by melting. For a plume core with an eclogite content >12%, these effects locally increase the density beyond that of the ambient mantle. Therefore, the upwelling column forms a broad and thick pool at depths of 450-300 km (which we term the deep eclogite pool, or DEP). As the DEP is well supported by the deeper stem of the plume and its non-eclogitic outskirts, it inflates to release a shallow thermal plume. This latter plume sustains hotspot volcanism and feeds a hot shallow pancake that compensates the seafloor swell. Our model predictions reconcile a range of characteristics for Hawaiian volcanism. We find

  20. Thermal-rheological structure of the lithosphere beneath Jiyang Depression: Its implications for geodynamics

    Institute of Scientific and Technical Information of China (English)

    LIU Shaowen; WANG Liangshu; GONG Yuling; LI Cheng; LI Hua; HAN Yongbing


    Jiyang Depression, located in the southeast Bohai Bay Basin, has the geomorphologic framework of multiple uplifts intervening with sags. Combined the abundant geo-temperature data and thermo-physical parameters of rock samples derived from oil and gas exploration during the past years, with geothermal approaches, here we investigate the lithospheric thermal regime of this depression. Consequently, based on the obtained thermal structure of the lithosphere, along with rheological modeling, the lithospheric rheological profiles of Jiyang Depression are then determined. Our results show that the temperature at the bottom of sedimentary cover within depression varies from 129℃ to 298℃, accompanied with the basement heat flow ranging between 54.3 and 60.5 mW/m2; and 406℃-436℃ for temperature at the bottom of the upper crust, along with heat flow varying from 47.7 to 52.6 mW/m2; while the temperature at the bottom of the middle crust is between 537℃ and 572℃, as well as heat flow ranging from 41.3 to 56.3 mW/m2. The temperature at Moho ranges from 669℃ to 721℃, the heat flow derived from mantle is between 38.1 and 43.1 mW/m2, and calculated thickness of the thermal lithosphere beneath depression varies from 71 to 90 km. Lithospheric thermal regime is a close correlation with such factors as crustal thickness and surface heat flow, etc. Usually, the larger the surface heat flow, the larger the deep temperature and heat flow within lithosphere, and the thinner the thermal lithospheric thickness. This high thermal regime of the lithosphere in Jiyang Depression is thought to be related to Cenozoic back-arc spreading during the western Pacific plate subduction into Eurasian continent. Lithospheric rheological modeling shows that the lithosphere in Jiyang Depression is characterized by its distinct rheological stratification as follows: The upper and most part of the middle crust are of brittle, while the lower crust and the lower part of middle crust are all

  1. Seismic structure and composition of the crust beneath the southern Scandes, Norway

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Thybo, Hans


    New results on P and S-wave seismic velocity structure in southern Norway indicate that the crust has an average Poisson's ratio of 0.25, is predominantly of felsic-intermediate composition and lacks a significant mafic lower crust. A crustal scale refraction seismic study (Magnus-Rex — Mantle...... investigations of Norwegian uplift structure, refraction experiment) acquired data along three 300 to 400 km long active source seismic profiles across the Southwest Scandinavian Domain in southern Norway, the youngest section of the Fennoscandian shield. Moho depths in the Domain are 36–40 km, thinning towards...... the continental shelf and Oslo Graben. The high Vp lower crust beneath the Southwest Scandinavian Domain (Vp > 7 km/s) is around 4 km thick. Crustal structure in the adjacent Svecofennian Domain differs significantly; Moho depths reach ~ 50 km and an up to 24 km thick high Vp lower crust is present. Strong P...

  2. Seismic Evidence for a Low-Velocity Zone in the Upper Crust Beneath Mount Vesuvius (United States)

    Zollo, A.; Gasparini, P.; Virieux, J.; Le Meur, H.; de Natale, G.; Biella, G.; Boschi, E.; Capuano, P.; de Franco, R.; dell'Aversna, P.; de Matteis, R.; Guerra, I.; Iannaccone, G.; Mirabile, L.; Vilardo, G.


    A two-dimensional active seismic experiment was performed on Mount Vesuvius: Explosive charges were set off at three sites, and the seismic signal along a dense line of 82 seismometers was recorded. A high-velocity basement, formed by Mesozoic carbonates, was identified 2 to 3 kilometers beneath the volcano. A slower (P-wave velocity V_P backsimeq 3.4 to 3.8 kilometers per second) and shallower high-velocity zone underlies the central part of the volcano. Large-amplitude late arrivals with a dominant horizontal wave motion and low-frequency content were identified as a P to S phase converted at a depth of about 10 kilometers at the top of a low-velocity zone (V_P < 3 kilometers per second), which might represent a melting zone.

  3. Seismicity and average velocities beneath the Argentine Puna Plateau (United States)

    Schurr, B.; Asch, G.; Rietbrock, A.; Kind, R.; Pardo, M.; Heit, B.; Monfret, T.

    A network of 60 seismographs was deployed across the Andes at ∼23.5°S. The array was centered in the backarc, atop the Puna high plateau in NW Argentina. P and S arrival times of 426 intermediate depth earthquakes were inverted for 1-D velocity structure and hypocentral coordinates. Average velocities and υp/υs in the crust are low. Average mantle velocities are high but difficult to interpret because of the presence of a fast velocity slab at depth. Although the hypocenters sharply define a 35° dipping Benioff zone, seismicity in the slab is not continuous. The spatial clustering of earthquakes is thought to reflect inherited heterogeneties of the subducted oceanic lithosphere. Additionally, 57 crustal earthquakes were located. Seismicity concentrates in the fold and thrust belt of the foreland and Eastern Cordillera, and along and south of the El Toro-Olacapato-Calama Lineament (TOCL). Focal mechanisms of two earthquakes at this structure exhibit left lateral strike-slip mechanisms similar to the suggested kinematics of the TOCL. We believe that the Puna north of the TOCL behaves like a rigid block with little internal deformation, whereas the area south of the TOCL is weaker and currently deforming.

  4. Slab melting and magma formation beneath the southern Cascade arc (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.


    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  5. On the origin of the anisotropy observed beneath the westernmost Mediterranean region (United States)

    Diaz, Jordi


    The Iberian Peninsula and Northern Morocco region provides an excellent opportunity to investigate the origin of subcrustal anisotropy. Following the TopoIberia-Iberarray experiment, anisotropic properties have been explored in a dense network of 60x60 km spaced broad-band stations, resulting in more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform and covering more than 6000.000 km2. The rather uniform N100°E FPD retrieved beneath the Variscan Central Iberian Massif is consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The origin of this anisotropy is hence globally related to the lattice preferred orientation of mantle minerals generated by mantle flow at asthenospheric depths, although significant regional variations are observed. The anisotropic parameters retrieved from single events providing high quality data show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems have to be considered there. The rotation of the FDE along the Gibraltar arc following the curvature of the Rif-Betic chain has been interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Gibraltar Arc. Beneath the SW corner of Iberia and the High Atlas zone, small delay times and inconsistent FPD have been detected, suggesting the presence of vertical mantle flow affecting the anisotropic structure of the asthenosphere. Future developments will include a better integration with the anisotropic estimations provided by Pn tomography and, in particular, with those arising from surface wave tomographic inversions using TopoIberia-Ibearray results. Additionally, the contribution of crustal anisotropy could be estimated from the analysis of receiver functions. The detailed knowledge on the

  6. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples (United States)

    Ramage, Jason G.; Prentice, Kristin W.; DePalma, Lindsay; Venkateswaran, Kodumudi S.; Chivukula, Sruti; Chapman, Carol; Bell, Melissa; Datta, Shomik; Singh, Ajay; Hoffmaster, Alex; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi; Thirunavkkarasu, Nagarajan; Krishnan, Viswanathan; Morse, Stephen; Avila, Julie R.; Sharma, Shashi; Estacio, Peter L.; Stanker, Larry; Hodge, David R.


    We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert® test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 106 spores/mL (ca. 1.5 × 105 spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores. PMID:27661796

  7. An inexpensive and innovative correction of medial compartmental osteoarthritis knee joint by high tibial lateral closed wedge osteotomy in a rural set up

    Directory of Open Access Journals (Sweden)

    Prasad DV, Arun AA, Tushar Chaudhari, Sagar Jawale, Shakthi Panda, Abhinav Jadhav, Deepak Dathrange


    Full Text Available Osteoarthritis of Knee joint with Varus deformity causes considerable disability. Operative treatment aims at shifting the mechanical load bearing axis to the less affected compartment of the knee to relieve the symptoms. Exclusion Criteria: Non-walkers due to generalized arthropathies / medical comorbidities, Flexion deformity > 10 degrees, Range of motion 1cm lateral subluxation in standing A-P X rays of both knees. Methodology: 32 (12 Males and 20 Females cases of Medial compartment osteoarthritis presenting in our OPD between 2008-2012 were treated by HTOand cortical screw and SS wire fixation (TBW Technique. Results: Evaluation of results was done based on knee rating scale by Japanese orthopaedic association. 22 cases were Excellent, 8 cases were good. One case of failure, an iatrogenic intracondylar fracture of Tibia, and another secondary haematoma under the suture line, aspirated and complete healing was achieved. Patients had good range of motion, were able to squat and sit cross legged comfortably. Conclusion: HTO by Closed Medial wedge osteotomy and fixation with cortical screw and SS wire provides a good alternative to unicompartmental knee Arthroplasty and even Total knee Arthroplasty (may be up to 10-15 years in patients with Medial compartmental osteoarthritis. It is a cost effective technique with the use of minimum hardware and early postoperative mobilization in patients who cannot afford Knee Arthroplasty in a Rural set up.

  8. Highly enantioselective (-)-sparteine-mediated lateral metalation-functionalization of remote silyl protected ortho-ethyl N,N-dialkyl aryl O-carbamates. (United States)

    Fässler, Jürg; McCubbin, J Adam; Roglans, Anna; Kimachi, Tetsutaro; Hollett, Joshua W; Kunz, Roland W; Tinkl, Michael; Zhang, Yousheng; Wang, Ruiyao; Campbell, Michael; Snieckus, Victor


    We report the enantioselective, lateral deprotonation of ortho-protected or functionalized tertiary N,N-dialkyl aryl O-carbamates 5-7 (Scheme 2 ) and meta-protected carbamates 14, 15, and 20 (Schemes 5 and 7 ) by s-BuLi/(-)-sparteine and subsequent quench with a variety of electrophiles to give products 11-13 and 16, 17, and 21 in yields up to 96% and enantiomeric ratios up to 99:1. The influence of organolithium reagents, ratio of organolithium/(-)-sparteine pair versus N,N-dialkyl aryl O-carbamate starting materials, temperature, solvents, electrophiles, substituents located ortho or meta to the O-carbamate moiety, and O-carbamate N-substituents was investigated. The identical absolute configuration of the stereogenic center of the major enantiomers of the products, as established by single-crystal X-ray analysis for substrates (S)-11c, (S)-19, and (S)-21a, provides evidence for a consistent stereochemical course in the enantioselective deprotonation. Mechanistic investigations, including an estimate of the configurational stability of the benzyllithium species 9 (starting from 12e; Scheme 8 ) and 23 (starting from 17e; Scheme 9 ), both derived by tin-lithium exchange, and 24 (starting from 20; Scheme 9 ) are reported. The experimental results, together with semiempirical molecular orbital calculations (PM3/SMD), are consistent with a process in which enantioinduction occurs in the deprotonation step (Scheme 11 ).

