WorldWideScience

Sample records for lateral skull base

  1. [Management of occult malformations at the lateral skull base].

    Science.gov (United States)

    Bryson, E; Draf, W; Hofmann, E; Bockmühl, U

    2005-12-01

    Occult malformations of the lateral skull base are rare anomalies, but can cause severe complications such as recurrent meningitis. Therefore, they need to be precisely delineated and sufficient surgical closure is mandatory. Between 1986 and 2004 twenty patients (10 children and 10 adults) with occult malformations at the lateral skull base were treated surgically at the ENT-Department of the Hospital Fulda gAG. Of these 3 Mondini-malformations, 11 defects of the tegmen tympani or the mastoidal roof, 2 dural lesions to the posterior fossa and 4 malformations within the pyramidal apex have been found. Four patients have had multiple anomalies. Routing symptom was in all cases at least one previous meningitis. Radiological diagnostics included high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) as well as CT- or MR-cisternography. Depending on type and localisation of the defect the following surgical algorithm was carried out: The trans-mastoidal approach was used in all cases of Mondini-malformation (including obliteration of the ear), in case of lesions to the posterior fossa as well as partly in anomalies at the tegmen tympani and mastoidal roof, respectively. Defects of the pyramidal apex should be explored via the trans-mastoidal way if the lesion is located caudally to the inner auditory canal (IAC), whereas the trans-temporal approach should be used if the lesion is situated ventral to the IAC and dorso-medially to the internal carotid artery (ICA). The trans-temporal approach was also performed in large defects of the tegmen tympani and mastoidal roof as well as in recurrences. In all cases of recurrent meningitis caused by agents of the upper airway tract the basic principle should be to search for occult skull base malformations radiologically as well as by sodium fluorescein endoscopy as long as the anomaly is detected.

  2. Lateral skull base approaches in the management of benign parapharyngeal space tumors.

    Science.gov (United States)

    Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario

    2015-06-01

    To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    Directory of Open Access Journals (Sweden)

    Maria Nau-Hermes

    2014-01-01

    Full Text Available For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG, which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  4. Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.

    Science.gov (United States)

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  5. Imaging in tuberculosis of the skull and skull-base: case report

    International Nuclear Information System (INIS)

    Sencer, S.; Aydin, K.; Poyanli, A.; Minareci, O.; Sencer, A.; Hepguel, K.

    2003-01-01

    We report a 19-year-old girl, who presented with headache and tonic/clonic seizures. Imaging revealed a lytic parietal skull lesion with an adjacent epidural mass, masses in the right parietal lobe and a posterior skull-base mass. The diagnosis of tuberculosis was made after resection of the extradural mass and later verified with culture of Mycobacterium tuberculosis. The parenchymal and skull-base lesions resolved following antituberculous treatment. We present CT, scintigraphic, angiographic and MRI findings. (orig.)

  6. Radiologic assessment of maxillofacial, mandibular, and skull base trauma

    International Nuclear Information System (INIS)

    Schuknecht, Bernhard; Graetz, Klaus

    2005-01-01

    Cranio-maxillofacial injuries affect a significant proportion of trauma patients either in isolation or concurring with other serious injuries. Contrary to maxillofacial injuries that result from a direct impact, central skull base and lateral skull base (petrous bone) fractures usually are caused by a lateral or sagittal directed force to the skull and therefore are indirect fractures. The traditional strong role of conventional images in patients with isolated trauma to the viscerocranium is decreasing. Spiral multislice CT is progressively replacing the panoramic radiograph, Waters view, and axial films for maxillofacial trauma, and is increasingly being performed in addition to conventional films to detail and classify trauma to the mandible as well. Imaging thus contributes to accurately categorizing mandibular fractures based on location, into alveolar, mandibular proper, and condylar fractures - the last are subdivided into intracapsular and extracapsular fractures. In the midface, CT facilitates attribution of trauma to the categories central, lateral, or combined centrolateral fractures. The last frequently encompass orbital trauma as well. CT is the imaging technique of choice to display the multiplicity of fragments, the degree of dislocation and rotation, or skull base involvement. Transsphenoid skull base fractures are classified into transverse and oblique types; lateral base (temporal bone) trauma is subdivided into longitudinal and transverse fractures. Supplementary MR examinations are required when a cranial nerve palsy occurs in order to recognize neural compression. Early and late complications of trauma related to the orbit, anterior cranial fossa, or lateral skull base due to infection, brain concussion, or herniation require CT to visualize the osseous prerequisites of complications, and MR to define the adjacent brain and soft tissue involvement. (orig.)

  7. Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.

    Science.gov (United States)

    Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem

    2018-01-01

    Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adenoidal size in lateral roentgenogram of skull

    International Nuclear Information System (INIS)

    Won, H. S.; Byun, Y. S.; Hahm, C. K.; Kim, J. J.

    1983-01-01

    Adenoid is a kind of tonsil located in the posterior wall of the nasopharynx. Enlargement of the adenoid can produce obstruction of the nasopharynx and eustachian tube. Disturbance in discharge of nasal and paranasal secretions can be a cause of chronic rhinitis, sinusitis and otitis media. The diagnosis of enlarged adenoid by inspection is difficult due to its location. In the lateral roentgenogram of the skull the anterior wall of the adenoid is sharply delineated by air in the nasopharynx. The authors measured the sizes of adenoid and nasopharynx and calculated the adenoid-nasopharyngeal ratio (AN ratio) from 1,000 simple skull lateral roentgenograms of the children between the age of 0 to 16 years. Adenoid size is gradually increasing in the children up to 9 years of age but almost uncharged in the older age group. The AN ratio is highest in the age group of 8-9 years. In the age groups above 9 years of age the AN ratio is gradually decreased due to atrophic changes of the adenoid

  9. Adenoidal size in lateral roentgenogram of skull

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. S.; Byun, Y. S.; Hahm, C. K.; Kim, J. J. [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1983-03-15

    Adenoid is a kind of tonsil located in the posterior wall of the nasopharynx. Enlargement of the adenoid can produce obstruction of the nasopharynx and eustachian tube. Disturbance in discharge of nasal and paranasal secretions can be a cause of chronic rhinitis, sinusitis and otitis media. The diagnosis of enlarged adenoid by inspection is difficult due to its location. In the lateral roentgenogram of the skull the anterior wall of the adenoid is sharply delineated by air in the nasopharynx. The authors measured the sizes of adenoid and nasopharynx and calculated the adenoid-nasopharyngeal ratio (AN ratio) from 1,000 simple skull lateral roentgenograms of the children between the age of 0 to 16 years. Adenoid size is gradually increasing in the children up to 9 years of age but almost uncharged in the older age group. The AN ratio is highest in the age group of 8-9 years. In the age groups above 9 years of age the AN ratio is gradually decreased due to atrophic changes of the adenoid.

  10. Open Approaches to the Anterior Skull Base in Children: Review of the Literature.

    Science.gov (United States)

    Wasserzug, Oshri; DeRowe, Ari; Ringel, Barak; Fishman, Gadi; Fliss, Dan M

    2018-02-01

    Introduction  Skull base lesions in children and adolescents are rare, and comprise only 5.6% of all skull base surgery. Anterior skull base lesions dominate, averaging slightly more than 50% of the cases. Until recently, surgery of the anterior skull base was dominated by open procedures and endoscopic skull base surgery was reserved for benign pathologies. Endoscopic skull base surgery is gradually gaining popularity. In spite of that, open skull base surgery is still considered the "gold standard" for the treatment of anterior skull base lesions, and it is the preferred approach in selected cases. Objective  This article reviews current concepts and open approaches to the anterior skull base in children in the era of endoscopic surgery. Materials and Methods  Comprehensive literature review. Results  Extensive intracranial-intradural invasion, extensive orbital invasion, encasement of the optic nerve or the internal carotid artery, lateral supraorbital dural involvement and involvement of the anterior table of the frontal sinus or lateral portion of the frontal sinus precludes endoscopic surgery, and mandates open skull base surgery. The open approaches which are used most frequently for surgical resection of anterior skull base tumors are the transfacial/transmaxillary, subcranial, and subfrontal approaches. Reconstruction of anterior skull base defects is discussed in a separate article in this supplement. Discussion  Although endoscopic skull base surgery in children is gaining popularity in developed countries, in many cases open surgery is still required. In addition, in developing countries, which accounts for more than 80% of the world's population, limited access to expensive equipment precludes the use of endoscopic surgery. Several open surgical approaches are still employed to resect anterior skull base lesions in the pediatric population. With this large armamentarium of surgical approaches, tailoring the most suitable approach to a

  11. Skull base tumours

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Instituto Portugues de Oncologia Francisco Gentil, Servico de Radiologia, Rua Professor Lima Basto, 1093 Lisboa Codex (Portugal)], E-mail: borgesalexandra@clix.pt

    2008-06-15

    With the advances of cross-sectional imaging radiologists gained an increasing responsibility in the management of patients with skull base pathology. As this anatomic area is hidden to clinical exam, surgeons and radiation oncologists have to rely on imaging studies to plan the most adequate treatment. To fulfil these endeavour radiologists need to be knowledgeable about skull base anatomy, about the main treatment options available, their indications and contra-indications and needs to be aware of the wide gamut of pathologies seen in this anatomic region. This article will provide a radiologists' friendly approach to the central skull base and will review the most common central skull base tumours and tumours intrinsic to the bony skull base.

  12. Skull base tumours

    International Nuclear Information System (INIS)

    Borges, Alexandra

    2008-01-01

    With the advances of cross-sectional imaging radiologists gained an increasing responsibility in the management of patients with skull base pathology. As this anatomic area is hidden to clinical exam, surgeons and radiation oncologists have to rely on imaging studies to plan the most adequate treatment. To fulfil these endeavour radiologists need to be knowledgeable about skull base anatomy, about the main treatment options available, their indications and contra-indications and needs to be aware of the wide gamut of pathologies seen in this anatomic region. This article will provide a radiologists' friendly approach to the central skull base and will review the most common central skull base tumours and tumours intrinsic to the bony skull base

  13. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  14. Skull base tumours part I: Imaging technique, anatomy and anterior skull base tumours

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Servico de Radiologia, Rua Professor Lima Basto, 1093 Lisboa Codex (Portugal)], E-mail: borgesalexandra@clix.pt

    2008-06-15

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed.

  15. Skull base tumours part I: Imaging technique, anatomy and anterior skull base tumours

    International Nuclear Information System (INIS)

    Borges, Alexandra

    2008-01-01

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed

  16. Fibromyxoma of the Lateral Skull Base in a Child: Case Report

    Science.gov (United States)

    Klimo, Paul; Jha, Tushar; Choudhri, Asim F.; Joyner, Royce; Michael, L. Madison

    2013-01-01

    Purpose Fibromyxomas and myxomas are benign tumors of mesenchymal origin usually found outside the nervous system, most commonly in the atrium of the heart. They can also arise in the mandible or maxilla, but it is exceedingly rare to find them within the skull base. The history, histologic features, and the literature, with emphasis on other pediatric cases, are reviewed for this uncommon skull base neoplasm. Methods We describe the case of a 13-year-old girl who presented with a 1-year history of facial weakness, numbness, and hearing loss. A large locally destructive tumor centered in the petrous bone was found on magnetic resonance imaging. Results A mastoidectomy combined with a middle fossa craniotomy was performed for gross total resection. The child is disease free 12 months after surgery. Conclusion Diagnosis could not be made solely on radiographic studies because of the lack of pathognomonic imaging features. Radical resection provided the patient the best chance of cure. Long-term surveillance is necessary to monitor for tumor recurrence. PMID:24303345

  17. Imaging of skull base: Pictorial essay

    International Nuclear Information System (INIS)

    Raut, Abhijit A; Naphade, Prashant S; Chawla, Ashish

    2012-01-01

    The skull base anatomy is complex. Numerous vital neurovascular structures pass through multiple channels and foramina located in the base skull. With the advent of computerized tomography (CT) and magnetic resonance imaging (MRI), accurate preoperative lesion localization and evaluation of its relationship with adjacent neurovascular structures is possible. It is imperative that the radiologist and skull base surgeons are familiar with this complex anatomy for localizing the skull base lesion, reaching appropriate differential diagnosis, and deciding the optimal surgical approach. CT and MRI are complementary to each other and are often used together for the demonstration of the full disease extent. This article focuses on the radiological anatomy of the skull base and discusses few of the common pathologies affecting the skull base

  18. Imaging diagnosis of Granulocytic Sarcoma in the skull base

    International Nuclear Information System (INIS)

    Zheng Shaoyan; Xie Jiming; Yang Zhiyun; Zhou Zhou; Li Shurong

    2010-01-01

    Objective: To improve the understanding and imaging diagnosis of granulocytic sarcoma in the skull base. Methods: Three cases of granulocytic sarcomas in the skull base are reported. The clinical features and imaging findings were analyzed. Results: The three cases occurred in children with acute myeloid leukemia. Two patients presented with oculomotor paralysis before the diagnosis of leukemia, the third patient with history of leukemia presented with headache. Diffuse infiltration of basal skull bone marrow and extracranial soft tissue masses were shown on MRI. The signal intensities of the masses were similar to that of gray matter on T 1 WI and T 2 WI with marked contrast enhancement. The soft tissue masses were located in the para-sellar region and surrounded the lateral wall of the maxillary sinus in one case. The soft tissue mass of the second case infiltrated the orbital cavity, cavernous sinus and oculomotor nerve. Tumor infiltrating the meninges, cranial nerves and paranasal sinuses was seen in the third patient. Conclusion: Cranial nerve paralysis can be the presenting symptom of basal skull granulocytic sarcoma in children. Granulocytic sarcoma should be considered in the different diagnosis when diffuse abnormal signal intensities in the basal skull bone marrow with solitary or multiple soft tissue masses are shown on MRI. (authors)

  19. The contribution of high-resolution multiplanar reformats of the skull base to the detection of skull-base fractures

    International Nuclear Information System (INIS)

    Connor, S.E.J.; Flis, C.

    2005-01-01

    AIM: To investigate the contribution of routine review of submillimetric multiplanar reformats to the diagnosis of skull-base fractures. METHODS: A prospective analysis was performed of 407 cases referred over a 6-month period for CT of the skull following cranial trauma. The reformatted 5-mm axial sections and subsequently the high-resolution multiplanar reformats (HRMPRs) were viewed on an ADW 4.1 workstation using bone windows and algorithm. All skull-base fractures and related features, recorded by the consensus of two radiologists, were classified as anatomically significant or non-significant on the basis of eight criteria. The clinical features of skull-base injury and any subsequent treatment were noted in all cases of skull-base fracture. RESULTS: HRMPRs detected 80 separate skull-base fractures in 36/407 cases. Of these 80 fractures, 57 were visible on 5-mm axial sections. In 8 of the 36 cases, the significant anatomical features were only evident on review of the HRMPRs. In 6 of the 36 cases, none of the skull-base fractures was visible on 5-mm sections, but these individuals had only minor associated clinical features and no therapeutic requirements. Review of HRMPRs could have been confined to patients with skull-base fractures, abnormal intracranial and extracranial air collections or opacified mastoid air cells revealed by 5-mm axial sections. This policy would have led to the detection of 79/80 (99%) of skull-base fractures and all significant anatomical features. CONCLUSION: The 5-mm axial sections demonstrated 71% of skull-base fractures and 78% of skull-base fractures with significant anatomical features, using HRMPRs as a gold standard. There were no significant clinical sequelae at short-term follow-up of those fractures only evident on HRMPRs

  20. CT atlas of the skull base

    International Nuclear Information System (INIS)

    Inoue, Hiroshi; Kawafuchi, Jun-ichi; Takahashi, Kazukuni

    1980-01-01

    Although CT is generally used for lesions of the face, the orbit, the nasal and paranasal cavity, and the skull base, a CT atlas of these regions has not been reported. Furthermore, the skull base, that lies nearly tangential to the conventional axial plane of CT, can not be precisely evaluated on ordinary horizontal pictures. For the purpose of a clear demonstration of the skull-base structures by CT, a model human skull was investigated. The results and its clinical value have previously been reported. For the CT atlas of the skull base, three model human skulls (embedded in agar gel containing iodine in a manner previously reported) were also examined by EMI-CT1010 with a 5 mm thickness. The magnification and wide-window techniques were also used for demonstration. Ordinary-0 sections (scanning plane at 0 0 to Reid's base line), ordinary-25 sections (+25 0 to RBL), reverse-20 sections (-20 0 to RBL), reverse-80 sections (-80 0 to RBL; coronal sections), and sagittal sections were selected in order to illustrate the anatomical details of the skull base. Pictures of the inner aspect and the outer aspect of the skull base were also provided. Clinically it is very important to recognize osseous change and the relationship between the lesion and the skull base in three dimensions. In evaluating lesions of the skull base and those of the tentorial notch a two-plane CT examination (ordinary-25 sections and reverse-20 sections) is usually used. This method is useful in determining the surgical approach, for instance, to decide between a transsphenoidal approach or intracranial approach for a sellar lesion, or between a subtemporal approach, posterior fossa approach, or combined approach for a lesion of the tentorial notch. It is also helpful to make a map of the lesin on a plain craniogram using this two-plane method in some cases for radiotherapy and stereotactic brain biopsy. (author)

  1. [Congenital skull base defect causing recurrent bacterial meningitis].

    Science.gov (United States)

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  2. Fungal Infection of the Sinus and Anterior Skull Base

    Directory of Open Access Journals (Sweden)

    Morteza Javadi

    2008-11-01

    Full Text Available   Abstract   Background: Invasive fungal infection is an opportunistic infection caused commonly   by mucoraccae and aspergillus. It mostly occurs in patients with underlying disease.   Since it has a high mortality and morbidity rate, considering a treatment strategy seems   necessary.   Objective: Since there has not been a clear protocol for treating these patients, we decided   to establish a protocol for fungal infection of sinus and anterior skull base management.   Methods: This retrospective and descriptive case study series included 30 patients.   After confirming the pathogen, the authors came to a proper protocol for treatment which   is mentioned later.   Results: The site involvement included nose and orbital cavity (53.3%, anterior skull   base and brain in conjunction with sinonasal (36.6% and simple nasal cavity involvement   (10%. 86.6% of the patients had underlying diseases. 56.6% of patients had diabetes   as a single underlying disease, while 13.3% had both diabetes and renal failure in   combination. Acute lymphocytic leukemia was present in 6.6%, renal failure in 3.3%, lupus   in 3.3% and chronic lymphocytic leukemia in 3.3% of patients. Mortality rate was   40%. We categorized the patients into 3 groups: only sinonasal, sinonasal and orbit, and   associated anterior skull base and brain involvement.   Conclusion: Early diagnosis is an important factor in improving survival. Anterior   skull base and brain involvement has a very poor prognosis.  

  3. 'Do not touch' lesions of the skull base

    International Nuclear Information System (INIS)

    Dobre, Mircea C.; Fischbein, Nancy

    2014-01-01

    Imaging of the skull base presents many challenges due to its anatomical complexity, numerous normal variants and lack of familiarity to many radiologists. As the skull base is a region which is not amenable to physical examination and as lesions of the skull base are generally difficult to biopsy and even more difficult to operate on, the radiologist plays a major role in directing patient management via accurate image interpretation. Knowledge of the skull base should not be limited to neuroradiologists and head and neck radiologists, however, as the central skull base is routinely included in the field of view when imaging the brain, cervical spine, or head and neck with computed tomography or magnetic resonance imaging, and hence, its nuances should be familiar to general radiologists as well. We herein review the imaging findings of a subcategory of lesions of the central skull base, the 'do not touch' lesions.

  4. Introduction: surgical management of skull base meningiomas.

    Science.gov (United States)

    Zada, Gabriel; Başkaya, Mustafa K; Shah, Mitesh V

    2017-10-01

    Meningiomas represent the most common primary intracranial neoplasm treated by neurosurgeons. Although multimodal treatment of meningiomas includes surgery, radiation-based treatments, and occasionally medical therapy, surgery remains the mainstay of treatment for most symptomatic meningiomas. Because of the intricate relationship of the dura mater and arachnoid mater with the central nervous system and cranial nerves, meningiomas can arise anywhere along the skull base or convexities, and occasionally even within the ventricular system, thereby mandating a catalog of surgical approaches that neurosurgeons may employ to individualize treatment for patients. Skull base meningiomas represent some of the most challenging pathology encountered by neurosurgeons, on account of their depth, invasion, vascularity, texture/consistency, and their relationship to bony anatomy, cranial nerves, and blood vessels. Resection of complex skull base meningiomas often mandates adequate bony removal to achieve sufficient exposure of the tumor and surrounding region, in order to minimize brain retraction and optimally identify, protect, control, and manipulate sensitive neurovascular structures. A variety of traditional skull base approaches has evolved to address complex skull base tumors, of which meningiomas are considered the paragon in terms of both complexity and frequency. In this supplemental video issue of Neurosurgical Focus, contributing authors from around the world provide instructional narratives demonstrating resection of a variety of skull base meningiomas arising from traditionally challenging origins, including the clinoid processes, tuberculum sellae, dorsum sellae, petroclival region, falco-tentorial region, cerebellopontine angle, and foramen magnum. In addition, two cases of extended endoscopic endonasal approaches for tuberculum sellae and dorsum sellae meningiomas are presented, representing the latest evolution in accessing the skull base for selected tumors

  5. Evaluation of Three Cases Using a Novel Titanium Mesh System-Skull-Fit with Orbital Wall (Skull-Fit WOW)-For Cranial Base Reconstructions.

    Science.gov (United States)

    Hattori, Noriko; Nakajima, Hideo; Tamada, Ikkei; Sakamoto, Yoshiaki; Ohira, Takayuki; Yoshida, Kazunari; Kawase, Takeshi; Kishi, Kazuo

    2011-09-01

    Cranial base reconstructions associated with tumor resections around the orbital wall often require that both the upper and lateral orbital walls be reconstructed during a single procedure. Previously, we used titanium mesh plates that were preoperatively fabricated based on three-dimensional models. Although these plates are precise and do not increase the probability of infection, we still had to use autologous bones to reconstruct the orbital walls. Recently, we developed a new titanium mesh plate-called Skull-Fit(®)-with orbital wall (Skull-Fit WOW(®)), enabling us to reconstruct the cranial base and orbital walls without bone grafts. Here, we report on three reconstruction cases in which the novel titanium mesh-orbital wall system was used. In all three cases, the customized titanium mesh system performed satisfactorily with little, if any, complications.

  6. Skull base tumors: a kaleidoscope of challenge.

    Science.gov (United States)

    Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna

    2014-08-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.

  7. Quality criteria in diagnostic radiology of the skull

    International Nuclear Information System (INIS)

    Friedmann, G.

    1985-01-01

    Diagnostic survey radiology of the skull relies on pictures to be taken if indicated and to meet all conceivable requirements. Those radiograph directions and projections were selected out of the profusion of known and described ones which allow both as small a number of pictures and as comprehensive a demonstration of all skull sections and1structures as possible. With this in mind, quality criteria for plain radiographs of the skull taken laterally and sagittably, for partial radiographs of the visceral cranium including orbit and of the base of the skull including petrons bone are described. (orig./MG) [de

  8. Evaluation of Three Cases Using a Novel Titanium Mesh System—Skull-Fit® with Orbital Wall (Skull-Fit WOW®)—For Cranial Base Reconstructions

    Science.gov (United States)

    Hattori, Noriko; Nakajima, Hideo; Tamada, Ikkei; Sakamoto, Yoshiaki; Ohira, Takayuki; Yoshida, Kazunari; Kawase, Takeshi; Kishi, Kazuo

    2011-01-01

    Cranial base reconstructions associated with tumor resections around the orbital wall often require that both the upper and lateral orbital walls be reconstructed during a single procedure. Previously, we used titanium mesh plates that were preoperatively fabricated based on three-dimensional models. Although these plates are precise and do not increase the probability of infection, we still had to use autologous bones to reconstruct the orbital walls. Recently, we developed a new titanium mesh plate—called Skull-Fit®—with orbital wall (Skull-Fit WOW®), enabling us to reconstruct the cranial base and orbital walls without bone grafts. Here, we report on three reconstruction cases in which the novel titanium mesh-orbital wall system was used. In all three cases, the customized titanium mesh system performed satisfactorily with little, if any, complications. PMID:22451827

  9. Management of osteomyelitis of the skull base

    International Nuclear Information System (INIS)

    Benecke, J.E. Jr.

    1989-01-01

    Osteomyelitis of the skull base is the most severe form of malignant otitis externa. As a result of having treated 13 patients with skull base osteomyelitis over a 4-year period, we have developed a method of staging and monitoring this malady using gallium and technetium scanning techniques. Stage I is localized to soft tissues, stage II is limited osteomyelitis, and stage III represents extensive skull base osteomyelitis. All stages are treated with appropriate antipseudomonal antibiotics. The duration of therapy depends upon the clearing of inflammation as shown on the gallium scan. Each case must be looked at independently and not subjected to an arbitrary treatment protocol

  10. Endovascular treatment for arterial injuries of skull base

    International Nuclear Information System (INIS)

    Li Tianxiao; Bai Weixing; Zai Suiting; Wang Ziliang; Xue Jiangyu

    2008-01-01

    Objective: To explore the role of endovascular techniques in treatment for arterial injuries of skull base. Methods: A total of 53 consecutive cases suffered from skull base arterial injuries were enrolled in our hospital from Oct 2004 to May 2007, including 44 male and 9 female cases with average age of 23.3 years. Thirty-nine cases presented with pulsatile exophthalmos and intracranial vascular murmur, cerchnus and dysphagia in another 9, epistaxis in the remaining 5 cases. Diagnosis of 39 carotid cavernous fistulae (CCF)and 14 carotid pseudoaneurysm were performed by angiography (DSA). Alternative endovascular procedures were performed depending on lesions characteristics and follow-up was done by telephone and outpatient work up. Results: Procedures were performed involving 56 carotid arteries in all 53 cases including 34 CCF with embolization of detachable balloon(33 cases), 3 with balloon and coils, and 3 by stent-graft placement. 8 carotid pseudoaneurysms were cured by parent artery occlusion with balloon, 2 experienced endovascular isolation with balloon and coils, and 4 with stent-graft. Follow-up for mean 9.5 months (range from 2 to 25 months) revealed that the chief symptoms of 45 cases (85%) were relieved within 6 months after the procedure but ocular movement and visual disorder remained in 8 cases (15%)till 12 months. Six pseudoaneurysms and 3 residual leak were found in reexamination, of which 2 cases underwent intervention again 2 and 3 months later due to dural arterial-venous fistula in cavernous sinus, respectively. Conclusions: Endovascular treatment is safe and effective therapeutic option with minimal invasion for skull base arterial injuries. Detachable balloon embolization is the first choice for CCF and carotid pseudoaneurysm. Spring coil packing and stent-graft implantation should be in alternation as combination for special cases. (authors)

  11. Skull defect reconstruction based on a new hybrid level set.

    Science.gov (United States)

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  12. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    Science.gov (United States)

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Chordoma of skull base presenting as nasopharyngeal mass

    Directory of Open Access Journals (Sweden)

    Sant Prakash Kataria

    2013-01-01

    Full Text Available While the nasopharynx is most commonly regarded by the otolaryngologist as a primary site of neoplastic involvement, it is also an avenue of spread of base-of-the-skull tumors presenting as bulging nasopharyngeal masses. Chordoma is a relatively rare tumor of the skull base and sacrum thought to originate from embryonic remnants of the notochord. Chordomas arising from the skull base/clivus are typically locally aggressive with lytic bone destruction. The optimal treatment may be photon/proton radiotherapy alone or combined with a gross total resection, when feasible. We report a case of intracranial chordoma presenting as nasopharyngeal mass.

  14. Sagittal synostosis: I. Preoperative morphology of the skull

    DEFF Research Database (Denmark)

    Guimaraes-Ferreira, J.; Gewalli, F.; David, L.

    2006-01-01

    The aim of this study was to characterise the preoperative morphology of the skull in sagittal synostosis in an objective and quantified way. The shapes of the skulls of 105 patients with isolated premature synostosis of the sagittal suture ( SS group) were studied and compared with those......, skull base, and orbit ( 42 in the lateral and 46 in the frontal projections), the production of plots of mean shape for each group, and the intergroup comparison of a series of 81 variables ( linear distance between selected landmarks, and angles defined by groups of three landmarks). Data from...... skull width. Comparison of the mean values of an SS subgroup to age-matched normative data showed a longer (p differ significantly...

  15. Postnatal development of the anterior skull base and nasal septum: CT study

    International Nuclear Information System (INIS)

    Kim, Kwan Soo; Kim, Hyung Jin; Lee, Kyung Hee; Roh, Hong Gee; Lim, Myung Kwan

    2002-01-01

    To know the normal CT appearance of the anterior skull base and nasal septum after birth. Coronal CT scans with a helical mode were performed from the nasal bone to the sphenoid sinus in 99 children whose ages ranged from 27 days to 14 years. We investigated the CT appearance of the developing anterior skull base and nasal septum with particular attention to the anteroposterior length of the anterior skull base and the ossification patterns of the cribriform plate, perpendicular plate, crista galli, and vomer. The anteroposterior length of the anterior skull base statistically significantly increased with age. The cribriform plate showed partial or complete ossification in at least one segment at more than 3 months of age and in all three segments at more than 6 months of age. Ossification of the cribriform plate occurred earlier in the middle segment than in the anterior and posterior segments. It began exclusively in the region of the lateral mass of the ethmoid and proceeded medially toward the crista galli. Partial ossification of the perpendicular plate was noted as early as 9 months of age, and complete ossification as early as 13 months of age. All children at 18 months and older showed at least partial ossification of the perpendicular plate. Partial ossification of the crista galli was noted as early as 27 days of age, and complete ossification as early as 3 months of age. CT showed complete ossification of the crista galli in all but two children at 6 months and older. The superior aspect of the vomer exhibited a V- or Y-shape on all CT scans in 66%(65/99) of children at any age. It appeared as an undivided single lump anteriorly and a V or Y posteriorly in 34%(34/99). Knowledge of the normal developing patterns of ossification of the anterior skull base and nasal septum could help prevent errors in interpreting CT scans in this region, especially in infants and young children

  16. Augmented reality-assisted skull base surgery.

    Science.gov (United States)

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    International Nuclear Information System (INIS)

    O'Malley, Bert W.; Weinstein, Gregory S.

    2007-01-01

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach was investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development

  18. Imaging of the skull base anatomy; Schnittbildanatomie der Schaedelbasis

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Wolfgang; Uder, Michael; Lell, Michael [Erlangen-Nuernberg Univ., Universitaetsklinikum (Germany). Radiologisches Institut

    2016-09-15

    The skull base divides the extracranial from the intracranial compartment and contains a multiplicity of bony and soft tissue structures. For evaluating the skull base profound knowledge of the complex anatomy is mandatory. To limit the number of differential diagnosis it is important to be familiar with the contents of the different compartments. Due to the technical progress and the difficulty in assessing the skull base clinically imaging plays a significant role in diagnosis. For imaging both MRI and CT are used, which represent not competing but complementary methods.

  19. Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note.

    Science.gov (United States)

    Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou

    2008-12-01

    Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.

  20. Isolated hypoglossal nerve palsy due to skull base metastasis from breast cancer

    International Nuclear Information System (INIS)

    Pavithran, K.; Doval, D.C.; Hukku, S.; Jena, A.

    2001-01-01

    We describe a 44-year-old woman who presented with an isolated unilateral hypoglossal nerve paralysis caused by a skull base metastasis from breast cancer. The patient had a modified radical mastectomy followed by local radiotherapy and adjuvant chemotherapy. Fourteen months later she presented with difficulty in speaking. Physical examination revealed an isolated left hypoglossal nerve paralysis. The MRI scan showed a mass lesion involving the left occipital condyle extending into hypoglossal canal. Copyright (2001) Blackwell Science Pty Ltd

  1. Endoscopic endonasal skull base surgery: advantages, limitations, and our techniques to overcome cerebrospinal fluid leakage: technical note.

    Science.gov (United States)

    Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Morita, Akio

    2014-01-01

    In recent years, resections of midline skull base tumors have been conducted using endoscopic endonasal skull base (EESB) approaches. Nevertheless, many surgeons reported that cerebrospinal fluid (CSF) leakage is still a major complication of these approaches. Here, we report the results of our 42 EESB surgeries and discuss the advantages and limits of this approach for resecting various types of tumors, and also report our technique to overcome CSF leakage. All 42 cases involved midline skull base tumors resected using the EESB technique. Dural incisions were closed using nasoseptal flaps and fascia patch inlay sutures. Total removal of the tumor was accomplished in seven pituitary adenomas (33.3%), five craniopharyngiomas (62.5%), five tuberculum sellae meningiomas (83.3%), three clival chordomas (100%), and one suprasellar ependymoma. Residual regions included the cavernous sinus, the outside of the intracranial part of the internal carotid artery, the lower lateral part of the posterior clivus, and the posterior pituitary stalk. Overall incidence of CSF leakage was 7.1%. Even though the versatility of the approach is limited, EESB surgery has many advantages compared to the transcranial approach for managing mid-line skull base lesions. To avoid CSF leakage, surgeons should have skills and techniques for complete closure, including use of the nasoseptal flap and fascia patch inlay techniques.

  2. Imaging of the central skull base.

    Science.gov (United States)

    Borges, Alexandra

    2009-11-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  3. Positional skull deformation in infants: heading towards evidence-based practice

    NARCIS (Netherlands)

    van Wijk, Renske

    2014-01-01

    The shape of a young infant’s skull can deform as a result of prolonged external forces. The prevalence of positional skull deformation increased dramatically during the last decades. The primary aim of this dissertation was to provide a stronger evidence base for the treatment of skull deformation.

  4. Surgical outcomes after reoperation for recurrent skull base meningiomas.

    Science.gov (United States)

    Magill, Stephen T; Lee, David S; Yen, Adam J; Lucas, Calixto-Hope G; Raleigh, David R; Aghi, Manish K; Theodosopoulos, Philip V; McDermott, Michael W

    2018-05-04

    OBJECTIVE Skull base meningiomas are surgically challenging tumors due to the intricate skull base anatomy and the proximity of cranial nerves and critical cerebral vasculature. Many studies have reported outcomes after primary resection of skull base meningiomas; however, little is known about outcomes after reoperation for recurrent skull base meningiomas. Since reoperation is one treatment option for patients with recurrent meningioma, the authors sought to define the risk profile for reoperation of skull base meningiomas. METHODS A retrospective review of 2120 patients who underwent resection of meningiomas between 1985 and 2016 was conducted. Clinical information was extracted from the medical records, radiology data, and pathology data. All records of patients with recurrent skull base meningiomas were reviewed. Demographic data, presenting symptoms, surgical management, outcomes, and complications data were collected. Kaplan-Meier analysis was used to evaluate survival after reoperation. Logistic regression was used to evaluate for risk factors associated with complications. RESULTS Seventy-eight patients underwent 100 reoperations for recurrent skull base meningiomas. Seventeen patients had 2 reoperations, 3 had 3 reoperations, and 2 had 4 or more reoperations. The median age at diagnosis was 52 years, and 64% of patients were female. The median follow-up was 8.5 years. Presenting symptoms included cranial neuropathy, headache, seizure, proptosis, and weakness. The median time from initial resection to first reoperation was 4.4 years and 4.1 years from first to second reoperation. Seventy-two percent of tumors were WHO grade I, 22% were WHO grade II, and 6% were WHO grade III. The sphenoid wing was the most common location (31%), followed by cerebellopontine angle (14%), cavernous sinus (13%), olfactory groove (12%), tuberculum sellae (12%), and middle fossa floor (5%). Forty-four (54%) tumors were ≥ 3 cm in maximum diameter at the time of the first

  5. SPECT/CT in the Diagnosis of Skull Base Osteomyelitis

    International Nuclear Information System (INIS)

    Damle, Nishikant Avinash; Kumar, Rakesh; Kumar, Praveen; Jaganthan, Sriram; Patnecha, Manish; Bal, Chandrasekhar; Bandopadhyaya, Gurupad; Malhotra, Arun

    2011-01-01

    Skull base osteomyelitis is a potentially fatal disease. We demonstrate here the utility of SPECT/CT in diagnosing this entity, which was not obvious on a planar bone scan. A 99mT c MDP bone scan with SPECT/CT was carried out on a patient with clinically suspected skull base osteomyelitis. Findings were correlated with contrast enhanced CT (CECT) and MRI. Planar images were equivocal, but SPECT/CT showed intense uptake in the body of sphenoid and petrous temporal bone as well as the atlas corresponding to irregular bone destruction on CT and MRI. These findings indicate that SPECT/CT may have an additional role beyond planar imaging in the detection of skull base osteomyelitis.