  9. Downbursts and microbursts - An aviation hazard. [downdrafts beneath thunderstorms (United States)

    Fujita, T. T.


    Downburst and microburst phenomena occurring since 1975 are studied, based on meteorological analyses of aircraft accidents, aerial surveys of wind effects left behind downbursts, and studies of sub-mesoscale wind systems. It is concluded that microbursts beneath small, air mass thunderstorms are unpredictable in terms of weather forecast. Most aircraft incidents, however, were found to have occurred in the summer months, June through August. An intense microburst could produce 150 mph horizontal winds as well as 60 fps downflows at the tree-top level. The largest contributing factor to aircraft difficulties seemed to be a combination of the headwind decrease and the downflow. Anemometers and/or pressure sensors placed near runways were found effective for detecting gust fronts, but not for detecting downbursts. It is recommended that new detection systems placed on the ground or airborne, be developed, and that pilots be trained for simulated landing and go-around through microbursts.

  10. Ocean mixing beneath Pine Island Glacier Ice Shelf (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne


    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  11. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong


    We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.

  12. Subglacial lake drainage detected beneath the Greenland ice sheet. (United States)

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu


    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response--a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future.

  13. Subglacial lake drainage detected beneath the Greenland ice sheet (United States)

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu


    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future. PMID:26450175

  14. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange (United States)

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.


    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  15. Lateral Attitude Change. (United States)

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd


    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented.

  16. [Lateral lumbar disk herniation]. (United States)

    Deburge, A; Barre, E; Guigui, P

    A retrospective study of 41 lateral discal hernias observed between 1984 and 1991 were studied among the 1080 discal hernias treated during this period. CT scan, performed in all cases, distinguished several different types of hernia: foramen hernias (26), extraforamen hernias (12), mixed forms (5) associated with canal component (11). Thirteen disco scans were required. Nucleolysis was performed in 24 patients (58%) and surgical treatment was the first intention choice in 17 (41%). Outcome, evaluated with a function score developed in the unit were good in the 17 surgery cases (100%). In the nucleolysis patients results were good or excellent in 13, average in 4, and poor in 7. Five of the nucleolysis failures were later operated leading to good results in 3, average in 1 and no change in 1. Indications for surgery are more frequent in this type of discal hernia and results in our surgical series were better than those for chemonucleolysis.

  17. Seismic anisotropy and velocity structure beneath the southern half of the Iberian Peninsula (United States)

    Serrano, I.; Hearn, T. M.; Morales, J.; Torcal, F.


    Travel times of 11,612 Pn arrivals collected from 7675 earthquakes are inverted to image the uppermost mantle velocity and anisotropy structure beneath the southern half of the Iberian Peninsula and surrounding regions. Pn phases are routinely identified and picked for epicentral distances from 200 to 1200 km. The method used in this study allows simultaneous imaging of variations of Pn velocity and anisotropy. The results show an average uppermost mantle velocity beneath the study area of 8.0 km/s. The peninsular area covered by the Iberian massif is characterized by high Pn velocity, as expected in tectonically stable regions, indicating areas of the Hercynian belt that have not recently been reactivated. The margins of the Iberian Peninsula have undergone a great number of recent tectonic events and are characterized by a pronouncedly low Pn velocity, as is common in areas greatly affected by recent tectonic and magmatic activity. Our model indicates that the Betic crustal root might be underlined by a negative anomaly beneath the southeastern Iberian Peninsula. In the Atlantic Ocean, we find a sharp variation in the uppermost mantle velocities that coincides with the structural complexity of the European and African plate boundary in the Gulf of Cadiz. Our results show a very pronounced low-velocity anomaly offshore from Cape San Vicente whereas high velocities are distributed along the coast in the Gulf of Cadiz. In the Alboran Sea and northern Morocco, the direction of the fastest Pn velocity found is almost parallel to the Africa-Eurasia plate convergence vector (northwest-southeast) whereas to the north, this direction is almost parallel to the main trend of the Betic Cordillera, i.e. east-west in its central part and north-south in the curvature of the Arc of Gibraltar. This suggests that a significant portion of the uppermost mantle has been involved in the orogenic deformation that produced the arcuate structure of the Betic Cordillera. However, we

  18. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.


    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....

  19. Anatomy of the lateral antebrachial cutaneous nerve in relation to the lateral epicondyle and cephalic vein. (United States)

    Wongkerdsook, Wachara; Agthong, Sithiporn; Amarase, Chavarin; Yotnuengnit, Pattarapol; Huanmanop, Thanasil; Chentanez, Vilai


    The lateral antebrachial cutaneous nerve (LACN) is the terminal sensory branch of the musculocutaneous nerve supplying the lateral aspect of forearm. Because of its close proximity to the biceps brachii tendon (BBT), the lateral epicondyle (LE), and the cephalic vein (CV), surgery and venipuncture in the cubital fossa can injure the LACN. Measurement data regarding the relative anatomy of LACN are scarce. We, therefore, dissected 96 upper extremities from 26 males and 22 females to expose the LACN in the cubital fossa and forearm. The LACN consistently emerged from the lateral margin of BBT. It then pierced the deep fascia distal to the interepicondylar line (IEL) in 84.4% with mean distances of 1.8 ± 1.1 and 1.2 ± 0.9 cm (male and female, respectively). At the level of IEL, the LACN in all cases was medial to the LE (5.9 ± 1.1 cm male and 5.2 ± 0.9 cm female). Two types of branching were observed: single trunk (78.1%) and bifurcation (21.9%). Asymmetry in the branching pattern was observed in 6 males and 1 female. Concerning the relationship to the CV, the LACN ran medially within 1 cm at the level of IEL in 78.7%. Moreover, in 10 specimens, the LACN was directly beneath the CV. In the forearm, the LACN tends to course medial to the CV. Significant differences in the measurement data between genders but not sides were found in some parameters. These data are important for avoiding LACN injury and locating the LACN during relevant medical procedures.

  20. Lateral Elbow Tendinopathy (United States)

    Bhabra, Gev; Wang, Allan; Ebert, Jay R.; Edwards, Peter; Zheng, Monica; Zheng, Ming H.


    Lateral elbow tendinopathy, commonly known as tennis elbow, is a condition that can cause significant functional impairment in working-age patients. The term tendinopathy is used to describe chronic overuse tendon disorders encompassing a group of pathologies, a spectrum of disease. This review details the pathophysiology of tendinopathy and tendon healing as an introduction for a system grading the severity of tendinopathy, with each of the 4 grades displaying distinct histopathological features. Currently, there are a large number of nonoperative treatments available for lateral elbow tendinopathy, with little guidance as to when and how to use them. In fact, an appraisal of the clinical trials, systematic reviews, and meta-analyses studying these treatment modalities reveals that no single treatment reliably achieves outstanding results. This may be due in part to the majority of clinical studies to date including all patients with chronic tendinopathy rather than attempting to categorize patients according to the severity of disease. We relate the pathophysiology of the different grades of tendinopathy to the basic science principles that underpin the mechanisms of action of the nonoperative treatments available to propose a treatment algorithm guiding the management of lateral elbow tendinopathy depending on severity. We believe that this system will be useful both in clinical practice and for the future investigation of the efficacy of treatments. PMID:27833925

  1. C-reactive protein and later preeclampsia

    DEFF Research Database (Denmark)

    Rebelo, Fernanda; Schlüssel, Michael M; Vaz, Juliana S;


    This study aims to determine whether high C-reactive protein (CRP) concentration during pregnancy is associated with later preeclampsia and whether weight status (BMI) is a potential modifier of the relation between CRP and preeclampsia.......This study aims to determine whether high C-reactive protein (CRP) concentration during pregnancy is associated with later preeclampsia and whether weight status (BMI) is a potential modifier of the relation between CRP and preeclampsia....

  2. Moulin density controls drainage development beneath the Greenland ice sheet (United States)

    Banwell, Alison; Hewitt, Ian; Willis, Ian; Arnold, Neil


    Uncertainty remains about how the surface hydrology of the Greenland ice sheet influences its subglacial drainage system, affecting basal water pressures and ice velocities, particularly over intraseasonal and interseasonal timescales. Here we apply a high spatial (200 m) and temporal (1 h) resolution subglacial hydrological model to a marginal (extending 25 km inland), land-terminating, 200 km2 domain in the Paakitsoq region, West Greenland. The model is based on that by Hewitt (2013) but adapted for use with both real topographic boundary conditions and calibrated modeled water inputs. The inputs consist of moulin hydrographs, calculated by a surface routing and lake-filling/draining model, which is forced with distributed runoff from a surface energy-balance model. Results suggest that the areal density of lake-bottom moulins and their timing of opening during the melt season strongly affects subglacial drainage system development. A higher moulin density causes an earlier onset of subglacial channelization (i.e., water transport through channels rather than the distributed sheet), which becomes relatively widespread across the bed, whereas a lower moulin density results in a later onset of channelization that becomes less widespread across the bed. In turn, moulin density has a strong control on spatial and temporal variations in subglacial water pressures, which will influence basal sliding rates, and thus ice motion. The density of active surface-to-bed connections should be considered alongside surface melt intensity and extent in future predictions of the ice sheet's dynamics.

  3. Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains (United States)

    Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol


    The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly

  4. Detailed crustal thickness variations beneath the Illinois Basin area: Implications for crustal evolution of the midcontinent (United States)

    Yang, Xiaotao; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Gilbert, Hersh; Rupp, John; Larson, Timothy H.; Chen, Chen; Carpenter, N. Seth


    We present high-resolution imaging results of crustal and upper mantle velocity discontinuities across the Illinois Basin area using both common conversion point stacking and plane wave migration methods applied to P wave receiver functions from the EarthScope Ozark, Illinois, Indiana, and Kentucky experiment. The images reveal unusually thick crust (up to 62 km) throughout the central and southeastern Illinois Basin area. A significant Moho gradient underlies the NW trending Ste. Genevieve Fault Zone, which delineates the boundary between the Illinois Basin and Ozark Dome. Relatively thinner crust (convergent margin tectonics around 1.55-1.35 Ga; (3) by Late Precambrian magmatic underplating at the base of older crust, associated with the creation of the Eastern Granite-Rhyolite Province around 1.3 Ga; and (4) through crustal "relamination" during an episode of Proterozoic flat-slab subduction beneath the Illinois Basin, possibly associated with the Grenville Orogeny.