  6. Measurements of postnatal growth of the skull of Pan troglodytes verus using lateral cephalograms.

    Science.gov (United States)

    Arnold, Wolfgang H; Protsch von Zieten, Reiner; Schmidt, Ekehard

    2003-03-01

    The postnatal growth of the viscerocranium in relation to the neurocranium of Pan troglodytes verus has been investigated using standardized lateral cephalograms. Sex and age were determined on the basis of cranial morphology and the skulls were divided into four age groups: infantile, juvenile, subadult and adult. The cephalograms were traced on transparencies and specific anatomical landmarks were identified for the measurement of lines angles and the area of the neurocranium and viscerocranium. The results showed that the skull of Pan troglodytes verus exhibits klinorhynchy. During postnatal growth it develops towards airorhynchy, but never shows true airorhynchy. In the infantile age group the measured area of the neurocranium is larger than that of the viscerocranium. The measured area of the viscerocranium increases until adulthood and is larger than that of the neurocranium in the subadult and adult group. From the results we conclude that in Pan troglodytes verus growth of the neurocranium seizes early in juvenile individuals, whereas the viscerocranium grows until adulthood. This may reflect an adaptation to the masticatory system.

  7. The anterior interhemispheric approach: a safe and effective approach to anterior skull base lesions.

    Science.gov (United States)

    Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit

    2014-04-01

    Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach

  8. [The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].

    Science.gov (United States)

    Seemann, Sophie

    2016-01-01

    Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.

  9. CHONDROID SKULL BASE TUMORS (A REVIEW OF LITERATURE

    Directory of Open Access Journals (Sweden)

    T. G. Gasparyan

    2012-01-01

    Full Text Available Chondroid skull base tumors are a rare and little studied pathology; many problems of their classification, diagnosis and treatment remain to be solved. This group of neoplasms is referred to as bone tumors arising from the cartilaginous tissue of the skull base bones, particularly from the bones formed during chondral osteogenesis. The paper details the clinical picture, X-ray and morphological diagnosis of chondroid tumors. Particular attention is given to surgery and radiotherapy for this category of tumors.

  10. Skull Base Langerhans Cell Histiocytosis with Diabetes Insipidus and Panhypopituitarism- A Rare Clinical Entity

    Directory of Open Access Journals (Sweden)

    Anirban Ghosh

    2017-12-01

    Case Report A 16 year old male presented with diminished vision, bilateral ptosis, left sided lateral rectus palsy, hypoesthesia of trigeminal nerve with nasal obstruction for last 5 months. There was polypoidal, bleeding mass in both nasal cavities. Contrast enhanced CT Scan showed a large homogenous mass arising from sphenoid extending into cavernous sinus and the suprasellar region. Endoscopic nasal biopsy revealed abundant Langerhans cell histiocytes, macrophages, neutrophils. Chemotherapy and radiotherapy were administered. But within 2 months the patient presented with Cushingoid features and further diminution of vision. Detailed work-up revealed Hypogonadotrophic hypogonadism and diabetes insipidus. Debulking of the tumour was done and left optic nerve decompression was done. PET scan was performed and showed large, well defined mass with increased FDG uptake in the skull base with suprasellar extension, reaching upto petrous temporal bone and causing bony erosion of ethmoid and sphenoid sinuses. Patient was then advised adjuvant chemotherapy.   Discussion Langerhans cell histiocytosis is a rare group of disorders characterised by abnormal clonal proliferation and accumulation of abnormal dendritic cells. Involvement of base of skull is even rarer. Though diabetes insipidus has been reported in Langerhans cell histiocytosis involving pituitary, panhypopituitarism is rare. These combinations of extensive Langerhans cell histiocytosis of base skull with clinical features of Diabetes insipidus and panhypopituitarism makes this case a rare clinical entity.

  11. Early harvesting of the vascularized pedicled nasoseptal flap during endoscopic skull base surgery.

    Science.gov (United States)

    Eloy, Jean Anderson; Patel, Amit A; Shukla, Pratik A; Choudhry, Osamah J; Liu, James K

    2013-01-01

    The vascularized pedicled nasoseptal flap (PNSF) represents a successful option for reconstruction of large skull base defects after expanded endoscopic endonasal approaches (EEA). This vascularized flap can be harvested early or late in the operation depending on the anticipation of high-flow CSF leaks. Each harvesting technique (early vs. late) is associated with different advantages and disadvantages. In this study, we evaluate our experience with early harvesting of the PNSF for repair of large skull base defects after EEA. A retrospective review was performed at a tertiary care medical center on patients who underwent early PNSF harvesting during reconstruction of intraoperative high-flow CSF leaks after EEA between December 2008 and March 2012. Demographic data, repair materials, surgical approach, and incidence of PNSF usage were collected. Eighty-seven patients meeting the inclusion criteria were identified. In 86 procedures (98.9%), the PNSF harvested at the beginning of the operation was used. In 1 case (1.1%), the PNSF was not used because a high-flow intraoperative CSF leak was not encountered. This patient had recurrence of intradural disease 8months later, and the previously elevated PNSF was subsequent used after tumor resection. Based on our data, a high-flow CSF leak and need for a PNSF can be accurately anticipated in patients undergoing EEA for skull base lesions. Because of the advantages of early harvesting of the PNSF and the high preoperative predictive value of CSF leak anticipations, this technique represents a feasible harvesting practice for EEA surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Normal age-related conversion of bone marrow in the skull base. Assessment with MR imaging

    International Nuclear Information System (INIS)

    Kato, Koki; Tomura, Noriaki; Takahashi, Satoshi; Izumi, Junichi; Kurosawa, Ryo; Sashi, Ryuji; Watarai, Jiro

    2000-01-01

    The purpose of this study was to assess the normal age-related sequence of conversion from hematopoietic to fatty marrow in the skull base by means of MR imaging. We retrospectively reviewed T1-weighted MR images of the skull base for the distribution of hematopoietic and fatty marrow. The subjects consisted of 169 MR examinations that were performed with the spin-echo technique. The age of the subjects ranged from 0 months to 20 years old. Patients with known marrow abnormalities were excluded from this study. Marrow conversion was assessed in the presphenoid, postsphenoid, basiocciput, petrous apex, clivus, zygomatic bone, and condyle of the mandible. The signal intensity was visually graded, and the signal intensity ratio was determined on the basis of the intensities of the subcutaneous fat and air. The signal intensity of all observed regions was as low as that of muscles until 3 months of age. Conversion of hematopoietic to fatty marrow first occurred in the zygomatic bone until 6 months of age. The presphenoid increased in signal intensity from 5 months to 2 years of age, and the sphenoid sinus began to be pneumatic at this age. Marrow conversion of the postsphenoid and basiocciput was later than that of the presphenoid. Most of the bone marrow of the skull base appeared as fatty conversion until 3 years of age, although some mandibular condyles appeared hematopoietic at 3 years of age. The normal age-related conversion from hematopoietic to fatty marrow in the skull base followed a well-defined sequence. Knowledge of the normal bone marrow conversion by MR imaging is essential for the recognition of pathologic marrow processes. (author)

  13. Inflammatory Myofibroblastic Tumour of the Skull Base

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Maire

    2013-01-01

    Full Text Available Inflammatory myofibroblastic tumors (IMTs are rare benign clinical and pathological entities. IMTs have been described in the lungs, abdomen, retroperitoneum, and extremities but rarely in the head and neck region. A 38-year-old man presented with headache, right exophthalmia, and right 6th nerve palsy. A CT scan revealed enlargement of the right cavernous sinus and osteolytic lesions of the right sphenoid and clivus. MR imaging showed a large tumor of the skull base which was invading the sella turcica, right cavernous sinus, and sphenoidal sinus. A biopsy was performed and revealed an IMT. Corticosteroids were given for 3 months but were inefficient. In the framework of our pluridisciplinary consultation, fractionated conformal radiotherapy (FRT was indicated at a low dose; 20 Gy in 10 fractions of 2 Gy over 12 days were delivered. Clinical response was complete 3 months after FRT. Radiological response was subtotal 6 months after FRT. Two years later, the patient is well.

  14. Prediction and near-field observation of skull-guided acoustic waves.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  15. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  16. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    Resident duty-hours restrictions have now been instituted in many countries worldwide. Shortened training times and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. The development of educational models for brain anatomy is a fascinating innovation allowing neurosurgeons to train without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period. The authors describe the use of Stratathane resin ST-504 polymer (SRSP), which is inserted at different intracranial locations to closely mimic meningiomas and other pathological entities of the skull base, in a cadaveric model, for use in neurosurgical training. Silicone-injected and pressurized cadaveric heads were used for studying the SRSP model. The SRSP presents unique intrinsic metamorphic characteristics: liquid at first, it expands and foams when injected into the desired area of the brain, forming a solid tumorlike structure. The authors injected SRSP via different passages that did not influence routes used for the surgical approach for resection of the simulated lesion. For example, SRSP injection routes included endonasal transsphenoidal or transoral approaches if lesions were to be removed through standard skull base approach, or, alternatively, SRSP was injected via a cranial approach if the removal was planned to be via the transsphenoidal or transoral route. The model was set in place in 3 countries (US, Italy, and The Netherlands), and a pool of 13 physicians from 4 different institutions (all surgeons and surgeons in training) participated in evaluating it and provided feedback. All 13 evaluating physicians had overall positive impressions of the model. The overall score on 9 components evaluated--including comparison between the tumor model and real tumor cases, perioperative requirements, general impression, and applicability--was 88% (100% being the best possible

  17. [Extensive tumor of the skull base: sphenoid sinus adenocarcinoma].

    Science.gov (United States)

    Kallel, Souha; Sellami, Moncef

    2017-01-01

    We report a rare case of adenocarcinoma of the sphenoid sinus manifesting as extended skull base tumor. The patient included in the study was a 42-year old woman presenting with unilateral right symptomatology consisting of nasal obstruction, diplopia and hemifacial neuralgias. Clinical examination showed paralysis of the cranial nerve pairs V and VI. Brain scanner showed voluminous heterogeneous sphenoid and clival mass reaching the right cavernous sinus, with a peripheral tissue component at the level of the sphenoid sinus. Biopsy was performed under general anesthesia, through endonasal sphenoidotomy approach. Histological examination showed non-intestinal adenocarcinoma. The patient died due to impaired general condition occurred during examinations. Skull base adenocarcinomas mainly occur in the ethmoid bone. Sphenoid origin is exceptional. Radiological appearance is not specific and suggests malignancy. Diagnosis should be suspected in patients with aggressive tumor, even when it occurs in the midline skull base.

  18. Construction of a three-dimensional interactive model of the skull base and cranial nerves.

    Science.gov (United States)

    Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L

    2007-05-01

    The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.

  19. Juvenile nasopharyngeal angiofibroma with skull base invasion : intratumoral direct puncture embolization

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Young; Kim, Sun Yong; Suh, Jung Ho; Park, Kee Hyun [Ajou Univ., Suwon (Korea, Republic of). Coll. of Medicine

    1998-04-01

    The purpose of this study is to demonstrate the utility and efficacy of percutaneous direct glue embolization for juvenile nasopharyngeal angiofibromas with skull base invasion. In nine cases of juvenile nasopharyngeal angiofibromas with invasion of the skull base, embolization under general anethesia was performed. Using an 18G spinal needle, direct puncture were made via the transnasal or mandibular sciatic notch. A glue-lipiodol mixture (1:1 -1:3) was injected slowly for 15 to 30 seconds under fluoroscopic control; the number of post-embolization angiography and the distribution of embolic materials was assessed on CT within 1-3 days. The mass was surgically removed 3 to 7 days after embolization. Direct glue embolization of juvenile angiofibroma with skull base invasion appears to be a simple and safe procedure. The technique could be used for other hypervascular lesions in the base of the skull or parapharyngeal space. (author). 19 refs., 1 tab., 2 figs.

  20. Juvenile nasopharyngeal angiofibroma with skull base invasion : intratumoral direct puncture embolization

    International Nuclear Information System (INIS)

    Shin, Hye Young; Kim, Sun Yong; Suh, Jung Ho; Park, Kee Hyun

    1998-01-01

    The purpose of this study is to demonstrate the utility and efficacy of percutaneous direct glue embolization for juvenile nasopharyngeal angiofibromas with skull base invasion. In nine cases of juvenile nasopharyngeal angiofibromas with invasion of the skull base, embolization under general anethesia was performed. Using an 18G spinal needle, direct puncture were made via the transnasal or mandibular sciatic notch. A glue-lipiodol mixture (1:1 -1:3) was injected slowly for 15 to 30 seconds under fluoroscopic control; the number of post-embolization angiography and the distribution of embolic materials was assessed on CT within 1-3 days. The mass was surgically removed 3 to 7 days after embolization. Direct glue embolization of juvenile angiofibroma with skull base invasion appears to be a simple and safe procedure. The technique could be used for other hypervascular lesions in the base of the skull or parapharyngeal space. (author). 19 refs., 1 tab., 2 figs

  1. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    Science.gov (United States)

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  2. Clinicopathological and Molecular Histochemical Review of Skull Base Metastasis from Differentiated Thyroid Carcinoma

    International Nuclear Information System (INIS)

    Matsuno, Akira; Murakami, Mineko; Hoya, Katsumi; Yamada, Shoko M.; Miyamoto, Shinya; Yamada, So; Son, Jae-Hyun; Nishido, Hajime; Ide, Fuyuaki; Nagashima, Hiroshi; Sugaya, Mutsumi; Hirohata, Toshio; Mizutani, Akiko; Okinaga, Hiroko; Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Osamura, R. Yoshiyuki; Yamazaki, Kazuto; Ishida, Yasuo

    2013-01-01

    Skull base metastasis from differentiated thyroid carcinoma including follicular thyroid carcinoma (FTC) and papillary thyroid carcinoma (PTC) is a rare clinical entity. Eighteen FTC cases and 10 PTC cases showing skull base metastasis have been reported. The most common symptom of skull base metastasis from FTC and PTC is cranial nerve dysfunction. Bone destruction and local invasion to the surrounding soft tissues are common on radiological imaging. Skull base metastases can be the initial clinical presentation of FTC and PTC in the presence of silent primary sites. The possibility of skull base metastasis from FTC and PTC should be considered in patients with the clinical symptoms of cranial nerve dysfunction and radiological findings of bone destruction. A variety of genetic alterations in thyroid tumors have been identified to have a fundamental role in their tumorigenesis. Molecular histochemical studies are useful for elucidating the histopathological features of thyroid carcinoma. Recent molecular findings may provide novel molecular-based treatment strategies for thyroid carcinoma

  3. Radiation-induced osteosarcoma of the jaw treated with skull base surgery

    International Nuclear Information System (INIS)

    Yamamoto, Misaki; Asato, Ryo; Torii, Hiroko; Kanda, Tomoko; Tamura, Yoshihiro; Hirano, Shigeru; Ito, Juichi; Tanaka, Shinzou

    2009-01-01

    Head and neck osteosarcomas are rare. A 33-year-old woman received radiation therapy for lymphoepithelioma of the epipharynx in her childhood. After twenty-two years, she presented with a swelling of the right cheek. We did a work up, and diagnosed her radiation-induced osteosarcoma of the jaw. We treated her with neoadjuvant chemotherapy, surgery including skull base resection, and adjuvant chemo-therapy. A small skin recurrence developed after one year, but it was resected under local anesthesia, and there have been no recurrences since. We think that skull base surgery with a combined approach is a useful method in therapy for osteosarcomas in the skull base region. (author)

  4. Skull-base invasion of nasopharyngeal carcinoma: magnetic resonance imaging findings and therapeutic implications

    International Nuclear Information System (INIS)

    Nishioka, Takeshi; Shirato, Hiroki; Kagei, Kenji; Abe, Satoru; Hashimoto, Seiko; Ohmori, Keiichi; Yamazaki, Akira; Fukuda, Satoshi; Miyasaka, Kazuo

    2000-01-01

    Purpose: To evaluate the value of skull-base abnormality on MRI for predicting local recurrence in nasopharyngeal carcinoma. Materials and Methods: Between November 1988 and February 1997, 48 patients with NPC were examined with both MRI (1.5 T) and CT prior to radiation therapy. T classification (1987 UICC) based on physical examination and CT findings were T1 in 3 cases, T2 in 22, T3 in 9, and T4 in 14. On MRI, low-intensity tissue with Gd enhancement in the marrow of the skull was considered to be a suspicious finding of skull-base invasion. CT simulation was performed in all patients. The total dose to the primary tumor was 60-75 Gy (mean, 67 Gy). The mean follow-up period was 42 months. Results: All 14 T4 patients had abnormal tissue in the marrow of the skull base on MRI. Thirty-eight percent (13 of 34) of T1-3 patients were suspected to have skull-base invasion based on MRI (0% for T1, 27% [6 of 22] for T2, and 78% [7 of 9] for T3). The 5-year local control rate was significantly different between T1-3 and T4 tumors (97% vs. 69%, p < 0.025) but was not different by the presence of the MRI abnormality in the skull base. Conclusion: Skull-base invasion suspected solely by MRI does not relate to local recurrence provided that careful treatment planning is performed with the aid of MRI and CT simulator

  5. The relationship between skull asymmetry and CT findings

    International Nuclear Information System (INIS)

    Yamori, Yuriko; Yuge, Mariko; Kanda, Toyoko; Ashida, Hiromi; Fukase, Hiroshi

    1987-01-01

    In order to clarify the relationship between brain damage and skull asymmetry or supine head position preference, we classified CT findings of 330 cases with cerebral palsy or risk of motor disturbance into 6 groups according to skull shape. Those were severe (I, n = 37) and mild (II, n = 114) grades in the right occipital flatness, severe (III, n = 34) and mild (IV, n = 58) grades in the left occipital flatness, long skull with temporal flatness (V, n = 33) and symmetric round skull (control, n = 54). It was considered that the asymmetry of cortical atrophy in appearance was formed physicaly by skull asymmetry but that the asymmetric dilatation in appearance of lateral ventricle was related to the asymmetry of brain damage. The severity and the asymmetry of brain damage were tend to increase the grade of skull asymmetry. The incidence of cases with the right occipital flatness was 1.6 times more frequently than the left sided. The incidence of cases whose left (lateral) ventricle was larger than the right was 4.1 times more than the cases whose right ventricle was larger than the left. The cases with occipital flatness in the contralateral side of the larger lateral ventricle were found more than the cases with occipital flatness in the ipsilateral side of the larger ventricle, that is to say, the direction of supine head position preference during early infant was suspected to be the more severely disturbed side of body. These results suggest that the supine head position preference to the right in newborn babies and infants with scoliosis or cerebral palsy might be the result of transient or permanent asymmetric (left > right) brain dysfunction. (author)

  6. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  7. The Making of a Skull Base Team and the Value of Multidisciplinary Approach in the Management of Sinonasal and Ventral Skull Base Malignancies.

    Science.gov (United States)

    Snyderman, Carl H; Wang, Eric W; Fernandez-Miranda, Juan C; Gardner, Paul A

    2017-04-01

    The management of sinonasal and ventral skull base malignancies is best performed by a team. Although the composition of the team may vary, it is important to have multidisciplinary representation. There are multiple obstacles, both individual and institutional, that must be overcome to develop a highly functioning team. Adequate training is an important part of team-building and can be fostered with surgical telementoring. A quality improvement program should be incorporated into the activities of a skull base team. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Difficulties of clinical radiodiagnosis of concomitant injuries of fornix and base of the skull

    International Nuclear Information System (INIS)

    Krutitskij, A.G.; Semisalov, S.Ya.

    1987-01-01

    Clinical radiological semiotics in 234 patients with injuries of fornix and base of the skull is studied. Among skull injuries the most critical are those of fornix and base of anterior parts of the skull. Severity of state doesn't exclude, but requires an obligatory X-ray examination, at least - review radiographs of the skull. When choosing the volume of surgical intervention the data on X-ray examination along with clinical pattern should be taken account of

  9. Nasal and skull base anatomy of endoscopic endonasal transsphenoidal surgery with multi-detector computed tomography

    International Nuclear Information System (INIS)

    Hasegawa, Yuzo; Saeki, Naokatsu; Murai, Hisayuki; Horiguchi, Kentaro; Hanazawa, Toyoyuki; Okamoto, Miyoshi; Yanagawa, Noriyuki

    2008-01-01

    The endoscope is a new and highly useful instrument for transphenoidal surgery (TSS), and is generally used because of its minimally invasiveness. In addition, endoscopic transsphenoidal surgey (eTSS) has a potential for more radical tumor removal at the pituitary and the parasellar regions by wider visualization and more powerful illumination. To operate these regions safely, we need to know nasal and skull base anatomy under the endoscope which looks different from images under a microscope. In this paper, we demonstrated nasal and skull base anatomy with multi-detector computed tomography, which was performed in 23 recent patients with pituitary and parasellar legions. In the nasal legion, deviation of nasal septum and deviation of sphenoid ostium are important for endonasal approach of eTSS, and often determine the difficulty of surgery in the nasal cavity. Our study showed that deviation of nasal septum was seen in 26% of patients. Deviation of sphenoid ostium was 5.5±1.5 mm from the midline. The anatomy of sphenoid sinus plays a key role in our determination of the safety of a bony opening of the sella. In addition to sellar, presellar, and concha types, carotid prominence and optic prominence are important to determine the midline orientation. Development of carotid prominence was significantly related to the extent of lateral pneumatization of sphenoid sinus (P=0.0016). Reconstructed 3D-image of sphenoid sinus was very useful in visual understanding skull base anatomy. (author)

  10. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    Science.gov (United States)

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  11. Reconstruction for Skull Base Defect Using Fat-Containing Perifascial Areolar Tissue.

    Science.gov (United States)

    Choi, Woo Young; Sung, Ki Wook; Kim, Young Seok; Hong, Jong Won; Roh, Tai Suk; Lew, Dae Hyun; Chang, Jong Hee; Lee, Kyu Sung

    2017-06-01

    Skull base reconstruction is a challenging task. The method depends on the anatomical complexity and size of the defect. We obtained tissue by harvesting fat-containing perifascial areolar tissue (PAT) for reconstruction of limited skull base defects and volume augmentation. We demonstrated the effective option for reconstruction of limited skull base defects and volume augmentation. From October 2013 to November 2015, 5 patients underwent operations using fat-containing PAT to fill the defect in skull base and/or perform volume replacement in the forehead. Perifascial areolar tissue with 5- to 10-mm fat thickness was harvested from the inguinal region. The fat-containing PAT was grafted to the defect contacting the vascularized wound bed. Patients were followed up in terms of their clinical symptoms and postoperative magnetic resonance imaging findings. Four patients were treated using fat-containing PAT after tumor resection. One patient was treated for a posttraumatic forehead depression deformity. The fat-containing PAT included 5- to 9-mm fat thickness in all cases. The mean size of grafted PAT was 65.6 cm (28-140 cm). The mean follow-up period was 18.6 months (12-31 months). There was no notable complication. There was no donor site morbidity. We can harvest PAT with fat easily and obtain the sufficient volume to treat the defect. It also could be used with other reconstructive method, such as a free flap or a regional flap to fill the left dead space. Therefore, fat-containing PAT could be additional options to reconstruction of skull base defect.

  12. Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.

    Science.gov (United States)

    Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander

    2013-12-01

    Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Skull Thickness Morphing for an Age and Sex Specific FE Model of the Skull.

    Science.gov (United States)

    Jones, Derek A; Urban, Jillian E; Lillie, Elizabeth M; Stitzel, Joel D

    2015-01-01

    Skull deformation is believed to be a contributing factor in traumatic brain injury (TBI). Furthermore, skull thickness is thought to be an important factor governing deformation of the skull and its susceptibility to fracture. Although many studies have been done to understand the mechanisms of brain injury and skull fracture, the majority of the cadaveric and finite element (FE) modeling efforts are comprised of older males and 50th percentile male skulls, respectively, which do not accurately represent the population as a whole. This study employed a set of skull table thickness regressions defined at homologous landmarks on the skull which were calculated from 123 pre-existing head CT scans (ages 20-100) using a cortical density-based algorithm. A method was developed to morph the Global Human Body Models Consortium (GHBMC) 50th percentile male skull model to age and gender specific geometries based on the full thickness regressions using a Thin Plate Spline algorithm. A quantitative measure of morphing error was devised and measured using the morphed and desired full thickness values at the homologous landmark locations. This methodology can be used to create gender and age-specific FE models of the skull and will ultimately be used to understand the relationship between cortical thickness, skull deformation, and head injury.

  14. Skull base osteomyelitis: role of three phase and hybrid SPECT/CT bone scintigraphy

    International Nuclear Information System (INIS)

    Chakraborty, D.; Bhattacharaya, A.; Kamaleshwaran, K.K.; Mittal, B.R.; Aggarwal, K.; Singh, B.; Bhoil, A.

    2010-01-01

    Full text: Skull base osteomyelitis is the infection that has spread to the skull base, beyond the external auditory canal and seen in advanced stage of malignant otitis externa. Early diagnosis of this condition includes the use of bone scintigraphy since clinical assessment alone cannot differentiate the skull base osteomyelitis from the severe type of otitis externa in which there is no extension to the adjacent bone. Objective: To determine the role of three phase bone scintigraphy and delayed SPECT/CT in detection of skull base osteomyelitis in patients with malignant otitis externa. Material and Methods: Clinical records of 20 patients (14 Males and 6 Females; mean age 72 yrs) of otitis externa with suspected skull base involvement referred for bone scintigraphies were analyzed retrospectively. Three phase bone scintigraphy was acquired under dual detector gamma camera after intravenous injection of 20 mCi (740 MBq) 99m Tc-MDP followed by SPECT/CT of the skull. Scintigraphic findings were compared with clinical symptoms, signs and diagnostic CT scan findings. Results: All the patients except one were diabetic and having elevated ESR. 18 patients presented with bilateral symptoms and rest unilateral. Cranial nerves were involved in 8 patients (40%). Ear discharge culture sensitivity report was found in three patients; it was positive for Pseudomonas aeruginosa for two patients and in Diptheroids for one. In 9 patients (45%) increased flow of tracer and 10 patients (50%) increased blood pool phase in the temporal region was found. Delayed phase images showed increased uptake in skull bone in 19 patients (95%). Hybrid SPECT/CT of the skull localized areas of increased tracer uptake to the mastoid part in 15 patients (75%), petrous part in 11 patients (55%), sphenoid in 3 patients (15%) and zygomatic bone in one patient (5%) with CT showing destructive changes in 5 patients (25%) which were corroborated with diagnostic CT findings. SPECT/CT along with three phase

  15. Proton therapy for tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E.; Liebsch, N.J. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  16. Proton therapy for tumors of the skull base

    International Nuclear Information System (INIS)

    Munzenrider, J.E.; Liebsch, N.J.

    1999-01-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  17. Radiological assessment of skull base changes in children with syndromic craniosynostosis: role of ''minor'' sutures

    International Nuclear Information System (INIS)

    Calandrelli, Rosalinda; D'Apolito, Gabriella; Gaudino, Simona; Stefanetti, Mariangela; Colosimo, Cesare; Massimi, Luca; Di Rocco, Concezio

    2014-01-01

    This study aims to identify the premature synostosis of ''major'' and ''minor'' sutures of the four ''sutural arches'' of the skull and to perform a morphometric analysis in children with syndromic craniosynostosis in order to evaluate changes in the skull base linked with premature suture synostosis. We reviewed multiplanar high-resolution CT images, implemented with 3D reconstructions, from 18 patients with complex syndromic craniosynostosis and compared them with 18 age-matched healthy subjects. We assessed the calvarial sutures and their extension to the skull base, and then we correlated specific types of synostosis with the size, shape and symmetry of the cranial fossae. We found a marked asymmetry of the skull base growth in all patients. The synostotic involvement around the coronal ring caused a reduction in the growth of the anterior and middle fossae. The size of the posterior cranial fossa was related not only to ''major'' but also to ''minor'' suture synostosis of the lambdoid and parieto-squamosal arches. Changes in the skull base and craniofacial axis symmetry are due to structural and functional relationships between ''major'' and ''minor'' skull sutures, suggesting a structural and functional relationship between the neurocranium and basicranium. The early recognition of prematurely closed skull base sutures may help clinicians and neurosurgeons to establish correct therapeutic approaches. (orig.)

  18. CT and magnetic resonance imaging finding of lipomatous hemanioperisytoma of skull base: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Girl; Yu, In Kyu; Kim, Han Kyu; Kim, Seung Min; Kang, Dong Wook [Eulji University Hospital, Daejeon (Korea, Republic of)

    2013-07-15

    Lipomatous hemangiopericytoma (LHPC) is recently recognized as a rare hemangiopericytoma variant. To our knowledge, imaging features of LHPC involving skull base have not yet been reported. We present the imaging features of LHPC of skull base in a 44-year-old female, along with a literature review CT and magnetic resonance imagings showed well-enhanced fatty issues containing temporal skull base masses, with pressure bony erosions.

  19. Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.

    Science.gov (United States)

    Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T

    2005-03-01

    Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.

  20. A comparative study of linear measurements on facial skeleton with frontal and lateral cephalogram.

    Science.gov (United States)

    Gandikota, Chandra Sekhar; Rayapudi, Naveen; Challa, Padma Latha; Juvvadi, Shubhaker Rao; Yudhister, P V; Rao, Gutti Hariprasad

    2012-04-01

    To compare the accuracy of linear measurements on lateral and frontal cephalograms with gold standard skull measurements. Based on the specific criteria including reliable occlusion and condyles fitting in glenoid fossa, 15 dry human skulls were selected from a larger collection. Lateral and frontal cephalograms were taken of each skull by standardized methods. Steel ball bearings were used to identify the anatomic landmarks. Linear measurements in midsagittal plane were made on all three records. Intraclass correlation coefficients, Pearson's correlation coefficient and regression constant were calculated to assess the records simultaneously. The frontal cephalometric measurements showed high correlation to the direct skull measurements (Pearson's coefficient 0.943lateral cephalometric record are greater than the corresponding frontal cephalometric images. The overall findings of the present study showed that the frontal cephalometric measurements are closely related to the direct skull measures.

  1. Teamwork in skull base surgery: An avenue for improvement in patient care.

    Science.gov (United States)

    McLaughlin, Nancy; Carrau, Ricardo L; Kelly, Daniel F; Prevedello, Daniel M; Kassam, Amin B

    2013-01-01

    During the past several decades, numerous centers have acquired significant expertise in the treatment of skull base pathologies. Favorable outcomes are not only due to meticulous surgical planning and execution, but they are also related to the collaborative efforts of multiple disciplines. We review the impact of teamwork on patient care, elaborate on the key processes for successful teamwork, and discuss its challenges. Pubmed and Medline databases were searched for publications from 1970 to 2012 using the following keywords: "teamwork", "multidisciplinary", "interdisciplinary", "surgery", "skull base", "neurosurgery", "tumor", and "outcome". Current literature testifies to the complexity of establishing and maintaining teamwork. To date, few reports on the impact of teamwork in the management of skull base pathologies have been published. This lack of literature is somewhat surprising given that most patients with skull base pathology receive care from multiple specialists. Common factors for success include a cohesive and well-integrated team structure with well-defined procedural organization. Although a multidisciplinary work force has clear advantages for improving today's quality of care and propelling research efforts for tomorrow's cure, teamwork is not intuitive and requires training, guidance, and executive support. Teamwork is recommended to improve quality over the full cycle of care and consequently patient outcomes. Increased recognition of the value of an integrated team approach for skull base pathologies will hopefully encourage centers, physicians, allied health caregivers, and scientists devoted to treating these patients and advancing the field of knowledge to invest the time, effort, and resources to optimize and organize their collective expertise.

  2. Alignment of CT images of skull dysmorphology using anatomy-based perpendicular axes

    International Nuclear Information System (INIS)

    Yoo, Sun K; Kim, Yong O; Kim, Hee-Joung; Kim, Nam H; Jang, Young Beom; Kim, Kee-Deog; Lee, Hye-Yeon

    2003-01-01

    Rigid body registration of 3D CT scans, based on manual identification of homologous landmarks, is useful for the visual analysis of skull dysmorphology. In this paper, a robust and simple alignment method was proposed to allow for the comparison of skull morphologies, within and between individuals with craniofacial anomalies, based on 3D CT scans, and the minimum number of anatomical landmarks, under rigidity and uniqueness constraints. Three perpendicular axes, extracted from anatomical landmarks, define the absolute coordinate system, through a rigid body transformation, to align multiple CT images for different patients and acquisition times. The accuracy of the alignment method depends on the accuracy of the localized landmarks and target points. The numerical simulation generalizes the accuracy requirements of the alignment method. Experiments using a human dried skull specimen, and ten sets of skull CT images (the pre- and post-operative CT scans of four plagiocephaly, and one fibrous dysplasia patients), demonstrated the feasibility of the technique in clinical practice

  3. Skull Base Osteomyelitis from Otitis Media Presenting as the Collet-Sicard Syndrome

    Directory of Open Access Journals (Sweden)

    Wong-Kein Low

    2018-01-01

    Full Text Available Skull base osteomyelitis can involve the jugular foramen and its associated cranial nerves resulting in specific clinical syndromes. The Collet-Sicard syndrome describes the clinical manifestations of palsies involving cranial nerves IX, X, XI, and XII. We present a rare atypical case of skull base osteomyelitis originating from infection of the middle ear and causing the Collet-Sicard syndrome. Caused by Pseudomonas aeruginosa and Klebsiella pneumoniae, this occurred in an elderly diabetic man subsequent to retention of a cotton swab in an ear with chronic suppurative otitis media. This case report illustrates the possibility of retained cotton swabs contributing to the development of otitis media, skull base osteomyelitis, and ultimately the Collet-Sicard syndrome in the ears of immune-compromised patients with chronically perforated eardrums.