  5. Horizontally opposed trunnion forward engine mount system supported beneath a wing pylon (United States)

    Seaquist, John D. (Inventor); Culbertson, Chris (Inventor)


    The present invention relates to an engine mount assembly for supporting an aircraft engine in aft-cantilevered position beneath the aircraft wing. The assembly includes a pair forward engine mounts positioned on opposite sides of an integrally formed yoke member wrapped about the upper half of the engine casing. Each side of the yoke is preferably configured as an A-shaped frame member with the bottom portions joining each other and the pylon. To prevent backbone bending of the engine trunnion assembly, the forward engine mounts supported at opposite ends of the yoke engage the casing along its centerline. The trunnion assembly is preferably constructed of high strength titanium machined and/or forged.

  6. Progress on the seismic anisotropy knowledge beneath Iberia and northern Morocco: the contribution of the second Topoiberia-Iberarray deployment (United States)

    Diaz Cusí, J.; Gallart, J.


    In summer 2009 the dense Iberarray broad-band seismic network deployed in the framework of the large-scale TopoIberia project moved to its second footprint. Up to 55 stations covered the central part of the Iberian Peninsula for roughly 18 months, distributed in a regular grid with a nominal spacing of 60 km. 19 additional stations, active since late 2007 in the Northern part of Morocco, were moved southwards during the summer 2010 to the High Atlas, thus extending the investigated area. Continuous data from all the permanent broad-band networks covering the region have also been gathered to produce a complete database. We focus here in the results constraining the presence of anisotropy as evidenced from the analysis of splitted teleseismic phases. Few anisotropic results in the area covered by this IberArray deployment have been published till now, all of them coming from a scarce number of permanent stations. The results here presented extend the anisotropic map obtained from the first TopoIberia-Iberarray deployment in the Betics-Alboran zone (Díaz et al, 2010). The inferred fast polarization directions (FPD) clearly document a spectacular rotation along the Gibraltar arc, following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. The stations beneath the Central Iberian Massif present a small amount of anisotropy, oriented roughly E-W. Beneath SW Iberia, within the Variscan Ossa-Morena zone, the dominant orientation changes to NNE-SSW, the induced time delays are smaller and a number of good quality measurements show no evidences for anisotropy. Beneath Eastern Iberia, the NE-SW and E-W FPD observed respectively in the Betics and Central Iberia seems to converge, without any indication of an abrupt change similar to that evidenced in the southern part of the Gibraltar arc. The preliminary data of the stations located in the High Atlas show a small degree of anisotropy, with rather unconstrained

  7. From the Surface Topography to the Upper Mantle Beneath Central-Iberian-Zone. the Alcudia Seismic Experiments. (United States)

    Carbonell, R.; Ehsan, S. A.; Ayarza, P.; Martinez-Poyatos, D. J.; Simancas, J. F.; Azor, A.; Pérez-Estaún, A.


    Normal incidence and wide-angle seismic reflection data acquired in the Central and southern parts of the Iberia Peninsula resolve the internal architecture and constrain the distribution of the physical properties along an almost 350 km long transect that samples the major tectonic domains of the Iberian Massif, including the Central Iberian Zone (CIZ) and the associated sutures. The internal architecture down to almost 70 km depth (~15 s TWTT) is resolved by the normal incidence data set. It images a number of elements that characterize the tectonics of the study area, which is one of the best exposed fragment of the Variscan orogenic Belt. A well marked brittle-to-ductile (B2D) transition separates the crust in two, the upper and mid-lower parts, approximately, 13 km and 18 km thick, respectively. The upper crust appears to be decoupled from the mid-lower crust and responded differently to shortening. The Mohorovicic discontinuity is located at ~10.5 s (TWTT) , it is relatively thick, and highly reflective beneath the CIZ. The wide-angle seismic transect extended the lithospheric section towards the north across the Madrid Basin. This profile provides very strong constraints on the distribution of physical properties (P- and S- wave velocities, Poisson's ratio) of the upper lithosphere as well as a high resolution image of the base of the crust beneath the area. This data is one of the first datasets to present solid evidence of a relatively significant crustal thickening beneath the Madrid Basin. The crustal thickness varies from ~31 km beneath the CIZ to ~35.5 km beneath the Madrid Basin. This data set also reveals two major discontinuity levels, the B2D and the Moho, both represent levels of lithological/rheological variations. The characteristics of the the PmP and SmS seismic phases suggest further details on the internal structure of the Moho. Furthermore, low fold wide-angle P and S wave stacks reveal a marked crust-mantle transition which is most

  8. Electrical structure beneath Schirmacher Oasis, East Antarctica: a magnetotelluric study

    Directory of Open Access Journals (Sweden)

    D.N. Murthy


    Full Text Available Maitri Station (70.76°S; 11.73°E is located in Schirmacher Oasis, a coastal nunatak in north-central Dronning Maud Land covering an area of 35 km2. Here, we report results from the first magnetotelluric experiments and delineate the deep electrical conductivity structure under Schirmacher Oasis using the data acquired during the 24th Indian Antarctic Scientific Expedition. The magnetotelluric method has the advantage of shallow to deeper level coverage as the data acquisition covers a wide frequency band of 10−3–103 Hz, permitting different penetration depths depending on the frequency and conductivity of the layer under investigation. The modelling results indicate the presence of a highly resistive (8000–10 000 ohm m upper crust, which shows a lateral variation in thickness from 20 km (below site 6 in the east to 10 km (between sites 1 and 2 in the west. It is underlain by a less resistive (500–600 ohm m lower crust. The highly resistive upper crustal structure supports the existing notion that western Dronning Maud Land is a stable, cratonic platform. Results of free-air gravity, seismic, geomagnetic and surface wave dispersion investigations in East Antarctica also indicate a cratonic-type crust. The results of our study allow us to identify a westward thinning of the upper crust with a marked boundary between sites 1 and 2. We also find evidence for the continuity of the Mozambique mobile belt in East Antarctica on the western side of Schirmacher Oasis.

  9. Upper Mantle Composition Beneath the Petit-Spot Area in Northwestern Pacific: Insights From Electrical Conductivity (United States)

    Baba, K.; Ichiki, M.; Abe, N.; Hirano, N.


    The mantle composition beneath the petit-spot area, where is about 500 km offshore from Japan Trench in northwestern Pacific, is discussed through electrical conductivity obtained by seafloor magnetotelluric (MT) survey. The seafloor MT data were collected using ocean bottom electromagnetometers (OBEMs) at four sites with the spacing of 100-150 km, between May and August, 2005. The survey was conducted as a part of the petit-spot multidsciplinary project. The petit-spot is young volcanic activity on very old (~130 Ma) oceanic plate characterized as a clump of small knolls which erupted strong to moderate alkaline basalt. This volcanic field is associated with neither any plate boundaries nor hot spots. To elucidate the magma generation process of this new-type volcanic activity, a collaborative study of various geophysical and geochemical approaches has been carried out. The MT survey aims to constrain the physical state of the lithosphere and asthenosphere where the petit-spot melt is probably generated. The acquired electromagnetic field variation data were analyzed and the MT responses, which is the transfer function between the electric and magnetic fields, were obtained. The effect for the ocean-land distribution and seafloor topography on the MT responses was modeled and stripped. As the result, the corrected responses indicate that the lateral heterogeneity in electrical conductivity is less significant beneath the survey area. One- dimensional inversion study shows that the data require a peak in conductivity (0.05 S/m) at about 200 km depth. The mantle temperature may be calculated from the conductivity using an experimental result for dry olivine (Constable et al., 1992). The resultant temperature is about 1750 °C which is lower than the dry solidus for garnet peridotite. Instead, assuming the temperature as GDH1 model (Stein and Stein, 1992) for 130 Myr old mantle, we calculate water content in olivine using an experimental result by Wang et al. (2006

  10. Seismic attenuation structure associated with episodic tremor and slip zone beneath Shikoku and the Kii peninsula, southwestern Japan, in the Nankai subduction zone (United States)

    Kita, Saeko; Matsubara, Makoto


    The three-dimensional seismic attenuation structure (frequency-independent Q) beneath southwestern Japan was analyzed using t* estimated by applying the S coda wave spectral ratio method to the waveform data from a dense permanent seismic network. The seismic attenuation (Qp-1) structure is clearly imaged for the region beneath Shikoku, the Kii peninsula, and eastern Kyushu at depths down to approximately 50 km. At depths of 5 to 35 km, the seismic attenuation structure changes at the Median tectonic line and other geological boundaries beneath Shikoku and the southwestern Kii peninsula. High-Qp zones within the lower crust of the overlying plate are found just above the slip regions at the centers of the long-term slow-slip events (SSEs) beneath the Bungo and Kii channels and central Shikoku. Beneath central Shikoku, within the overlying plate, a high-Qp zone bounded by low-Qp zones is located from the land surface to the plate interface of the subducting plate. The high-Qp zone and low-Qp zones correspond to high-Vp and low-Vp zones of previous study, respectively. The boundaries of the high- and low-Qp zones are consistent with the segment boundaries of tremors (segment boundaries of short-term SSEs). These results indicated that the locations of the long- and short-term SSEs could be limited by the inhomogeneous distribution of the materials and/or condition of the overlying plate, which is formed due to geological and geographical process. The heterogeneity of materials and/or condition within the fore-arc crust possibly makes an effect on inhomogeneous rheological strength distribution on the interface.

  11. Electrical conductivity anomaly beneath Mare Serenitatis detected by Lunokhod 2 and Apollo 16 magnetometers (United States)

    Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.


    Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.

  12. The lateral line microcosmos. (United States)

    Ghysen, Alain; Dambly-Chaudière, Christine


    The lateral-line system is a simple sensory system comprising a number of discrete sense organs, the neuromasts, distributed over the body of fish and amphibians in species-specific patterns. Its development involves fundamental biological processes such as long-range cell migration, planar cell polarity, regeneration, and post-embryonic remodeling. These aspects have been extensively studied in amphibians by experimental embryologists, but it is only recently that the genetic bases of this development have been explored in zebrafish. This review discusses progress made over the past few years in this field.

  13. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples (United States)

    Ricin, a heterodimeric toxin that is present in the seeds of the Ricinus communis plant, is the most frequently encountered biothreat agent by law enforcement agencies in the United States. Even in untrained hands, the easily obtainable seeds can yield a highly toxic product that has been used in v...