  4. Avian skull morphological evolution: exploring exo- and endocranial covariation with two-block partial least squares.

    Science.gov (United States)

    Marugán-Lobón, Jesús; Buscalioni, Angela D

    2006-01-01

    While rostral variation has been the subject of detailed avian evolutionary research, avian skull organization, characterized by a flexed or extended appearance of the skull, has eventually become neglected by mainstream evolutionary inquiries. This study aims to recapture its significance, evaluating possible functional, phylogenetic and developmental factors that may be underlying it. In order to estimate which, and how, elements of the skull intervene in patterning the skull we tested the statistical interplay between a series of old mid-sagittal angular measurements (mostly endocranial) in combination with newly obtained skull metrics based on landmark superimposition methods (exclusively exocranial shape), by means of the statistic-morphometric technique of two-block partial least squares. As classic literature anticipated, we found that the external appearance of the skull corresponds to the way in which the plane of the caudal cranial base is oriented, in connection with the orientations of the plane of the foramen magnum and of the lateral semicircular canal. The pattern of covariation found between metrics conveys flexed or extended appearances of the skull implicitly within a single and statistically significant dimension of covariation. Marked shape changes with which angles covary concentrate at the supraoccipital bone, the cranial base and the antorbital window, whereas the plane measuring the orientation of the anterior portion of the rostrum does not intervene. Statistical covariance between elements of the caudal cranial base and the occiput inplies that morphological integration underlies avian skull macroevolutionary organization as a by-product of the regional concordance of such correlated elements within the early embryonic chordal domain of mesodermic origin.

  5. Comparison of SPECT and CT in detecting skull base invasion in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zhang Li; Wang Jinchuan; Pu Nuo; Song Wenzhong; Chen Mingxi

    2002-01-01

    Objective: To investigate the detecting ability of single photon emission computed tomography (SPECT) and CT in skull base invasion in nasopharyngeal carcinoma. Methods: Sixty-three patients with nasopharyngeal carcinoma were examined by whole body and skull base SPECT and CT of nasopharynx and skull base before radiotherapy. The results were double-blind compared and evaluated. Results: The overall positive rates of skull base invasion detected by SPECT and CT were 63.5% and 25.4%. In patients with headache, cranial nerve palsy and both, they were 87.9%, 93.3%, 92.3% and 42.4%, 46.7%, 46.2%. In patients with T 1 + T 2 and T 3 + T 4 lesions, they were 37.5%, 90.3% and 0.0%, 51.6%. In patients with N 0 + N 1 and N 2 + N 3 lesions, they were 63.9%, 63.0% and 19.4%, 33.3%. The positive rates of SPECT were higher than those of CT (McNemar Test, P < 0.05). The conformation rate between SPECT and CT was 61.9% and the dissimilitude rate was 38.1%. Binary Logistic regression analysis showed that headache and T stages were risk factors of positive SPECT rate (ORheadache = 3.864, ORTstage= 6.422) while Tstage and Nstage were the risk factors for positive CT rate (ORTstage = 48.932, ORNstage = 2.860). Conclusions: The detection sensitivity of SPECT in skull base invasion in nasopharyngeal carcinoma is superior to that of CT. But its specificity is inferior to that of CT. The detecting results in SPECT are better related to symptoms, signs and stage. Combining headache and cranial nerve palsy with T and N stage, the authors may much improve the results of SPECT and CT in the detection of skull base invasion in nasopharyngeal carcinoma. Further study is warranted

  6. A comparative study of linear measurements on facial skeleton with frontal and lateral cephalogram

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Gandikota

    2012-01-01

    Full Text Available Objective: To compare the accuracy of linear measurements on lateral and frontal cephalograms with gold standard skull measurements . Materials and Methods: Based on the specific criteria including reliable occlusion and condyles fitting in glenoid fossa, 15 dry human skulls were selected from a larger collection. Lateral and frontal cephalograms were taken of each skull by standardized methods. Steel ball bearings were used to identify the anatomic landmarks. Linear measurements in midsagittal plane were made on all three records. Intraclass correlation coefficients, Pearson′s correlation coefficient and regression constant were calculated to assess the records simultaneously. Results: The frontal cephalometric measurements showed high correlation to the direct skull measurements (Pearson′s coefficient 0.943lateral cephalometric record are greater than the corresponding frontal cephalometric images. The overall findings of the present study showed that the frontal cephalometric measurements are closely related to the direct skull measures.

  7. Skull base osteomyelitis: current microbiology and management.

    Science.gov (United States)

    Spielmann, P M; Yu, R; Neeff, M

    2013-01-01

    Skull base osteomyelitis typically presents in an immunocompromised patient with severe otalgia and otorrhoea. Pseudomonas aeruginosa is the commonest pathogenic micro-organism, and reports of resistance to fluoroquinolones are now emerging, complicating management. We reviewed our experience of this condition, and of the local pathogenic organisms. A retrospective review from 2004 to 2011 was performed. Patients were identified by their admission diagnostic code, and computerised records examined. Twenty patients were identified. A facial palsy was present in 12 patients (60 per cent). Blood cultures were uniformly negative, and culture of ear canal granulations was non-diagnostic in 71 per cent of cases. Pseudomonas aeruginosa was isolated in only 10 (50 per cent) cases; one strain was resistant to ciprofloxacin but all were sensitive to ceftazidime. Two cases of fungal skull base osteomyelitis were identified. The mortality rate was 15 per cent. The patients' treatment algorithm is presented. Our treatment algorithm reflects the need for multidisciplinary input, early microbial culture of specimens, appropriate imaging, and prolonged and systemic antimicrobial treatment. Resolution of infection must be confirmed by close follow up and imaging.

  8. Skeleton scintigraphy with sup(99m)Tc-pyrophosphat for diagnosis and assessment of radiotherapy of tumours of the paranasal sinuses and of the base of the skull

    International Nuclear Information System (INIS)

    Schober, G.

    1979-01-01

    Within the scope of the present study 25 patients with a tumour of the facial skull or of the base of the skull were followed up. All patients received radiotherapy in the tumour region. For this, skull scintigrams were made in a.p. and lateral projections directly before irradiation began, and 2 - 3 months after radiotherapy; in some patients also late follow-up examinations were carried out. These scintigrams were compared with the tomograms (and other X-ray findings) and the clinical findings before and after irradiation. The changes due to irradiation, appearing on the scintigraphic and the roentgenologic image and also in the clinical findings, were detected and documented. (orig./MG) [de

  9. Clinical results of proton beam therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Igaki, Hiroshi; Tokuuye, Koichi; Okumura, Toshiyuki; Sugahara, Shinji; Kagei, Kenji; Hata, Masaharu; Ohara, Kiyoshi; Hashimoto, Takayuki; Tsuboi, Koji; Takano, Shingo; Matsumura, Akira; Akine, Yasuyuki

    2004-01-01

    Purpose: To evaluate clinical results of proton beam therapy for patients with skull base chordoma. Methods and materials: Thirteen patients with skull base chordoma who were treated with proton beams with or without X-rays at the University of Tsukuba between 1989 and 2000 were retrospectively reviewed. A median total tumor dose of 72.0 Gy (range, 63.0-95.0 Gy) was delivered. The patients were followed for a median period of 69.3 months (range, 14.6-123.4 months). Results: The 5-year local control rate was 46.0%. Cause-specific, overall, and disease-free survival rates at 5 years were 72.2%, 66.7%, and 42.2%, respectively. The local control rate was higher, without statistical significance, for those with preoperative tumors <30 mL. Partial or subtotal tumor removal did not yield better local control rates than for patients who underwent biopsy only as the latest surgery. Conclusion: Proton beam therapy is effective for patients with skull base chordoma, especially for those with small tumors. For a patient with a tumor of <30 mL with no prior treatment, biopsy without tumor removal seems to be appropriate before proton beam therapy

  10. Chondroblastoma with secondary aneurysmal bone cyst in the anterior skull base

    Directory of Open Access Journals (Sweden)

    Ming Jie Wang, MD, PhD

    2016-06-01

    Full Text Available Chondroblastoma with secondary aneurysmal bone cyst (ABC, especially in the anterior skull base, is an extremely rare condition. A 5-year-old boy presented with a large space-occupying lesion in the anterior skull base along with a left sided-epistaxis, proptosis and decreased vision. Radical excision of the lesion was performed by an endoscopic transnasal and transethmoidal approach. The patient recovered without any recurrence during a follow-up period of up to 28 months. Here, we review this rare case and discuss the clinical presentation and surgical treatment.

  11. Thin-section CT of the skull base

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.; Tiedemann, K.

    1987-01-01

    High-resolution CT-images of the skull base are depicted and anatomical structures are described. A large variety of osseous and soft tissue structures can be differentiated in the temporal bone, nasopharynx and orbita. Knowledge of the anatomical structures is essential for the recognition of pathological changes and also plays an essential role for the diagnostically involved radiologist. (orig.) [de

  12. [Anatomy of the skull base and the cranial nerves in slice imaging].

    Science.gov (United States)

    Bink, A; Berkefeld, J; Zanella, F

    2009-07-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.

  13. Anatomy of the skull base and the cranial nerves in slice imaging

    International Nuclear Information System (INIS)

    Bink, A.; Berkefeld, J.; Zanella, F.

    2009-01-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples. (orig.) [de

  14. A Review of Stereotactic Radiosurgery Practice in the Management of Skull Base Meningiomas

    OpenAIRE

    Vera, Elena; Iorgulescu, J. Bryan; Raper, Daniel M.S.; Madhavan, Karthik; Lally, Brian E.; Morcos, Jacques; Elhammady, Samy; Sherman, Jonathan; Komotar, Ricardo J.

    2014-01-01

    Gross total resection of skull base meningiomas poses a surgical challenge due to their proximity to neurovascular structures. Once the gold standard therapy for skull base meningiomas, microsurgery has been gradually replaced by or used in combination with stereotactic radiosurgery (SRS). This review surveys the safety and efficacy of SRS in the treatment of cranial base meningiomas including 36 articles from 1991 to 2010. SRS produces excellent tumor control with low morbidity rates compare...

  15. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.

    Science.gov (United States)

    Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto

    2016-04-01

    MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.

  16. Management of Anterior Skull Base Defect Depending on Its Size and Location

    Science.gov (United States)

    Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Enriquez, Karla; Viscovich, Liza; Agredo-Lemos, Freddy Enrique; Alobid, Isam

    2014-01-01

    Introduction. We present our experience in the reconstruction of these leaks depending on their size and location. Material and Methods. Fifty-four patients who underwent advanced skull base surgery (large defects, >20 mm) and 62 patients with CSF leaks of different origin (small, 2–10 mm, and midsize, 11–20 mm, defects) were included in the retrospective study. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata. In small and midsized leaks. Fascia lata in an underlay position was used for its reconstruction covered with mucoperiosteum of either the middle or the inferior turbinate. Results. The most frequent etiology for small and midsized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%). The success rate after the first surgical reconstruction was 91% and 98% in large skull base defects and small/midsized, respectively. Rescue surgery achieved 100%. Conclusions. Endoscopic surgery for any type of skull base defect is the gold standard. The size of the defects does not seem to play a significant role in the success rate. Fascia lata and mucoperiosteum of the turbinate allow a two-layer reconstruction of small and midsized defects. For larger skull base defects, a combination of fat, fascia lata, and nasoseptal pedicled flaps provides a successful reconstruction. PMID:24895567

  17. Anatomical features of skull base and oral cavity: a pilot study to determine the accessibility of the sella by transoral robotic-assisted surgery.

    Science.gov (United States)

    Amelot, Aymeric; Trunet, Stephanie; Degos, Vincent; André, Olivier; Dionnet, Aurore; Cornu, Philippe; Hans, Stéphane; Chauvet, Dorian

    2015-10-01

    The role of transoral robotic surgery (TORS) in the skull base emerges and represents the natural progression toward miniinvasive resections in confined spaces. The accessibility of the sella via TORS has been recently described on fresh human cadavers. An anatomic study is mandatory to know if this approach would be feasible in the majority of patients regardless of their oral morphological features. From 30 skull base CT scans from patients who were asked to open their mouth as wide as they can, we measured specific dimensions of the oral cavity and the skull base, such as length of the palate, mouth opening and distance from the sella to the palate. All data were acquired on a sagittal midline plane and on a 25° rotation plane, which simulated the axis of the robotic instruments. Looking at the projection of the dental palatine line on the sella, we studied possible predictive factors of sellar accessibility and tried to bring objective data for surgical feasibility. We also proposed an angle α to study the working angle at the skull base. We observed that the maximal mouth opening was a good predictive factor of sellar accessibility by TORS (p < 0.05). The mouth aperture threshold value for a good sensitivity, over 80 %, was comparable to the mean value of mouth opening in our series, 38.9 and 39.4 mm respectively. Moreover, we showed a statistically significant increase of the working angle α at the skull base comparing the lateral access to the midline one (p < 0.05). This seemed to quantitatively demonstrate that the robotic arms placed at the labial commissure of the mouth can reach the sella. From these anatomical features and previous cadaveric dissections, we assume that TORS may be feasible on a majority of patients to remove pituitary adenomas.

  18. Chordomas of the Skull Base, Mobile Spine, and Sacrum: An Epidemiologic Investigation of Presentation, Treatment, and Survival.

    Science.gov (United States)

    Zuckerman, Scott L; Bilsky, Mark H; Laufer, Ilya

    2018-05-01

    Chordomas are rare primary bone tumors that arise from the axial skeleton. Our objective was to analyze trends in radiation and surgery over time and determine location-based survival predictors for chordomas of the skull base, mobile spine, and sacrum. A retrospective cohort study of the SEER (Surveillance Epidemiology and End Results) database from 1973 to 2013 was conducted. All patients had histologically confirmed chordomas. The principal outcome measure was overall survival (OS). The cohort included 1616 patients: skull base (664), mobile spine (444), and sacrum (508). Skull base tumors presented earliest in life (47.4 years) and sacral tumors presented latest (62.7 years). Rates of radiation remained stable for skull base and mobile spine tumors but declined for sacral tumors (P = 0.006). Rates of surgical resection remained stable for skull base and sacral tumors but declined for mobile spine tumors (P = 0.046). Skull base chordomas had the longest median survival (162 months) compared with mobile spine (94 months) and sacral tumors (87 months). Being married was independently associated with improved OS for skull base tumors (hazard ratio, 0.73; 95% confidence interval, 0.53-0.99; P = 0.044). Surgical resection was independently associated with improved OS for sacral chordomas (hazard ratio, 0.48; 95% confidence interval, 0.34-0.69; P mobile spine chordomas and radiation for sacral chordomas decreased over time. Patients with skull base tumors survived longer than did patients with mobile spine and sacral chordomas, and surgical resection was associated with improved survival in sacral chordomas only. Understanding the behavior of these tumors can help cranial and spinal surgeons improve treatment in this patient population. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Subcranial approach in the surgical treatment of anterior skull base trauma.

    Science.gov (United States)

    Schaller, B

    2005-04-01

    Fractures of the anterior skull base, because of the region's anatomical relationships, are readily complicated by neurological damage to the brain or cranial nerves. This review highlights the use of a subcranial approach in the operative treatment of injuries of the anterior skull base and compares it to the more traditional neurosurgical transcranial approach. The extended anterior subcranial approach takes advantage of the specific features of injuries in this region and allows direct access to the central anterior cranial base in order to repair fractures, close CSF fistulae and relieve of optic nerve compression. It avoids extensive frontal lobe manipulation. The success of the approach in achieving the aims of surgery with low morbidity is reviewed.

  20. Natural history of chondroid skull base lesions - case report and review

    International Nuclear Information System (INIS)

    Schmidinger, A.; Rosahl, S.K.; Vorkapic, P.; Samii, M.

    2002-01-01

    Long-term follow-up reports on chondroid lesions of the skull base are rarely presented in the literature. There are virtually no data on natural growth rates of these tumors based on MRI obtained over a period of 10 years or longer. We followed a patient who has had such a lesion for more than 12 years. A non-progressive, slight abducens palsy has been the only associated symptom so far. Even though the patient was operated on for an additional intracranial arterio-venous malformation, clinical features and chromosomal testing excluded Maffucci's syndrome. The MRI follow-up in this case provides an extraordinary perspective on the natural history of chondroid skull base tumors. (orig.)

  1. The transmission of masticatory forces and nasal septum: structural comparison of the human skull and Gothic cathedral.

    Science.gov (United States)

    Hilloowala, Rumy; Kanth, Hrishi

    2007-07-01

    This study extrapolates the transmission of masticatory forces to the cranium based on the architectural principles of Gothic cathedrals. The most significant finding of the study, obtained by analysis of coronal CT scans, is the role of the hard palate, and especially the vomer and the perpendicular plate of the ethmoid in masticatory force transmission. The study also confirms, experimentally, the paths of masticatory forces, cited in literature but based purely on morphological observations. Human skulls and Gothic cathedrals have similar morphological and functional characteristics. The load exerted by the roof of the cathedral is transmitted to the ground by piers and buttresses. These structures also resist the shearing forces exerted by high winds. Similarly, the mid-facial bones of the skull transmit the vertical as well as the lateral masticatory forces from the maxillary dentition to the skull base. The nonload bearing walls and stained glass windows of the cathedral correspond to the translucent wall of the maxilla. The passageway between the aisle and the nave of the cathedral is equivalent to the meatal openings in the lateral wall of the nasal cavity.

  2. The 360 photography: a new anatomical insight of the sphenoid bone. Interest for anatomy teaching and skull base surgery.

    Science.gov (United States)

    Jacquesson, Timothée; Mertens, Patrick; Berhouma, Moncef; Jouanneau, Emmanuel; Simon, Emile

    2017-01-01

    Skull base architecture is tough to understand because of its 3D complex shape and its numerous foramen, reliefs or joints. It is especially true for the sphenoid bone whom central location hinged with most of skull base components is unique. Recently, technological progress has led to develop new pedagogical tools. This way, we bought a new real-time three-dimensional insight of the sphenoid bone that could be useful for the teacher, the student and the surgeon. High-definition photography was taken all around an isolated dry skull base bone prepared with Beauchêne's technique. Pictures were then computed to provide an overview with rotation and magnification on demand. From anterior, posterior, lateral or oblique views and from in out looks, anatomical landmarks and subtleties were described step by step. Thus, the sella turcica, the optic canal, the superior orbital fissure, the sphenoid sinus, the vidian canal, pterygoid plates and all foramen were clearly placed relative to the others at each face of the sphenoid bone. In addition to be the first report of the 360 Photography tool, perspectives are promising as the development of a real-time interactive tridimensional space featuring the sphenoid bone. It allows to turn around the sphenoid bone and to better understand its own special shape, numerous foramen, neurovascular contents and anatomical relationships. This new technological tool may further apply for surgical planning and mostly for strengthening a basic anatomical knowledge firstly introduced.

  3. Is there a role for conventional MRI and MR diffusion-weighted imaging for distinction of skull base chordoma and chondrosarcoma?

    Science.gov (United States)

    Müller, Uta; Kubik-Huch, Rahel A; Ares, Carmen; Hug, Eugen B; Löw, Roland; Valavanis, Antonios; Ahlhelm, Frank J

    2016-02-01

    Chordoma and chondrosarcoma are locally invasive skull base tumors with similar clinical symptoms and anatomic imaging features as reported in the literature. To determine differentiation of chordoma and chondrosarcoma of the skull base with conventional magnetic resonance imaging (cMRI) and diffusion-weighted MR imaging (DWI) in comparison to histopathological diagnosis. This retrospective study comprised 96 (chordoma, n = 64; chondrosarcoma, n = 32) patients with skull base tumors referred to the Paul Scherrer Institute (PSI) for proton therapy. cMRI signal intensities of all tumors were investigated. In addition, median apparent diffusion coefficient (ADC) values were measured in a subgroup of 19 patients (chordoma, n = 11; chondrosarcoma, n = 8). The majority 81.2% (26/32) of chondrosarcomas displayed an off-midline growth pattern, 18.8% (6/32) showed clival invasion, 18.8% (6/32) were located more centrally. Only 4.7% (3/64) of chordomas revealed a lateral clival origin. Using cMRI no significant differences in MR signal intensities were observed in contrast to significantly different ADC values (subgroup of 19/96 patients examined by DWI), with the highest mean value of 2017.2 × 10(-6 )mm(2)/s (SD, 139.9( )mm(2)/s) for chondrosarcoma and significantly lower value of 1263.5 × 10(-6 )mm(2)/s (SD, 100.2 × 10(-6 )mm(2)/s) for chordoma (P = 0.001/median test). An off-midline growth pattern can differentiate chondrosarcoma from chordoma on cMRI in a majority of patients. Additional DWI is a promising tool for the differentiation of these skull base tumors. © The Foundation Acta Radiologica 2015.

  4. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    Energy Technology Data Exchange (ETDEWEB)

    Droege, L.H.; Hinsche, T.; Hess, C.F.; Wolff, H.A. [University Hospital of Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Canis, M. [University of Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Alt-Epping, B. [University of Goettingen, Department of Palliative Medicine, Goettingen (Germany)

    2014-02-15

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  5. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    International Nuclear Information System (INIS)

    Droege, L.H.; Hinsche, T.; Hess, C.F.; Wolff, H.A.; Canis, M.; Alt-Epping, B.

    2014-01-01

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  6. Osteochondroma of the skull base: MRI and histological correlation

    International Nuclear Information System (INIS)

    Sato, K.; Kodera, T.; Kitai, R.; Kubota, T.

    1996-01-01

    A skull base osteochondroma (benign exostosis) in a 38-year-old man is reported. MRI was not only very useful for determining the extent of the tumour, but also showed its far content and, on contrast-enhanced fat-suppressed images, its vascularity. (orig.)

  7. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma

    Directory of Open Access Journals (Sweden)

    Jun-qi Liu

    2015-09-01

    Full Text Available Objective: To investigate the expression of p16, cyclin D1, retinoblastoma tumor suppressor protein (Rb and MIB-1 in skull base chordoma and chondrosarcoma tissues, and to determine the clinicopathological significance of the above indexes in these diseases. Methods: A total of 100 skull base chordoma, 30 chondrosarcoma, and 20 normal cartilage tissue samples were analyzed by immunohistochemistry. The expression levels of p16, cyclinD1, Rb and MIB-1 proteins were assessed for potential correlation with the clinicopathological features. Results: As compared to normal cartilage specimen (control, there was decreased expression of p16, and increased expression of cyclin D1, Rb and MIB-1 proteins, in both skull base chordoma and chondrosarcoma specimens. MIB-1 LI levels were significantly increased in skull base chordoma specimens with negative expression of p16, and positive expression of cyclin D1 and Rb (P  0.05. However, p16 and MIB-1 levels correlated with the intradural invasion, and expression of p16, Rb and MIB-1 correlated with the number of tumor foci (P < 0.05. Further, the expression of p16 and MIB-1 appeared to correlate with the prognosis of patients with skull base chordoma. Conclusions: The abnormal expression of p16, cyclin D1 and Rb proteins might be associated with the tumorigenesis of skull base chordoma and chondrosarcoma. Keywords: p16, Cyclin D1, Rb, MIB-1, Skull base chordoma, Skull base chondrosarcoma

  8. Surgical resection of a huge cemento-ossifying fibroma in skull base by intraoral approach.

    Science.gov (United States)

    Cheng, Xiao-Bing; Li, Yun-Peng; Lei, De-Lin; Li, Xiao-Dong; Tian, Lei

    2011-03-01

    Cemento-ossifying fibroma, also known as ossifying fibroma, usually occurs in the mandible and less commonly in the maxilla. The huge example in the skull base is even rare. We present a case of a huge cemento-ossifying fibroma arising below the skull base of a 30-year-old woman patient. Radiologic investigations showed a giant, lobulated, heterogeneous calcified hard tissue mass, which is well circumscribed and is a mixture of radiolucent and radiopaque, situated at the rear of the right maxilla to the middle skull base. The tumor expands into the right maxillary sinus and the orbital cavity, fusing with the right maxilla at the maxillary tuberosity and blocking the bilateral choanas, which caused marked proptosis and blurred vision. The tumor was resected successfully by intraoral approach, and pathologic examination confirmed the lesion to be a cemento-ossifying fibroma. This case demonstrates that cemento-ossifying fibroma in the maxilla, not like in the mandible, may appear more aggressive because the extensive growth is unimpeded by anatomic obstacles and that the intraoral approach can be used to excise the tumor in the skull base.

  9. Endoscopic endonasal double flap technique for reconstruction of large anterior skull base defects: technical note.

    Science.gov (United States)

    Dolci, Ricardo Landini Lutaif; Todeschini, Alexandre Bossi; Santos, Américo Rubens Leite Dos; Lazarini, Paulo Roberto

    2018-04-19

    One of the main concerns in endoscopic endonasal approaches to the skull base has been the high incidence and morbidity associated with cerebrospinal fluid leaks. The introduction and routine use of vascularized flaps allowed a marked decrease in this complication followed by a great expansion in the indications and techniques used in endoscopic endonasal approaches, extending to defects from huge tumours and previously inaccessible areas of the skull base. Describe the technique of performing endoscopic double flap multi-layered reconstruction of the anterior skull base without craniotomy. Step by step description of the endoscopic double flap technique (nasoseptal and pericranial vascularized flaps and fascia lata free graft) as used and illustrated in two patients with an olfactory groove meningioma who underwent an endoscopic approach. Both patients achieved a gross total resection: subsequent reconstruction of the anterior skull base was performed with the nasoseptal and pericranial flaps onlay and a fascia lata free graft inlay. Both patients showed an excellent recovery, no signs of cerebrospinal fluid leak, meningitis, flap necrosis, chronic meningeal or sinonasal inflammation or cerebral herniation having developed. This endoscopic double flap technique we have described is a viable, versatile and safe option for anterior skull base reconstructions, decreasing the incidence of complications in endoscopic endonasal approaches. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. [Application of neuroendoscope in the treatment of skull base chordoma].

    Science.gov (United States)

    Zhang, Ya-Zhuo; Wang, Zong-Cheng; Zong, Xu-Yi; Wang, Xin-Sheng; Gui, Song-Bai; Zhao, Peng; Li, Chu-Zhong; He, Yue; Wang, Hong-Yun

    2011-07-05

    To further explore the application, approach, indication and prognosis of neuroendoscope treatment for skull base chordoma. A total of 101 patients of skull base chordoma were admitted at our hospital from May 2000 to April 2010. There were 59 males and 42 females. Their major clinical manifestations included headache, cranial nerve damage and dyspnea. They were classified according to the patterns of tumor growth: Type I (n = 13): tumor location at a single component of skull base, i. e. clivus or sphenoid sinus with intact cranial dura; Type II (n = 56): tumor involving more than two components of skull e. g clivus, sphenoid and nasal/oral cavity, etc. But there was no intracranial invasion; Type III (n = 32) : tumor extending widely and intradurally forming compression of brain stems and multiple cranial nerves. Based on the types of chordoma, different endoscopic approaches were employed, viz. transnasal, transoral, trans-subtemporal fossa and plus microsurgical craniotomy for staging in some complex cases. Among all patients, total resection was achieved (n = 19), subtotal (n = 58) and partial (n = 24). In partial resection cases, 16 cases were considered to be subtotal due to a second-stage operation. Most cases had conspicuous clinical improvements. Self-care recovery within one week post-operation accounted for 58.4%, two weeks 30.7%, one month 6.9% and more than one month 1.9%. Postoperative complications occurred in 13 cases (12.8%) and included CSF leakage (n = 4) cranial nerve palsy (n = 5), hemorrhagic nasal wounds (n = 3) and delayed intracranial hemorrhage (n = 1). All of these were cured or improved after an appropriate treatment. A follow-up of 6 - 60 months was conducted in 56 cases. Early detection and early treatment are crucial for achieving a better outcome in chordoma. Neuroendoscopic treatment plays an important role in managing those complicated cases. Precise endoscopic techniques plus different surgical approaches and staging procedures

  11. Eosinophilic granuloma of the skull base: patient with unique clinical moreover, radiographic presentation.

    Directory of Open Access Journals (Sweden)

    Hosein Dalili

    2015-01-01

    Full Text Available This case report presents an eight-year-old girl having periauricular swelling and severe pain during mouth opening on the right-side temporomandibular joint (TMJ. CBCT showed extensive destruction of the base of the skull and the roof of the glenoid fossa on the right side. The findings based on CT and MRI images with and without contrast are discussed herein. This report highlights a skull base eosinophilic granuloma that mimics TMJ disorder and the importance of proper evaluation of CBCT images to make an early diagnosis.

  12. Comparison of SPECT/CT, MRI and CT in diagnosis of skull base bone invasion in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai

    2014-01-01

    Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.

  13. The role of stereotactic radiosurgery in the treatment of malignant skull base tumors

    International Nuclear Information System (INIS)

    Miller, Robert C.; Foote, Robert L.; Coffey, Robert J.; Gorman, Deborah A.; Earle, John D.; Schomberg, Paula J.; Kline, Robert W.

    1997-01-01

    Purpose: To determine the efficacy and toxicity of stereotactic radiosurgery in the treatment of malignant skull base tumors. Methods and Materials: Thirty-two patients with 35 newly diagnosed or recurrent malignant skull base tumors ≤33.5 cm 3 were treated using the Leksell Gamma unit. Tumor histologies included: adenoid cystic carcinoma, basal cell carcinoma, chondrosarcoma, chordoma, nasopharyngeal carcinoma, osteogenic sarcoma, and squamous cell carcinoma. Results: After a median follow-up of 2.3 years, 83% ± 15% (±95% confidence interval) of patients experienced a symptomatic response to treatment. Local control at the skull base was 95 ± 9% at 2 years and 78 ± 23% at 3 years. Local-regional control above the clavicles was 75 ± 15% at 1 year and 51 ± 20% at 2 years. Overall and cause specific survival were identical, 82 ± 13% at 1 year, 76 ± 14% at 2 years, and 72 ± 16% at 3 years. One patient developed a radiation-induced optic neuropathy 12 months after radiosurgery. Conclusion: Stereotactic radiosurgery using the Leksell Gamma Unit can provide durable tumor control and symptomatic relief with acceptable toxicity in the majority of patients with malignant tumors 4 cm or less in size involving the skull base. Further evaluation of more patients with longer follow-up is warranted

  14. Normal Development of Sutures and synchondroses in the central skull base : CT study

    International Nuclear Information System (INIS)

    Roh, Hong Gee; Kim, Hyung Jin; Kang, Jee Hee; Lee, Kyung Hee; Lim, Myung Kwan; Cho, Young Kuk; Ok, Cheol Su; Suh, Chang Hae

    2000-01-01

    To evaluate the developmental patterns of the sutures and synchondroses in the central skull base. We evaluated the CT scans of 109 children (age range 29 days to 15 years) with no skull base abnormality who had undergone axial CT of the skull base with 1-mm collimation. Using a five-tier scheme, we analyzed the developmental patterns of the 18 sutures and synchondroses related to the sphenoid and occipital bones. Fusion of the sutures and synchondroses related to the sphenoid bone progressed rapidly during the first two years. Thereafter, changes in the sphenoid bone were dominated by pneumatization of the sphenoid sinus. Fusion of the synchondroses within the sphenoid body, including intersphenoidal, intrapresphenoidal, intrapostsphenoidal synchondrosis occurred early and in most cases was graded ≥3D4. Fusion of the sphenosquamosal, sphenoethmoidal, and frontosphenoidal sutures was delayed, and residual sclerosis was a common finding. Except for Kerckring-supraoccipital synchondrosis, fusion of the six sutures and synchondroses related to the occipital bone occurred more gradually than that of those related to the sphenoid bone. Among these, fusion of the occipitomastoidal suture and petro-occipital synchondrosis was the last to occur. A knowledge of the developmental patterns of sutures and synchondroses can help differentiate normal conditions from those such as fracture, osseous dysplasia, or congenital malformation, which are abnormal. Our results provide certain basic information about skull base maturity in children. (author)

  15. Skull base tumors

    International Nuclear Information System (INIS)

    Kikinis, R.; Matsumae, M.; Jolesz, F.A.; Black, P.M.; Cline, H.E.; Lorenson, W.E.

    1991-01-01

    This paper reports on an image processing procedure for the planning of surgery of skull base tumors that can extract bone, vessels, tumor, and brain parenchyma and that permits resolution of cranial nerves. Three-dimensional (3D) reconstructions were generated from double-echo long TR interleaved conventional spin-echo and fast-spin-echo MR imaging data. Sixteen cases have been analyzed preoperatively. Image processing consisted of a multistep procedure combining a supervised multivariate analysis with neighborhood operations such as connectivity and erosion/dilation. 3D renderings of anatomic structures of interest were then generated. Cases were evaluated preoperatively and manipulated interactively with the computer-generated images by a team consisting of neuroradiologists, neurosurgeons, and craniofacial surgeons. The preparation of 3D reconstructions required only a few hours and was performed mostly by a research assistant. The preoperative analysis of the 3D reconstructions was found to be a valuable tool, providing information complementing the surgeon's understanding of a case as derived from conventional imaging. The interactive manipulation of data proved to be a powerful way to evaluate alternative surgical approaches

  16. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement.

    Science.gov (United States)

    Dröge, L H; Hinsche, T; Canis, M; Alt-Epping, B; Hess, C F; Wolff, H A

    2014-02-01

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting.

  17. Evaluation of radiation dose received in skull radiographic examination

    International Nuclear Information System (INIS)

    Omer, Noora Elshiekh

    2014-12-01

    Diagnostic X-ray examination play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest mam-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study was performed to assess the effective dose (ED) received in skull radiographic examination and to analyze effective dose distributions among radiological department under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded: age, weight, height, body mass index (BMI) derived from weight (kg) and (height (m)) and exposure factors. The dose was measured for skull x-ray examinations. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for skull AP and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were calculated from energy imparted using ED conversion factors proposed were within the normal range of exposure. The mean ED values calculated were 3.03±0.08 and 4.23±0.61 for skull AP and lateral examination, respectively. Further studies are recommended with more number of patients and using more than two modalities for comparison. (Author)

  18. Skull-base Osteomyelitis: a Dreaded Complication after Trivial Fall and Inadequate Management

    Directory of Open Access Journals (Sweden)

    Kundan Mittal

    2015-10-01

    Full Text Available Introduction: Skull-based osteomyelitis is bony infection which generally originates from inadequately treated chronic infection, adjoining tissue infection or after trauma.Case: 11 month female child had a trivial fall while standing near a bucket. The child developed fracture of right clavicle and left orbital swelling which was inadequately treated. This resulted in in spread of infection to adjoining tissues, skull bones, sinuses and brain.Conclusion: Cranial base osteomyelitis is rare but dreaded condition which requires early diagnosis and prompt treatment to avoid mortality and morbidity in form of neurological deficits and permanent disability

  19. Neurotization of oculomotor, trochlear and abducent nerves in skull base surgery

    Institute of Scientific and Technical Information of China (English)

    李世亭; 潘庆刚; 刘宁涛; 刘忠; 沈峰

    2003-01-01

    Objective To anatomically reconstruct the oculomotor nerve, trochlear nerve, and abducent nerve by skull base surgery. Methods Seventeen cranial nerves (three oculomotor nerves, eight trochlear nerves and six abducent nerves) were injured and anatomically reconstructed in thirteen skull base operations during a period from 1994 to 2000. Repair techniques included end-to-end neurosuture or fibrin glue adhesion, graft neurosuture or fibrin glue adhesion. The relationships between repair techniques and functional recovery and the related factors were analyzed.Results Functional recovery began from 3 to 8 months after surgery. During a follow-up period of 4 months to 6 years, complete recovery of function was observed in 6 trochlear nerves (75%) and 4 abducent nerves (67%), while partial functional recovery was observed in the other cranial nerves including 2 trochlear nerves, 2 abducent nerves, and 3 oculomotor nerves.Conclusions Complete or partial functional recovery could be expected after anatomical neurotization of an injured oculomotor, trochlear or abducent nerve. Our study demonstrated that, in terms of functional recovery, trochlear and abducent nerves are more responsive than oculomotor nerves, and that end-to-end reconstruction is more efficient than graft reconstruction. These results encourage us to perform reconstruction for a separated cranial nerve as often as possible during skull base surgery.

  20. Intraoperative biopsy of the major cranial nerves in the surgical strategy for adenoid cystic carcinoma close to the skull base.

    Science.gov (United States)

    Tarsitano, Achille; Pizzigallo, Angelo; Gessaroli, Manlio; Sturiale, Carmelo; Marchetti, Claudio

    2012-02-01

    Adenoid cystic carcinoma of the salivary glands has a propensity for perineural invasion, which could favor spread along the major cranial nerves, sometimes to the skull base and through the foramina to the brain parenchyma. This study evaluated the relationship between neural spread and relapse in the skull base. During surgery, we performed multiple biopsies with extemporaneous examination of the major nerves close to the tumor to guide the surgical resection. The percentage of actuarial local control at 5 years for patients with a positive named nerve and skull base infiltration was 12.5%, compared with 90.0% in patients who were named nerve-negative and without infiltration of the skull base (P = .001). Our study shows that local control of disease for patients who are named nerve-positive with skull base infiltration is significantly more complex compared with patients who are named nerve-negative without infiltration of the skull base. Copyright © 2012. Published by Mosby, Inc.

  1. The pioneering contribution of italian surgeons to skull base surgery.

    Science.gov (United States)

    Priola, Stefano M; Raffa, Giovanni; Abbritti, Rosaria V; Merlo, Lucia; Angileri, Filippo F; La Torre, Domenico; Conti, Alfredo; Germanò, Antonino; Tomasello, Francesco

    2014-01-01

    The origin of neurosurgery as a modern, successful, and separate branch of surgery could be dated back to the end of the 19th century. The most important development of surgery occurred in Europe, particularly in Italy, where there was a unique environment, allowing brilliant open-minded surgeons to perform, with success, neurosurgical operations. Neurosurgery began at the skull base. In everyday practice, we still pay tribute to early Italian neuroanatomists and pioneer neurosurgeons who represented a starting point in a new, obscure, and still challenging field of medicine and surgery during their times. In this paper, we report at a glance the contributions of Tito Vanzetti from Padua (1809-1888), for his operation on a destructive skull base cyst that had, indeed, an intracranial expansion; of Davide Giordano (1864-1954) from Venice, who described the first transnasal approach to the pituitary gland; and, most importantly, of Francesco Durante from Messina (1844-1934), who was the first surgeon in the history of neurosurgery to successfully remove a cranial base meningioma. They carried out the first detailed reported surgical excision of intracranial lesions at the skull base, diagnosed only through clinical signs; used many of the advances of the 19th century; and conceived and performed new operative strategies and approaches. Their operations were radical enough to allow the patient to survive the surgery and, in the case of Durante, for the first time, to obtain more than 12 years of good survival at a time when a tumor of this type would have been fatal. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Transversal craniofacial growth evaluated on children dry skulls using V2 and V 3 canal openings as references.

    Science.gov (United States)

    Harnet, J C; Lombardi, T; Manière-Ezvan, A; Chamorey, E; Kahn, J L

    2013-11-01

    The aim of this study was to investigate the transversal relationships between two cephalometric landmarks and lines on the face using ovale, rotundum, greater palatine and infra-orbital foramina as references. Thirty-four children dry skulls, 19 males and 15 females aged 0-6 years, were examined by computed tomography scanning by using constructed tomographic axial and frontal planes. The cephalometric transversal dimensions of the face skull were measured between the right and left landmarks from the orbital lateral wall and from the zygomatic arch. The cephalometric transversal dimensions of the base skull were measured between the right and left ovale, rotundum, greater palatine and infra-orbital foramina. Statistical analysis using partial correlations, regardless of the age, showed strong relationships (p transversal measurements with nerve canal openings and transversal distances of skull face. We showed that the cranial base transversal growth was very strongly related to facial transversal growth from the postnatal period up to 6 years of age.

  3. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    International Nuclear Information System (INIS)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro

    2001-01-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  4. How to perform 3D reconstruction of skull base tumours.

    Science.gov (United States)

    Bonne, N-X; Dubrulle, F; Risoud, M; Vincent, C

    2017-04-01

    The surgical management of skull base lesions is difficult due to the complex anatomy of the region and the intimate relations between the lesion and adjacent nerves and vessels. Minimally invasive approaches are increasingly used in skull base surgery to ensure an optimal functional prognosis. Three-dimensional (3D) computed tomography (CT) reconstruction facilitates surgical planning by visualizing the anatomical relations of the lesions in all planes (arteries, veins, nerves, inner ear) and simulation of the surgical approach in the operating position. Helical CT angiography is performed with optimal timing of the injection in terms of tumour and vessel contrast enhancement. 3D definition of each structure is based on colour coding by automatic thresholding (bone, vessels) or manual segmentation on each slice (tumour, nerves, inner ear). Imaging is generally presented in 3 dimensions (superior, coronal, sagittal) with simulation of the surgical procedure (5 to 6 reconstructions in the operating position at different depths). Copyright © 2016. Published by Elsevier Masson SAS.

  5. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.

    Science.gov (United States)

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2015-07-01

    Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Taken

  6. Skull Radiography

    Science.gov (United States)

    What you need to know about… Skull Radiography X-ray images of the skull are taken when it is necessary to see the cranium, facial bones or jaw bones. ... Among other things, x-ray exams of the skull can show fractures. Patient Preparation Before the examination, ...

  7. Magnetic resonance (MR) imaging of chordoma and chondroma in the skull base

    International Nuclear Information System (INIS)

    Tashiro, Takahiko; Inoue, Yuichi; Nemoto, Yutaka

    1992-01-01

    Differential diagnosis of chordoma and chondroma in the skull base is sometimes difficult. We retrospectively reviewed the MR images of 14 patients with skull base tumors (nine chordomas, four chondromas and one chondrosarcoma). MR imaging was performed with a 0.5 Tesla system (Picker International). Inversion recovery (IR) (2500-2100/600-500/40), T1-weighted spin echo (SE) (800-600/40), and T2-weighted SE (2500-1800/120) images were obtained. On IR images, seven of eight chordomas showed heterogeneous low signal intensity, and one chordoma and all chondromas showed markedly low signal intensity similar to that of CSF. Calcified or ossified portions of the chondromas were demonstrated as areas of moderately low intensity on IR images. Chondrosarcoma showed moderately low intensity similar to that of chordoma. T1-weighted SE images of chordoma and chondroma showed no difference in signal intensity. On T2-weighted SE images, six of nine chordomas and all chondromas showed markedly high signal intensity. Three chordomas and one chondrosarcoma showed moderately high signal intensity. In the diagnosis of skull base tumors, the IR sequence seems to be useful for differentiating chondroma from chordoma. (author)

  8. MRI-detected skull-base invasion. Prognostic value and therapeutic implication in intensity-modulated radiotherapy treatment for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Cheng, Yi-Kan; Jiang, Ning; Yue, Dan; Tang, Ling-Long; Zhang, Fan; Lin, Li; Liu, Xu; Chen, Lei; Ma, Jun; Liu, Li-Zhi

    2014-01-01

    With advances in imaging and radiotherapy, the prognostic value of skull-base invasion in nasopharyngeal carcinoma (NPC) needs to be reassessed. We aimed to define a classification system and evaluate the prognostic value of the classification of magnetic resonance imaging (MRI)-detected skull-base invasion in NPC treated with intensity-modulated radiotherapy (IMRT). We retrospectively reviewed 749 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated NPC and treated with IMRT. MRI-detected skull-base invasion was not found to be an independent prognostic factor for overall survival (OS), distant metastasis-free survival (DMFS), local relapse-free survival (LRFS), or disease-free survival (DFS; p > 0.05 for all). Skull-base invasion was classified according to the incidence of each site (type I sites inside pharyngobasilar fascia and clivus vs. type II sites outside pharyngobasilar fascia). The 5-year OS, DMFS, LRFS, and DFS rates in the classification of skull-base invasion in NPC were 83 vs. 67 %, 85 vs.75 %, 95 vs. 88 %, and 76 vs. 62 %, respectively (p [de

  9. Computed tomography in neoplastic diseases of the skull base and adjacent areas using EMI scanner CT-1000

    International Nuclear Information System (INIS)

    Ono, Yoshimi; Ohtake, Eiji; Asakura, Koichi; Tanohata, Kazunori; Ito, Otomasa

    1980-01-01

    CT-findings of 145 patients with and without neoplastic diseases of the skull base were evaluated using EMI CT-1000. Analysis of 64 patients without any lesion at the skull base showed more artifacts compared with that of higher slices, so that good or fair images were obtained only in 64% of this groups of patients. The most important factor in producing artifacts are considered to be caused by patient's movement. We also evaluated the tumor extension to the skull base in 81 patients. They were 24 brain tumors, 21 pituitary adenomas, and 36 nasopharyngeal and paranasal cancers. Four out of 24 brain tumors showed extracranial extension, 12 pituitary adenomas infiltrating outside of the sella turcica, and 10 cases of nasopharyngeal cancers showed intracranial extension. It was concluded that CT presented an excellent information in evaluating the degree of extension of neoplasms which invading to the skull base. (author)

  10. Skull Practice.

    Science.gov (United States)

    Slesnick, Irwin L.

    1988-01-01

    Disguises a lesson about skulls with some fun to cause less fear among students. Outlines strategies, questions, and answers for use. Includes a skull mask which can be photocopied and distributed to students as a learning tool and a fun Halloween treat. Also shown is a picture of skull parts. (RT)

  11. Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.

    Science.gov (United States)

    Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C

    2015-01-01

    Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  12. Size and shape variability in the skull of Myotis nigricans (Schinz, 1821 (Chiroptera: Vespertilionidae from two geographic areas in Brazil

    Directory of Open Access Journals (Sweden)

    R. Bornholdt

    Full Text Available We present a quantitative analysis of sexual dimorphism and geographic variation in the skull of Myotis nigricans (Schinz, 1821 assessed by geometric morphometrics. Differences in size and shape of skulls were investigated using 30 landmarks plotted on two-dimensional images of lateral and ventral views. Results of geometric morphometrics revealed sexual dimorphism in the centroid size of the skull in both views. Females were larger than males. Nevertheless, there was no sexual dimorphism in skull shape of M. nigricans. Geographic variation was detected in size and shape of the skull. South Brazilian specimens were significantly larger than Ceará specimens only in the lateral view. Differences in skull shape were statistically significant in both views: specimens from South Brazil were brevirostri and presented a more expanded skull in the posterior region while Ceará specimens were longirostri and do not present any expansion in the brain case. Ecological factors for these phenomena are discussed in the text.

  13. Automatic Sex Determination of Skulls Based on a Statistical Shape Model

    Directory of Open Access Journals (Sweden)

    Li Luo

    2013-01-01

    Full Text Available Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females, we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.

  14. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  15. Establishing the soft and hard tissue area centers (centroids) for the skull and introducing a newnon-anatomical cephalometric line

    International Nuclear Information System (INIS)

    AlBalkhi, Khalid M; AlShahrani, Ibrahim; AlMadi, Abdulaziz

    2008-01-01

    The purpose of this study was to demonstrate how to establish the area center (centroid) of both the soft and hard tissues of the outline of the lateral cephalometric skull image, and to introduce the concept of a new non-anatomical centroid line. Lateral cephalometric radiographs, size 12 x 14 inch, of fifty seven adult subjects were selected based on their pleasant, balanced profile, Class I skeletal and dental relationship and no major dental malocclusion or malrelationship. The area centers (centroids) of both soft and hard tissue skull were practically established using a customized software computer program called the m -file . Connecting the two centers introduced the concept of a new non-anatomical soft and hard centroids line. (author)

  16. Panorama of Reconstruction of Skull Base Defects: From Traditional Open to Endonasal Endoscopic Approaches, from Free Grafts to Microvascular Flaps

    Science.gov (United States)

    Reyes, Camilo; Mason, Eric; Solares, C. Arturo

    2014-01-01

    Introduction A substantial body of literature has been devoted to the distinct characteristics and surgical options to repair the skull base. However, the skull base is an anatomically challenging location that requires a three-dimensional reconstruction approach. Furthermore, advances in endoscopic skull base surgery encompass a wide range of surgical pathology, from benign tumors to sinonasal cancer. This has resulted in the creation of wide defects that yield a new challenge in skull base reconstruction. Progress in technology and imaging has made this approach an internationally accepted method to repair these defects. Objectives Discuss historical developments and flaps available for skull base reconstruction. Data Synthesis Free grafts in skull base reconstruction are a viable option in small defects and low-flow leaks. Vascularized flaps pose a distinct advantage in large defects and high-flow leaks. When open techniques are used, free flap reconstruction techniques are often necessary to repair large entry wound defects. Conclusions Reconstruction of skull base defects requires a thorough knowledge of surgical anatomy, disease, and patient risk factors associated with high-flow cerebrospinal fluid leaks. Various reconstruction techniques are available, from free tissue grafting to vascularized flaps. Possible complications that can befall after these procedures need to be considered. Although endonasal techniques are being used with increasing frequency, open techniques are still necessary in selected cases. PMID:25992142

  17. Isolated Petroclival Craniopharyngioma with Aggressive Skull Base Destruction

    Science.gov (United States)

    Lee, Young-Hen; Lim, Dong-Jun; Park, Jung-Yul; Chung, Yong-Gu; Kim, Young-Sik

    2009-01-01

    We report a rare case of petroclival craniopharyngioma with no connection to the sellar or suprasellar region. MRI and CT images revealed a homogenously enhancing retroclival solid mass with aggressive skull base destruction, mimicking chordoma or aggressive sarcoma. However, there was no calcification or cystic change found in the mass. Here, we report the clinical features and radiographic investigation of this uncommon craniopharyngioma arising primarily in the petroclival region. PMID:19881982

  18. [Laser-based quality assurance for robot-assisted milling at the base of the skull].

    Science.gov (United States)

    Maassen, M M; Malthan, D; Stallkamp, J; Schäfer, A; Dammann, F; Schwaderer, E; Zenner, H P

    2006-02-01

    Implanting active hearing devices in the lateral base of the skull requires high-precision, secure fixation of the electromagnetic transducer and long-life anchorage using osteosynthetic fixation plates referred to as mountain brackets. Nonlinear distortion in the acoustic signal path and consecutive implant loosening can only be avoided by exact osseous milling to create the necessary cavity bed while avoiding excessive milling. Robot technology is ideal for high-precision milling. However, safety measures are necessary in order to prevent errors from occurring during the reduction process. Ideally, a robot should be guided by a navigation system. However, robotic systems so far available do not yet have an integrated global navigation system. We used an animal model under laboratory conditions to examine the extent to which the semiautomatic ROBIN assistant system developed could be expected to increase osseous milling accuracy before implanting active electronic hearing devices into the recipient tissue in the cranium. An existing prototype system for robot-assisted skull base surgery was equipped with laser sensors for geometric measurement of the operation site. The three-dimensional measurement data was compared with CT simulation data before, during, and after the robot-assisted operation. The experiments were conducted on test objects as well as on animal models. Under ideal conditions, the operation site could be measured at a spatial resolution of better than 0.02 mm in each dimension. However, reflections and impurities in the operation site from bleeding and rinsing fluids did have a considerable effect on data collection, necessitating specialised registering procedures. Using an error-tolerant procedure specifically developed, the effective registering error could be kept under 0.3 mm. After milling, the resulting shape matched the intended form at an accuracy level of 0.8 mm. The results show that robot systems can reach the accuracy required for

  19. INFRAORBITAL SULCUS: A STUDY IN 100 SKULLS

    OpenAIRE

    Roshni; . Jayanthi; Shubha

    2014-01-01

    INTRODUCTION: A study was done on 100 intact, unsexed human skulls in the Department of Anatomy, KIMS, Bangalore, to observe and record the presence of a groove in the lateral wall of the orbit, synonymous with infra orbital sulcus. This entity has been described by the fortieth edition of Gray’s text book of Anatomy to extend from the lateral end of superior orbital fissure to the orbital floor. It sometimes contains an anastomosis between middle meningeal artery and infr...

  20. Postoperative otorhinolaryngologic complications in transnasal endoscopic surgery to access the skull base

    Directory of Open Access Journals (Sweden)

    Ricardo Landini Lutaif Dolci

    Full Text Available Abstract Introduction: The large increase in the number of transnasal endoscopic skull base surgeries is a consequence of greater knowledge of the anatomic region, the development of specific materials and instruments, and especially the use of the nasoseptal flap as a barrier between the sinus tract (contaminated cavity and the subarachnoid space (sterile area, reducing the high risk of contamination. Objective: To assess the otorhinolaryngologic complications in patients undergoing endoscopic surgery of the skull base, in which a nasoseptal flap was used. Methods: This was a retrospective study that included patients who underwent endoscopic skull base surgery with creation of a nasoseptal flap, assessing for the presence of the following post-surgical complications: cerebrospinal fluid leak, meningitis, mucocele formation, nasal synechia, septal perforation (prior to posterior septectomy, internal nasal valve failure, epistaxis, and olfactory alterations. Results: The study assessed 41 patients undergoing surgery. Of these, 35 had pituitary adenomas (macro- or micro-adenomas; sellar and suprasellar extension, three had meningiomas (two tuberculum sellae and one olfactory groove, two had craniopharyngiomas, and one had an intracranial abscess. The complications were cerebrospinal fluid leak (three patients; 7.3%, meningitis (three patients; 7.3%, nasal fossa synechia (eight patients; 19.5%, internal nasal valve failure (six patients; 14.6%, and complaints of worsening of the sense of smell (16 patients; 39%. The olfactory test showed anosmia or hyposmia in ten patients (24.3%. No patient had mucocele, epistaxis, or septal perforation. Conclusion: The use of the nasoseptal flap has revolutionized endoscopic skull base surgery, making the procedures more effective and with lower morbidity compared to the traditional route. However, although mainly transient nasal morbidities were observed, in some cases, permanent hyposmia and anosmia resulted

  1. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide

    Directory of Open Access Journals (Sweden)

    Harminder Singh

    2016-01-01

    Full Text Available Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.

  2. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.

    Science.gov (United States)

    Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann

    2017-06-15

    Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radiological assessment of skull base changes in children with syndromic craniosynostosis: role of ''minor'' sutures

    Energy Technology Data Exchange (ETDEWEB)

    Calandrelli, Rosalinda; D' Apolito, Gabriella; Gaudino, Simona; Stefanetti, Mariangela; Colosimo, Cesare [Universita Cattolica Sacro Cuore, Institute of Radiology, Rome (Italy); Massimi, Luca; Di Rocco, Concezio [Universita Cattolica Sacro Cuore, Institute of Neurosurgery, Rome (Italy)

    2014-10-15

    This study aims to identify the premature synostosis of ''major'' and ''minor'' sutures of the four ''sutural arches'' of the skull and to perform a morphometric analysis in children with syndromic craniosynostosis in order to evaluate changes in the skull base linked with premature suture synostosis. We reviewed multiplanar high-resolution CT images, implemented with 3D reconstructions, from 18 patients with complex syndromic craniosynostosis and compared them with 18 age-matched healthy subjects. We assessed the calvarial sutures and their extension to the skull base, and then we correlated specific types of synostosis with the size, shape and symmetry of the cranial fossae. We found a marked asymmetry of the skull base growth in all patients. The synostotic involvement around the coronal ring caused a reduction in the growth of the anterior and middle fossae. The size of the posterior cranial fossa was related not only to ''major'' but also to ''minor'' suture synostosis of the lambdoid and parieto-squamosal arches. Changes in the skull base and craniofacial axis symmetry are due to structural and functional relationships between ''major'' and ''minor'' skull sutures, suggesting a structural and functional relationship between the neurocranium and basicranium. The early recognition of prematurely closed skull base sutures may help clinicians and neurosurgeons to establish correct therapeutic approaches. (orig.)

  4. [Applicability of the da Vinci robotic system in the skull base surgical approach. Preclinical investigation].

    Science.gov (United States)

    Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio

    2015-01-01

    The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  5. Sinonasal outcomes following endoscopic anterior skull base surgery with nasoseptal flap reconstruction: a prospective study.

    Science.gov (United States)

    Hanson, M; Patel, P M; Betz, C; Olson, S; Panizza, B; Wallwork, B

    2015-07-01

    To assess nasal morbidity resulting from nasoseptal flap use in the repair of skull base defects in endoscopic anterior skull base surgery. Thirty-six patients awaiting endoscopic anterior skull base surgery were prospectively recruited. A nasoseptal flap was used for reconstruction in all cases. Patients were assessed pre-operatively and 90 days post-operatively via the Sino-Nasal Outcome Test 20 questionnaire and visual analogue scales for nasal obstruction, pain, secretions and smell; endoscopic examination findings and mucociliary clearance times were also recorded. Sino-Nasal Outcome Test 20 questionnaire data and visual analogue scale scores for pain, smell and secretions showed no significant differences between pre- and post-operative outcomes, with visual analogue scale scores for nasal obstruction actually showing a significant improvement (p = 0.0007). A significant deterioration for both flap and non-flap sides was demonstrated post-operatively on endoscopic examination (p = 0.002 and p = 0.02 respectively). Whilst elevation of a nasoseptal flap in endoscopic surgery of the anterior skull base engendered significant clinical deterioration on examination post-operatively, quality of life outcomes showed that no such deterioration was subjectively experienced by the patient. In fact, there was significant nasal airway improvement following nasoseptal flap reconstruction.

  6. A checklist for endonasal transsphenoidal anterior skull base surgery.

    Science.gov (United States)

    Laws, Edward R; Wong, Judith M; Smith, Timothy R; de Los Reyes, Kenneth; Aglio, Linda S; Thorne, Alison J; Cote, David J; Esposito, Felice; Cappabianca, Paolo; Gawande, Atul

    2016-06-01

    OBJECT Approximately 250 million surgical procedures are performed annually worldwide, and data suggest that major complications occur in 3%-17% of them. Many of these complications can be classified as avoidable, and previous studies have demonstrated that preoperative checklists improve operating room teamwork and decrease complication rates. Although the authors' institution has instituted a general preoperative "time-out" designed to streamline communication, flatten vertical authority gradients, and decrease procedural errors, there is no specific checklist for transnasal transsphenoidal anterior skull base surgery, with or without endoscopy. Such minimally invasive cranial surgery uses a completely different conceptual approach, set-up, instrumentation, and operative procedure. Therefore, it can be associated with different types of complications as compared with open cranial surgery. The authors hypothesized that a detailed, procedure-specific, preoperative checklist would be useful to reduce errors, improve outcomes, decrease delays, and maximize both teambuilding and operational efficiency. Thus, the object of this study was to develop such a checklist for endonasal transsphenoidal anterior skull base surgery. METHODS An expert panel was convened that consisted of all members of the typical surgical team for transsphenoidal endoscopic cases: neurosurgeons, anesthesiologists, circulating nurses, scrub technicians, surgical operations managers, and technical assistants. Beginning with a general checklist, procedure-specific items were added and categorized into 4 pauses: Anesthesia Pause, Surgical Pause, Equipment Pause, and Closure Pause. RESULTS The final endonasal transsphenoidal anterior skull base surgery checklist is composed of the following 4 pauses. The Anesthesia Pause consists of patient identification, diagnosis, pertinent laboratory studies, medications, surgical preparation, patient positioning, intravenous/arterial access, fluid management

  7. Management of Benign Skull Base Meningiomas: A Review

    OpenAIRE

    Mendenhall, William M.; Friedman, William A.; Amdur, Robert J.; Foote, Kelly D.

    2004-01-01

    The optimal management of benign meningiomas of the skull base is reviewed. Elderly patients with small, asymptomatic tumors can be observed and treatment can be initiated if and when progression occurs. Patients with tumors that appear to be amenable to complete resection with an acceptable rate of morbidity are optimally treated with surgery. Decompression of more extensive tumors through conservative subtotal resection and preservation of the involved cranial nerves may result in improved ...

  8. Skull base development and craniosynostosis

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Susan I. [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Division of Neuroradiology, Toronto (Canada); University of Toronto, Department of Otolaryngology - Head and Neck Surgery, Toronto (Canada); Padfield, Nancy [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Division of Neuroradiology, Toronto (Canada); Chitayat, David [The Hospital for Sick Children and University of Toronto, Division of Clinical and Metabolic Genetics, Toronto (Canada); Mount Sinai Hospital and University of Toronto, Prenatal Diagnosis and Medical Genetics Program, Toronto (Canada); Forrest, Christopher R. [The Hospital for Sick Children and University of Toronto, Centre for Craniofacial Care and Research, Division of Plastic and Reconstructive Surgery, Toronto (Canada)

    2015-09-15

    Abnormal skull shape resulting in craniofacial deformity is a relatively common clinical finding, with deformity either positional (positional plagiocephaly) or related to premature ossification and fusion of the skull sutures (craniosynostosis). Growth restriction occurring at a stenosed suture is associated with exaggerated growth at the open sutures, resulting in fairly predictable craniofacial phenotypes in single-suture non-syndromic pathologies. Multi-suture syndromic subtypes are not so easy to understand without imaging. Imaging is performed to define the site and extent of craniosynostosis, to determine the presence or absence of underlying brain anomalies, and to evaluate both pre- and postoperative complications of craniosynostosis. Evidence for intracranial hypertension may be seen both pre- and postoperatively, associated with jugular foraminal stenosis, sinovenous occlusion, hydrocephalus and Chiari 1 malformations. Following clinical assessment, imaging evaluation may include radiographs, high-frequency US of the involved sutures, low-dose (20-30 mAs) CT with three-dimensional reformatted images, MRI and nuclear medicine brain imaging. Anomalous or vigorous collateral venous drainage may be mapped preoperatively with CT or MR venography or catheter angiography. (orig.)

  9. Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study.

    Science.gov (United States)

    Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama

    2015-01-01

    Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.

  10. CT and MRI of the skull base, including the cranial nerves

    International Nuclear Information System (INIS)

    Weber, A.L.

    1991-01-01

    Some considerations about nuclear magnetic resonance and computerized tomography, essential for examining skull base lesions are treated here, including the cranial nerves. Neoplasms such as meningiomas, adenomas, chordomas, chondrosarcomas and others tumors are also cited, mentioning some commentaries. (author)

  11. Proton Therapy for Skull Base Chordomas: An Outcome Study from the University of Florida Proton Therapy Institute

    OpenAIRE

    Deraniyagala, Rohan L.; Yeung, Daniel; Mendenhall, William M.; Li, Zuofeng; Morris, Christopher G.; Mendenhall, Nancy P.; Okunieff, Paul; Malyapa, Robert S.

    2013-01-01

    Objectives Skull base chordoma is a rare, locally aggressive tumor located adjacent to critical structures. Gross total resection is difficult to achieve, and proton therapy has the conformal advantage of delivering a high postoperative dose to the tumor bed. We present our experience using proton therapy to treat 33 patients with skull base chordomas.

  12. Anatomical and Radiographic Study on the Skull and Mandible of the Common Opossum (Didelphis Marsupialis Linnaeus, 1758 in the Caribbean

    Directory of Open Access Journals (Sweden)

    Reda Mohamed

    2018-04-01

    Full Text Available Common opossums (Didelphis marsupialis are found throughout the Caribbean island of Trinidad and Tobago. The present work was conducted on 10 skulls and mandibles of the common opossum to describe the osteology and foramina of these skulls and mandibles grossly and radiographically. The information that is garnered can be used to detect, diagnose, and treat head affections, as well as for comparative studies with the skulls and mandibles of other similar species. The skulls and mandibles were prepared and cleaned using standard method. All of the characteristic features of various standards views of the skulls bones, including dorsal, lateral, caudal and midsagittal, and the lateral and caudal views of the mandibles as well as the foramina of the skulls and mandibles were described and discussed. Each skull was divided into long facial and short cranial regions. No supraorbital foramen was observed in the skulls. The tympanic bulla was absent while there was the tympanic process of the alisphenoid. The temporal process of the zygomatic bone, zygomatic process of maxilla, and zygomatic process of the squamosal bone formed the zygomatic arch. The dental formula was confirmed. The bones and foramina of the skull and mandible were similar to other marsupial species and were homologue to that of other mammals.

  13. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    Science.gov (United States)

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.

  14. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae)

    DEFF Research Database (Denmark)

    Galatius-Jørgensen, Anders; Berta, Annalisa; Frandsen, Marie Michele Schou

    2011-01-01

    . dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar...... was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. J. Morphol., 2011. © 2010 Wiley-Liss, Inc....

  15. Base of skull and cervical spine chordomas in children treated by high-dose irradiation

    International Nuclear Information System (INIS)

    Benk, Veronique; Liebsch, Norbert J.; Munzenrider, John E.; Efird, John; McManus, Patricia; Suit, Herman

    1995-01-01

    Purpose: To evaluate the outcome of children with base of skull or cervical spine chordomas treated by high dose irradiation. Methods and Materials: Eighteen children, 4 to 18 years of age, with base of skull or cervical spine chordomas, received fractionated high-dose postoperative radiation using mixed photon and 160 MeV proton beams. The median tumor dose was 69 Cobalt Gray-equivalent (CGE) with a 1.8 CGE daily fraction. Results: The median follow-up was 72 months. The 5-year actuarial survival was 68% and the 5-year disease-free survival (DFS) was 63%. The only significant prognostic factor was the location: patients with cervical spine chordomas had a worse survival than those with base of skull lesions (p = 0.008). The incidence of treatment-related morbidity was acceptable: two patients developed a growth hormone deficit corrected by hormone replacement, one temporal lobe necrosis, and one fibrosis of the temporalis muscle, improved by surgery. Conclusion: Chordomas in children behave similarly to those in adults: children can receive the same high-dose irradiation as adults with acceptable morbidity

  16. Base of skull and cervical spine chordomas in children treated by high-dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Benk, Veronique; Liebsch, Norbert J; Munzenrider, John E; Efird, John; McManus, Patricia; Suit, Herman

    1995-02-01

    Purpose: To evaluate the outcome of children with base of skull or cervical spine chordomas treated by high dose irradiation. Methods and Materials: Eighteen children, 4 to 18 years of age, with base of skull or cervical spine chordomas, received fractionated high-dose postoperative radiation using mixed photon and 160 MeV proton beams. The median tumor dose was 69 Cobalt Gray-equivalent (CGE) with a 1.8 CGE daily fraction. Results: The median follow-up was 72 months. The 5-year actuarial survival was 68% and the 5-year disease-free survival (DFS) was 63%. The only significant prognostic factor was the location: patients with cervical spine chordomas had a worse survival than those with base of skull lesions (p = 0.008). The incidence of treatment-related morbidity was acceptable: two patients developed a growth hormone deficit corrected by hormone replacement, one temporal lobe necrosis, and one fibrosis of the temporalis muscle, improved by surgery. Conclusion: Chordomas in children behave similarly to those in adults: children can receive the same high-dose irradiation as adults with acceptable morbidity.

  17. Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.

    Science.gov (United States)

    Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake

    2006-11-07

    We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.

  18. Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves

    Institute of Scientific and Technical Information of China (English)

    Soo Ryang Kim; Fumio Kanda; Hiroshi Kobessho; Koji Sugimoto; Toshiyuki Matsuoka; Masatoshi Kudo; Yoshitake Hayashi

    2006-01-01

    We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-yearold woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI)disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement.The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.

  19. Prospective analysis of neuropsychological deficits following resection of benign skull base meningiomas.

    Science.gov (United States)

    Zweckberger, Klaus; Hallek, Eveline; Vogt, Lidia; Giese, Henrik; Schick, Uta; Unterberg, Andreas W

    2017-12-01

    OBJECTIVE Resection of skull base tumors is challenging. The introduction of alternative treatment options, such as radiotherapy, has sparked discussion regarding outcome in terms of quality of life and neuropsychological deficits. So far, however, no prospective data are available on this topic. METHODS A total of 58 patients with skull base meningiomas who underwent surgery for the first time were enrolled in this prospective single-center trial. The average age of the patients was 56.4 ± 12.5 years. Seventy-nine percent of the tumors were located within the anterior skull base. Neurological examinations and neuropsychological testing were performed at 3 time points: 1 day prior to surgery (T1), 3-5 months after surgery (T2), and 9-12 months after surgery (T3). The average follow-up duration was 13.8 months. Neuropsychological assessment consisted of quality of life, depression and anxiety, verbal learning and memory, cognitive speed, attention and concentration, figural memory, and visual-motor speed. RESULTS Following surgery, 23% of patients showed transient neurological deficits and 12% showed permanent new neurological deficits with varying grades of manifestation. Postoperative quality of life, however, remained stable and was slightly improved at follow-up examinations at T3 (60.6 ± 21.5 vs 63.6 ± 24.1 points), and there was no observed effect on anxiety and depression. Long-term verbal memory, working memory, and executive functioning were slightly affected within the first months following surgery and appeared to be the most vulnerable to impairment by the tumor or the resection but were stable or improved in the majority of patients at long-term follow-up examinations after 1 year. CONCLUSIONS This report describes the first prospective study of neuropsychological outcomes following resection of skull base meningiomas and, as such, contributes to a better understanding of postoperative impairment in these patients. Despite deterioration in a minority

  20. Skull base chordoid meningioma: Imaging features and pathology

    International Nuclear Information System (INIS)

    Soo, Mark Y.S.; Gomes, Lavier; Ng, Thomas; Cruz, Malville Da; Dexter, Mark

    2004-01-01

    The clinical, imaging and pathological features of a skull base chordoid meningioma (CM) are described. The huge tumour resulted in obstructive hydrocephalus and partial erosion of the clivus such that a chordoma was suspected. The lesion's MRI findings were similar to those of a meningioma. Light microscopic, immunohistochemistry and ultrastructural features were diagnostic of CM. Chordoid meningioma is a rare subtype of meningioma and has a great tendency to recur should surgical resection be incomplete Copyright (2004) Blackwell Publishing Asia Pty Ltd

  1. Anatomical and radiographic study of the white-eared opossum (Didelphis albiventris skull1

    Directory of Open Access Journals (Sweden)

    Bruno C. Schimming

    Full Text Available ABSTRACT: This study was made to investigate the anatomical features of the white-eared opossum skull, by osteology and radiographic anatomy. For this, five animals were used without sexual distinction. The skull was examined by radiographic and macroscopic characteristics. The skulls were then subjected to maceration. The skull was described macroscopically according to standard views, i.e. dorsal and caudal, lateral, ventral, and midsagittal. The skull can be divided into facial (viscerocranium and cranial (neurocranium regions. The facial region was elongated and more developed than neurocranium. The supraorbital foramen was absent. The tympanic bulla is not well developed. The zygomatic arch was formed by zygomatic process of the temporal bone, zygomatic process of the maxilla, and temporal process of the zygomatic bone. There was no significant difference between bones found in this study when compared with those described for others mammals. These findings may contribute to the better understanding of the anatomy and biology of the white-eared opossum.

  2. Unusual Association Between Spontaneous Lateral Sphenoid Encephalocele and Chiari Malformation Type I: Endoscopic Repair Through a Transpterygoid Approach.