  14. New constraints on the textural and geochemical evolution of the upper mantle beneath the Styrian basin (United States)

    Aradi, Laszlo; Hidas, Károly; Zanetti, Alberto; János Kovács, István; Patkó, Levente; Szabó, Csaba


    Plio-Pleistocene alkali basaltic volcanism sampled sporadically the upper mantle beneath the Carpathian-Pannonian Region (CPR, e.g. [1]). Lavas and pyroclasts often contain mantle derived xenoliths, and the majority of them have been extensively studied [1], except the westernmost Styrian Basin Volcanic Field (SBVF, Eastern Austria and Slovenia). In the SBVF only a few volcanic centers have been studied in details (e.g. Kapfenstein & Tobaj). Based on these studies, the upper mantle beneath the SBVF is consists of dominantly high temperature, texturally and geochemically homogeneous protogranular spinel lherzolite. New major and trace element data from rock-forming minerals of ultramafic xenoliths, coupled with texture and deformation analysis from 12 volcanic outcrops across the SBVF, suggest that the lithospheric roots of the region are more heterogeneous than described previously. The studied xenoliths are predominantly lherzolite, amphibole is a common phase that replaces pyroxenes and spinels and proves modal metasomatism. Phlogopite coupled with apatite is also present in amphibole-rich samples. The texture of the xenoliths is usually coarse-grained and annealed with low abundance of subgrain boundaries in both olivine and pyroxenes. Olivine crystal preferred orientation (CPO) varies between the three most abundant one: [010]-fiber, orthogonal and [100]-fiber symmetry [2]. The CPO of pyroxenes is usually coherent with coeval deformation with olivine, however the CPO of amphibole is suggesting postkinematic epitaxial overgrowth on the precursor pyroxenes. According to equilibrium temperatures, the studied xenolith suite samples a broader temperature range (850-1100 °C) than the literature data, corresponding to mantle depths between 30 and 60 km, which indicates that the xenolith suite only represents the shallower part of the recent 100 km thick lithospheric mantle beneath the SBVF. The equilibrium temperatures show correlation with the varying CPO symmetries

  15. Precambrian crust beneath the Mesozoic northern Canadian Cordillera discovered by Lithoprobe seismic reflection profiling (United States)

    Cook, Frederick A.; Clowes, Ronald M.; Snyder, David B.; van der Velden, Arie J.; Hall, Kevin W.; Erdmer, Philippe; Evenchick, Carol A.


    -British Columbia border, a reflection dips eastward from ˜14.0 s to ˜21.0 s (˜45 to 73 km depth) beneath exposed Eocene magmatic rocks. It is interpreted as a relict subduction surface of the Kula plate. Our interpretation of Proterozoic layered rocks beneath most of the northern Cordillera suggests a much different crustal structure than previously considered: (1) Ancient North American crust comprising up to 25 km of metamorphosed Proterozoic to Paleozoic sediments plus 5-10 km of pre-1.8 Ga crystalline basement projects westward beneath most of the northern Canadian Cordillera. (2) The lateral (500 km by at least 1000 km) and vertical (up to 25 km) extent of the Proterozoic layers and their internal deformation are consistent with a long-lived margin for northwestern North America with alternating episodes of extension and contraction. (3) The detachments that carry deformed rocks of the Mackenzie Mountains and northern Rocky Mountains are largely confined to the upper crustal region above the layering. (4) Accreted terranes include thin klippen that were thrust over North American pericratonic strata (e.g., Yukon-Tanana), and terranes such as Nisling and Stikinia that thicken westward as the underlying Proterozoic layers taper and disappear. (5) The ages of exposed rocks are not necessarily indicative of the ages of underlying crust, a frequent observation in Lithoprobe interpretations, so that estimates of crustal growth based on surface geology may not be representative.

  16. Mice selectively bred for High and Low fear behavior show differences in the number of pMAPK (p44/42 ERK) expressing neurons in lateral amygdala following Pavlovian fear conditioning. (United States)

    Coyner, Jennifer; McGuire, Jennifer L; Parker, Clarissa C; Ursano, Robert J; Palmer, Abraham A; Johnson, Luke R


    Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.

  17. Creativity in later life. (United States)

    Price, K A; Tinker, A M


    The ageing population presents significant challenges for the provision of social and health services. Strategies are needed to enable older people to cope within a society ill prepared for the impacts of these demographic changes. The ability to be creative may be one such strategy. This review outlines the relevant literature and examines current public health policy related to creativity in old age with the aim of highlighting some important issues. As well as looking at the benefits and negative aspects of creative activity in later life they are considered in the context of the theory of "successful ageing". Creative activity plays an important role in the lives of older people promoting social interaction, providing cognitive stimulation and giving a sense of self-worth. Furthermore, it is shown to be useful as a tool in the multi-disciplinary treatment of health problems common in later life such as depression and dementia. There are a number of initiatives to encourage older people to participate in creative activities such as arts-based projects which may range from visual arts to dance to music to intergenerational initiatives. However, participation shows geographical variation and often the responsibility of provision falls to voluntary organisations. Overall, the literature presented suggests that creative activity could be a useful tool for individuals and society. However, further research is needed to establish the key factors which contribute to patterns of improved health and well-being, as well as to explore ways to improve access to services.

  18. Brainmining emotive lateral solutions

    Directory of Open Access Journals (Sweden)

    Theodore Scaltsas


    Full Text Available BrainMining is a theory of creative thinking that shows how we should exploit the mind’s spontaneous natural disposition to use old solutions to address new problems – our Anchoring Cognitive Bias. BrainMining develops a simple and straightforward method to transform recalcitrant problems into types of problems which we have solved before, and then apply an old type of solution to them. The transformation makes the thinking lateral by matching up disparate types of problem and solution. It emphasises the role of emotive judgements that the agent makes, when she discerns whether a change of the values or the emotions and feelings in a situation, which would expand the space of solutions available for the problem at hand, would be acceptable or appropriate in the situation. A lateral solution for an intractable problem is thus spontaneously brainmined from the agent’s old solutions, to solve a transformed version of the intractable problem, possibly involving changes in the value system or the emotional profile of the situation, which the agent judges, emotively, will be acceptable, and even appropriate in the circumstances.

  19. Lateral Lumbar Interbody Fusion (United States)

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank


    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  20. Direct lateral maneuvers in hawkmoths

    Directory of Open Access Journals (Sweden)

    Jeremy S. M. Greeter


    Full Text Available We used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep, allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta.

  1. Time-Dependent Flexural Deformation Beneath the Emperor Seamounts (United States)

    Wessel, P.; Watts, A. B.; Kim, S. S.


    The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load

  2. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon (United States)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto


    Historical records that before the 17th century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon's central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 - 5 years, with an average interval of 3 years and a rest interval ranged from 8 - 64 years. Then, on June 26th, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4th, 2011 that Mount Lokon erupted continuously until August 28th, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  3. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)


    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.

  4. Three-dimensional radial and azimuthal anisotropy beneath the mid-east China (United States)

    Zhang, Guibin; Jiang, Guoming; Jia, Zhengyuan


    The anisotropy media are very common in the Earth, which have been revealed by both seismological observations and laboratory studies. In a model with hexagonal symmetry, the anisotropy parameters will be reduced to three ones from 21 independent elastic moduli. In this work, we have attempted to study 3-D P-wave radial and azimuthal anisotropy beneath the mid-east China. In this region, there exist a mineralization zone in the middle and lower Yangtze region and an ultra-high pressure metamorphic belt in the Qinling-Dabie-Sulu Orogenic belt. Previous studies have shown that both might be caused by the rich exhalation of magma during the Mesozoic period, but various geodynamic models for explaining the mechanism of the Cretaceous magmatism are controversial and even contradictory. We have adopted the anisotropy tomography method of Wang and Zhao (2008, 2013) to the P-wave relative residuals from teleseismic travel time data. As a result, the anisotropy model clearly describes the fast-axis direction of P-wave with 50-700 km deep, which might represent the stress orientation or the motion of asthenospheric flow. The fast-axis direction changes gradually from the east-west at depths of 100-300 km to the north-south at depths of 400-700 km, which is very interesting and we will further explain this result combining with other previous geophysical, geochemical and geological results. This anisotropy result help us discuss the deep geodynamics beneath the mid-east China with more confidence.

  5. Time-Dependent Afterslip of the 2009 Mw 6.3 Dachaidan Earthquake (China and Viscosity beneath the Qaidam Basin Inferred from Postseismic Deformation Observations

    Directory of Open Access Journals (Sweden)

    Yang Liu


    Full Text Available The 28 August 2009 Mw 6.3 Dachaidan (DCD earthquake occurred at the Qaidam Basin’s northern side. To explain its postseismic deformation time series, the method of modeling them with a combination model of afterslip and viscoelastic relaxation is improved to simultaneously assess the time-dependent afterslip and the viscosity. The coseismic slip model in the layered model is first inverted, showing a slip pattern close to that in the elastic half-space. The postseismic deformation time series can be explained by the combination model, with a total root mean square (RMS misfit of 0.37 cm. The preferred time-dependent afterslip mainly occurs at a depth from the surface to about 9.1 km underground and increases with time, indicating that afterslip will continue after 28 July 2010. By 334 days after the main shock, the moment released by the afterslip is 0.91 × 1018 N∙m (Mw 5.94, approximately 24.3% of that released by the coseismic slip. The preferred lower bound of the viscosity beneath the Qaidam Basin’s northern side is 1 × 1019 Pa·s, close to that beneath its southern side. This result also indicates that the viscosity structure beneath the Tibet Plateau may vary laterally.

  6. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump 2, Monte Carlo simulations

    CERN Document Server

    Roesler, Stefan; Rokni, Sayed H; Taniguchi, Shingo


    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators. (5 refs).

  7. Neutron energy and time-of-flight spectra behind the lateral shield of a high-energy electron accelerator beam dump. Part 2. Monte Carlo simulations

    CERN Document Server

    Roesler, S; Rokni, S H; Taniguchi, S


    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  8. Sustained-release dinoprostone vaginal pessary with concurrent high-dose oxytocin infusion compared to sustained-release dinoprostone vaginal pessary followed 6 h later by high-dose oxytocin infusion for labor induction in women at term with unfavorable cervix: a randomized controlled trial. (United States)

    Güngördük, Kemal; Yildirim, Gokhan; Güngördük, Ozgu; Ark, Cemal; Tekirdağ, Ismet


    To compare the efficacy and safety of sustained-release dinoprostone vaginal pessary and concurrent high-dose oxytocin infusion with sustained-release dinoprostone vaginal pessary followed 6 h later by high-dose oxytocin infusion for cervical ripening and labor induction. A total of 500 nulliparous or multiparous women with a singleton pregnancy, Bishop score ≤4 and admitted for labor induction. Women were randomly assigned to induction of labor using intravaginal dinoprostone with concurrent high-dose oxytocin (n = 250) or intravaginal dinoprostone pessary followed 6 h later by high-dose oxytocin (n = 250). The primary outcome was the number of vaginal deliveries achieved within 24 h of labor induction. Baseline characteristics of both groups were comparable. Vaginal delivery within 24 h of labor induction was significantly increased with sustained-release dinoprostone followed 6 h later by high-dose oxytocin infusion (92.8 vs. 82.0%, RR 2.82, 95% CI 1.58-5.04). There were more cesarean section deliveries in the dinoprostone with concurrent high-dose oxytocin group (16.8 vs. 6.8%, RR 0.36, 95% CI 0.20-0.65). Maternal outcomes did not differ significantly. An Apgar score of oxytocin group (3.6%) in comparison to dinoprostone pessary followed 6 h later by high-dose oxytocin (0.8%), although this was not statistically different (RR 0.21, 95% CI 0.04-1.01). Sustained-release dinoprostone followed 6 h later by high-dose oxytocin infusion appears to be safer and more effective than sustained-release dinoprostone with concurrent high-dose oxytocin infusion in achieving cervical ripening and successful vaginal delivery. Copyright © 2010 S. Karger AG, Basel.

  9. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.


    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  10. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric


    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  11. Geophysical investigation of seepage beneath an earthen dam. (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A


    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  12. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica (United States)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne


    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  13. PN velocity beneath Western New Mexico and Eastern Arizona (United States)

    Jaksha, L. H.


    The experiment involved observing Pn arrivals on an areal array of 7 seismic stations located in the transition zone and along the Jemez lineament. Explosions in coal and copper mines in New Mexico and Arizona were used as energy sources as well as military detonations at White Sands Missile Range, New Mexico, Yuma, Arizona, and the Nevada Test Site. Very preliminary results suggest a Pn velocity of 7.94 km/s (with a fairly large uncertainty) beneath the study area. The Pn delay times, which can be converted to estimates of crustal thickness given knowledge of the velocity structure of the crust increase both to the north and east of Springerville, Arizona. As a constraint on the velocity of Pn, researchers analyzed the reversed refraction line GNOME-HARDHAT which passes through Springerville oriented NW to SE. This analysis resulted in a Pn velocity of 7.9-8.0 km/s for the transition zone. These preliminary results suggest that a normal Pn velocity might persist even though the crust thins (from north to south) by 15 km along the length of the Arizona-New Mexico border. If the upper mantle is currently hot anywhere in western New Mexico or eastern Arizona then the dimensions of the heat source (or sources) might be small compared to the intra-station distances of the seismic arrays used to estimate the velocity of Pn.

  14. Epicondilite lateral do cotovelo


    Cohen,Marcio; Motta Filho,Geraldo da Rocha


    A epicondilite lateral, também conhecida como cotovelo do tenista, é uma condição comum que acomete de 1 a 3% da população. O termo epicondilite sugere inflamação, embora a análise histológica tecidual não demonstre um processo inflamatório. A estrutura acometida com mais frequência é a origem do tendão extensor radial curto do carpo e o mecanismo de lesão está associado à sua sobrecarga. O tratamento incruento é o de escolha e inclui: repouso, fisioterapia, infiltração com cortisona ou plasm...

  15. Vitiligo Lateral Lower Lip

    Directory of Open Access Journals (Sweden)

    Sahoo Antaryami


    Full Text Available Vitiligo characteristically affecting the lateral lower lip (LLL is a common presentation in South Orissa. This type of lesion has rarely been described in literature. One hundred eighteen such cases were studied during the period from October 1999 to September, 2000. LLL vitiligo constituted 16.39% of all vitiligo patients. Both sexes were affected equally. The peak age of onset was in the 2nd decade, mean duration of illness 21.46 months. Fifty six patients had unilateral lesion (38 on the left and 18 on the right. Among the 62 patients having bilateral lesions, the onset was more frequent on the left (38 than either the right (8 or both sides together (16. All the patients were right handed. Association with local factors like infection, trauma, cheilitis, FDE etc were associated in 38.98% of cases, but systemic or autoimmune diseases were not associated. Positive family history was found in 22% of cases.

  16. Lateral conduction infrared photodetector (United States)

    Kim, Jin K.; Carroll, Malcolm S.


    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  17. Progress on the Seismic Anisotropy Parameters Knowledge Beneath Iberia and Morocco: New Results from the Second Topoiberia-Iberarray Deployment (United States)

    Diaz, J.; Gallart, J.; TopoIberia Seismic Working Group


    new results seem to confirm these points and show a significant change in both FPD and delay times across the two main units of the Variscan domain, the Ossa-Morena and the Central Iberian zones.Beneath Eastern Iberia, the new data allow to investigate the anisotropic signature of the NE termination of the Alboran Arc System. At the NE Betics, abrupt changes in FPD, which would be symmetric to those evidenced at the Alhoceimas region of the Rif, have not been observed so far. Delays seem to increase from West to East when approaching the Valencia Through. The southernmost stations of the first deployment, located in the northern part of the Atlas belt, suggested that the FPD could be subparallel to the belt. The preliminary anisotropic results from the new deployment in Morocco do not seem to confirm this point. In fact, the anisotropic delays decrease strongly south of the Middle Atlas chain, both beneath the Moroccan Meseta and the High Atlas. Those small values, altogether with the great number of null measurements, make difficult to assess the FPD beneath that zone.

  18. A Method for Longitudinal and Lateral Range Control for a High-Drag Low-Lift Vehicle Entering the Atmosphere of a Rotating Earth (United States)

    Young, John W.


    A study has been made of a method for controlling the trajectory of a high-drag low-lift entry vehicle to a desired longitude and latitude on the surface of a rotating earth. By use of this control technique the vehicle can be guided to the desired point when the present position and heading of the vehicle are known and the desired longitude and latitude are specified. The present study makes use of a single reference trajectory and an estimate of the lift and side-force capabilities of the vehicle. This information is stored in a control-logic system and used with linear control equations to guide the vehicle to the desired destination. Results are presented of a number of trajectory studies which describe the operation of the control system and illustrate its ability to control the vehicle trajectory to the desired landing area.

  19. Definition and Paleoseismology of the Active, Left-Lateral Enriquillo-Plantain Garden Fault Zone Based on High-Resolution Chirp Profiles: Lakes Azuey and Mirogoane, Haiti (United States)

    Wang, J.; Mann, P.; von Lignau, A. V.


    In July 2014, we obtained a total of 94 km of high-resolution Chirp profiles from the 129 km2, brackish Lake Azuey and 37 km of profiles from the 14 km2, fresh water Lake Mirogoane that both straddle the active trace of the Enriquillo-Plantain Garden fault zone (EPGFZ) of Haiti. 80% of the grid on Azuey and 85% on Mirogoane was dedicated to north-south profiles of the EPGFZ. In Azuey we defined the linear and east-west-striking fault trace in deformed Holocene sediments along with its landfalls west of Lake Azuey in Haiti and east of Lake Azuey in the Dominican Republic. All profiles showed the fault to be a sub-vertical flower structure whose active traces could be traced on Chirp data to a depth of 30 m below the lake floor. Previous workers have suggested that this fault ruptured during a large November, 1751, earthquake with a parallel and elongate felt zone. We hypothesize the most recent break of the fault several meters below the lake floor to have formed during the 1751 event but plan a coring program to precisely constrain the timing of historical and prehistorical events based on syn-faulting colluvial wedges observed on Chirp profiles. Our survey of Mirogoane confirmed its rhomboidal pull-apart structure with the basin center at a depth of 42-8 m making this basin the deepest lake in the Caribbean region. Deformational features include active folds at the lake bottom, large oblique-slip normal faults at an angle to the bounding east-west faults, and 30 m of recognizable stratigraphy. The 7 m of Holocene cored in the basin center in 1988 is observed to be highly deformed and locally folded and overlies with angular unconformity a well stratified and more folded lower basinal unit. Historical events are proposed to have ruptured on or near this segment of the EPGFZ in 1701 and 1770.

  20. A controlled source seismic attenuation study of the crust beneath Mount St. Helens with a dense array (United States)

    Hupp, K.; Schmandt, B.; Kiser, E.; Hansen, S. M.; Levander, A.


    Crustal properties beneath Mount St. Helens are investigated using attenuation measurements from an array of 904 cable-free seismographs, referred to as nodes, located within 15 km of the summit crater. Measurements of P wave attenuation were made using 23 controlled explosion sources located 0 - 80 km outside the node array, which provides a well-balanced distribution of source-receiver azimuths and distances. The 500-1000 kg explosive sources were observed regionally, and all explosions produced P waves recorded with signal-to-noise power ratios of >3 dB for >90% of the node array. We estimate relative variations in the path-integrated attenuation parameter, t*, using 2 - 25 Hz spectral ratios of individual node spectra relative to the array median spectrum for each explosion source. For small source-receiver distances (>100). An exception to the previously mentioned trends is that for distances <30 km a ring of 150 nodes closest to the summit crater surrounding the base of the volcanic edifice yield low relative t* estimates ( -0.1s) and high mean envelope amplitudes at all frequencies from 2-25 Hz. The anomalous amplification of these "inner ring" recordings for small offsets could arise from very low impedance in the shallow crust beneath the edifice possibly enhanced by resonance within the edifice. Longer offset measurements will be used for 3D relative attenuation (dQ-1) tomography. We hypothesize that high attenuation (low Q) volumes may be observed at 5-15 km beneath Mount St. Helens where recent controlled source velocity tomography indicates high Vp/Vs. Adding attenuation constraints to recent seismic velocity results will aid estimating properties such as the melt fraction in the upper crustal magma reservoir.

  1. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin


    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  2. Cost-effectiveness and value of information analysis of nutritional support for preventing pressure ulcers in high-risk patients: implement now, research later. (United States)

    Tuffaha, Haitham W; Roberts, Shelley; Chaboyer, Wendy; Gordon, Louisa G; Scuffham, Paul A


    Pressure ulcers are a major cause of mortality, morbidity, and increased healthcare cost. Nutritional support may reduce the incidence of pressure ulcers in hospitalised patients who are at risk of pressure ulcer and malnutrition. To evaluate the cost-effectiveness of nutritional support in preventing pressure ulcers in high-risk hospitalised patients, and to assess the value of further research to inform the decision to implement this intervention using value of information analysis (VOI). The analysis was from the perspective of Queensland Health, Australia using a decision model with evidence derived from a systematic review and meta-analysis. Resources were valued using 2014 prices and the time horizon of the analysis was one year. Monte Carlo simulation was used to estimate net monetary benefits (NB) and to calculate VOI measures. Compared with standard hospital diet, nutritional support was cost saving at AU$425 per patient, and more effective with an average 0.005 quality-adjusted life years (QALY) gained. At a willingness-to-pay of AU$50,000 per QALY, the incremental NB was AU$675 per patient, with a probability of 87 % that nutritional support is cost-effective. The expected value of perfect information was AU$5 million and the expected value of perfect parameter information was highest for the relative risk of developing a pressure ulcer at AU$2.5 million. For a future trial investigating the relative effectiveness of the interventions, the expected net benefit of research would be maximised at AU$100,000 with 1,200 patients in each arm if nutritional support was perfectly implemented. The opportunity cost of withholding the decision to implement the intervention until the results of the future study are available would be AU$14 million. Nutritional support is cost-effective in preventing pressure ulcers in high-risk hospitalised patients compared with standard diet. Future research to reduce decision uncertainty is worthwhile; however, given the

  3. Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis: a review

    Directory of Open Access Journals (Sweden)

    Miguel Hage Amaro


    Full Text Available The aim of this paper is to do a review of Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis. Drusenlike beneath retinal deposits in type II mesangiocapillary glomerulonephritis appear to develop at an early age, often second decade of life different of drusen from age-related macular degeneration (AMD.Long term follow-up of the cases in this disease shows in the most of them, no progression of the of drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonefritis, the most of subjects retain good visual acuity and no specific treatment is indicated.