    Science.gov (United States)

    Starnoni, Daniele; Daniel, Roy Thomas; George, Mercy; Messerer, Mahmoud

    2017-01-01

    Spontaneous meningoencephaloceles of the lateral sphenoid sinus are rare entities, and their peculiar location represents a surgical challenge due to the importance of a wide exposure and skull base reconstruction. They are thought to arise from the congenital base defect of the lateral sphenoid or in some cases have been postulated to represent a rare manifestation of altered cerebrospinal fluid (CSF) dynamics. We report the first case in the literature of a Chiari malformation type I (CMI) and a lateral sphenoid encephalocele, revising the theoretic etiology and surgical technique of endoscopic repair. A 50-year-old woman with a surgical history of symptomatic CMI presented with episodes of spontaneous CSF rhinorrhea. Radiologic investigations revealed a left mesial temporal encephalocele herniating into the lateral recess of the sphenoid sinus and radiologic features of altered CSF dynamics, which may have played an etiologic role. An endoscopic transpterygoid excision of the encephalocele and multilayer skull base repair were performed. The association of spontaneous lateral sphenoid encephaloceles with CMI is distinctly unusual. Predisposing factors and disruption of CSF dynamics may play a major role in the development of these rare complications in patients with CMI. Because of their distinct location, transethmoid or transpterygoid endoscopic approaches represent an excellent surgical technique to treat these lesions thanks to their wide and direct visualization of the entire skull base defect following the encephalocele excision, allowing an adequate multilayer repair and lateral sphenoid recess occlusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Skull base chordomas: analysis of dose-response characteristics

    International Nuclear Information System (INIS)

    Niemierko, Andrzej; Terahara, Atsuro; Goitein, Michael

    1997-01-01

    Objective: To extract dose-response characteristics from dose-volume histograms and corresponding actuarial survival statistics for 115 patients with skull base chordomas. Materials and Methods: We analyzed data for 115 patients with skull base chordoma treated with combined photon and proton conformal radiotherapy to doses in the range 66.6Gy - 79.2Gy. Data set for each patient included gender, histology, age, tumor volume, prescribed dose, overall treatment time, time to recurrence or time to last observation, target dose-volume histogram, and several dosimetric parameters (minimum/mean/median/maximum target dose, percent of the target volume receiving the prescribed dose, dose to 90% of the target volume, and the Equivalent Uniform Dose (EUD). Data were analyzed using the Kaplan-Meier survivor function estimate, the proportional hazards (Cox) model, and parametric modeling of the actuarial probability of recurrence. Parameters of dose-response characteristics were obtained using the maximum likelihood method. Results: Local failure developed in 42 (36%) of patients, with actuarial local control rates at 5 years of 59.2%. The proportional hazards model revealed significant dependence of gender on the probability of recurrence, with female patients having significantly poorer prognosis (hazard ratio of 2.3 with the p value of 0.008). The Wilcoxon and the log-rank tests of the corresponding Kaplan-Meier recurrence-free survival curves confirmed statistical significance of this effect. The Cox model with stratification by gender showed significance of tumor volume (p=0.01), the minimum target dose (p=0.02), and the EUD (p=0.02). Other parameters were not significant at the α level of significance of 0.05, including the prescribed dose (p=0.21). Parametric analysis using a combined model of tumor control probability (to account for non-uniformity of target dose distribution) and the Weibull failure time model (to account for censoring) allowed us to estimate

  4. Skull (image)

    Science.gov (United States)

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  5. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology.

    Science.gov (United States)

    Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui

    2016-01-01

    To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.

  6. Intraoperative Magnetic Resonance Imaging in Skull Base Surgery: A Review of 71 Consecutive Cases.

    Science.gov (United States)

    Ashour, Ramsey; Reintjes, Stephen; Park, Michael S; Sivakanthan, Sananthan; van Loveren, Harry; Agazzi, Siviero

    2016-09-01

    Although intraoperative magnetic resonance imaging (iMRI) increasingly is used during glioma resection, its role in skull base surgery has not been well documented. In this study, we evaluate our experience with iMRI for skull base surgery. Medical records were reviewed retrospectively on all neurosurgical cases performed at our institution in the IMRIS iMRI suite between April 2014 and July 2015. During the study period, the iMRI suite was used for 71 skull base tumors. iMRI was performed in 23 of 71 cases. Additional tumor resection was pursued after scanning in 7 of 23 patients. There was a significant difference in procedure length between the scanned versus nonscanned groups, and this was likely attributable to a greater proportion of petroclival meningiomas in the scanned group. Further analyses revealed significant increases in procedure length for the following scanned subgroups: anterolateral approach, anterolateral and petroclival lesion locations, and meningiomas. The rate of non-neurologic complications was significantly greater in the scanned group, particularly for patients with tumors >3 cm. Despite the unique challenges associated with skull base tumor surgery, iMRI can be safely obtained while adding a modest although not prohibitive amount of time to the procedure. The immediate evidence of residual tumor with a patient still in position to have additional resection may influence the surgeon to alter the surgical plan and attempt further resection in a critical area. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    International Nuclear Information System (INIS)

    Jones, Ryan M; O’Reilly, Meaghan A; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood–brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist. (paper)

  8. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    Science.gov (United States)

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  9. A modified transcondylar screw to accommodate anatomical skull base variations.

    Science.gov (United States)

    Ghaly, R F; Lissounov, A

    2017-01-01

    Occipitocervical instability may be attributed to congenital, bony/ligamentous abnormalities, trauma, neoplasm, degenerative bone disease, and failed atlantoaxial fixation. Indications for occipitocervical fixation include the prevention of disabling pain, cranial nerve dysfunction, paralysis, or even sudden death. The screw trajectory for the modified transcondylar screw (mTCS) is optimally planned utilizing a three-dimensional skull reconstructed image. The modified mTCS technique is helpful where there is a loss of bone, such as after prior suboccipital craniotomy and/or an inadequate occipital condyle. The new proposed technique is similar to the classical transcondylar screw placement but follows a deeper course along the bony lip of foramen magnum toward clivus from a dorsolateral approach. The modified mTCS technique allows for direct visualization and, therefore, helps to avoid damage to the hypoglossal nerve and lateral aspect of brain stem.

  10. Health-related quality of life in patients with skull base tumours.

    LENUS (Irish Health Repository)

    Kelleher, M O

    2012-02-03

    The objective of the investigation was to report on the health-related quality of life (HRQoL) of patients diagnosed with skull base tumours using the Short Form Health Survey questionnaire (SF-36). Those patients suffering with vestibular schwannoma were examined to determine the effect facial nerve function had on their quality of life. It took place at the tertiary referral centre at the Department of Clinical Neurosciences, Western General Hospital, Edinburgh. A prospective study of 70 consecutive patients was taken, who harboured the following tumours: 54 vestibular schwannomas, 13 meningiomas, two haemangioblastomas and one hypoglossal schwannoma. Patients were interviewed using the short form 36 (SF-36) questionnaire. Facial nerve function was assessed in those patients who had vestibular schwannomas. The entire cohort of live skull base patients were assessed after a median follow-up time of 38.4 months. Patients with vestibular schwannoma treated conservatively with interval MRI had a quality of life similar to t he normal population. Those who underwent surgery had a significant difference in two of the SF-36 domains. No statistically significant correlation was found at final assessment between the degree of facial nerve functioning and any of the domains of SF-36. Patients with non-vestibular tumours had an impaired HRQoL in seven of the eight domains. Patients with skull base tumours have a significant impairment of their HRQoL. A conservative policy of follow up with interval MRI for patients with small vestibular schwannomas may therefore be more appropriate to preserve their HRQoL. Facial nerve outcome has little influence on quality of life in vestibular schwannoma patients.

  11. Osteoradionecrosis of the skull base after radiotherapy for nasopharynx cancer

    International Nuclear Information System (INIS)

    Mnejja, W.; Siala, W.; Daoud, J.; Boudawara, T.; Ghorbel, A.; Frikha, M.

    2009-01-01

    The purpose of this work was to study the incidence and the risk factors of osteoradionecrosis occurrence at the skull base after radiotherapy for nasopharynx cancer. It is often asymptomatic. Its incidence is not low. The systematic realisation of radiological examinations during the surveillance allows to detect the asymptomatic forms. No factor of risk was identified in the study. (N.C.)

  12. The radiological and histopathological differential diagnosis of chordoid neoplasms in skull base

    Directory of Open Access Journals (Sweden)

    PAN Bin-cai

    2013-07-01

    Full Text Available Background Chordoid neoplasms refer to tumors appearing to have histological features of embryonic notochord, which is characterized by cords and lobules of neoplastic cells arranged within myxoid matrix. Because of radiological and histological similarities with myxoid matrix and overlapping immunohistochemical profile, chordoma, chordoid meningioma, chordoid glioma, and rare extraskeletal myxoid chondrosarcoma enter in the radiological and histological differential diagnosis at the site of skull base. However, there is always a great challenge for histopathologists to make an accurate diagnosis when encountering a chordoid neoplasm within or near the central nervous system. The aim of this study is to investigate and summarize the radiological, histological features and immunohistochemical profiles of chordoid neoplasms in skull base, and to find a judicious panel of immunostains to unquestionably help in diagnostically challenging cases. Methods A total of 23 cases of chordoid neoplasms in skull base, including 10 chordomas, 5 chordoid meningiomas, 3 chordoid gliomas and 5 extraskeletal myxoid chondrosarcomas, were collected from the First Affiliated Hospital, Sun Yat-sen University and Guangdong Tongjiang Hospital. MRI examination was performed on the patients before surgical treatment. Microscopical examination and immunohistochemical staining study using vimentin (Vim, pan-cytokeratin (PCK, epithelial membrane antigen (EMA, S?100 protein (S-100, glial fibrillary acidic protein (GFAP, D2-40, Galectin-3, CD3, CD20, Ki-67 were performed on the samples of cases. The clinicopathological data of the patients was also analyzed retrospectively. Results Most of chordomas were localized in the clivus with heterogeneous hyperintensity on T2WI scanning. The breakage of clivus was observed in most cases. Histologically, the tumor cells of chordoma exhibited bland nuclear features and some contained abundant vacuolated cytoplasm (the so

  13. Juvenile psammomatoid ossifying fibroma in paranasal sinus and skull base.

    Science.gov (United States)

    Wang, Mingjie; Zhou, Bing; Cui, Shunjiu; Li, Yunchuan

    2017-07-01

    The endoscopic transnasal approach with IGS is a safe and effective technique, allowing completely resection of JPOF, with minimal morbidity and recurrence. JPOF is a benign but locally aggressive fibro-osseous lesion. This study presents a series of JPOF cases, involving anterior skull base and orbit, treated by endoscopic transnasal approach with image guidance system (IGS) to resect the mass completely. This study retrospectively reviewed the clinical presentations, surgical procedures, and complications of 11 patients with JPOF who were treated by endoscopic approach from May 2009 to April 2014. All patients were followed by endoscopic and CT scan evaluations during follow-up. All of the 11 cases were boys, with a mean age of 11.8 years (range = 6-17 years). The size of mass in the paranasal sinus ranged from 2.5-4.6 cm in greatest dimension (mean = 3.7 cm), and the medial orbital wall and cranial base were involved in all patients. All 11 patients received successful operation and were relieved from symptoms without mortality and major complications. During follow-up (range from 17-67 months; mean follow-up = 25.8 months), only one patient was recurrent in local position. The skull base partial resected during surgery was found to rebuild after 1 year.

  14. Earliest directly-dated human skull-cups.

    Directory of Open Access Journals (Sweden)

    Silvia M Bello

    Full Text Available BACKGROUND: The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP and skull-cup preparation is an element of this tradition. PRINCIPAL FINDINGS: Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow, accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also 'retouched', possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. CONCLUSIONS: Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles.

  15. Neurophysiological Identification of Cranial Nerves During Endoscopic Endonasal Surgery of Skull Base Tumors: Pilot Study Technical Report.

    Science.gov (United States)

    Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich

    2017-02-01

    Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Infant skull fracture (image)

    Science.gov (United States)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  17. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    Science.gov (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  18. Clinical role of the skull base with increased uptake of 99mTc-MDP on SPECT/CT fused imaging with patients of nasopharyngeal

    International Nuclear Information System (INIS)

    Yao Hongxia; Zhang Jinshan; Liu Sheng

    2009-01-01

    Objective: To investigate the clinical role of the fused skull single photon emission computed tomographic and computed tomographic images (SPECT/CT) when there was 'hot' in the skull base of patients with NPC. Methods: 99 mTc-MDP SPECT/ CT and MRI were performed in a week in 44 patients (30 with first-visited cases and 14 with return-visited, 38 cases of poorly differentiated squamous cell carcinoma and 6 cases of undifferentiated cancer, 14 with headache). Region of interests (ROI) were drawn on the area of the suspected skull base and the upper cervical vertebral body on the same slice. A lesion-to-spine (L/S) ratio was interpreted on SPECT/CT as normal, benign, or malignant. L/S>1 indicated malignant skull base bone involvement (SBBI). Ten patients were studied as controls. Results: (1)Of the 44 study patients, 24 had SBBI (55%) based on SPECT/CT detecting skull base bone lesions with L/S =1.83±0.69. Twenty patients had normal or benign bone lesions on SPECT/CT with L/S =0.68±0.13. There was statistic significance compared SBBI with no SBBI subgroups (P 0.05). The numbers of SBBI had no relationship with positive rate of SPECT/CT (P >0.05). (3)There was no obviously increased uptake in the skull base in the 10 control patients (L/S<1). Conclusion: The skull SPECT/CT was recommended as one of clinical diagnosis tool for SBBI from NPC. Patients with headache should be highly suspected whether tumor cells involved the skull base bone or not. Further accumulation of other clinical factors would clarify the values of SPECT/CT. (authors)

  19. The Brachyury Gly177Asp SNP Is not Associated with a Risk of Skull Base Chordoma in the Chinese Population

    Directory of Open Access Journals (Sweden)

    Zhen Wu

    2013-10-01

    Full Text Available A recent chordoma cancer genotyping study reveals that the rs2305089, a single nucleotide polymorphism (SNP located in brachyury gene and a key gene in the development of notochord, is significantly associated with chordoma risk. The brachyury gene is believed to be one of the key genes involved in the pathogenesis of chordoma, a rare primary bone tumor originating along the spinal column or at the base of the skull. The association between the brachyury Gly177Asp single nucleotide polymorphism (SNP and the risk of skull base chordoma in Chinese populations is currently unknown. We investigated the genotype distribution of this SNP in 65 skull-base chordoma cases and 120 healthy subjects. Comparisons of the genotype distributions and allele frequencies did not reveal any significant difference between the groups. Our data suggest that the brachyury Gly177Asp SNP is not involved in the risks of skull-base chordoma, at least in the Chinese population.

  20. The results of gamma knife radiosurgery for malignant skull base tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takayuki; Kobayashi, Tatsuya; Kida, Yoshihisa; Oyama, Hirofumi; Niwa, Masahiro [Komaki City Hospital, Aichi (Japan)

    1996-03-01

    The results of gamma knife radiosurgery for malignant skull base tumors were analyzed using repeated magnetic resonance imagings and neurological examinations. Nineteen malignant skull base tumors were treated and followed up for 22.3 months (5-40 months) using MR imagings. The mean age was 54.4 years old (ranging from 16-85). Ten were male and 9 were female. Prior to the radiosurgery, removal of the tumors in 17 cases, conventional radiation therapy in 7, and chemotherapy in 4 etc. were performed. The pathological diagnoses were chordoma in 6 patients, metastatic tumors in 5, epipharyngeal carcinoma in 2, adenoid cystic carcinoma in 2, and others in 4. The locations of tumors were clivus in 8, parasellar region in 5, epipharynx in 2, paranasal sinus in 2, C-P angle in 1, and intraorbital region in 1 (14 intracranial and 5 extracranial). The mean diameter of the tumor was 33.5 mm. The mean maximum dose was 26.8 Gy and the mean marginal dose was 12.9 Gy during treatment. Repeated MR imagings revealed decrease of tumor size in 12 cases, showing no change in 1, and increase of tumor size in 5 (unknown in 1). Follow-up neurological examinations showed improvement in 3 patients, no change in 9, and deterioration in 7. There were 11 deaths during a mean follow-up period of 17.8 months (5-32 months) and another 8 cases are alive for a mean follow-up of 30.5 months (20-40 months) after the radiosurgery. Although the tumor size was large at the time of treatment, the results of gamma knife radiosurgery were promising. Considering the quality of life of patients with malignant skull base tumors, it is emphasized that gamma knife treatment is the method of choice compared with radical removal of the tumors. (author).

  1. Analysis of skull asymmetry in different historical periods using radiological examinations

    International Nuclear Information System (INIS)

    Gawlikowska, A.; Czerwinski, F.; Dzieciolowska, E.; Miklaszewska, D.; Adamiec, E.; Szczurowski, J.

    2007-01-01

    Asymmetry is a very common phenomenon in nature. Occurrence of asymmetry and knowledge of correct structure, especially a range of variability which is not a pathology but only an individual variation, are the basis for interpretation of results of radiological examination of the skulls both in research work and in diagnostic examinations, which are widely performed in modern medicine. There are many methods of estimation of the asymmetry. The aim of this study was to estimate the symmetry of skulls from selected historic populations. The studied material consisted of two skull populations - contemporary consisting of 82 skulls and medieval - 77 skulls from Grodek. X-rays in P-A and skull-base projections were performed. The images were scanned and calibrated by means of MicroStation 95 Academic Edition software. Using tools for measurement of vector elements, distances between selected bilateral points of the skull were taken. All data were analyzed statistically. Asymmetry was observed in the skulls of both populations. Some diameters were higher on the left side, some on the right side. High levels of asymmetry index in the superior facial part and in the posterior part of the skull base were observed. The levels of the asymmetry indexes in both groups were similar. Radiological pictures in two projections should be taken for correct analysis of the skull asymmetry. The examination of the asymmetry of the landmarks should be based on the analysis of diameters from two different points of reference. The human skull does not demonstrate a clear domination of one side. The largest variations were observed in the shape and localization of the foramina of the skull . It is associated with the differences of the position of the neurovascular elements which pass through these foramina. (author)

  2. Frequency of extradural haematoma in patients with linear skull fracture

    International Nuclear Information System (INIS)

    Aurangzeb, A.; Afridi, E.A.K.; Khan, S.A.

    2015-01-01

    Apparently normal looking patients after traumatic brain injury can have serious neurological deterioration, and one of the common causes of such deterioration is extradural haematomas. This study was conducted to determine the frequency of extradural hematoma and common types of trauma leading to it among patients presenting with skull fracture due to head injury. Methods: This cross-sectional study was conducted in the department of Neurosurgery Ayub Medical College, Abbottabad from June 2011 to June 2012. All patients who were suspected to have Skull fracture on X-ray skull, during the study period, were included in study after informed consent and later on CT-Scan brain was done to see for extradural hematoma. Findings were recorded on a predesigned proforma including demographic data, radiological findings and the type of head trauma. Results: Out of 114 patients 85 (74.5%) were males and 29 (225.4%) were females. Age ranged from 2 to 70 years (18.23 ± 16.5 years). Among these patients the most important cause of head injury was fall from height in 65(57%), followed by road traffic accidents in 39 (34.2%), and assault in 10 (8.8%) patients. The most common site of fracture was parietal in 49 (43%) of patients, followed by frontal bone in 28 (24.6%) of patients, occipital bone in 24 (21.1%) of patients, and temporal bone in 23 (20.2%) of patients. Frequency of extradural hematoma among linear skull fracture was in 34 (29.8%) patients. Extradural hematoma was most common with parietotemporal linear skull fractures (73.5%). Conclusion: Extradural haematoma occurs commonly with linear skull fractures, so patients with linear skull fracture should be properly evaluated with CT brain. (author)

  3. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  4. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen; Haberer, Thomas; Jaekel, Oliver

    2013-01-01

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  5. Case of pycnodysostosis. Observation of skull by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Anegawa, Shigetaka; Bekki, Yoshiaki; Furukawa, Yasuhiro; Yokota, Seishi; Torigoe, Ryuichiro

    1987-07-01

    A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows - proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtural loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorythum revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinussus and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethomoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfish. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification. Furthermore, sutures or synchondroses in the skull base were well-developed than those of the convex. So, it is considered that pycnodysostosis must be the neighboring entity of diseases such as achondroplastic dwarfism or cleidocranial dysplasia. (J.P.N.).

  6. The ecological origins of snakes as revealed by skull evolution.

    Science.gov (United States)

    Da Silva, Filipe O; Fabre, Anne-Claire; Savriama, Yoland; Ollonen, Joni; Mahlow, Kristin; Herrel, Anthony; Müller, Johannes; Di-Poï, Nicolas

    2018-01-25

    The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.

  7. Stereotactic radiotherapy using Novalis for skull base metastases developing with cranial nerve symptoms.

    Science.gov (United States)

    Mori, Yoshimasa; Hashizume, Chisa; Kobayashi, Tatsuya; Shibamoto, Yuta; Kosaki, Katsura; Nagai, Aiko

    2010-06-01

    Skull base metastases are challenging situations because they often involve critical structures such as cranial nerves. We evaluated the role of stereotactic radiotherapy (SRT) which can give high doses to the tumors sparing normal structures. We treated 11 cases of skull base metastases from other visceral carcinomas. They had neurological symptoms due to cranial nerve involvement including optic nerve (3 patients), oculomotor (3), trigeminal (6), abducens (1), facial (4), acoustic (1), and lower cranial nerves (1). The interval between the onset of cranial nerve symptoms and Novalis SRT was 1 week to 7 months. Eleven tumors of 8-112 ml in volume were treated by Novalis SRT with 30-50 Gy in 10-14 fractions. The tumors were covered by 90-95% isodose. Imaging and clinical follow-up has been obtained in all 11 patients for 5-36 months after SRT. Seven patients among 11 died from primary carcinoma or other visceral metastases 9-36 months after Novalis SRT. All 11 metastatic tumors were locally controlled until the end of the follow-up time or patient death, though retreatment for re-growth was done in 1 patient. In 10 of 11 patients, cranial nerve deficits were improved completely or partially. In some patients, the cranial nerve symptoms were relieved even during the period of fractionated SRT. Novalis SRT is thought to be safe and effective treatment for skull base metastases with involvement of cranial nerves and it may improve cranial nerve symptoms quickly.

  8. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  9. Arrested pneumatization of the sphenoid sinus mimicking intraosseous lesions of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Elnaz; Tadinada, Aditya [Dept. of Oral and Maxillofacial Radiology, University of Connecticut School of Dental Medicine, Farmington (United States)

    2015-03-15

    Arrested pneumatization of the sphenoid sinus is a developmental variant that is not always well recognized and is often confused with other pathologies associated with the skull base. This report describes the case of a patient referred for cone-beam computed tomography (CBCT) imaging for dental implant therapy. CBCT demonstrated a well-defined incidental lesion in the left sphenoid sinus with soft tissue-like density and sclerotic borders with internal curvilinear opacifications. The differential diagnoses included intraosseous lipoma, arrested pneumatization of the sphenoid sinus, chondrosarcoma, chondroid chordoma, and ossifying fibroma. The radiographic diagnosis of arrested pneumatization was based on the location of the lesion, its well-defined nature, the presence of internal opacifications, and lack of expansion. Gray-scale CBCT imaging of the area demonstrated values similar to fatty tissue. This case highlighted the fact that benign developmental variants associated with the skull base share similar radiographic features with more serious pathological entities.

  10. Endoscopic Endonasal Anterior Skull Base Surgery: A Systematic Review of Complications During the Past 65 Years.

    Science.gov (United States)

    Borg, Anouk; Kirkman, Matthew A; Choi, David

    2016-11-01

    Endoscopic skull base surgery is becoming more popular as an approach to the anterior skull base for tumors and cerebrospinal fluid (CSF) fistulae. It offers the advantages of better cosmesis and improved quality of life after surgery. We reviewed the complication rates reported in the literature. A literature search was performed in the electronic database Ovid MEDLINE (1950 to August 25, 2015) with the search item "([Anterior] AND Skull base surgery) AND endoscopic." We identified 82 relevant studies that included 7460 cases. An average overall complication rate of 17.1% (range 0%-68.0%) and a mortality rate of 0.4% (0%-10.0%) were demonstrated in a total of 82 studies that included 7460 cases. The average CSF leak rate for all studies was 8.9% (0%-40.0%) with meningiomas and clival lesions having the greatest CSF leak rates. The most frequent benign pathology encountered was pituitary adenomas (n = 3720, 49.8% of all cases) and the most frequent malignant tumor was esthesioneuroblastoma (n = 120, 1.6% of all cases). Studies that included only CSF fistula repairs had a lower average total complication rate (12.9%) but a greater rate of meningitis compared with studies that reported mixed pathology (2.4% vs. 1.3%). A trend towards a lower total complication rate with increasing study size was observed. The endoscopic approach is an increasingly accepted technique for anterior skull base tumor surgery and is associated with acceptable complication rates. Increasing experience with this technique can decrease rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Endoscopic Resection of Skull Base Teratoma in Klippel-Feil Syndrome through Use of Combined Ultrasonic and Bipolar Diathermy Platforms

    Directory of Open Access Journals (Sweden)

    Justin A. Edward

    2017-01-01

    Full Text Available Klippel-Feil syndrome (KFS is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline palatal and cerebral defects, most notably pituitary and vertebrobasilar arteriolar duplications. A multidisciplinary workup and a complete endoscopic, transnasal surgical approach between otolaryngology and neurosurgery were undertaken. Out of concern for vascular control of the fibrofatty dense tumor stalk at the skull base and need for complete teratoma resection, we successfully employed a tissue resection tool with combined ultrasonic and bipolar diathermy to the tumor pedicle at the sphenoid/clivus junction. No CSF leak or major hemorrhage was noted using this endonasal approach, and no concerning postoperative sequelae were encountered. The patient continues to do well now 3 years after tumor extirpation, with resolution of all preoperative symptoms and absence of teratoma recurrence. KFS, teratoma biology, endocrine gland duplication, and the complex considerations required for successfully addressing this type of advanced skull base pathology are all reviewed herein.

  12. Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Wiencke, Anne Katrine; Munck af Rosenschold, Per

    2014-01-01

    To determine visual outcome including the occurrence of radiation induced optic neuropathy (RION) as well as tumor control after fractionated stereotactic radiation therapy (FSRT) of benign anterior skull base meningiomas or pituitary adenomas. Thirty-nine patients treated with FSRT for anterior...

  13. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  14. Skull anatomy (image)

    Science.gov (United States)

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  15. Radio-anatomical analysis of the pericranial flap "money box approach" for ventral skull base reconstruction.

    Science.gov (United States)

    Santamaría, Alfonso; Langdon, Cristóbal; López-Chacon, Mauricio; Cordero, Arturo; Enseñat, Joaquim; Carrau, Ricardo; Bernal-Sprekelsen, Manuel; Alobid, Isam

    2017-11-01

    To evaluate the versatility of the pericranial flap (PCF) to reconstruct the ventral skull base, using the frontal sinus as a gate for its passage into the sinonasal corridor "money box approach." Anatomic-radiological study and case series. Various approaches and their respective defects (cribriform, transtuberculum, clival, and craniovertebral junction) were completed in 10 injected specimens. The PCF was introduced into the nose through the uppermost portion of the frontal sinus (money box approach). Computed tomography (CT) scans (n = 50) were used to measure the dimensions of the PCF and the skull base defects. The vertical projection of the external ear canal was used as the reference point to standardize the incisions for the PCF. The surface area and maximum length of the PCF were 121.5 ± 19.4 cm 2 and 18.3 ± 1.3 cm, respectively. Using CT scans, we determined that to reconstruct defects secondary to transcribriform, transtuberculum, clival, and craniovertebral approaches, the PCF distal incision must be placed respectively at -3.7 ± 2.0 cm (angle -17.4 ± 8.5°), -0.2 ± 2.0 cm (angle -1.0 ± 9.3°), +5.5 ± 2.3 cm (angle +24.4 ± 9.7°), +8.4 ± 2.4 cm (angle +36.6 ± 11.5°), as related to the reference point. Skull base defects in our clinical cohort (n = 6) were completely reconstructed uneventfully with the PCF. The PCF renders enough surface area to reconstruct all possible defects in the ventral and median skull base. Using the uppermost frontal sinus as a gateway into the nose (money box approach) is feasible and simple. NA. Laryngoscope, 127:2482-2489, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Central skull base osteomyelitis as a complication of necrotizing otitis externa: Imaging findings, complications, and challenges of diagnosis

    International Nuclear Information System (INIS)

    Adams, A.; Offiah, C.

    2012-01-01

    Central skull base osteomyelitis is a rare, life-threatening complication of necrotizing or “malignant” otitis externa (NOE), which results in destruction of the skull base. The imaging appearances can be misinterpreted as malignancy but consideration of this diagnosis, both radiologically and clinically, is imperative to avoid the need for biopsy. The aim of this review is to highlight the pertinent imaging findings on computed tomography and magnetic resonance imaging as well as the potential complications of this condition.

  17. Laterization of epileptiform discharges in patients with epilepsy and precocious destructive brain insults

    Directory of Open Access Journals (Sweden)

    Teixeira Ricardo A.

    2004-01-01

    Full Text Available Unilateral destructive brain lesions of early development can result in compensatory thickening of the ipsilateral cranial vault. The aim of this study was to determine the frequency of these bone changes among patients with epilepsy and precocious destructive lesions, and whether a relationship exists between these changes and epileptiform discharges lateralization. Fifty-one patients had their ictal / interictal scalp EEG and skull thickness symmetry on MRI analyzed. Patients were divided into three main groups according to the topographic distribution of the lesion on the MRI: hemispheric (H (n=9; main arterial territory (AT (n=25; arterial borderzone (Bdz (n=17. The EEG background activity was abnormal in 26 patients and were more frequent among patients of group H (p= 0.044. Thickening of the skull was more frequent among patients of group H (p= 0.004. Five patients (9.8% showed discordant lateralization between epileptiform discharges and structural lesion (four of them with an abnormal background, and only two of them with skull changes. In one of these patients, ictal SPECT provided strong evidence for scalp EEG false lateralization. The findings suggest that compensatory skull thickening in patients with precocious destructive brain insults are more frequent among patients with unilateral and large lesions. However, EEG lateralization discordance among these patients seems to be more related to EEG background abnormalities and extent of cerebral damage than to skull changes.

  18. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    Science.gov (United States)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  19. Traumatic aneurysms of the internal carotid artery at the base of the skull. Two cases treated surgically.

    Science.gov (United States)

    Magnan, P E; Branchereau, A; Cannoni, M

    1992-01-01

    Internal carotid aneurysms at the base of the skull after blunt trauma are infrequent but their management is difficult, leading many surgeons to only attempt ligation. We report 2 cases presenting with high traumatic aneurysms, following motorcycle accidents. The 2 aneurysms underwent repair by a venous graft. The petrous portion of the carotid artery was approached and controlled by an ENT surgeon. This "infratemporal" approach was used exposing the facial nerve, combined with temporary anterior sub-luxation of the temporomaxillary joint to expose the lower part of the carotid canal which was opened up with a drill in order to control the carotid artery in the petrous canal. Both patients developed facial nerve palsies which improved within 3 months. Postoperative angiography showed patent vein grafts and the patients were doing well, without any symptoms 18 and 24 months later.

  20. First Application of 7T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors

    Science.gov (United States)

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2018-01-01

    Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922

  1. First Application of 7-T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors.

    Science.gov (United States)

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2017-07-01

    Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Virtual surgical planning in endoscopic skull base surgery.

    Science.gov (United States)

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (PNASA-TLX differences (P.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  4. Leonardo da Vinci's "A skull sectioned": skull and dental formula revisited.

    Science.gov (United States)

    Gerrits, Peter O; Veening, Jan G

    2013-05-01

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned paranasal sinuses and ductus nasolacrimalis. A dissected lateral wall of the maxilla is also present. Furthermore, at the level of the foramen mentale, the drawing displays compact and spongious bony components, together with a cross-section through the foramen mentale and its connection with the canalis mandibulae. Leonardo was the first to describe a correct dental formula (6424) and made efforts to place this formula above the related dental elements. However, taking into account, the morphological features of the individual elements of the maxilla, it can be suggested that Leonardo sketched a "peculiar dental element" on the position of the right maxillary premolar in the dental sketch. The fact that the author did not make any comment on that special element is remarkable. Leonardo could have had sufficient knowledge of the precise morphology of maxillary and mandibular premolars, since the author depicted these elements in the dissected skull. The fact that the author also had access to premolars in situ corroborates our suggestion that "something went wrong" in this part of the drawing. The present study shows that historical anatomical drawings are very useful for interactive learning of detailed anatomy for students in medicine and dentistry. Copyright © 2012 Wiley Periodicals, Inc.

  5. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Energy Technology Data Exchange (ETDEWEB)

    Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Tenn, Steven; Agazaryan, Nzhde; Selch, Michael [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); De Salles, Antonio A.F. [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  6. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    International Nuclear Information System (INIS)

    Hauptman, Jason S.; Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra; Tenn, Steven; Agazaryan, Nzhde; Selch, Michael; De Salles, Antonio A.F.

    2012-01-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  7. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning

    Science.gov (United States)

    Pierce, S E; Angielczyk, K D; Rayfield, E J

    2009-01-01

    Variation in modern crocodilian and extinct thalattosuchian crocodylomorph skull morphology is only weakly correlated with phylogeny, implying that factors other than evolutionary proximity play important roles in determining crocodile skull shape. To further explore factors potentially influencing morphological differentiation within the Thalattosuchia, we examine teleosaurid and metriorhynchid skull shape variation within a mechanical and dietary context using a combination of finite element modelling and multivariate statistics. Patterns of stress distribution through the skull were found to be very similar in teleosaurid and metriorhynchid species, with stress peaking at the posterior constriction of the snout and around the enlarged supratemporal fenestrae. However, the magnitudes of stresses differ, with metriorhynchids having generally stronger skulls. As with modern crocodilians, a strong linear relationship between skull length and skull strength exists, with short-snouted morphotypes experiencing less stress through the skull than long-snouted morphotypes under equivalent loads. Selection on snout shape related to dietary preference was found to work in orthogonal directions in the two families: diet is associated with snout length in teleosaurids and with snout width in metriorhynchids, suggesting that teleosaurid skulls were adapted for speed of attack and metriorhynchid skulls for force production. Evidence also indicates that morphological and functional differentiation of the skull occurred as a result of dietary preference, allowing closely related sympatric species to exploit a limited environment. Comparisons of the mechanical performance of the thalattosuchian skull with extant crocodilians show that teleosaurids and long-snouted metriorhynchids exhibit stress magnitudes similar to or greater than those of long-snouted modern forms, whereas short-snouted metriorhynchids display stress magnitudes converging on those found in short-snouted modern

  8. Usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base: comparison with FDG-PET

    Directory of Open Access Journals (Sweden)

    Ito Shin

    2012-02-01

    Full Text Available Abstract Background Choline is a new PET tracer that is useful for the detection of malignant tumor. Choline is a precursor of the biosynthesis of phosphatidylcholine, a major phospholipid in the cell membrane of eukaryotic cells. Malignant tumors have an elevated level of phosphatidylcholine in cell membrane. Thus, choline is a marker of tumor malignancy. Method The patient was a 51-year-old man with repeated recurrent hemangiopericytoma in the skull base. We performed Choline-PET in this patient after various treatments and compared findings with those of FDG-PET. Results Choline accumulated in this tumor, but FDG did not accumulate. We diagnosed this tumor as residual hemangiopericytoma and performed the resection of the residual tumor. FDG-PET is not appropriate for skull base tumor detection because uptake in the brain is very strong. Conclusion We emphasize the usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base after various treatments, compared with FDG-PET.