  4. Vocational interests assessed at the end of high school predict life outcomes assessed 10 years later over and above IQ and Big Five personality traits. (United States)

    Stoll, Gundula; Rieger, Sven; Lüdtke, Oliver; Nagengast, Benjamin; Trautwein, Ulrich; Roberts, Brent W


    Vocational interests are important aspects of personality that reflect individual differences in motives, goals, and personal strivings. It is therefore plausible that these characteristics have an impact on individuals' lives not only in terms of vocational outcomes, but also beyond the vocational domain. Yet the effects of vocational interests on various life outcomes have rarely been investigated. Using Holland's RIASEC taxonomy (Holland, 1997), which groups vocational interests into 6 broad domains, the present study examined whether vocational interests are significant predictors of life outcomes that show incremental validity over and above the Big Five personality traits. For this purpose, a cohort of German high school students (N = 3,023) was tracked over a period of 10 years after graduating from school. Linear and logistic regression analyses were used to examine the predictive validity of RIASEC interests and Big Five personality traits. Nine outcomes from the domains of work, relationships, and health were investigated. The results indicate that vocational interests are important predictors of life outcomes that show incremental validity over the Big Five personality traits. Vocational interests were significant predictors of 7 of the 9 investigated outcomes: full-time employment, gross income, unemployment, being married, having children, never having had a relationship, and perceived health status. For work and relationship outcomes, vocational interests were even stronger predictors than the Big Five personality traits. For health-related outcomes, the results favored the personality traits. Effects were similar across gender for all outcomes-except 2 relationship outcomes. Possible explanations for these effects are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. The associations of high birth weight with blood pressure and hypertension in later life: a systematic review and meta-analysis. (United States)

    Zhang, Yong; Li, Hui; Liu, Shang-jing; Fu, Guang-jian; Zhao, Yong; Xie, Yao-Jie; Zhang, Yi; Wang, Ying-xiong


    The 'fetal origin hypothesis' suggests that metabolic diseases are directly related to poor nutritional status in early life. Thus, a high birth weight (HBW) may pose a lower risk than normal birth weight. Overweight and overnutrition are among the most widely recognized risk factors of metabolic diseases. To explore the possible effects of HBW on blood pressure and hypertension, a systematic review was performed. The PubMed and Embase databases were searched for relevant studies. The outcomes included systolic blood pressure (SBP), diastolic blood pressure (DBP) and hypertension. We included all of the studies that assessed the differences in outcomes for children aged >1 year between those born with normal birth weight (birth weight between 2500 and 4000 g or between the 10th and 90th percentiles for their gestational age) and those born with HBW (birth weight4000 g or 90th percentile for their gestational age). The outcomes were analyzed descriptively and by conducting a meta-analysis. Thirty-one studies satisfied the inclusion criteria. The mean difference in blood pressure and the relative risk of hypertension between individuals with HBW and individuals with normal birth weight was inversely associated with age. SBP and DBP, as well as the prevalence of hypertension, were higher in younger children with HBW but lower in older adults with HBW compared with individuals with normal birth weight. The findings suggested that an individual with HBW is prone to hypertension and higher blood pressure during childhood. However, a 'catch-down' effect in the elevation of blood pressure is observed in subjects with HBW as they grow older. Thus, older individuals with HBW are less susceptible to hypertension than those with normal birth weight.

  6. Model to Design Drip Hose Lateral Line (United States)

    Ludwig, Rafael; Cury Saad, João Carlos


    Introduction The design criterion for non-pressure compensating drip hose is normally to have 10% of flow variation (Δq) in the lateral line, corresponding to 20% of head pressure variation (ΔH). Longer lateral lines in drip irrigation systems using conventional drippers provide cost reduction, but it is necessary to obtain to the uniformity of irrigation [1]. The use of Δq higher levels can provide longer lateral lines. [4] proposes the use of a 30% Δq and he found that this value resulted in distribution uniformity over 80%. [1] considered it is possible to extend the lateral line length using two emitters spacing in different section. He assumed that the spacing changing point would be at 40% of the total length, because this is approximately the location of the average flow according with [2]. [3] found that, for practical purposes, the average pressure is located at 40% of the length of the lateral line and that until this point it has already consumed 75% of total pressure head loss (hf ). In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. Objective The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. Methodology A computer program was developed in Delphi® based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area

  7. The short-term effect after a single injection of high-molecular-weight hyaluronic acid in patients with enthesopathies (lateral epicondylitis, patellar tendinopathy, insertional Achilles tendinopathy, and plantar fasciitis): a preliminary study. (United States)

    Kumai, Tsukasa; Muneta, Takeshi; Tsuchiya, Akihiro; Shiraishi, Masaharu; Ishizaki, Yoshitaka; Sugimoto, Kazuya; Samoto, Norihiro; Isomoto, Shinji; Tanaka, Yasuhito; Takakura, Yoshinori


    Hyaluronic acid (HA) with a high molecular weight of 2700 kDa is approved in Japan to treat osteoarthritis of the knee, periarthritis scapulohumeralis, and knee pain associated with rheumatoid arthritis. The purpose of this preliminary study was to investigate the short-term efficacy, safety, and injectable volume of HA in the treatment of enthesopathies. A total of 61 patients (16 with lateral epicondylitis, 14 with patellar tendinopathy, 15 with insertional Achilles tendinopathy, and 16 with plantar fasciitis) were each administered a single injection of HA (up to 2.5 ml). Efficacy and safety were assessed by comparing the visual analog scale (VAS) for pain and local symptoms before injection (baseline) and at 1 week after injection. We also investigated the injectable volume by means of the difference in syringe weight before and after injection and by the judgment of the administering investigator. The injection of HA resulted in a change in VAS (mean ± SD) of -2.20 ± 2.26 cm for the four sites overall and -2.55 ± 2.43 cm for lateral epicondylitis, -2.01 ± 2.16 cm for patellar tendinopathy, -1.80 ± 1.91 cm for insertional Achilles tendinopathy, and -2.38 ± 2.61 cm for plantar fasciitis. The injection of HA also improved local symptoms in each site. It was also determined that 2.5 ml of HA can be injected in each of the four sites. A single injection of HA resulted in similar improvements of pain in each of the four enthesopathies (lateral epicondylitis, patellar tendinopathy, insertional Achilles tendinopathy, and plantar fasciitis). These results suggest that HA could be clinically effective in the treatment of enthesopathies.

  8. Lateral Thinking and Technology Education. (United States)

    Waks, Shlomo


    Presents an analysis of technology education and its relevance to lateral thinking. Discusses prospects for utilizing technology education as a platform and a contextual domain for nurturing lateral thinking. Argues that technology education is an appropriate environment for developing complementary incorporation of vertical and lateral thinking.…

  9. Imaging the Juan de Fuca plate beneath southern Oregon using teleseismic P wave residuals (United States)

    Harris, R.A.; Iyer, H.M.; Dawson, P.B.


    Images the Juan de Fuca plate in southern Oregon using seismic tomography. P wave travel time residuals from a 366-km-long seismic array operated in southern Oregon in 1982 are inverted. The southeast striking array extended from the Coast ranges to the Modoc Plateau and crossed the High Cascades at Crater Lake, Oregon. Three features under the array were imaged: one high-velocity zone and two low-velocity zones. The high-velocity zone is 3-4% faster than the surrounding upper mantle. It dips steeply at 65?? to the east beneath the Cascade Range and extends down to at least 200 km. It is proposed that this high-velocity feature is subducted Juan de Fuca plate. Two low-velocity zones were also imaged, both of which are 3-4% slower than the surrounding earth structure. The southeastern low-velocity zone may be caused by partially molten crust underlying the Crater Lake volcano region. -from Authors

  10. Peculiarities of mantle lithosphere beneath the large kimberlite pipes in different regions for Siberian craton (United States)

    Ashchepkov, Igor; Logvinova, Alla; Ntaflos, Theodoros; Vladykin, Nikolai; Spetsius, Zdislav; Kostrovitsky, Sergey; Stegnitsky, Yuri; Prokopyev, Sergey


    Comparison of the structure of the mantle columns and mineralogy of the large kimberlite pipes in Yakutia from the different regions, kimberlite fields and mantle terranes in Yakutia allowed several assumptions. 1. The large kimberlite pipes possibly trace the ancient magma feeders occurred in the time of the continent growth. Commonly kimberlites and large pipes are tracing the deep faults and lineaments tracing the ancient sutures, rift zones, trans -lithospheric faults and other permeable structures, which may be parallel to the ancient continental margins. Large pipes locate at the periodic distance like volcanoes in arc settings tracing the "volcanic fronts". 2. Large pipes commonly contain the higher amounts of the sub-calcic garnets representing the dunitic associations (Stachel et al., 2008). In ophiolites dunites veins are representing the channels for the melt transfer (Kelemen et al., 2002). It is likely that ancient large magmatic arc system could have also deep seated roots represented by the (sub calcic) garnet - bearing dunitic systems. 3. Many large pipes including Udachnaya (Pokhilenko et al., 1999) and Mir (Roden et al., 2006) contain in mantle roots high amount of various pyroxenites. The most ancient pyroxenites are supplementary to the dunitic associations. But mostly they represent the materials from the re-melted eclogites and partial and hybrid melts (plume and subduction -related). They are concentrating in the traps in the lithosphere base, in the middle part of mantle section and in the basaltic trap 2.0-3.0 GPa. Pyroxenites in the lithosphere base in some cases are vary abundant but mostly they are protokimberlitic cumulates from of the latest stages of plume activity. Products of the melts crystallization from the earlier stages represent easy melting material at the lithosphere base could be the traps for the later plume melts. 5. Large pipes as a rule reveal contrast layering which is favorite for the capturing of the material from

  11. [Lateral lumbar disk hernia]. (United States)

    Monod, A; Desmoineaux, P; Deburge, A


    Lateral lumbar disc herniations (L.D.H.) develop in the foramen, and compress the nerve root against the overlying vertebral pedicle. In our study of L.D.H. from the clinical, radiographical, and therapeutical aspects, we reviewed 23 cases selected from the 590 patients treated for discal herniation from 1984 to 1987. The frequency of L.D.H. in this series was 3.8 per cent. The clinical pattern brings out some suggestive signs of L.D.H. (frequency of cruralgia, a seldom very positive Lasegue's test, the paucity of spinal signs, non impulsive pain). Saccoradiculography and discography rarely evidenced the L.D.H.. The T.D.M. was the investigation of choice on condition that it was correctly used. When the image was doubtful, disco-CT confirmation should be proceeded too. This latter method of investigation enabled the possibility of sequestration to be explored. 14 patients were treated by chemonucleolysis, with 9 successful outcomes. The 5 failures were cases where chemonucleolysis should not have been indicated, mainly due to associated osseous stenosis. 9 patients underwent immediate surgery with good results in each case.