  9. Sonographic Analysis of Changes in Skull Shape After Cranial Molding Helmet Therapy in Infants With Deformational Plagiocephaly.

    Science.gov (United States)

    Kwon, Dong Rak

    2016-04-01

    -The purpose of this study was to investigate the changes in skull shape on sonography after cranial molding helmet therapy in infants with deformational plagiocephaly. -Twenty-six infants who were treated with cranial molding helmet therapy were recruited. Caliper and sonographic measurements were performed. The lateral length of the affected and unaffected sides of the skull and cranial vault asymmetry index were measured with calipers. The occipital angle, defined as the angle between lines projected along the lambdoid sutures of the skull, was calculated by sonography. The occipital angle difference and occipital angle ratio were also measured. All caliper and sonographic measurements were performed in each infant twice before and twice after treatment. -The study group included 12 male and 14 female infants with a mean age ± SD of 6.2 ± 3.5 months. The mean treatment duration was 6.0 ± 2.5 months. The difference in lateral length before and after helmet therapy was significantly greater on the affected skull than the unaffected skull (16.7 ± 12.7 versus 9.0 ± 13.4 mm; P skull than the unaffected skull (-5.7° ± 7.3° versus 4.2° ± 7.9°; P < .01). The cranial vault asymmetry index and occipital angle ratio were significantly reduced after helmet therapy (cranial vault asymmetry index, 9.3% ± 2.3% versus 3.5% ± 3.0%; occipital angle ratio, 1.07 ± 0.05 versus 1.01 ± 0.01; P < .05). -These results suggest that occipital angle measurements using sonography, combined with cephalometry, could provide a better understanding of the therapeutic effects of cranial molding helmet therapy in infants with deformational plagiocephaly. © 2016 by the American Institute of Ultrasound in Medicine.

  10. Skull shapes of the Lissodelphininae: radiation, adaptation and asymmetry.

    Science.gov (United States)

    Galatius, Anders; Goodall, R Natalie P

    2016-06-01

    Within Delphinidae, the sub-family Lissodelphininae consists of 8 Southern Ocean species and 2 North Pacific species. Lissodelphininae is a result of recent phylogenetic revisions based on molecular methods. Thus, morphological radiation within the taxon has not been investigated previously. The sub-family consists of ecologically diverse groups such as (1) the Cephalorhynchus genus of 4 small species inhabiting coastal and shelf waters, (2) the robust species in the Lagenorhynchus genus with the coastal La. australis, the offshore La. cruciger, the pelagic species La. obscurus and La. obliquidens, and (3) the morphologically aberrant genus Lissodelphis. Here, the shapes of 164 skulls from adults of all 10 species were compared using 3-dimensional geometric morphometrics. The Lissodelphininae skulls were supplemented by samples of Lagenorhynchus albirostris and Delphinus delphis to obtain a context for the variation found within the subfamily. Principal components analysis was used to map the most important components of shape variation on phylogeny. The first component of shape variation described an elongation of the rostrum, lateral and dorsoventral compression of the neurocranium and smaller temporal fossa. The two Lissodelphis species were on the high extreme of this spectrum, while Lagenorhynchus australis, La. cruciger and Cephalorhynchus heavisidii were at the low extreme. Along the second component, La. cruciger was isolated from the other species by its expanded neurocranium and concave facial profile. Shape variation supports the gross phylogenetic relationships proposed by recent molecular studies. However, despite the great diversity of ecology and external morphology within the subfamily, shape variation of the feeding apparatus was modest, indicating a similar mode of feeding across the subfamily. All 10 species were similar in their pattern of skull asymmetry, but interestingly, two species using narrowband high frequency clicks (La. cruciger and C

  11. Diseases of the skull

    International Nuclear Information System (INIS)

    Koval', G.Yu.

    1984-01-01

    Different forms of skull diseases viz. inflammatory diseases, skull tumors, primary and secondary bone tumors, are considered. Roentgenograms in some above-mentioned diseases are presented and analysed

  12. Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

    Directory of Open Access Journals (Sweden)

    Neil Curtis

    Full Text Available The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles, a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance.

  13. Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    Science.gov (United States)

    Curtis, Neil; Jones, Marc E. H.; Shi, Junfen; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. PMID:22216358

  14. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  15. 21 CFR 882.4750 - Skull punch.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates or...

  16. The Maturation of Skulls in Postnatal Risso’s Dolphins (Grampus griseus from Taiwanese Waters

    Directory of Open Access Journals (Sweden)

    Ing Chen

    2011-09-01

    Full Text Available The degree of fusion between bones is a useful indicator of skeletal and sexual maturity for cetacean specimens preserved in museum collections. The aim of this study was twofold: first, to examine the degree of fusion between bony elements in skulls of Risso’s dolphins (Grampus griseus Cuvier, 1812 from Taiwanese waters; and second, to analyze the relationship between skull maturity, body length, sexual maturity, and estimated age, with the aim of determining a useful skull predictor for maturity in Risso’s dolphins. The stage of fusion of 20 superficial sutures or joints between selected skull bones was examined on 33 clean, dry skulls, which were salvaged from stranded or bycaught dead Risso’s dolphins in Taiwanese waters during the years of 1994 – 2001. The bones of the caudoventral braincase fused early in development (basioccipital-exoccipital synchondrosis, supraoccipital- exoccipital suture, whereas fusion along the nuchal crest (fronto-interparietal and fronto-parietal sutures occurred later. Some sutures remained open in some adult specimens (lacrimal/maxilla-frontal, squamosal-parietal, squamosal-exoccipital sutures, and the intermandibular symphysis. Bilateral asymmetry of the fusion process was not detected. Advanced fusion occurred in the fronto-interparietal suture along the medial aspect of the nuchal crest, and in the rostral nasal-frontal and distal maxilla-incisive sutures at total body length > 250 cm, and may be useful skull indicators of sexual maturity.

  17. The skull in renal osteodystrophy

    International Nuclear Information System (INIS)

    Orzincolo, C.; Tamarozzi, R.; Bedani, P.L.

    1987-01-01

    Skull X-ray of 60 patients with chronic renal failure were examined. Alterations included diminished or increased bone density, radiolucent areas, pepper pot skull and the disappearance of vascular grooves and sutures. It is suggested that the radiological aspect of the skull is of very little diagnostic use in the assessment of uremic osteopathy since specific alterations are rare and tardive and show no correlation with clinical and laboratory findings. Skull X-ray can be usefull in assessing the effects of treatment (vitamin D derivaties, parathyroidectomy) and for the identification of focal lesions (brown tumors)

  18. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    Science.gov (United States)

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  19. Leg length, skull circumference, and the incidence of dementia in Latin America and China: A 10/66 population-based cohort study.

    Science.gov (United States)

    Prince, Martin J; Acosta, Daisy; Guerra, Mariella; Huang, Yueqin; Jimenez-Velazquez, Ivonne Z; Llibre Rodriguez, Juan J; Salas, Aquiles; Sosa, Ana Luisa; Dewey, Michael E; Guerchet, Maelenn M; Liu, Zhaorui; Llibre Guerra, Jorge J; Prina, A Matthew

    2018-01-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. Cross-sectional studies indicate inverse associations with dementia risk, but there have been few prospective studies. Population-based cohort studies in urban sites in Cuba, Dominican Republic Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, and anthropometric measures taken, with ascertainment of incident dementia, and mortality, three to five years later. Of the original at risk cohort of 13,587 persons aged 65 years and over, 2,443 (18.0%) were lost to follow-up; 10,540 persons with skull circumference assessments were followed up for 40,466 person years, and 10,400 with leg length assessments were followed up for 39,954 person years. There were 1,009 cases of incident dementia, and 1,605 dementia free deaths. The fixed effect pooled meta-analysed adjusted subhazard ratio (ASHR) for leg length (highest vs. lowest quarter) was 0.80 (95% CI, 0.66-0.97) and for skull circumference was 1.02 (95% CI, 0.84-1.25), with no heterogeneity of effect between sites (I2 = 0%). Leg length measurements tended to be shorter at follow-up, particularly for those with baseline cognitive impairment and dementia. However, leg length change was not associated with dementia incidence (ASHR, per cm 1.006, 95% CI 0.992-1.020), and the effect of leg length was little altered after adjusting for baseline frailty (ASHR 0.82, 95% CI 0.67-0.99). A priori hypotheses regarding effect modification by gender or educational level were not supported. However, the effect of skull circumference was modified by gender (M vs F ASHR 0.86, 95% CI 0.75-0.98), but in the opposite direction to that hypothesized with a greater protective effect of larger skull dimensions in men. Consistent findings across settings provide quite strong support for an

  20. State-of-the-art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques

    International Nuclear Information System (INIS)

    Combs, Stephanie E; Ganswindt, Ute; Foote, Robert L; Kondziolka, Douglas; Tonn, Jörg-Christian

    2012-01-01

    For skull base meningiomas, several treatment paradigms are available: Observation with serial imaging, surgical resection, stereotactic radiosurgery, radiation therapy or some combination of both. The choice depends on several factors. In this review we evaluate different treatment options, the outcome of modern irradiation techniques as well as the clinical results available, and establish recommendations for the treatment of patients with skull-base meningiomas

  1. Base of the skull morphology and Class III malocclusion in patients with unilateral cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Mariana Maciel Tinano

    2015-02-01

    Full Text Available OBJECTIVE: The aim of the present study was to determine the morphological differences in the base of the skull of individuals with cleft lip and palate and Class III malocclusion in comparison to control groups with Class I and Class III malocclusion. METHODS: A total of 89 individuals (males and females aged between 5 and 27 years old (Class I, n = 32; Class III, n = 29; and Class III individuals with unilateral cleft lip and palate, n = 28 attending PUC-MG Dental Center and Cleft Lip/Palate Care Center of Baleia Hospital and PUC-MG (CENTRARE were selected. Linear and angular measurements of the base of the skull, maxilla and mandible were performed and assessed by a single calibrated examiner by means of cephalometric radiographs. Statistical analysis involved ANCOVA and Bonferroni correction. RESULTS: No significant differences with regard to the base of the skull were found between the control group (Class I and individuals with cleft lip and palate (P > 0.017. The cleft lip/palate group differed from the Class III group only with regard to CI.Sp.Ba (P = 0.015. Individuals with cleft lip and palate had a significantly shorter maxillary length (Co-A in comparison to the control group (P < 0.001. No significant differences were found in the mandible (Co-Gn of the control group and individuals with cleft lip and palate (P = 1.000. CONCLUSION: The present findings suggest that there are no significant differences in the base of the skull of individuals Class I or Class III and individuals with cleft lip and palate and Class III malocclusion.

  2. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery.

    Science.gov (United States)

    Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2014-04-01

    Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. [Neurophysiological identification of the cranial nerves in endoscopic endonasal surgery of skull base tumors].

    Science.gov (United States)

    Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V

    2016-01-01

    Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.

  4. Optimization of Stereotactic Radiotherapy Treatment Delivery Technique for Base-Of-Skull Meningiomas

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Candish, Charles; Vollans, Emily; Gete, Ermias; Lee, Richard; Martin, Monty; Ma, Roy; McKenzie, Michael

    2008-01-01

    This study compares static conformal field (CF), intensity modulated radiotherapy (IMRT), and dynamic arcs (DA) for the stereotactic radiotherapy of base-of-skull meningiomas. Twenty-one cases of base-of-skull meningioma (median planning target volume [PTV] = 21.3 cm 3 ) previously treated with stereotactic radiotherapy were replanned with each technique. The plans were compared for Radiation Therapy Oncology Group conformity index (CI) and homogeneity index (HI), and doses to normal structures at 6 dose values from 50.4 Gy to 5.6 Gy. The mean CI was 1.75 (CF), 1.75 (DA), and 1.66 (IMRT) (p 3 , the CI (IMRT) was always superior to CI (DA) and CI (CF). At PTV sizes below 25 cm 3 , there was no significant difference in CI between each technique. There was no significant difference in HI between plans. The total volume of normal tissue receiving 50.4, 44.8, and 5.6 Gy was significantly lower when comparing IMRT to CF and DA plans (p 3 , due to improved conformity and normal tissue sparing, in particular for the brain stem and ipsilateral temporal lobe

  5. Comparative analysis of morphogeometric parameters of forward cranial pole depending on type of a skull basis

    Directory of Open Access Journals (Sweden)

    Aleshkina О.Yu.

    2012-03-01

    Full Text Available The purpose of the work is comparison of parameters of a forward cranial pole depending on type of a skull basis. The research material contained 100 adult skulls divided into three craniotypes. The method of craniotopometry was used for measuring the parameters and further calculation of average value and their comparison among themselves. Results. The research helped to reveal that length of a forward cranial pole, length of a lateral part on the right and at the left, a corner f.c.-s-n prevail at flexibasilar craniotype. Conclusions. The width of a forward cranial pole, width of a lateral part on the right and at the left, a corner f.c.-n-g are more at platibasilar craniotype

  6. MRI-detected skull-base invasion. Prognostic value and therapeutic implication in intensity-modulated radiotherapy treatment for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yi-Kan; Jiang, Ning; Yue, Dan; Tang, Ling-Long; Zhang, Fan; Lin, Li; Liu, Xu; Chen, Lei; Ma, Jun [Sun Yat-sen University Cancer Center, Department of Radiation Oncology, Guangzhou (China); Liu, Li-Zhi [Sun Yat-sen University Cancer Center, Department of Radiology, Guangzhou (China)

    2014-10-15

    With advances in imaging and radiotherapy, the prognostic value of skull-base invasion in nasopharyngeal carcinoma (NPC) needs to be reassessed. We aimed to define a classification system and evaluate the prognostic value of the classification of magnetic resonance imaging (MRI)-detected skull-base invasion in NPC treated with intensity-modulated radiotherapy (IMRT). We retrospectively reviewed 749 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated NPC and treated with IMRT. MRI-detected skull-base invasion was not found to be an independent prognostic factor for overall survival (OS), distant metastasis-free survival (DMFS), local relapse-free survival (LRFS), or disease-free survival (DFS; p > 0.05 for all). Skull-base invasion was classified according to the incidence of each site (type I sites inside pharyngobasilar fascia and clivus vs. type II sites outside pharyngobasilar fascia). The 5-year OS, DMFS, LRFS, and DFS rates in the classification of skull-base invasion in NPC were 83 vs. 67 %, 85 vs.75 %, 95 vs. 88 %, and 76 vs. 62 %, respectively (p < 0.05 for all). Multivariate analysis indicated the classification of skull-base invasion was an independent prognostic factor. MRI-detected skull-base invasion is not an independent prognostic factor in patients with NPC treated with IMRT. However, classification according to the site of invasion has prognostic value. Therefore, patients with various subclassifications of stage T3 disease may receive treatment with different intensities; however, further studies are warranted to prove this. (orig.) [German] Aufgrund der Fortschritte der bildgebenden Verfahren und der Strahlentherapie muss der prognostische Wert der Invasion des nasopharyngealen Karzinoms (NPC) in die Schaedelbasis erneut bewertet werden. Unser Ziel ist die Definition eines Klassifikationssystems und die Untersuchung des prognostischen Werts der Klassifikation der MRT-ermittelten Invasion des mit

  7. Cranial nerve palsies in metastatic prostate cancer--results of base of skull radiotherapy

    International Nuclear Information System (INIS)

    O'Sullivan, Joe M.; Norman, Andrew R.; McNair, Helen; Dearnaley, David P.

    2004-01-01

    We studied the rate of response to palliative external beam radiation therapy (20 Gy/5 or 30 Gy/10 fractions) to the base of skull in 32 prostate cancer patients with cranial nerve dysfunction. Sixteen patients (50%; 95% CI, 34-66%) had a useful response to therapy. The median survival post-therapy was 3 months

  8. Segmentation of human skull in MRI using statistical shape information from CT data.

    Science.gov (United States)

    Wang, Defeng; Shi, Lin; Chu, Winnie C W; Cheng, Jack C Y; Heng, Pheng Ann

    2009-09-01

    To automatically segment the skull from the MRI data using a model-based three-dimensional segmentation scheme. This study exploited the statistical anatomy extracted from the CT data of a group of subjects by means of constructing an active shape model of the skull surfaces. To construct a reliable shape model, a novel approach was proposed to optimize the automatic landmarking on the coupled surfaces (i.e., the skull vault) by minimizing the description length that incorporated local thickness information. This model was then used to locate the skull shape in MRI of a different group of patients. Compared with performing landmarking separately on the coupled surfaces, the proposed landmarking method constructed models that had better generalization ability and specificity. The segmentation accuracies were measured by the Dice coefficient and the set difference, and compared with the method based on mathematical morphology operations. The proposed approach using the active shape model based on the statistical skull anatomy presented in the head CT data contributes to more reliable segmentation of the skull from MRI data.

  9. Osteomyelitis of the base of the skull

    International Nuclear Information System (INIS)

    Chandler, J.R.; Grobman, L.; Quencer, R.; Serafini, A.

    1986-01-01

    Infection in the marrow of the temporal, occipital, and sphenoid bones is an uncommon, but increasing occurrence. It is usually secondary to infections beginning in the external auditory canal and is caused almost uniformly by the gram negative Pseudomonas aeruginosa bacteria. Technetium and gallium scintigraphy help in the early detection of such infections while CT scans demonstrate dissolution of bone in well-developed cases. Headache is the predominant symptom. Dysphagia, hoarseness, and aspiration herald the inevitable march of cranial nerves. We have diagnosed and treated 17 cases of osteomyelitis of the skull base. Although the total mortality rate is 53%, it is now a curable disease. Six of our last 8 patients remain alive, although 1 is still under treatment. Treatment is medical and requires the long-term concomitant intravenous administration of an aminoglycoside and a broad spectrum semisynthetic penicillin effective against the causative organism

  10. High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis.

    Science.gov (United States)

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-09-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  11. High-resolution Whole-Genome Analysis of Skull Base Chordomas Implicates FHIT Loss in Chordoma Pathogenesis

    Directory of Open Access Journals (Sweden)

    Roberto Jose Diaz

    2012-09-01

    Full Text Available Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22% than previously reported for sacral chordoma. At a similar frequency (21%, we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.

  12. Shape similarities and differences in the skulls of scavenging raptors.

    Science.gov (United States)

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  13. Endoscopic Endonasal Approach in Skull Base Chondrosarcoma Associated with Maffucci Syndrome: Case Series and Literature Review.

    Science.gov (United States)

    Beer-Furlan, André; Balsalobre, Leonardo; Vellutini, Eduardo A S; Stamm, Aldo C

    2016-01-01

    Maffucci syndrome is a nonhereditary disorder in which patients develop multiple enchondromas and cutaneous, visceral, or soft tissue hemangiomas. The potential malignant progression of enchondroma into a secondary chondrosarcoma is a well-known fact. Nevertheless, chondrosarcoma located at the skull base in patients with Maffuci syndrome is a very rare condition, with only 18 cases reported in the literature. We report 2 other cases successfully treated through an expanded endoscopic endonasal approach and discuss the condition based on the literature review. Skull base chondrosarcoma associated with Maffucci syndrome is a rare condition. The disease cannot be cured, therefore surgical treatment should be performed in symptomatic patients aiming for maximal tumor resection with function preservation. The endoscopic endonasal approach is a safe and reliable alternative for the management of these tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Stereotactic Ablative Radiosurgery for Locally-Advanced or Recurrent Skull Base Malignancies with Prior External Beam Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Karen Mann Xu

    2015-03-01

    Full Text Available Purpose: Stereotactic ablative radiotherapy (SABR is an attractive modality to treat malignancies invading the skull base as it can deliver a highly conformal dose with minimal toxicity. However, variation exists in the prescribed dose and fractionation. The purpose of our study is to examine the local control, survival and toxicities in SABR for the treatment of malignant skull base tumors. Methods and Materials: A total of 31 patients and 40 locally-advanced or recurrent head and neck malignancies involving the skull base treated with a common SABR regimen which delivers a radiation dose of 44 Gy in 5 fractions from January 1st, 2004 to December 31st, 2013 were retrospectively reviewed. The local control rate (LC, progression-free survival rate (PFS, overall survival rate (OS and toxicities were reported.Results: The median follow-up time of all patients was 11.4 months (range: 0.6-67.2 months. The median tumor volume was 27 cm3 (range: 2.4-205 cm3. All patients received prior EBRT with a median radiation dose of 64 Gy (range: 24-75.6 Gy delivered in 12 to 42 fractions. 20 patients had surgeries prior to SABR. 19 patients received chemotherapy. Specifically, 8 patients received concurrent cetuximab (ErbituxTM with SABR. The median time-to-progression (TTP was 3.3 months (range: 0-16.9 months. For the 29 patients (93.5% who died, the median time from the end of first SABR to death was 10.3 months (range: 0.5-41.4 months. The estimated 1-year overall survival (OS rate was 35%. The estimated 2-year OS rate was 12%. Treatment was well-tolerated without grade 4 or 5 treatment-related toxicities.Conclusions: SABR has been shown to achieve low toxicities in locally-advanced or recurrent, previously irradiated head and neck malignancies invading the skull base.

  15. A small skull from Flores dated to the 20th century

    DEFF Research Database (Denmark)

    Villa, Chiara; Persson, Liselott; Alexandersen, Verner

    2012-01-01

    A human skull with mandible from the Ngada District on the island of Flores, Indonesia, is described in order to contribute to the knowledge of variation in cranial architecture, which is important in interpretations of evolutionary cerebralisation. The skull was excavated in 1924 and sent...... to the National Museum in Copenhagen. The "Copenhagen Flores" (CF) male skull is radiocarbon-dated and of modern age. The cranium is small, but larger than e.g. Liang Bua skull (LB1) in every measurement. The (CT-scan based) cranial capacity of 1258 ml is normal for modern humans, but somewhat lower than values...

  16. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas

    International Nuclear Information System (INIS)

    Pamir, M. Necmettin; Ozduman, Koray

    2006-01-01

    Chordomas and chondrosarcomas are malignant tumors that are reported to have similar clinical presentations and radiological features but different behaviors and outcomes. The aim of this retrospective study was to determine whether specific radiological features of skull-base chordomas or chondrosarcomas are correlated with histopathology, and thus allow preoperative diagnosis. The study involved 32 classic chordomas, 6 chondroid chordomas and 4 chondrosarcomas (42 tumors total). For each case, tumor size and extent, the detailed anatomy involved, and magnetic resonance imaging and computed tomography findings were analyzed. Tumor extent was assessed using a novel method that assessed presence/absence in 18 defined skull-base zones. The chondrosarcomas presented significantly earlier in life than the chordomas (means, 20.5 years versus 36 years, respectively). At time of diagnosis, the median tumor volume was 23 cm 3 (range, 1.2-78.8 cm 3 ) and the mean tumor extent was 6.7 ± 2.9 zones. There were no differences between chordomas and chondrosarcomas, or between the two chordoma subgroups, with respect to lesion volume or extent. Comparison of other imaging findings revealed no features that were diagnostic for either chordoma or chondrosarcoma. The data support previous claims that chondrosarcomas present earlier in life than chordomas, but this finding is not diagnostic. There is wide variation in the extent of skull-base chordomas and chondrosarcomas, and in the specific anatomical structures these tumors involve. None of the MRI or CT features of these tumors appear to be useful for differentiating chordomas from chondrosarcomas preoperatively. For surgical planning, specific, area-oriented definition of tumor extent might provide more useful information than tumor-type classification schemes

  17. Analysis of radiological features relative to histopathology in 42 skull-base chordomas and chondrosarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Pamir, M. Necmettin [Marmara University Faculty of Medicine, Department of Neurosurgery, Istanbul (Turkey)]. E-mail: koray.ozduman@yale.edu; Ozduman, Koray [Marmara University Faculty of Medicine, Department of Neurosurgery, Istanbul (Turkey)

    2006-06-15

    Chordomas and chondrosarcomas are malignant tumors that are reported to have similar clinical presentations and radiological features but different behaviors and outcomes. The aim of this retrospective study was to determine whether specific radiological features of skull-base chordomas or chondrosarcomas are correlated with histopathology, and thus allow preoperative diagnosis. The study involved 32 classic chordomas, 6 chondroid chordomas and 4 chondrosarcomas (42 tumors total). For each case, tumor size and extent, the detailed anatomy involved, and magnetic resonance imaging and computed tomography findings were analyzed. Tumor extent was assessed using a novel method that assessed presence/absence in 18 defined skull-base zones. The chondrosarcomas presented significantly earlier in life than the chordomas (means, 20.5 years versus 36 years, respectively). At time of diagnosis, the median tumor volume was 23 cm{sup 3} (range, 1.2-78.8 cm{sup 3}) and the mean tumor extent was 6.7 {+-} 2.9 zones. There were no differences between chordomas and chondrosarcomas, or between the two chordoma subgroups, with respect to lesion volume or extent. Comparison of other imaging findings revealed no features that were diagnostic for either chordoma or chondrosarcoma. The data support previous claims that chondrosarcomas present earlier in life than chordomas, but this finding is not diagnostic. There is wide variation in the extent of skull-base chordomas and chondrosarcomas, and in the specific anatomical structures these tumors involve. None of the MRI or CT features of these tumors appear to be useful for differentiating chordomas from chondrosarcomas preoperatively. For surgical planning, specific, area-oriented definition of tumor extent might provide more useful information than tumor-type classification schemes.

  18. Skull-base foramina of the middle cranial fossa : assessment of normal variation with high-resolution CT

    International Nuclear Information System (INIS)

    Kim, Hyae Young; Chung, Eun Chul; Suh, Jeong Soo; Choi, Hye Young; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    To recognize foraminal variants of the foraminae of the skull base in the middle cranial fossa, and to thus understand and distinguish normal and potentially abnormal structures. We analysed 163 patients without intracranial disease who had undergone CT scanning. These comprised 82 men and 81 women with a mean age of 39 years (range, 4-73 years). HRCT was performed, using a GE 9800 scanner. All CT scans were obtained 6-7 slices at the base of the skull, with 1.5mm collimation at 1.5mm intervals parallel to the infraorbital line. We analysed the foraminae by closesly correlating imaging findings and established anatomic knowledge. In 45 cases (27.6%) the foramen ovale was 5-10mm in diameter and asymmetrical. Deficiency of the medial bony wall including persistent foramen lacerum medius was seen in five cases (3.1%). Confluence of the foramen ovale and the foramen spinosum was seen in 13 cases (8%) and confluence of the foramen ovale and the foramen of Vesalius in 23 (14.1%). Posterolateral groove for the accessory meningeal artery was observed in 36 cases (22%). The foramen spinosum was asymmetrical in 42 cases (25.8%). A small or absent foramen spinosum with a larger ipsilateral foramen ovale was observed in 11 cases (6.7%). Medial bony defect was seen in 16 cases (9.8%). The foramen spinosum was absent in four cases (2.5%). In 74 cases (45.4%), the foramen of Vesalius was absent; it was present unilaterally and bilaterally in 55 (33.7%) and 34 cases (20.9%), respectively. Five cases showed duplicated foramina. Canaliculus innominatus was seen in 14 cases (8.9%) and was present bilaterally in three (1.8%). HRCT clearly delineates bony structure and is well able to display the rich spectrum of anatomic variation found in the base of the skull. The recognition of these normal variants will result in a better understanding of skull base neurovascular anatomy and diminish speculation as to their true nature during the interpretation of CT images

  19. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    Science.gov (United States)

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  20. Skull Base Meningiomas and Cranial Nerves Contrast Using Sodium Fluorescein: A New Application of an Old Tool.

    Science.gov (United States)

    da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga

    2014-08-01

    Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast.

  1. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  2. 21 CFR 882.4030 - Skull plate anvil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...

  3. Magnetoencephalography signals are influenced by skull defects.

    Science.gov (United States)

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. [The transperygoid approach to the removal of a recurrent juvenile angiofibroma at the base of the skull without preoperative embolization].

    Science.gov (United States)

    Grachev, N S; Vorozhtsov, I N

    The authors report a clinical case of successful elimination of a recurrent juvenile angiofibroma at the base of the skull (JAFBS) with the application of the optical navigation system and a cold plasma scalpel in the absence of preoperative embolization. It has been demonstrated using the proposed transperygoid approach to the extirpation of the tumour that a recurrent juvenile angiofibroma at the base of the skull can be efficiently removed by means of a modern minimally invasive and at the same time radical surgical method.

  5. Role of skull radiography in the initial evaluation of minor head injury: a retrospective study

    International Nuclear Information System (INIS)

    Murshid, W.R.

    1994-01-01

    The use of skull radiography in the initial evaluation of minor head injured patients is controversial. In an attempt to evaluate its benefits, a retrospective study of 566 cases subjected to skull radiography following close minor head trauma (Glasgow Coma Scale 13-15), is presented. A skull fracture (linear vault, depressed or base of skull) was present in 64 (11%) cases. Only three (5%) who were found to have a skull fracture on skull radiography developed an intracranial injury which required surgery. Intracranial injuries developed in 19 (3%) cases and were followed by surgery in six (32%). All, except for one case, had a decreased level of consciousness and a Glasgow Coma Scale less than 15, few had focal neurological deficits. Management had not been altered by the results of skull radiography in any of the cases. We concluded that skull radiographs are unnecessary for the decision process in closed minor head injury because management decisions are based primarily on a careful neurological examination. When intracranial injuries are a concern, a CT scan should be obtained. (author)

  6. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery.

    Science.gov (United States)

    Zhang, Lihui; Tai, Bruce L; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J

    2013-10-01

    This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3mm in the traverse direction, and 3mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. [A case of pycnodysostosis--observation of the skull by CT scan].

    Science.gov (United States)

    Anegawa, S; Bekki, Y; Furukawa, Y; Yokota, S; Torigoe, R

    1987-07-01

    A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows--proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtual loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorithm revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinuses and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethmoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfism. Pycnodysostosis is a generalized skeletal disease whose cardinal features are moderate generalized osteosclerosis and dwarfism. However, the detailed observation on the cranium by CT has not been reported. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. CT findings in patient with skull fractures

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Han Gi; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    1988-12-15

    CT scan has been inevitable method for patient with head trauma. CT scans of 94 cases, which were confirmed skull fracture by plain film, were reviewed for better and useful dealing of CT. The results were as follows: 1. Car accident was the most frequent cause of head injury. 2. No evidence of intracranial abnormality in CT scan of skull fractures on plane film was 45.7%, and alert mentality was 46.8% of skull fracture on skull fracture on simple film. 3. Detection rate on CT scan to skull fractures was 27.7%, but detection rate to depression fractures of skull fracture was 70.2%. 4. Mortality rate of patients with skull fracture was 10.6%. 5. Associated CT findings were pneumocephalus on CT scan 3.2%, contusion of edema 4.2%, epidural hematoma 16.0%, subdural hematoma 17.0%, subdural hygroma 2.1%, intracerebral hemorrhage 4.9%, and subarachnoid hemorrhage 2.0%.

  9. Radiation exposure with 3D rotational angiography of the skull

    International Nuclear Information System (INIS)

    Gosch, D.; Deckert, F.; Schulz, T.; Kahn, T.; Kurze, W.; Patz, A.

    2006-01-01

    Purpose: determination and comparison of radiation exposure for examinations of the skull with unsubtracted 3D rotational angiography (3D RA) and 2D digital subtraction angiography (2D DSA). Materials and methods: measurements were carried out with a skull of an Alderson phantom for 3D RA and for 2D DSA in p.a. and lateral projections using an Innova 4100 angiography system with a digital flat panel detector from GE Healthcare. 45 thermoluminescent dosimeters TLD 100H from Harshaw were placed inside the phantom to measure organ doses. In addition the dose area product was recorded and the effective dose was calculated using the Monte Carlo program PCXMC. Results: for a biplanar DSA run (lateral and p.a. projection), the organ doses were 4 to 5 times higher and the effective dose was 4 times higher than for a 3D RA even though the number of images for the two DSA runs was only half of that for 3D RA. Conclusion: the radiation exposure for unsubtracted 3D RA using a flat panel detector is significantly lower than for biplanar DSA. Using 3D RA in place of 2D DSA can reduce the radiation exposure of patients in neuroradiology procedures. (orig.)

  10. Assessment of a Philips' Pendo Diagnost and Traumob C system for skull radiography

    International Nuclear Information System (INIS)

    1983-03-01

    The design of the system assessed introduces a number of innovations for positioning for skull radiography. These include: facilities for rotation of the table about the isocentre of the X-ray beam, digital indication of angular and linear movement, stationary cross light positioning aids for lateral and frontal projections, and vertical movement of the table top. The report commends the features of the design which allow precise, reproducible positioning with minimal patient disturbance for skull and casualty radiography. These features include the clever light aids mentioned above, the ability to view the patient through the cassette holders, well positioned controls for the effectively braked movements, and a variable-height, floating-top and wheeled patient-table. (author)

  11. 3D cinematic rendering of the calvarium, maxillofacial structures, and skull base: preliminary observations.

    Science.gov (United States)

    Rowe, Steven P; Zinreich, S James; Fishman, Elliot K

    2018-06-01

    Three-dimensional (3D) visualizations of volumetric data from CT have gained widespread clinical acceptance and are an important method for evaluating complex anatomy and pathology. Recently, cinematic rendering (CR), a new 3D visualization methodology, has become available. CR utilizes a lighting model that allows for the production of photorealistic images from isotropic voxel data. Given how new this technique is, studies to evaluate its clinical utility and any potential advantages or disadvantages relative to other 3D methods such as volume rendering have yet to be published. In this pictorial review, we provide examples of normal calvarial, maxillofacial, and skull base anatomy and pathological conditions that highlight the potential for CR images to aid in patient evaluation and treatment planning. The highly detailed images and nuanced shadowing that are intrinsic to CR are well suited to the display of the complex anatomy in this region of the body. We look forward to studies with CR that will ascertain the ultimate value of this methodology to evaluate calvarium, maxillofacial, and skull base morphology as well as other complex anatomic structures.

  12. Role of targeted magnetic resonance imaging sequences in the surgical management of anterior skull base pathology.

    Science.gov (United States)

    Chawla, S; Bowman, J; Gandhi, M; Panizza, B

    2017-01-01

    The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.

  13. Fibrous dysplasia of the skull: Presentation of a case of radiological appearance not usual

    International Nuclear Information System (INIS)

    Botero Franco, Antonio; Benavides, Martha; Bermudez, Sonia

    1996-01-01

    A case of fibrous dysplasia of monostatic variety is presented in the skull that was interpreted initially as a cephalohaematome due to a traumatic antecedent. Patient of 17 years, of masculine sex who from the 6 years of age with posteriority to a crania encephalic trauma, it presents a hematoma in the right parietal region leaving as sequel a mass of hard consistency in this localization that increase of size in progressive form in the last six months, with associate migraine. Is practiced like initial study a x-ray of simple skull in which is evidenced an enlargement of the external chart and an area blended radiolucide of expansible aspect with hyperostosis areas and esclerotics margins in the right parietal region, compatible with a calcified haematoma. later on he is carried out tomography (TC) on line, of skull that demonstrates some similar discoveries with expansible commitment of the diploe and appropriate definition of the charts intern and external without intracranial lesion associate. The bony gammagraphy practiced with MDP-99m TC demonstrates the lesion like an area of evident focal severe hypercaptation in the tissular images and that one makes but defined in the compatible late phase with the presence of a calcified haematoma; later on, is practiced a right parietal craniotomy followed by cranioplasty with acrylic material

  14. Epilepsy Surgery for Skull-Base Temporal Lobe Encephaloceles: Should We Spare the Hippocampus from Resection?

    Science.gov (United States)

    Bannout, Firas; Harder, Sheri; Lee, Michael; Zouros, Alexander; Raghavan, Ravi; Fogel, Travis; De Los Reyes, Kenneth; Losey, Travis

    2018-01-01

    The neurosurgical treatment of skull base temporal encephalocele for patients with epilepsy is variable. We describe two adult cases of temporal lobe epilepsy (TLE) with spheno-temporal encephalocele, currently seizure-free for more than two years after anterior temporal lobectomy (ATL) and lesionectomy sparing the hippocampus without long-term intracranial electroencephalogram (EEG) monitoring. Encephaloceles were detected by magnetic resonance imaging (MRI) and confirmed by maxillofacial head computed tomography (CT) scans. Seizures were captured by scalp video-EEG recording. One case underwent intraoperative electrocorticography (ECoG) with pathology demonstrating neuronal heterotopia. We propose that in some patients with skull base temporal encephaloceles, minimal surgical resection of herniated and adjacent temporal cortex (lesionectomy) is sufficient to render seizure freedom. In future cases, where an associated malformation of cortical development is suspected, newer techniques such as minimally invasive EEG monitoring with stereotactic-depth EEG electrodes should be considered to tailor the surrounding margins of the resected epileptogenic zone. PMID:29534521

  15. Epilepsy Surgery for Skull-Base Temporal Lobe Encephaloceles: Should We Spare the Hippocampus from Resection?

    Directory of Open Access Journals (Sweden)

    Firas Bannout

    2018-03-01

    Full Text Available The neurosurgical treatment of skull base temporal encephalocele for patients with epilepsy is variable. We describe two adult cases of temporal lobe epilepsy (TLE with spheno-temporal encephalocele, currently seizure-free for more than two years after anterior temporal lobectomy (ATL and lesionectomy sparing the hippocampus without long-term intracranial electroencephalogram (EEG monitoring. Encephaloceles were detected by magnetic resonance imaging (MRI and confirmed by maxillofacial head computed tomography (CT scans. Seizures were captured by scalp video-EEG recording. One case underwent intraoperative electrocorticography (ECoG with pathology demonstrating neuronal heterotopia. We propose that in some patients with skull base temporal encephaloceles, minimal surgical resection of herniated and adjacent temporal cortex (lesionectomy is sufficient to render seizure freedom. In future cases, where an associated malformation of cortical development is suspected, newer techniques such as minimally invasive EEG monitoring with stereotactic-depth EEG electrodes should be considered to tailor the surrounding margins of the resected epileptogenic zone.

  16. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    Science.gov (United States)

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  17. Transsphenoidal Approach in Endoscopic Endonasal Surgery for Skull Base Lesions: What Radiologists and Surgeons Need to Know.

    Science.gov (United States)

    García-Garrigós, Elena; Arenas-Jiménez, Juan José; Monjas-Cánovas, Irene; Abarca-Olivas, Javier; Cortés-Vela, Jesús Julián; De La Hoz-Rosa, Javier; Guirau-Rubio, Maria Dolores

    2015-01-01

    In the last 2 decades, endoscopic endonasal transsphenoidal surgery has become the most popular choice of neurosurgeons and otolaryngologists to treat lesions of the skull base, with minimal invasiveness, lower incidence of complications, and lower morbidity and mortality rates compared with traditional approaches. The transsphenoidal route is the surgical approach of choice for most sellar tumors because of the relationship of the sphenoid bone to the nasal cavity below and the pituitary gland above. More recently, extended approaches have expanded the indications for transsphenoidal surgery by using different corridors leading to specific target areas, from the crista galli to the spinomedullary junction. Computer-assisted surgery is an evolving technology that allows real-time anatomic navigation during endoscopic surgery by linking preoperative triplanar radiologic images and intraoperative endoscopic views, thus helping the surgeon avoid damage to vital structures. Preoperative computed tomography is the preferred modality to show bone landmarks and vascular structures. Radiologists play an important role in surgical planning by reporting extension of sphenoid pneumatization, recesses and septations of the sinus, and other relevant anatomic variants. Radiologists should understand the relationships of the sphenoid bone and skull base structures, anatomic variants, and image-guided neuronavigation techniques to prevent surgical complications and allow effective treatment of skull base lesions with the endoscopic endonasal transsphenoidal approach. ©RSNA, 2015.

  18. New insights into the skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea.

    Directory of Open Access Journals (Sweden)

    Mark P Witton

    Full Text Available The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20(th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds.

  19. New Insights into the Skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea)

    Science.gov (United States)

    Witton, Mark P.

    2012-01-01

    The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds. PMID:22470442

  20. Proton beam therapy in the management of skull base chordomas: systematic review of indications, outcomes, and implications for neurosurgeons.

    Science.gov (United States)

    Matloob, Samir A; Nasir, Haleema A; Choi, David

    2016-08-01

    Chordomas are rare tumours affecting the skull base. There is currently no clear consensus on the post-surgical radiation treatments that should be used after maximal tumour resection. However, high-dose proton beam therapy is an accepted option for post-operative radiotherapy to maximise local control, and in the UK, National Health Service approval for funding abroad is granted for specific patient criteria. To review the indications and efficacy of proton beam therapy in the management of skull base chordomas. The primary outcome measure for review was the efficacy of proton beam therapy in the prevention of local occurrence. A systematic review of English and non-English articles using MEDLINE (1946-present) and EMBASE (1974-present) databases was performed. Additional studies were reviewed when referenced in other studies and not available on these databases. Search terms included chordoma or chordomas. The PRISMA guidelines were followed for reporting our findings as a systematic review. A total of 76 articles met the inclusion and exclusion criteria for this review. Limitations included the lack of documentation of the extent of primary surgery, tumour size, and lack of standardised outcome measures. Level IIb/III evidence suggests proton beam therapy given post operatively for skull base chordomas results in better survival with less damage to surrounding tissue. Proton beam therapy is a grade B/C recommended treatment modality for post-operative radiation therapy to skull base chordomas. In comparison to other treatment modalities long-term local control and survival is probably improved with proton beam therapy. Further, studies are required to directly compare proton beam therapy to other treatment modalities in selected patients.

  1. Cloverleaf skull with generalised bone dysplasia

    International Nuclear Information System (INIS)

    Kozlowski, K.; Warren, P.S.; Fisher, C.C.; Royal Hospital for Women, Camperdown

    1985-01-01

    A case of cloverleaf skull with generalised bone dysplasia is reported. The authors believe that bone dysplasia associated with cloverleaf is neither identical with thanatophoric dysplasia nor achondroplasia. Until identity of thanatophoric dysplasia and cloverleaf skull with generalised bone dysplasia is proved the diseases should be looked upon as separate entities and the wording ''thanatophoric dysplasia with cloverleaf skull'' should be abolished. (orig.)

  2. Important prognostic factors in patients with skull base erosion from nasopharyngeal carcinoma after radiotherapy

    International Nuclear Information System (INIS)

    Lu, T.-X.; Mai, W.-Y.; Teh, Bin S.; Hu, Y.-H.; Lu, Hsin H.; Chiu, J. Kam; Carpenter, L. Steven; Woo, Shiao Y.; Butler, E. Brian

    2001-01-01

    Purpose: To evaluate the long-term outcome and prognostic factors in patients with skull base erosion from nasopharyngeal carcinoma after initial radiotherapy (RT). Methods and Materials: From January 1985 to December 1986, 100 patients (71 males, 29 females) with a diagnosis of nasopharyngeal carcinoma were found on computed tomography (CT) to have skull base erosion. The mean age was 41 years (range 16-66). Ninety-six patients had World Health Organization type III undifferentiated carcinoma, and 4 had type I. The metastatic workup, including chest radiography, liver ultrasound scanning, and liver function test was negative. All patients underwent external beam RT (EBRT) alone to 66-80 Gy during 6-8 weeks. A daily fraction size of 2 Gy was delivered using 60 Co or a linear accelerator. No patient received chemotherapy. All patients were followed at regular intervals after irradiation. The median follow-up was 22.3 months (range 2-174). Survival of the cohort was computed by the Kaplan-Meier method. The potential prognostic factors of survival were examined. Multivariate analyses were performed using the Cox regression model. Results: The 1, 2, 5, and 10-year overall survival rate for the cohort was 79%, 41%, 27%, and 13%, respectively. However, the subgroup of patients with both anterior cranial nerve (I-VIII) and posterior cranial nerve (IX-XII) involvement had a 5-year survival of only 7.7%. A difference in the time course of local recurrence and distant metastasis was observed. Both local recurrence and distant metastasis often occurred within the first 2 years after RT. However, local relapse continued to occur after 5 years. In contrast, no additional distant metastases were found after 5 years. The causes of death included local recurrence (n=59), distant metastasis (n=21), both local recurrence and distant metastasis (n = 1), and unrelated causes (n=5). After multivariate analysis, complete recovery of cranial nerve involvement, cranial nerve palsy, and

  3. Properties and architecture of the sperm whale skull amphitheatre.

    Science.gov (United States)

    Alam, Parvez; Amini, Shahrouz; Tadayon, Maryam; Miserez, Ali; Chinsamy, Anusuya

    2016-02-01

    The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space. We contend that the amphitheatre will flex elastically to equilibrate forces transmitted via the spermaceti organ that arise through diving. We find that collisions from sperm whale aggression do not cause the amphitheatre to bend, but rather localise stress to the base of the amphitheatre on its anterior face. We consider, therefore, that the uniquely thin and extended construction of the amphitheatre, has relevance as an energy absorptive structure in diving. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors.

    Science.gov (United States)

    Lau, Steven K M; Patel, Kunal; Kim, Teddy; Knipprath, Erik; Kim, Gwe-Ya; Cerviño, Laura I; Lawson, Joshua D; Murphy, Kevin T; Sanghvi, Parag; Carter, Bob S; Chen, Clark C

    2017-04-01

    Frameless, surface imaging guided radiosurgery (SIG-RS) is a novel platform for stereotactic radiosurgery (SRS) wherein patient positioning is monitored in real-time through infra-red camera tracking of facial topography. Here we describe our initial clinical experience with SIG-RS for the treatment of benign neoplasms of the skull base. We identified 48 patients with benign skull base tumors consecutively treated with SIG-RS at a single institution between 2009 and 2011. Patients were diagnosed with meningioma (n = 22), vestibular schwannoma (n = 20), or nonfunctional pituitary adenoma (n = 6). Local control and treatment-related toxicity were retrospectively assessed. Median follow-up was 65 months (range 61-72 months). Prescription doses were 12-13 Gy in a single fraction (n = 18), 8 Gy × 3 fractions (n = 6), and 5 Gy × 5 fractions (n = 24). Actuarial tumor control rate at 5 years was 98%. No grade ≥3 treatment-related toxicity was observed. Grade ≤2 toxicity was associated with symptomatic lesions (p = 0.049) and single fraction treatment (p = 0.005). SIG-RS for benign skull base tumors produces clinical outcomes comparable to conventional frame-based SRS techniques while enhancing patient comfort.

  5. Cloverleaf skull with generalised bone dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.; Warren, P.S.; Fisher, C.C.

    1985-09-01

    A case of cloverleaf skull with generalised bone dysplasia is reported. The authors believe that bone dysplasia associated with cloverleaf is neither identical with thanatophoric dysplasia nor achondroplasia. Until identity of thanatophoric dysplasia and cloverleaf skull with generalised bone dysplasia is proved the diseases should be looked upon as separate entities and the wording ''thanatophoric dysplasia with cloverleaf skull'' should be abolished.

  6. TRANSORAL REMOVAL OF SKULL BASE AND C1-C2 VERTEBRAL BODY TUMOURS AND NONTUMOROUS PATHOLOGY IN THE CRANIOCERVICAL JUNCTION ACCOMPANIED BY CRANIOVERTEBRAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    A. N. Shkarubo

    2010-01-01

    Full Text Available 27 patients aged 2,5-61 years with skull base and C1-C2 vertebral body tumours and nontumorous pathology in the craniocervical junction underwent surgery. All patients revealed craniovertebral instability. To perform OSD we used autobone and metallic wire in 1 case, "Ventrofix" - 2; "CCD" - 9, "Vertex" - 15. In 26 cases OSD was followed by transoral tumor removal; in 1 - removal of the skull base chordoma spreading into C1-C2 segments was followed by OSD. In our practice we used original patent instruments, devices and surgical techniques. After the tumor has been removed, the skull defect hermetic closure and plasty were performed using the original patent technique for preventing postoperative CSF leakage as well as different glue compositions. This technique proved to shorten hospitalization period and reduce treatment costs as well as launch an early rehabilitation programme - on the 3d-4th day after operation. Use of new technologies in surgical treatment of skull base tumors invading upper cervical spinal segments accompanied by craniovertebral instability allowed to improve surgical outcome and start up early rehabilitation.

  7. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome.

    Science.gov (United States)

    Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan

    2017-01-01

    Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2 +/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2 +/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2 +/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2 +/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.

  8. The conductivity of neonatal piglet skulls

    International Nuclear Information System (INIS)

    Pant, Shilpa; Te, Tang; Tucker, Aaron; Sadleir, Rosalind J

    2011-01-01

    We report the first measured values of conductivities for neonatal mammalian skull samples. We measured the average radial (normal to the skull surface) conductivity of fresh neonatal piglet skull samples at 1 kHz and found it to be around 30 mS m −1 at ambient room temperatures of about 23 °C. Measurements were made on samples of either frontal or parietal cranial bone, using a saline-filled cell technique. The conductivity value we observed was approximately twice the values reported for adult skulls (Oostendorp et al 2000 IEEE Trans. Biomed. Eng. 47 1487–92) using a similar technique, but at a frequency of around 5 Hz. Further, we found that the conductivity of skull fragments increased linearly with thickness. We found evidence that this was related to differences in composition between the frontal and parietal bone samples tested, which we believe is because frontal bones contained a larger fraction of higher conductivity cancellous bone material

  9. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  10. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  11. Skull development in the muscular dystrophic mouse

    DEFF Research Database (Denmark)

    Vilmann, H; Kirkeby, S; Moss, M L

    1989-01-01

    Roentgencephalometric tracings of skulls of 7-week-old normal and muscular dystrophic mice were compared. A marked size reduction of the dystrophic skulls relative to the normal ones was observed. However, the visceral parts of the dystrophic skull were more reduced in size than the neural parts....

  12. Clinical anatomy and imaging of the cranial nerves and skull base.

    Science.gov (United States)

    Jha, Ruchira M; Klein, Joshua P

    2012-09-01

    Evaluation of patients with cranial neuropathies requires an understanding of brainstem anatomy and nerve pathways. Advances in neuroimaging, particularly high spatial resolution magnetic resonance imaging (MRI), have enabled visualization of these tiny structures and their related pathology. This review provides an approach toward using imaging in the evaluation of cranial nerve (CN) and skull base anatomy and pathology. Because brainstem nuclei are inextricably linked to the information contained within CNs, they are briefly mentioned whenever relevant; however, a comprehensive discussion of brainstem syndromes is beyond the scope of this review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Osteointegration of a bisphenol-a-glycidyl-dimethacrylate composite and its use in anterior skull base defects: an experimental study in an experimental design model of cerebrospinal fluid leak.

    Science.gov (United States)

    Sanus, Galip Zihni; Kucukyuruk, Baris; Biceroglu, Huseyin; Isler, Cihan; Tanriverdi, Taner; Bas, Ahmet; Albayram, Sait; Kurkcu, Mehmet; Oz, Buge

    2014-07-01

    Promising clinical results were reported in watertight closure of anterior skull base defects (ASBDs) with bisphenol-a-glycidyl-dimethacrylate (bis-GMA)-based materials to prevent the cerebrospinal fluid leaks. However, interrelation of these materials with surrounding bones in histologic level, referred to as the osteointegration, has not been reported in the anterior skull base. In addition, an illustrative case with an ASBD that was repaired using a bis-GMA composite has been presented. Twenty New Zealand rabbits were divided into 4 groups: control and sham groups consisted of 2 and 6 rabbits, respectively. The "skull base defect" group (n = 6) underwent a unifrontal craniectomy and an iatrogenic ASBD followed by creating a dural defect to obtain a cerebrospinal fluid leak. Similar bony and dural defects were acquired in the "repair with bis-GMA based allograft" group (n = 6), but the bony defect was closed with bis-GMA-based allograft. All animals in the "skull base defect" group died in 3 weeks after surgery. There were no animal losses in the "repair with bis-GMA based allograft" group at the sixth month. Histologic evaluation revealed complete osteointegration of bis-GMA composite with surrounding bones. bis-GMA based allograft achieved a watertight repair of the ASBD. Histologic findings of this study showed that bis-GMA composite is a reliable material to be used in the closure of anterior skull base bony defects.

  14. Analysis of six Vietnamese trophy skulls.

    Science.gov (United States)

    Sledzik, P S; Ousley, S

    1991-03-01

    This report presents morphologic, metric, and contextual information on six documented trophy skull specimens confiscated from U.S. servicemen during the Vietnam War. Additional information on the history and occurrence of trophy skull collecting is provided. This sample, consisting mostly of young Vietnamese males, exhibits graffiti, painting, and other evidence of postmortem decorative modification. Identification of trophy skulls is important to medicolegal and anthropological researchers in distinguishing trophy remains from archaeological and forensic specimens.

  15. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound

    Science.gov (United States)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2017-12-01

    Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to

  16. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    Science.gov (United States)

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier Gmb

  17. Extended maxillotomy for skull base access in contemporary management of chordomas: Rationale and technical aspect.

    Science.gov (United States)

    Abdul Jalil, Muhammad Fahmi; Story, Rowan D; Rogers, Myron

    2017-05-01

    Minimally invasive approaches to the central skull base have been popularized over the last decade and have to a large extent displaced 'open' procedures. However, traditional skull base surgery still has its role especially when dealing with a large clival chordoma where maximal surgical resection is the principal goal to maximize patient survival. In this paper, we present a case of a 25year-old male patient with chordoma in the inferior clivus which was initially debulked via a transnasal endoscopic approach. He unfortunately had a large recurrence of tumor requiring re-do resection. With the aim to achieve maximal surgical resection, we then chose the technique of a transoral approach with Le Fort 1 maxillotomy and midline palatal split. Post-operative course for the patient was uneventful and post-operative MRI confirmed significant debulking of the clival lesion. The technique employed for the surgical procedure is presented here in detail as is our experience over two decades using this technique for tumors, inflammatory lesions and congenital abnormalities at the cranio-cervical junction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    International Nuclear Information System (INIS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-01-01

    The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm 3 ] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm 3 and was sandwiched in between 0.05×0.05×0.3 cm 3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm 3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×10 8 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular

  19. Broadband acoustic properties of a murine skull.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  20. Three-dimensional bone-free computed tomographic angiography of aneurysms near the skull base using a new bone-removal application

    International Nuclear Information System (INIS)

    Tomura, Noriaki; Otani, Takahiro; Sakuma, Ikuo; Takahashi, Satoshi; Nishii, Toshiaki; Watarai, Jiro

    2009-01-01

    Bone elimination is needed for computed tomography angiography (CTA) because bone structures obscure aneurysms located at the skull base. The purpose of our study was to evaluate the efficacy of three-dimensional (3D)-CTA using an application for bone elimination. A total of 27 patients with 32 angiographically confirmed aneurysms near the skull base were investigated. The 3D maximum intensity projection (MIP) images were initially obtained using the application. Further postprocessing was performed to obtain the MIP and volume-rendered (VR) images. The quality of the initial MIP images by the application was analyzed. Visualization of aneurysms after further processing was also reviewed. The initial MIP images by the application showed almost bone-free images in 23 of the 27 patients. In 8 patients, the image of the internal carotid artery (ICA) was segmentally removed in the initial MIP images by the application. Further postprocessing was able to recover all loss of the ICA image in these eight patients. For visualizing aneurysms and their necks, VR images with the application were significantly superior to VR images without the application. The application for bone elimination allows fast, selective elimination of bony structures and can improve the interpretation of aneurysms near the skull base. (author)

  1. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.

    Science.gov (United States)

    Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius

    2017-11-01

    The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.

  2. Skull penetrating wound

    International Nuclear Information System (INIS)

    Gonzalez Orlandi, Yvei; Junco Martin, Reinel; Rojas Manresa, Jorge; Duboy Limonta, Victor; Matos Herrera, Omar; Saez Corvo, Yunet

    2011-01-01

    The cranioencephalic trauma is common in the emergence centers to care for patients with multiple traumata and it becames in a health problem in many countries. Skull penetrating trauma is located in a special place due to its low frequency. In present paper a case of male patient aged 52 severely skull-injured with penetrating wound caused by a cold steel that remained introduced into the left frontotemporal region. After an imaging study the emergence surgical treatment was applied and patient evolves adequately after 25 days of hospitalization. Nowadays, she is under rehabilitation treatment due to a residual right hemiparesis.(author)

  3. Chronic imaging through "transparent skull" in mice.

    Directory of Open Access Journals (Sweden)

    Anna Steinzeig

    Full Text Available Growing interest in long-term visualization of cortical structure and function requires methods that allow observation of an intact cortex in longitudinal imaging studies. Here we describe a detailed protocol for the "transparent skull" (TS preparation based on skull clearing with cyanoacrylate, which is applicable for long-term imaging through the intact skull in mice. We characterized the properties of the TS in imaging of intrinsic optical signals and compared them with the more conventional cranial window preparation. Our results show that TS is less invasive, maintains stabile transparency for at least two months, and compares favorably to data obtained from the conventional cranial window. We applied this method to experiments showing that a four-week treatment with the antidepressant fluoxetine combined with one week of monocular deprivation induced a shift in ocular dominance in the mouse visual cortex, confirming that fluoxetine treatment restores critical-period-like plasticity. Our results demonstrate that the TS preparation could become a useful method for long-term visualization of the living mouse brain.

  4. Sexual dimorphism of pyrenean chamois (Rupicapra p. pyrenaica based on skull morphometry

    Directory of Open Access Journals (Sweden)

    García-González, R.

    2002-12-01

    Full Text Available Sexual dimorphism in skull characteristics of Pyrenean chamois is studied in a sample of 85 adults (36 males and 49 females by means of 26 quantitative variables. Skull variables were analised by multiple regression and principal component techniques. The Pyrenean chamois shows one of the smallest sexual skull dimorphisms of the Rupicapra subspecies. Only length, thickness, and related variables of horns present significant differences between sexes. Nevertheless, horn height was statistically identical in both sexes. Ecological implications of skull variability and skull variables relationships are discussed. Several discriminant functions were developed by means of discriminant analysis. Those that better identified sexes include horn core diameters. We also developed other functions based on upper skull variables that could be used to identify incomplete specimens or archaeological remains.

    [fr]
    Nous avons étudié les dimorphismes sexuels de l'isard en travaillant sur 26 mesures cranéométriques issues d'un échantillon de 85 crânes adultes (soit 36 mâles et 49 femelles. Les analyses ont porté sur la comparaison des moyennes, la régression multiple et l'analyse en composante principale. Il s'avère que l'isard pyrénéen présente un des plus bas dimorphisme craneal du genre Rupicapra. Seuls la longueur et l'épaisseur des cornes et leurs variables associées ont montré des différences significatives entre les sexes. Les implications écologiques de la variabilité entre les crânes et des relations entre les variables cranéométriques sont discutées. En utilisant l'analyse discriminante, nous arrivons à développer quelques fonctions nous permettant d'identifier le sexe des exemplaires complets ou incomplets. Les fonctions se basant sur l'épaisseur des cornes ont permis une meilleure classification.
    [es]
    Se ha estudiado el dimorfismo sexual del sarrio a partir de 26 medidas craneométricas tomadas en una

  5. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    Science.gov (United States)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  6. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...

  7. A Three-Dimensional Statistical Average Skull: Application of Biometric Morphing in Generating Missing Anatomy.

    Science.gov (United States)

    Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M

    2015-07-01

    The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4  mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.

  8. Growth of the skull in young children in Baotou, China.

    Science.gov (United States)

    Hou, Hai-dong; Liu, Ming; Gong, Ke-rui; Shao, Guo; Zhang, Chun-Yang

    2014-09-01

    There are some controversies about the optimal time to perform skull repair in very young Chinese children because of the rapid skull growth in this stage of life. The purpose of this current study is to describe the characteristics of skull growth and to discuss the optimal time for skull repair in young Chinese children with skull defects. A total of 112 children born in the First Affiliated Hospital of Baotou Medical College were measured for six consecutive years starting in 2006. Cranial length (CL, linear distance between the eyebrows to the pillow tuberosity), cranial width (CW, double-sided linear distance of connection of external auditory canal), ear over the top line (EOTL), the eyebrows-the posterior tuberosity line (EPTL), and head circumference (HC) were measured to describe the skull growth. The most rapid period of skull growth occurs during the first year of life. The second and third most rapid periods are the second and third years, respectively. Then, the skull growth slowed and the values of the skull growth index of 6-year-old children were close to those of adults. Children 0-1 years old should not receive skull repair due to their rapid skull growth. The indexes of children 3 years old or older were close to those of the adult; therefore, 3 years old or older may receive skull repair.

  9. The Development of Skull Prosthesis Through Active Contour Model.

    Science.gov (United States)

    Chen, Yi-Wen; Shih, Cheng-Ting; Cheng, Chen-Yang; Lin, Yu-Cheng

    2017-09-09

    Skull defects result in brain infection and inadequate brain protection and pose a general danger to patient health. To avoid these situations and prevent re-injury, a prosthesis must be constructed and grafted onto the deficient region. With the development of rapid customization through additive manufacturing and 3D printing technology, skull prostheses can be fabricated accurately and efficiently prior to cranioplasty. However, an unfitted skull prosthesis made with a metal implant can cause repeated infection, potentially necessitating secondary surgery. This paper presents a method of creating suitably geometric graphics of skull defects to be applied in skull repair through active contour models. These models can be adjusted in each computed tomography slice according to the graphic features, and the curves representing the skull defect can be modeled. The generated graphics can adequately mimic the natural curvature of the complete skull. This method will enable clinical surgeons to rapidly implant customized prostheses, which is of particular importance in emergency surgery. The findings of this research can help surgeons provide patients with skull defects with treatment of the highest quality.

  10. Automated human skull landmarking with 2D Gabor wavelets

    Science.gov (United States)

    de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan

    2018-05-01

    Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.

  11. A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.

    Science.gov (United States)

    Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E

    2016-06-01

    Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.

  12. Interspecific variation of ontogeny and skull shape among porpoises (Phocoenidae).

    Science.gov (United States)

    Galatius, Anders; Berta, Annalisa; Frandsen, Marie Schou; Goodall, R Natalie P

    2011-02-01

    All extant members of Phocoenidae (porpoises) have been characterized as pedomorphic based on skeletal characters. To investigate the ontogenetic background for pedomorphosis and assess interspecific differences in ontogeny among phocoenids, samples of the six extant species were compared in terms of development of both epiphyseal and cranial suture fusion. Across all species, full maturity of the vertebral column was rare. Vertebral epiphyseal development did not progress so far in most Phocoena phocoena as in Phocoenoides dalli and Phocoena dioptrica. P. phocoena, Phocoena spinipinnis, Ph. dalli, and P. dioptrica, for which large series were available, were further compared in terms of ontogeny of cranial shape by three-dimensional geometric morphometrics. Ph. dalli and P. dioptrica generally showed further development of cranial sutures than the other species. Postnatal skull shape development was similar for all species studied; the majority of interspecific shape differences are present at parturition. Smaller species had a higher rate of shape development relative to growth in size than Ph. dalli and P. dioptrica, but they still showed less allometric development due to less postnatal growth. Interspecific shape differences indicate phylogenetic relationships similar to that proposed based on morphology or convergent evolution of the two pelagic species, Ph. dalli and P. dioptrica, under the scenarios suggested by recent molecular studies. A shape trend coinciding with habitat preference was detected; in species with pelagic preference the position and orientation of the foramen magnum aligned the skull with the vertebral column; the rostrum showed less ventral inclination, and the facial region was larger and more concave in lateral aspect. Copyright © 2010 Wiley-Liss, Inc.

  13. Meningitis caused by Enterococcus casseliflavus with refractory cerebrospinai fluid leakage following endoscopic endonasal removal of skull base chondrosarcoma

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    To the Editor:Meningitis caused by Enterococcus casseliflavus (E.casseliflavus) is extremely rare.Here we report an unusual case of meningitis caused by E.casseliflavus coexisting with refractory cerebrospinal fluid (CSF) leakage following endoscopic endonasal resection of skull base chondrosarcoma.

  14. Independent instances of "souvenir" Asian skulls from the Tampa Bay area.

    Science.gov (United States)

    Wienker, C W; Wood, J E; Diggs, C A

    1990-05-01

    In the summer of 1984, police in Pinellas County, Florida, confiscated six identically colored imported Asian skulls (in a shipping case) from a private citizen. In May 1988, in nearby Hillsborough County, police confiscated a very similar skull from another private citizen, who allegedly had found it in an abandoned house. Aside from slight color differences between the six found in Pinellas County and the one found in Hillsborough County, the skulls are virtually identical in their osteological characteristics and condition and in the vital statistics derived from each. Each skull is as clean and dry as those typically sold by commercial scientific supply outlets in the United States. Each is edentulous (primarily premortem), between approximately 20 and 60 years of age at death, and morphologically Asian. Five of the seven are morphologically male, one is morphologically female, and one is a mosaic with respect to gender-related features. Police, medical examiners, coroners, and forensic anthropologists should be aware of such "souvenir" specimens, in the event that they encounter similar skulls. Discriminant function analyses for race and sex yield considerably conflicting results, which underscores the need for using extreme caution when interpreting forensic science estimates based on such techniques.

  15. 21 CFR 882.5960 - Skull tongs for traction.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with a...

  16. Skull thickness in patients with clefts

    DEFF Research Database (Denmark)

    Arntsen, T; Kjaer, I; Sonnesen, L

    2010-01-01

    The purpose was to analyze skull thickness in incomplete cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (UCLP).......The purpose was to analyze skull thickness in incomplete cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (UCLP)....

  17. Fractionated stereotactic radiosurgery for patients with skull base metastases from systemic cancer involving the anterior visual pathway

    International Nuclear Information System (INIS)

    Minniti, Giuseppe; Osti, Mattia Falchetto; Maurizi Enrici, Riccardo; Esposito, Vincenzo; Clarke, Enrico; Scaringi, Claudia; Bozzao, Alessandro; Falco, Teresa; De Sanctis, Vitaliana; Enrici, Maurizio Maurizi; Valeriani, Maurizio

    2014-01-01

    To analyze the tumor control, survival outcomes, and toxicity after stereotactic radiosurgery (SRS) for skull base metastases from systemic cancer involving the anterior visual pathway. We have analyzed 34 patients (23 females and 11 males, median age 59 years) who underwent multi-fraction SRS for a skull base metastasis compressing or in close proximity of optic nerves and chiasm. All metastases were treated with frameless LINAC-based multi-fraction SRS in 5 daily fractions of 5 Gy each. Local control, distant failure, and overall survival were estimated using the Kaplan-Meier method calculated from the time of SRS. Prognostic variables were assessed using log-rank and Cox regression analyses. At a median follow-up of 13 months (range, 2–36.5 months), twenty-five patients had died and 9 were alive. The 1-year and 2-year local control rates were 89% and 72%, and respective actuarial survival rates were 63% and 30%. Four patients recurred with a median time to progression of 12 months (range, 6–27 months), and 17 patients had new brain metastases at distant brain sites. The 1-year and 2-year distant failure rates were 50% and 77%, respectively. On multivariate analysis, a Karnofsky performance status (KPS) >70 and the absence of extracranial metastases were prognostic factors associated with lower distant failure rates and longer survival. After multi-fraction SRS, 15 (51%) out of 29 patients had a clinical improvement of their preexisting cranial deficits. No patients developed radiation-induced optic neuropathy during the follow-up. Multi-fraction SRS (5 x 5 Gy) is a safe treatment option associated with good local control and improved cranial nerve symptoms for patients with a skull base metastasis involving the anterior visual pathway

  18. Implant-retained skull prosthesis to cover a large defect of the hairy skull resulting from treatment of a basal cell carcinoma: A clinical report.

    Science.gov (United States)

    Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita

    2017-05-01

    Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted of resecting the tumor and external part of the skull bone. To protect the brain and to cover the defect of the hairy skull, an acrylic resin skull prosthesis with hair was designed to mask the defect. The skull prosthesis was retained on 8 extraoral implants placed at the margins of the defect in the skull bone. The patient was satisfied with the treatment outcome. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Anatomic and craniometric factors in differentiating roe deer (Capreolus capreolus from sheep (Ovis aries and goat (Capra hircus skulls

    Directory of Open Access Journals (Sweden)

    Onuk Burcu

    2013-01-01

    Full Text Available This study was carried out to investigate the bony structures relevant to skull of roe deer, sheep and goat. The skull of five sheep weighing 45-50 kg, three goat weighing 50-60 kg and five roe deer weighing 20-25 kg were used in this study. Macerations of the cranium were performed by the boiling method. The skull of the roe deer was notably similar to that of sheep with the presence of external lacrimal fossa, and to the goat with due to the presence of two points (lateral and medial on the septal process and a significant fissure formed between the nasal, lacrimal, frontal and maxillary bones. In addition to these similarities, the formations which were specific to the roe deer were structures such as the number and position of the lacrimal foramen and presence of an uncertain muscular tubercle in the basilar portion of the occipital bone. In addition, the craniometric parameters specific to the roe deer’s skull were determined as the zygomatic, interorbital, neurocranium and nasal lengths.

  20. CT findings of skull tumors forming subcutaneous masses

    International Nuclear Information System (INIS)

    Niida, Hirohito; Takeda, Norio; Onda, Kiyoshi; Tanaka, Ryuichi

    1991-01-01

    Some characteristics of CT findings in 27 patients with skull tumors forming subcutaneous tumors were studied. There were sixteen metastatic skull tumors, six primary skull tumors, and five meningiomas. A CT scan was found to be helpful in the diagnosis of the lesions. Especially, bone-window CT images proved very sensitive in the detection of destructive and permeative lesions of the skull. In 19 of the 27 cases, some lytic lesions were observed. In all cases with skull metastasis from carcinomas, a complete osteolytic change of the skull was observed. Furthermore, all of the metastatic tumors from thyroid carcinoma showed well circumscribed and homogeneously enhanced lesions, in contrast with the other metastatic carcinomas, which usually showed heterogeneously enhanced lesions with irregular margins. Osteoblastic changes were characteristically observed in all cases of meningiomas, osteosarcoma, and chondrosarcoma. Meningiomas were located mainly in the intracranial region and extended extracranially. In one case of malignant lymphoma, one of a neuroblastoma, and one of leukemia, there was little or no gross cortical bone change, despite a large mass. (author)

  1. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    Science.gov (United States)

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  2. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    Science.gov (United States)

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.