  12. Amyotrophic lateral sclerosis: update

    Directory of Open Access Journals (Sweden)

    Zapata-Zapata, Carlos Hugo


    Full Text Available Amyotrophic lateral sclerosis is a neurodegenerative disease with devastating consequences for the patient and his/her family. Its etiology is still not clear. In about 10 % of the patients there is a hereditary pattern of the disease. Worldwide, prevalence ranges from 2 to 11 cases per 100,000 people. Age of presentation varies from 58 to 63 years for sporadic cases, and from 47 to 52 years for the familial ones. Concerning gender, there is a slight preference for males. Clinical manifestations include signs of upper and lower motor neurons, damage in limbs and bulbar muscles, and, in some patients, frontotemporal cognitive dysfunction. Diagnosis is essentially clinical supported by neurophysiological studies, such as needle electromyography, which is the most important test for early diagnosis. There is no cure, but riluzol has proven to delay the use of mechanical ventilation and to slightly prolong survival. Consequently, management is based on support measures, such as those related to nutrition and ventilatory function, in addition to control of the motor and non-motor symptoms of the disease.

  13. Multi-scale Modelling of the Ocean Beneath Ice Shelves (United States)

    Candy, A. S.; Kimura, S.; Holland, P.; Kramer, S. C.; Piggott, M. D.; Jenkins, A.; Pain, C. C.


    Quantitative prediction of future sea-level is currently limited because we lack an understanding of how the mass balance of the Earth's great ice sheets respond to and influence the climate. Understanding the behaviour of the ocean beneath an ice shelf and its interaction with the sheet above presents a great scientific challenge. A solid ice cover, in many places kilometres thick, bars access to the water column, so that observational data can only be obtained by drilling holes through, or launching autonomous vehicles beneath, the ice. In the absence of a comprehensive observational database, numerical modelling can be a key tool to advancing our understanding of the sub-ice-shelf regime. While we have a reasonable understanding of the overall ocean circulation and basic sensitivities, there remain critical processes that are difficult or impossible to represent in current operational models. Resolving these features adequately within a domain that includes the entire ice shelf and continental shelf to the north can be difficult with a structured horizontal resolution. It is currently impossible to adequately represent the key grounding line region, where the water column thickness reduces to zero, with a structured vertical grid. In addition, fronts and pycnoclines, the ice front geometry, shelf basal irregularities and modelling surface pressure all prove difficult in current approaches. The Fluidity-ICOM model (Piggott et al. 2008, doi:10.1002/fld.1663) simulates non-hydrostatic dynamics on meshes that can be unstructured in all three dimensions and uses anisotropic adaptive resolution which optimises the mesh and calculation in response to evolving solution dynamics. These features give it the flexibility required to tackle the challenges outlined above and the opportunity to develop a model that can improve understanding of the physical processes occurring under ice shelves. The approaches taken to develop a multi-scale model of ice shelf ocean cavity

  14. The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks (United States)

    Stroncik, Nicole A.; Klügel, Andreas; Hansteen, Thor H.


    A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600-800 MPa. This corresponds to a depth range of 19-26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.

  15. Construction of mantle sequence beneath Yubileynaya kimberlite pipe. (United States)

    Ashchepkov, I. V.; Vladykin, N. V.; Logvinova, A. M.; Zinchuk, N. N.; Khmelnikova, O. S.; Palessky, S. V.; Nikolaeva, I. V.


    . Lower metasomatically modified units possibly are associated with each episode(3)of subduction mantle wedges and lithospheric keel coupling accompanied by hydrous melting and melt percolation. High degree of metasomatism is in accord with high serpentinization degree of kimberlites. Amount of layers in mantle columns of Yubileynaya and Udachnaya pipes are close but the later contain more eclogites and less metasomatized peridotites. The Ni -rich chromite and olivine inclusions in diamonds agree with essentially peridotitic mantle keel composition. TRE determined by LAM ICP MS for the CPx reveal extremely high LREE, Rb, Ba, U, Th. More shallow CPx became lower in (La/Yb)n as well as amphiboles. Cr rich garnets have low TRE also enrihmant in U, Th concentration while more shallow ones became more (H)REE and rarely MREE rich. Chromites are W shaped in REE patterns and have no essential PGE. Ilmenites do not show very strong enrichments in REE, jyky strong HFSE peaks. Geochemistry of mantleminerals was likely influenced by Phl decomposition and remelting of continental sediments Supported by RBRF grants 99-05-65688; 00-05-65288.

  16. Conflicting Geophysical and Geochemical Indicators of Mantle Temperature Beneath Tibet (United States)

    Klemperer, S. L.


    In Tibet a small number of earthquakes occurs at 75-100 km depth, spanning the Moho, reaching >350 km and >550 km north of the Himalayan front in south-eastern Tibet and western Tibet respectively. 'Earthquake thermometry' implies these deep earthquakes occur in anhydrous lower lithosphere, either anorthitic or ultramafic, at 0.1RA (~1% mantle fluid) are conventionally taken to imply an unequivocal mantle component. Time-averaged upward flow rates calculated from measured 3He/4He ratios (R) and [4He] range from ~1-15 cm/a, implying transport times of 0.5-7 Ma through a 70-km thick crust. Discussion of 3He in Tibet in the western literature has been dominated by a single paper (Hoke et al., EPSL, 2000) that reported modest mantle helium (0.110% mantle fluids are reported 120 km and 150 km south of the northern limit of deep earthquakes in southeastern and western Tibet respectively. These hot springs apparently sampled mantle with T>800°C south of the locations where earthquake thermometry implies Moho temperatures India, Nepal and Pakistan, even though the 800°C isotherm is substantially shallower there than beneath southern Tibet? More plausibly the mantle helium is derived from an Asian mantle wedge above the region of deep earthquakes, in which case underthrusting Indian lithosphere is not intact, but breaks into an upper layer forming the lower crust of the Tibetan Plateau, and a lower seismogenic layer that is subducted more deeply into the mantle. Based on the geothermal springs, an Asian mantle wedge extended south of the Indus Tsangpo suture in SE Tibet and to the Karakoram fault in W Tibet until the latest Miocene, or even more recently.

  17. P, S velocity and VP/VS ratio beneath the Toba caldera complex (Northern Sumatra) from local earthquake tomography (United States)

    Koulakov, Ivan; Yudistira, Tedi; Luehr, Birger-G.; Wandono


    In this paper, we investigate the crustal and uppermost mantle structure beneath Toba caldera, which is known as the location of one of the largest Cenozoic eruptions on Earth. The most recent event occurred 74000 yr BP, and had a significant global impact on climate and the biosphere. In this study, we revise data on local seismicity in the Toba area recorded by a temporary PASSCAL network in 1995. We applied the newest version of the LOTOS-07 algorithm, which includes absolute source location, optimization of the starting 1-D velocity model, and iterative tomographic inversion for 3-D seismic P, S (or the VP/VS ratio) and source parameters. Special attention is paid to verification of the obtained results. Beneath the Toba caldera and other volcanoes of the arc, we observe relatively moderate (for volcanic areas) negative P- and S-velocity anomalies that reach 18 per cent in the uppermost layer, 10-12 per cent in the lower crust and about 7 per cent in the uppermost mantle. Much stronger contrasts are observed for the VP/VS ratio that is a possible indicator of dominant effect of melting in origin of seismic anomalies. At a depth of 5 km beneath active volcanoes, we observe small patterns (7-15 km size) with a high VP/VS ratio that might be an image of actual magmatic chambers filled with partially molten material feeding the volcanoes. In the mantle wedge, we observe a vertical anomaly with low P and S velocities and a high VP/VS ratio that link the cluster of events at 120-140 km depth with Toba caldera. This may be an image of ascending fluids and melts released from the subducted slab due to phase transitions. However, taking into account poor vertical resolution, these results should be interpreted with prudence. Although the results show clear signatures that are quite typical for volcanic areas (low velocity and high VP/VS ratio beneath volcanoes), we do not observe any specific features in seismic structure that could characterize Toba as a super volcano.

  18. Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts (United States)

    Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen


    Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high

  19. Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture (United States)

    Miyakawa, Ayumu; Sumita, Tatsuya; Okubo, Yasukuni; Okuwaki, Ryo; Otsubo, Makoto; Uesawa, Shimpei; Yagi, Yuji


    We resolve the density structure of a possible magma reservoir beneath Aso, an active volcano on Kyushu Island, Japan, by inverting gravity data. In the context of the resolved structure, we discuss the relationship between the fault rupture of the 2016 Kumamoto earthquake and Aso volcano. Low-density bodies were resolved beneath central Aso volcano using a three-dimensional inversion with an assumed density contrast of ±0.3 g/cm3. The resultant location of the southern low-density body is consistent with a magma reservoir reported in previous studies. No Kumamoto aftershocks occur in the southern low-density body; this aseismic anomaly may indicate a ductile feature due to high temperatures and/or the presence of partial melt. Comparisons of the location of the southern low-density body with rupture models of the mainshock, obtained from teleseismic waveform and InSAR data, suggest that the rupture terminus overlaps the southern low-density body. The ductile features of a magma reservoir could have terminated rupture propagation. On the other hand, a northern low-density body is resolved in the Asodani area, where evidence of current volcanic activity is scarce and aftershock activity is high. The northern low-density body might, therefore, be derived from a thick caldera fill in the Asodani area, or correspond to mush magma or a high-crystallinity magma reservoir that could be the remnant of an ancient intrusion.[Figure not available: see fulltext.

  20. 2-D Finite Difference Modeling of the D'' Structure Beneath the Eastern Cocos Plate: Part I (United States)

    Helmberger, D. V.; Song, T. A.; Sun, D.


    The discovery of phase transition from Perovskite (Pv) to Post-Perovskite (PPv) at depth nears the lowermost mantle has revealed a new view of the earth's D'' layer (Oganov et al. 2004; Murakami et al. 2004). Hernlund et al. (2004) recently pusposed that, depending on the geotherm at the core-mantle boundary (CMB), a double-crossing of the phase boundary by the geotherm at two different depths may also occur. To explore these new findings, we adopt 2-D finite difference scheme (Helmberger and Vidale, 1988) to model wave propagation in rapidly varying structure. We collect broadband waveform data recorded by several Passcal experiments, such as La Ristra transect and CDROM transect in the southwest US to constrain the lateral variations in D'' structure. These data provide fairly dense sampling (~ 20 km) in the lowermost mantle beneath the eastern Cocos plate. Since the source-receiver paths are mostly in the same azimuth, we make 2-D cross-sections from global tomography model (Grand, 2002) and compute finite difference synthetics. We modify the lowermost mantle below 2500 km with constraints from transverse-component waveform data at epicentral distances of 70-82 degrees in the time window between S and ScS, essentially foward modeling waveforms. Assuming a velocity jump of 3 % at D'', our preferred model shows that the D'' topography deepens from the north to the south by about 120 km over a lateral distance of 300 km. Such large topography jumps have been proposed by Thomas et al. (2004) using data recorded by TriNet. In addition, there is a negative velocity jump (-3 %) 100 km above the CMB in the south. This simple model compare favorably with results from a study by Sun, Song and Helmberger (2005), who follow Sidorin et al. (1999) approach and produce a thermodynamically consistent velocity model with Pv-PPv phase boundary. It appears that much of this complexity exists in Grand's tomographic maps with rapid variation in velocities just above the D''. We also

  1. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets


    Livingstone, S.J.; Clark, C. D.; Woodward, J.; Kingslake, J.


    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of > 60\\% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are ob...

  2. Research on lithospheric density distributions beneath North China Craton and its destruction mechanism by gravity and seismic observations (United States)

    Wang, X.; Fang, J.; Hsu, H.


    North China Craton (NCC) has been a research hotspot for geoscientists all over the world. Partial North China Craton (NCC) has lost its lithospheric keel since Mesozoic. Researchers have reached a consensus on destruction of NCC' lithosphere, however, the destruction mechanism and dynamic processes still remain controversy. In this study, a three-dimensional density distribution of lithosphere beneath NCC is determined using gravity datum combined with P-wave travel times by sequential inversion method. After the analyses and discussions on our density results referred to other geophysical and geochemical researches and then gave our viewpoint about destruction mechanisms of NCC lithosphere from the standpoint of density distribution. A linear velocity-density relationship is used to achieve mutual transformations and constraints between density and velocity. As we know, the gravity anomalies measured on the ground surface are the integrated reflection of the interface undulations and underground density inhomogeneous. In order to invert the lithospheric density structures, we firstly separated the gravity effects of lithospheric density inhomogeneous by removing the effects of other contributions to the gravity field from the observed integrated gravity filed before density inversion. The method of Zhao et al.,(1994) is used for seismic tomography, while Algebraic Reconstruction Technique (ART) is applied in density inversion, which highly improved the calculation velocity compared to common least squares method. The inversion results indicate that, the lithospheric density beneath NCC is extremely inhomogeneous and its distributions are coherent with surface regional tectonics; Low density anomalies exist in lower crust beneath rift basins around Ordos block. High poisson' ratios are found in these regions (about 3.0), which may indicate partial melting occurred. Receive function studies prevailed thinned ( 8.2km/s) is also found in this region. The prominent

  3. Ferruginous conditions dominated later neoproterozoic deep-water chemistry. (United States)

    Canfield, Donald E; Poulton, Simon W; Knoll, Andrew H; Narbonne, Guy M; Ross, Gerry; Goldberg, Tatiana; Strauss, Harald


    Earth's surface chemical environment has evolved from an early anoxic condition to the oxic state we have today. Transitional between an earlier Proterozoic world with widespread deep-water anoxia and a Phanerozoic world with large oxygen-utilizing animals, the Neoproterozoic Era [1000 to 542 million years ago (Ma)] plays a key role in this history. The details of Neoproterozoic Earth surface oxygenation, however, remain unclear. We report that through much of the later Neoproterozoic (<742 +/- 6 Ma), anoxia remained widespread beneath the mixed layer of the oceans; deeper water masses were sometimes sulfidic but were mainly Fe2+-enriched. These ferruginous conditions marked a return to ocean chemistry not seen for more than one billion years of Earth history.

  4. Seismic Evidence for the North China Plate Underthrusting Beneath Northeastern Tibet and its Implications for Plateau Growth (United States)

    Ye, Z.; Gao, R.; Li, Q.; Zhang, H.


    The effects of India-Asia collision and the subsequent interaction between the two continents on northeastern Tibet (NE Tibet), i.e., the tectonic transition zone between the Tibetan plateau and the North China craton (NCC) for example, remain uncertain due to inadequate geophysical data coverage in NE Tibet. Here in this research, based on new dataset collected from a dense linear array of 38 broadband seismograph stations, we applied seismic receiver functions (Sp and Ps converted waves) to imaging the lithospheric structure and shear wave splitting (XKS waves) to inspecting the anisotropy in the lithosphere and upper mantle beneath NE Tibet. The seismic array traverses NE Tibet to the westernmost NCC (Alxa block) in an SSW-NNE direction. The lithosphere-asthenosphere boundary (LAB) is clearly defined and appears as a south-dipping interface that runs continuously from the Alxa interior to the Qilian orogen on the S-wave receiver function images. Shear wave splitting measurements show significant lateral variations of seismic anisotropy across NE Tibet. Under joint constraints from both the lithospheric structure imaging and the regional anisotropic regime, combined with previous studies and through a thorough analysis/comparison/integration, we finally constructed a comprehensive lithospheric model of NE Tibet. The model tells that the NCC lithospheric mantle has been persistently underthrust beneath the Qilian orogen in response to on-going convergence/compression between the interior Tibetan plateau and the NCC. This process forms the syntectonic crustal thrust. The regional anisotropic regime can be well accommodated in our interpretation. The lithospheric model summarized here can be well accommodated in a scenario of northeastward migration of stepwise/multiple Aisan mantle lithosphere underthrusting beneath the Tibetan plateau. The multiple Aisan lithospheric blocks underthrust the plateau stepwise in small scale. Our results provide a new section from

  5. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging (United States)

    Yinshuang, A.; Zhang, Y.; Chen, L.


    The central and western NCC(CWNCC) only experienced localized lithospheric modification and has remained relatively stable since the Pre-Cambrian in contrast to the fundamental destruction in the east. For better unraveling the tectonic evolution and dynamics of CWNCC, detailed knowledge of lithospheric structure is thus important. However, most of the available seismological observations are dominated by regional seismic tomography and the resolutions are rather low due to the limited data coverage or intrinsic limitation of the methods. S receiver function(RF) contains information from deep velocity discontinuities and is free from the interference of crustal multiples, so it is widely used in subcontinental lithospheric structural studies. We collected teleseismic data from 340 broadband stations in CWNCC, and adopted 2-D wave equation-based poststack migration method to do S-receiver function CCP imaging. Finally, we get 8 migrated profile images in CWNCC and adjacent areas and integrate them for an overview. The most prominent feature of the LAB beneath central NCC is an sudden subsidence to 160km in the southern portion, and the dimension and extension of this deep anomaly is correlated to the lithosphere in Ordos, so we interpret it as a remnant cratonic mantle root. The LAB beneath western NCC can extend to the depth of 150-180 km but appears laterally variable. Western Ordos becomes shallower than its eastern counterpart and there are two obvious deep anomalies beneath the eastern Ordos, divided by a geological boundary at 37°N, which reflects that the lithosphere of Ordos is not so homogeneous or rigid as people thought before. Furthermore, a negative velocity discontinuity is widely identified at the depth of 80- 110 km within the thick lithosphere of CWNCC, and the location is spatially coincide with the modified LAB in ENCC. Although the cause of this mid-lithospheric discontinuity(MLD) is still controversial, mechanically, it may indicate an ancient

  6. Tonoplast aquaporins facilitate lateral root emergence

    DEFF Research Database (Denmark)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée


    that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip...... could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence....

  7. Three-dimensional numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan (United States)

    Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad Constantin; Manea, Marina; Matsumoto, Takumi


    Although the thermal regime of the interface between two overlapping subducting plates, such as those beneath Kanto, Japan, is thought to play an important role in affecting the distribution of interplate and intraslab earthquakes, the estimation of the thermal regime remains challenging to date. We constructed a three-dimensional (3-D) thermal convection model to simulate the subduction of the Pacific plate along the Japan Trench and Izu-Bonin Trench, including the subduction of the Philippine Sea beneath Kanto and investigated the slab thermal regime and slab water contents in this complex tectonic setting. Based on the subduction parameters tested in generic models with two flat oceanic plates, a faster or thicker plate subducting in a more trench-normal direction produces a colder slab thermal regime. The interplate temperature of the cold anomaly beneath offshore Kanto was approximately 300°C colder than that beneath offshore Tohoku at a same depth of 40 km and approximately 600°C colder at a depth of 70 km. The convergence between the two subducting plates produces an asymmetric thermal structure in the slab contact zone beneath Kanto, which is characterized by clustered seismicity in the colder southwestern half. The thermo-dehydration state of the mid-ocean ridge basalt near the upper surface of the subducted Pacific plate controls the interplate seismicity beneath the Kanto-Tohoku region according to the spatial concurrence of the thermo-dehydration and seismicity along the megathrust fault zone of the subducted Pacific plate.

  8. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution (United States)

    Patton, H.; Swift, D. A.; Clark, C. D.; Livingstone, S. J.; Cook, S. J.


    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their distribution and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values - typically 200-300 m - indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion.

  9. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process. (United States)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.


    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  10. Displacing lateral meniscus masquerading as patella dislocation. (United States)

    Arendt, Elizabeth A; Fontboté, Cristián A; Rohr, Sara R


    To alert the treating clinician to an uncommon knee meniscal condition that often masquerades as a more common patella condition. Retrospective chart review of a series of cases was undertaken. A series of 12 knees in 11 patients were referred to an orthopaedic surgeon with a diagnosis of recurrent lateral patella dislocation. Three knees had undergone patella realignment surgery with continuance of symptoms. Eight patients had prior magnetic resonance images read as no meniscal pathology and no acute patella/patella retinacular injury. All patients presented for a consult with a similar history. Under anaesthesia, all knees had a stable patella as judged by physical examination. At the time of surgery, six patients had a frank tear in the lateral meniscus, all of which were readily displaceable. Six knees showed a di