  3. Skulls and Human Evolution: The Use of Casts of Anthropoid Skulls in Teaching Concepts of Human Evolution.

    Science.gov (United States)

    Gipps, John

    1991-01-01

    Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)

  4. X-ray screening of the artificially deformed skulls from the Middle Bronze Age of the Low Volga region (paleopathology aspect

    Directory of Open Access Journals (Sweden)

    Pererva Evgenii Vladimirovich

    2013-11-01

    Full Text Available The impact of the deforming structure on the human skull is one of the most challenging and debated questions in modern archeology and anthropology related to artificial deformation of the skull. This is precisely why the present study attempts to study the pathological artificially deformed skulls of representatives of the Catacomb culture originating from burial mound in the Lower Volga region. The analysis of the bone material was carried out with the use of X-ray method of the frontal and lateral views. Thirteen radiographs of skulls with traces of deliberate artificial deformation were examined. The skull shapes, structure of the skull calvarial bones, state of the cranial sutures, signs of intracranial hypertension, and symptoms of vascular and endocrine pathologies were explored and evaluated. The study discovered that Catacomb culture bearers used a variety of methods of skull deformation. Front occipital, occipital ring strain and conventional acrocephaly deformation modes were revealed. The viability and compatibility with normal human activity of artificial skull deformation was observed. In the childhood and newborn periods, individuals have applied constrictive and restrictive devices, trusses andother appliancesfor a few years, their impact couldresultin the intracranial hypertension syndrome, as well as in problems with cranial sutures obliteration. It is very much likely that the use of strain could stimulate the development of the internal frontal hyperostosis (Morgagni's disease which contributed to the emergence of endocrine abnormities in humans. The increased trauma rate of skeleton bones was observed in population of the Middle Bronze Age, as well as ear diseases which makes us once again address the issue of social and cultural phenomenon of intentional artificial deformation of the head tradition.

  5. Craniometric Indices of Nigeria Skulls

    OpenAIRE

    Orish CN; Ibeachu PC

    2016-01-01

    Introduction: Craniometric indices show the percentage relationship between different dimensions. It is an important parameter for classification of race and sex of individuals of unknown identity. This study was undertaken to determine the craniometric indices of gnathic, palatal, orbital, cranial and nasal indices of Nigerian skulls. Materials and Methods: One hundred adult dry skulls, (78 males, and 22 females) free from damage and deformities from eleven Departments of Anatomy in Nige...

  6. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    Science.gov (United States)

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. MR Imaging with Gadolinium-DTPA in skull-base tumors

    International Nuclear Information System (INIS)

    Bartolozzi, C.; Olmastroni, M.; Dal Pozzo, G.; Petacchi, D.

    1988-01-01

    Twenty-five patients were investigated by MR imaging in order to evaluate the diagnostic value of Gadolinium (Gd)-DTPA in skull-base tumors. The patients were studied with standard acquisition techniques (T1, mixed and T2-weighted images) without contrast medium. The images obtained after intravenous injection of Gd-DTPA. The contrastographic results in the different types of acquisition were evaluated. Thanks to the extra-ordinary increase in contrast resolution it provides, Gd-DTPA allowed the precise evaluation of the lesion and of its perfect spatial definition in all cases. Our experience demonstrated that Gd-DTPA considerably increases the sensitivity of the technique in this anatomical region. On the contrary, as regards the nature of the lesion, the signal did not significantly very after the iv injection of Gd-DTPA in the various kinds of lesion. In addition to the important diagnostic advantages of Gd-DTPA, its excellent tollerability and the absence of side-effects must be stressed

  8. The Pedicled Buccal Fat Pad: Anatomical Study of the New Flap for Skull Base Defect Reconstruction After Endoscopic Endonasal Transpterygoid Surgery

    Science.gov (United States)

    Golbin, Denis A.; Lasunin, Nikolay V.; Cherekaev, Vasily A.; Polev, Georgiy A.

    2016-01-01

    Objectives To evaluate the efficacy and safety of using a buccal fat pad for endoscopic skull base defect reconstruction. Design Descriptive anatomical study with an illustrative case presentation. Setting Anatomical study was performed on 12 fresh human cadaver specimens with injected arteries (24 sides). Internal carotid artery was exposed in the coronal plane via the endoscopic transpterygoid approach. The pedicled buccal fat pad was used for reconstruction. Participants: 12 human cadaver head specimens; one patient operated using the proposed technique. Main outcome measures: Proximity of the buccal fat pad flap to the defect, compliance of the flap, comfort and safety of harvesting procedure, and compatibility with the Hadad–Bassagasteguy nasoseptal flap. Results: Harvesting procedure was performed using anterior transmaxillary corridor. The pedicled buccal fat pad flap can be used to pack the sphenoid sinus or cover the internal carotid artery from cavernous to upper parapharyngeal segment. Conclusion The buccal fat pad can be safely harvested through the same approach without external incisions and is compliant enough to conform to the skull base defect. The proposed pedicled flap can replace free abdominal fat in central skull base reconstruction. The volume of the buccal fat pad allows obliteration of the sphenoid sinus or upper parapharyngeal space. PMID:28180047

  9. Radiotherapy for chordomas and low-grade chondrosarcomas of the skull base with carbon ions

    International Nuclear Information System (INIS)

    Schulz-Ertner, Daniela; Haberer, Thomas; Jaekel, Oliver; Thilmann, Christoph; Kraemer, Michael; Enghardt, Wolfgang; Kraft, Gerhard; Wannenmacher, Michael; Debus, Juergen

    2002-01-01

    Purpose: Compared to photon irradiation, carbon ions provide physical and biologic advantages that may be exploited in chordomas and chondrosarcomas. Methods and Materials: Between August 1998 and December 2000, 37 patients with chordomas (n=24) and chondrosarcomas (n=13) were treated with carbon ion radiotherapy within a Phase I/II trial. Tumor conformal application of carbon ion beams was realized by intensity-controlled raster scanning with pulse-to-pulse energy variation. Three-dimensional treatment planning included biologic plan optimization. The median tumor dose was 60 GyE (GyE Gy x relative biologic effectiveness). Results: The mean follow-up was 13 months. The local control rate after 1 and 2 years was 96% and 90%, respectively. We observed 2 recurrences outside the gross tumor volume in patients with chordomas. Progression-free survival was 100% for chondrosarcomas and 83% for chordomas at 2 years. Partial remission after carbon ion radiotherapy was observed in 6 patients. Treatment toxicity was mild. Conclusion: These are the first data demonstrating the clinical feasibility, safety, and effectiveness of scanning beam delivery of ion beams in patients with skull base tumors. The preliminary results in patients with skull base chordomas and low-grade chondrosarcomas are encouraging, although the follow-up was too short to draw definite conclusions concerning outcome. In the absence of major toxicity, dose escalation might be considered

  10. Giant cell reparative granuloma of the base of the skull in a 4-month-old infant - CT findings

    International Nuclear Information System (INIS)

    Cohen, D.; Granda-Ricart, M.C.

    1993-01-01

    An unusual case of giant cell reparative granuloma of the base of the skull of a 4-month-old infant is described. Computerized tomography was useful in defining extent of the lesion and soft tissue abnormalities. Differential diagnosis with other giant cell lesions is discussed. (orig.)

  11. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  12. A large, switchable optical clearing skull window for cerebrovascular imaging

    Science.gov (United States)

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  13. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    Science.gov (United States)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  14. The Genetics of Canine Skull Shape Variation

    Science.gov (United States)

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2013-01-01

    A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. PMID:23396475

  15. Quantitative skeletal scintiscanning of the skull using sup(99m)Tc-Sn-pyrophosphate in patients with malignant tumours of the cranial cavities, the base of the skull, and the visceral cranium

    International Nuclear Information System (INIS)

    Seidenz, H.R.

    1982-01-01

    Scintigrams and tomograms were obtained after injection of sup(99m)Tc-Sn-pyrophosphate in 18 patients with malignant tumours of the skull. The examinations were carried out in 3-month intervals over a period of 2 1/2 years. Quantitative evaluations were carried out in 19 points (frontal projection) and 13 points (lateral projection) using a densitometer. The data obtained were compared with those of healthy subjects and sinusitis patients. The advantages of reproducible figures were demonstrated in follow-up examinations. The quantitative evaluation of scintiscans gives a clear picture of tumour progression and spread. Further, inflammatory and neoplastic processes can be distinguished. The time required for the evaluation can be shortened by means of modern data processing equipment and a gamma camera, so that quantitative evaluation can be clearly said to be superior to qualitative evaluation. (orig./MG) [de

  16. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators

    OpenAIRE

    Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Introduction Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Methods Four 3D-printed consumer-grade materials were...

  17. Creating a normative database of age-specific 3D geometrical data, bone density, and bone thickness of the developing skull: a pilot study.

    Science.gov (United States)

    Delye, Hans; Clijmans, Tim; Mommaerts, Maurice Yves; Sloten, Jos Vnder; Goffin, Jan

    2015-12-01

    Finite element models (FEMs) of the head are used to study the biomechanics of traumatic brain injury and depend heavily on the use of accurate material properties and head geometry. Any FEM aimed at investigating traumatic head injury in children should therefore use age-specific dimensions of the head, as well as age-specific material properties of the different tissues. In this study, the authors built a database of age-corrected skull geometry, skull thickness, and bone density of the developing skull to aid in the development of an age-specific FEM of a child's head. Such a database, containing age-corrected normative skull geometry data, can also be used for preoperative surgical planning and postoperative long-term follow-up of craniosynostosis surgery results. Computed tomography data were processed for 187 patients (age range 0-20 years old). A 3D surface model was calculated from segmented skull surfaces. Skull models, reference points, and sutures were processed into a MATLAB-supported database. This process included automatic calculation of 2D measurements as well as 3D measurements: length of the coronal suture, length of the lambdoid suture, and the 3D anterior-posterior length, defined as the sum of the metopic and sagittal suture. Skull thickness and skull bone density calculations were included. Cephalic length, cephalic width, intercoronal distance, lateral orbital distance, intertemporal distance, and 3D measurements were obtained, confirming the well-established general growth pattern of the skull. Skull thickness increases rapidly in the first year of life, slowing down during the second year of life, while skull density increases with a fast but steady pace during the first 3 years of life. Both skull thickness and density continue to increase up to adulthood. This is the first report of normative data on 2D and 3D measurements, skull bone thickness, and skull bone density for children aged 0-20 years. This database can help build an age

  18. Quantitative skeletal scintiscanning of the skull with Tc-99m-Sn-pyrophosphate on patients with squamous cell carcinoma in the region of the paranasal sinuses and the base of the skull

    International Nuclear Information System (INIS)

    Prestel, G.

    1981-01-01

    Scinticans and tomographs in frontal and lateral projection were made before, during, and after the disease on 22 patients with squamous cell carcinomas in the region of the paranasal sinuses and the base of the skull. For all patients, treatment consisted in a radiotherapy with gamma or ultra-hard X-rays; in half the number of the patients, the tumour was eliminated by surgery before irradiation. The majority of squamous cell carcinomas which were not operated reduced their activity after radiotherapy. This reduction of activity appeared both in a spontaneous reaction immediately after the finishing of the radiation and in a process lasting over years. After removal of the tumour by surgery the maximal values measured in the tumour centre nearly all dropped to values which were not pathological. In the peripheral regions of the operation area, however, extremely increased activity was seen which was a sign for the bone changes induced by the operation. The appearance of new foci in course control can be regarded as an indication of a relapse and is of importance for the exact tomographic checking and for the site of a test excision. Thus scintiscanning evaluated quantitatively is a valuable complementary method for X-ray diagnosis and the clinical course control. (orig./MG) [de

  19. Stereotactic radiosurgery for trigeminal pain secondary to recurrent malignant skull base tumors.

    Science.gov (United States)

    Phan, Jack; Pollard, Courtney; Brown, Paul D; Guha-Thakurta, Nandita; Garden, Adam S; Rosenthal, David I; Fuller, Clifton D; Frank, Steven J; Gunn, G Brandon; Morrison, William H; Ho, Jennifer C; Li, Jing; Ghia, Amol J; Yang, James N; Luo, Dershan; Wang, He C; Su, Shirley Y; Raza, Shaan M; Gidley, Paul W; Hanna, Ehab Y; DeMonte, Franco

    2018-04-27

    OBJECTIVE The objective of this study was to assess outcomes after Gamma Knife radiosurgery (GKRS) re-irradiation for palliation of patients with trigeminal pain secondary to recurrent malignant skull base tumors. METHODS From 2009 to 2016, 26 patients who had previously undergone radiation treatment to the head and neck received GKRS for palliation of trigeminal neuropathic pain secondary to recurrence of malignant skull base tumors. Twenty-two patients received single-fraction GKRS to a median dose of 17 Gy (range 15-20 Gy) prescribed to the 50% isodose line (range 43%-55%). Four patients received fractionated Gamma Knife Extend therapy to a median dose of 24 Gy in 3 fractions (range 21-27 Gy) prescribed to the 50% isodose line (range 45%-50%). Those with at least a 3-month follow-up were assessed for symptom palliation. Self-reported pain was evaluated by the numeric rating scale (NRS) and MD Anderson Symptom Inventory-Head and Neck (MDASI-HN) pain score. Frequency of as-needed (PRN) analgesic use and opioid requirement were also assessed. Baseline opioid dose was reported as a fentanyl-equivalent dose (FED) and PRN for breakthrough pain use as oral morphine-equivalent dose (OMED). The chi-square and Student t-tests were used to determine differences before and after GKRS. RESULTS Seven patients (29%) were excluded due to local disease progression. Two experienced progression at the first follow-up, and 5 had local recurrence from disease outside the GKRS volume. Nineteen patients were assessed for symptom palliation with a median follow-up duration of 10.4 months (range 3.0-34.4 months). At 3 months after GKRS, the NRS scores (n = 19) decreased from 4.65 ± 3.45 to 1.47 ± 2.11 (p control.

  20. Morphological convergence in ‘river dolphin’ skulls

    Directory of Open Access Journals (Sweden)

    Charlotte E. Page

    2017-11-01

    Full Text Available Convergent evolution can provide insights into the predictability of, and constraints on, the evolution of biodiversity. One striking example of convergence is seen in the ‘river dolphins’. The four dolphin genera that make up the ‘river dolphins’ (Inia geoffrensis, Pontoporia blainvillei, Platanista gangetica and Lipotes vexillifer do not represent a single monophyletic group, despite being very similar in morphology. This has led many to using the ‘river dolphins’ as an example of convergent evolution. We investigate whether the skulls of the four ‘river dolphin’ genera are convergent when compared to other toothed dolphin taxa in addition to identifying convergent cranial and mandibular features. We use geometric morphometrics to uncover shape variation in the skulls of the ‘river dolphins’ and then apply a number of phylogenetic techniques to test for convergence. We find significant convergence in the skull morphology of the ‘river dolphins’. The four genera seem to have evolved similar skull shapes, leading to a convergent morphotype characterised by elongation of skull features. The cause of this morphological convergence remains unclear. However, the features we uncover as convergent, in particular elongation of the rostrum, support hypotheses of shared feeding mode or diet and thus provide the foundation for future work into convergence within the Odontoceti.

  1. The MDP skull uptake test: A new diagnostic tool

    International Nuclear Information System (INIS)

    Ell, P.J.; Jarritt, P.H.; Cullum, I.; Lui, D.

    1984-01-01

    An original approach to the measurement of bone turnover is presented. With SPECT, the authors have measured in pgr/ml, the uptake of MDP by the skull in man. The Cleon 710 scanner, ring phantoms and bone biopsies were used for ultimate in vivo/in vitro count recovery correlation and calibration. A normal range for 24 patients was found: 8.5 to 19.5 pgr/ml with a mean of 14. For patients with bony metastases (12), the values were: 22.5 to 50, mean of 30. For 5 patients with osteomalacia, the values were 46 to 68, mean of 62: for 12 patients with hyperparathyroidism, the values were 37 to 48.5, mean of 43. In 3 patients with Pagets disease, the values were 58.5 to 75, with a mean of 65. In 76 patients with metastatic disease to bone, the conventional wholebody bone scan was investigated against the following: 24h wholebody retention of MDP (WBR), skull uptake as described and GFR by Cr-51-DTPA. There is a correlation between GFR and WBR - r=0.67. There is a lesser correlation between GFR and skull uptake - r=0.3. There is no correlation between skull uptake and WBR - r=0.1. The comparison of skull uptake data with normal whole body bone scans leads to a significant proportion of cancer patients with positive skull uptake data. Monostotic disease (especially if metabolic in nature) expresses itself by abnormal skull uptake even if the clinical site of abnormality lies outside the skull. This new technique is ideal as a tool to investigate phosphonate concentration in bone. With it, the authors have shown the effect of specific activity of label on skull uptake, which increases as the specific activity of labelled MDP decreases

  2. Optic neuropathy following combined proton and photon radiotherapy for base of skull tumors

    International Nuclear Information System (INIS)

    Kim, June; Munzenrider, John; Maas, Alicea; Finkelstein, Dianne; Liebsch, Norbert; Hug, Eugen; Suit, Herman; Smith, Al; Goitein, Michael

    1997-01-01

    Purpose/Objective: To evaluate the risk of radiation injury to the optic pathway following high dose radiation therapy (RT) for base of skull tumors with regard to the following variables: diabetes, hypertension, number of surgical procedures, use of patch, patch distance, radiation dose, and volume of optic structures receiving 50, 55, or 60 Cobalt Gray Equivalent (CGE). Materials and Methods: A total of 359 patients with base of skull chordoma or low grade chondrosarcoma received high dose radiation therapy. Patients were treated with external beam radiotherapy utilizing protons alone or combined protons and photons. Protons of 160 MeV were delivered at the Harvard Cyclotron Laboratory using a modulated Bragg peak. The tumor dose ranged from 61 to 76 CGE. CGE was used because modulated protons have an RBE of 1.1 compared to 60 Co. Among 359 patients, 85 patients were excluded from evaluation based on age, tumor location, and pre-RT treatment criteria. All 274 evaluable patients had a minimum follow up of 12 months. Medical records were reviewed to determine the actual cause of vision changes. A total of 12 patients with grade II, III, and IV radiation-induced optic neuropathy were identified. Twenty-four patients without complications who closely matched the aforementioned 12 cases with optic neuropathy were selected from the 274 patients as a control group. Dose volume histograms of 12 cases and 24 controls were reviewed to determine minimum, median, and maximum dose to the optic apparatus as well as dose volume at 50, 55, and 60 CGE. Other information regarding remaining potential risk factors, such as diabetes, hypertension, number of surgical procedures, use of patch, and patch distance, was also obtained. Results: A total of 12 patients (4.4%) developed radiation-induced optic neuropathy: 1 grade II, 9 grade III, and 2 grade IV. Specific sites of involvement were left optic nerve in 9, right optic nerve in 5, and chiasm in 4 cases. The duration to the onset

  3. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    Science.gov (United States)

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. [Skull cult. Trophy heads and tzantzas in pre-Columbian America].

    Science.gov (United States)

    Carod-Artal, F J

    2012-07-16

    The skull cult is a cultural tradition that dates back to at least Neolithic times. Its main manifestations are trophy heads, skull masks, moulded skulls and shrunken heads. The article reviews the skull cult in both pre-Columbian America and the ethnographic present from a neuro-anthropological perspective. The tradition of shaping and painting the skulls of ancestors goes back to the Indo-European Neolithic period (Natufian culture and Gobekli Tepe). In Mesoamerica, post-mortem decapitation was the first step of a mortuary treatment that resulted in a trophy head, a skull for the tzompantli or a skull mask. The lithic technology utilised by the Mesoamerican cultures meant that disarticulation had to be performed in several stages. Tzompantli is a term that refers both to a construction where the heads of victims were kept and to the actual skulls themselves. Skull masks are skulls that have been artificially modified in order to separate and decorate the facial part; they have been found in the Templo Mayor of Tenochtitlan. The existence of trophy heads is well documented by means of iconographic representations on ceramic ware and textiles belonging to the Paraca, Nazca and Huari cultures of Peru. The Mundurucu Indians of Brazil and the Shuar or Jivaroan peoples of Amazonian Ecuador have maintained this custom down to the present day. The Shuar also shrink heads (tzantzas) in a ritual process. Spanish chroniclers such as Fray Toribio de Benavente 'Motolinia' and Gaspar de Carvajal spoke of these practices. In pre-Columbian America, the tradition of decapitating warriors in order to obtain trophy heads was a wide-spread and highly developed practice.

  5. Endoscopic graduated multiangle, multicorridor resection of juvenile nasopharyngeal angiofibroma: an individualized, tailored, multicorridor skull base approach.

    Science.gov (United States)

    Liu, James K; Husain, Qasim; Kanumuri, Vivek; Khan, Mohemmed N; Mendelson, Zachary S; Eloy, Jean Anderson

    2016-05-01

    OBJECT Juvenile nasopharyngeal angiofibromas (JNAs) are formidable tumors because of their hypervascularity and difficult location in the skull base. Traditional transfacial procedures do not always afford optimal visualization and illumination, resulting in significant morbidity and poor cosmesis. The advent of endoscopic procedures has allowed for resection of JNAs with greater surgical freedom and decreased incidence of facial deformity and scarring. METHODS This report describes a graduated multiangle, multicorridor, endoscopic approach to JNAs that is illustrated in 4 patients, each with a different tumor location and extent. Four different surgical corridors in varying combinations were used to resect JNAs, based on tumor size and location, including an ipsilateral endonasal approach (uninostril); a contralateral, transseptal approach (binostril); a sublabial, transmaxillary Caldwell-Luc approach; and an orbitozygomatic, extradural, transcavernous, infratemporal fossa approach (transcranial). One patient underwent resection via an ipsilateral endonasal uninostril approach (Corridor 1) only. One patient underwent a binostril approach that included an additional contralateral transseptal approach (Corridors 1 and 2). One patient underwent a binostril approach with an additional sublabial Caldwell-Luc approach for lateral extension in the infratemporal fossa (Corridors 1-3). One patient underwent a combined transcranial and endoscopic endonasal/sublabial Caldwell-Luc approach (Corridors 1-4) for an extensive JNA involving both the lateral infratemporal fossa and cavernous sinus. RESULTS A graduated multiangle, multicorridor approach was used in a stepwise fashion to allow for maximal surgical exposure and maneuverability for resection of JNAs. Gross-total resection was achieved in all 4 patients. One patient had a postoperative CSF leak that was successfully repaired endoscopically. One patient had a delayed local recurrence that was successfully resected

  6. Paraperesis: A rare complication after depressed skull fracture ...

    African Journals Online (AJOL)

    Paraperesis: A rare complication after depressed skull fracture. ... presentations, but midline depressed skull fracture presenting as motor weakness of both lower ... Patient was managed conservatively, made remarkable recovery and was ...

  7. The Skull of Phyllomedusa sauvagii (Anura, Hylidae).

    Science.gov (United States)

    Ruiz-Monachesi, Mario R; Lavilla, Esteban O; Montero, Ricardo

    2016-05-01

    The hylid genus Phyllomedusa comprises charismatic frogs commonly known as monkey, leaf or green frogs, and is the most diverse genus of the subfamily Phyllomedusinae, including about 31 species. Although there is some information about the anatomy of these frogs, little is known about the osteology. Here the adult skull of Phyllomedusa sauvagii, both articulated and disarticulated, is described and the intraspecific variation is reported. Additionally, cartilage associated with the adult skull, such as the nasal capsules, auditory apparatus, and hyobranchial apparatus, are included in the analysis. Further examination of disarticulated bones reveals their remarkable complexity, specifically in the sphenethmoid and of the oocipital region. The description of disarticulated bones is useful for the identification of fossil remains as well as providing morphological characteristics that are phylogenetically informative. When comparing the skull morphology with the available information of other species of the genus, Phyllomesusa sauvagii skull resembles more that of P. vaillantii and P. venusta than P. atelopoides. © 2016 Wiley Periodicals, Inc.

  8. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    Science.gov (United States)

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  9. Potential Effect of Leukocyte-Platelet-Rich Fibrin in Bone Healing of Skull Base: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Felipe Fredes

    2017-01-01

    Full Text Available Background. Reconstruction of surgical defects following cranial base surgery is challenging. Others have demonstrated that leukocyte-platelet-rich fibrin (L-PRF stimulates tissue healing and bone regeneration. However, these studies have addressed mostly maxillofacial surgical wounds. Objective. The objective of this study was to assess the possible adjuvant role of L-PRF in inducing neoossification of the surgical bone defect in anterior skull base surgery. Methods. We identified patients who had undergone an endoscopic endonasal surgery of the anterior skull base in which L-PRF membranes were used for the reconstruction of the bone defect and who were followed up with postoperative CT scans. CT findings were then correlated with baseline scans and with the CT scans of a patient who had undergone imaging and histologic analysis after maxillofacial surgery in which L-PRF was used and in which we demonstrated bone formation. Results. Five patients fulfilled the inclusion criteria. In four patients, the CT scan demonstrated closure of the bony defect by neoosteogenesis; however, the bone appeared less dense than the surrounding normal bone. A comparison with the control patient yielded similar radiological features. Conclusion. This case series suggests that L-PRF may induce bone healing and regeneration at the surgical site defect. Multi-institutional studies with a larger series of patients are required to confirm this possibility.

  10. Three-dimensional fracture visualisation of multidetector CT of the skull base in trauma patients: comparison of three reconstruction algorithms

    International Nuclear Information System (INIS)

    Ringl, Helmut; Schernthaner, Ruediger; Philipp, Marcel O.; Metz-Schimmerl, Sylvia; Czerny, Christian; Weber, Michael; Steiner-Ringl, Andrea; Peloschek, Philipp; Herold, Christian J.; Schima, Wolfgang; Gaebler, Christian

    2009-01-01

    The purpose of this study was to retrospectively assess the detection rate of skull-base fractures for three different three-dimensional (3D) reconstruction methods of cranial CT examinations in trauma patients. A total of 130 cranial CT examinations of patients with previous head trauma were subjected to 3D reconstruction of the skull base, using solid (SVR) and transparent (TVR) volume-rendering technique and maximum intensity projection (MIP). Three radiologists independently evaluated all reconstructions as well as standard high-resolution multiplanar reformations (HR-MPRs). Mean fracture detection rates for all readers reading rotating reconstructions were 39, 36, 61 and 64% for SVR, TVR, MIP and HR-MPR respectively. Although not significantly different from HR-MPR with respect to sensitivity (P = 0.9), MIP visualised 18% of fractures that were not reported in HR-MPR. Because of the relatively low detection rate using HR-MPRs alone, we recommend reading MIP reconstructions in addition to the obligatory HR-MPRs to improve fracture detection. (orig.)

  11. Surveillance for work-related skull fractures in Michigan.

    Science.gov (United States)

    Kica, Joanna; Rosenman, Kenneth D

    2014-12-01

    The objective was to develop a multisource surveillance system for work-related skull fractures. Records on work-related skull fractures were obtained from Michigan's 134 hospitals, Michigan's Workers' Compensation Agency and death certificates. Cases from the three sources were matched to eliminate duplicates from more than one source. Workplaces where the most severe injuries occurred were referred to OSHA for an enforcement inspection. There were 318 work related skull fractures, not including facial fractures, between 2010 and 2012. In 2012, after the inclusion of facial fractures, 316 fractures were identified of which 218 (69%) were facial fractures. The Bureau of Labor Statistic's (BLS) 2012 estimate of skull fractures in Michigan, which includes facial fractures, was 170, which was 53.8% of those identified from our review of medical records. The inclusion of facial fractures in the surveillance system increased the percentage of women identified from 15.4% to 31.2%, decreased severity (hospitalization went from 48.7% to 10.6% and loss of consciousness went from 56.5% to 17.8%), decreased falls from 48.2% to 27.6%, and increased assaults from 5.0% to 20.2%, shifted the most common industry from construction (13.3%) to health care and social assistance (15.0%) and the highest incidence rate from males 65+ (6.8 per 100,000) to young men, 20-24 years (9.6 per 100,000). Workplace inspections resulted in 45 violations and $62,750 in penalties. The Michigan multisource surveillance system of workplace injuries had two major advantages over the existing national system: (a) workplace investigations were initiated hazards identified and safety changes implemented at the facilities where the injuries occurred; and (b) a more accurate count was derived, with 86% more work-related skull fractures identified than BLS's employer based estimate. A more comprehensive system to identify and target interventions for workplace injuries was implemented using hospital and

  12. Diffusely increased uptake in the skull in normal bone scans

    International Nuclear Information System (INIS)

    Suematsu, Toru; Yoshida, Shoji; Motohara, Tomofumi; Fujiwara, Hirofumi; Nishii, Hironori; Komiyama, Toyozo; Yanase, Masakazu; Mizutani, Masahiro

    1992-01-01

    Diffusely increased skull uptake (a hot skull) is often seen in patients with bone metastases and metabolic disease. This finding is also, however, noticed in normal bone scans of aged women. To determine whether the hot skull could be considered a normal variant in elderly women and is associated to menopause, we studied 282 normal bone scans (166 women and 116 men without metabolic and hormonal disease; age range 11 to 84 yr). We divided the patients into eight age groups--ages 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, and 80-89 yrs. Measurements of skull uptake were obtained from anterior total body views using contrast-to-noise ratio (CNR). CNR for the skull was calculated using an equation. The sex dependent difference in skull uptake began to develop in the age group 30-39 yrs (p<0.05). The skull showed greater activity in women than in men for age groups from 30-39 to 80-89 yrs. In the age groups 50-59 and 60-69, the difference was particularly large (p<0.001). For women, the 50-59 yr age group had a significantly higher CNR than the 40-49 yr (p<0.01), 30-39 yr (p<0.05), and 20-29 yr age group (p<0.05). On the other hand, there was no significant difference between the 20-29 yr, 30-39 yr and 40-49 yr age groups. For men, the skull uptake was virtually unchanged with age. Our data strongly suggested that the hot skull in normal bone scan is related to menopausal estrogen deficiency. One should not necessarily regard it abnormal that elderly women suffer hot skull. (J.P.N.)

  13. Patterns of integration in the canine skull: an inside view into the relationship of the skull modules of domestic dogs and wolves.

    Science.gov (United States)

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-12-01

    The skull shape variation in domestic dogs exceeds that of grey wolves by far. The artificial selection of dogs has even led to breeds with mismatching upper and lower jaws and maloccluded teeth. For that reason, it has been advocated that their skulls (including the teeth) can be divided into more or less independent modules on the basis of genetics, development or function. In this study, we investigated whether the large diversity of dog skulls and the frequent occurrence of orofacial disproportions can be explained by a lower integration strength between the modules of the skull and by deviations in their covariation pattern when compared to wolves. For that purpose, we employed geometric morphometric methods on the basis of 99 3D-landmarks representing the cranium (subdivided into rostrum and braincase), the mandible (subdivided into ramus and corpus), and the upper and lower tooth rows. These were taken from CT images of 196 dog and wolf skulls. First, we calculated the shape disparity of the mandible and the cranium in dogs and wolves. Then we tested whether the integration strength (measured by RV coefficient) and the covariation pattern (as analysed by partial least squares analysis) of the modules subordinate to the cranium and the mandible can explain differing disparity results. We show, contrary to our expectations, that the higher skull shape diversity in dogs is not explained by less integrated skull modules. Also, the pattern of their covariation in the dog skull can be traced back to similar patterns in the wolf. This shows that existing differences between wolves and dogs are at the utmost a matter of degree and not absolute. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. The evolutionary significance of the Wajak skulls

    NARCIS (Netherlands)

    Storm, P.

    1995-01-01

    Ever since their description by Dubois (1920, 1922) the Wajak skulls Java) have played an important role in the discussions on the evolution of modern humans in Australasia. Because of the robust morphology of the skull, Wajak Man was seen as a link between Pleistocene hominids from Java (Solo) and

  15. Gross tumor volume (GTV) and clinical target volume (CTV) for radiation therapy of benign skull base tumours

    International Nuclear Information System (INIS)

    Maire, J.P.; Liguoro, D.; San Galli, F.

    2001-01-01

    Skull base tumours represent a out 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate: it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimensional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. (authors)

  16. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction

    Science.gov (United States)

    Denion, Eric; Hitier, Martin; Levieil, Eric; Mouriaux, Frédéric

    2015-01-01

    While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made “non-human ape-like”. In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°). PMID:26190625

  17. Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: First Long-Term Report

    International Nuclear Information System (INIS)

    Ares, Carmen; Hug, Eugen B.; Lomax, Antony J.; Bolsi, Alessandra; Timmermann, Beate; Rutz, Hans Peter; Schuller, Jan C.; Pedroni, Eros; Goitein, Gudrun

    2009-01-01

    Purpose: To evaluate effectiveness and safety of spot-scanning-based proton radiotherapy (PT) in skull-base chordomas and chondrosarcomas. Methods and Materials: Between October 1998 and November 2005, 64 patients with skull-base chordomas (n = 42) and chondrosarcomas (n = 22) were treated at Paul Scherrer Institute with PT using spot-scanning technique. Median total dose for chordomas was 73.5 Gy(RBE) and 68.4 Gy(RBE) for chondrosarcomas at 1.8-2.0 Gy(RBE) dose per fraction. Local control (LC), disease specific survival (DSS), and overall survival (OS) rates were calculated. Toxicity was assessed according to CTCAE, v. 3.0. Results: Mean follow-up period was 38 months (range, 14-92 months). Five patients with chordoma and one patient with chondrosarcoma experienced local recurrence. Actuarial 5-year LC rates were 81% for chordomas and 94% for chondrosarcomas. Brainstem compression at the time of PT (p = 0.007) and gross tumor volume >25 mL (p = 0.03) were associated with lower LC rates. Five years rates of DSS and OS were 81% and 62% for chordomas and 100% and 91% for chondrosarcomas, respectively. High-grade late toxicity consisted of one patient with Grade 3 and one patient with Grade 4 unilateral optic neuropathy, and two patients with Grade 3 central nervous system necrosis. No patient experienced brainstem toxicity. Actuarial 5-year freedom from high-grade toxicity was 94%. Conclusions: Our data indicate safety and efficacy of spot-scanning based PT for skull-base chordomas and chondrosarcomas. With target definition, dose prescription and normal organ tolerance levels similar to passive-scattering based PT series, complication-free, tumor control and survival rates are at present comparable.

  18. Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images

    International Nuclear Information System (INIS)

    Yamamoto, Tatsuya; Takeuchi, Hiroaki; Kinoshita, Kazuyuki; Kosaka, Nobuyuki; Kimura, Hirohiko

    2014-01-01

    Objective: We aimed to investigate whether pseudo-continuous arterial spin labeling (pcASL)-MRI can adequately evaluate tumor perfusion even if the tumors are located in the skull base region and evaluate the correlation between tumor blood flow (TBF) and the histopathologic features of skull base meningiomas and schwannomas. Materials and methods: We enrolled 31 patients with skull base meningioma (n = 14) and schwannoma (n = 17) who underwent surgical resection. TBF was calculated from pcASL. Tissue sections were stained with CD34 to evaluate microvessel area (MVA). TBF and MVA ratio were compared between meningiomas and schwannomas using Mann–Whitney U-test. The correlations between MVA ratio and TBF were evaluated in each tumor by using single linear regression analysis and Spearman's rank correlation coefficients (r s ). Results: MVA ratio and TBF were significantly higher in meningioma than in schwannoma (both p < 0.01). Correlation analyses revealed significant positive correlations between MVA ratio and both mean and max TBF for meningiomas (r s = 0.89, 0.81, both p < 0.01). There was a weak positive correlation between MVA ratio and mean TBF for schwannomas (r s = 0.43, p = 0.04). However, no significant correlation was found between MVA ratio and max TBF for schwannoma. Conclusions: pcASL-MRI is useful for evaluating tumor perfusion even if the tumors are located in the skull base region. Moreover, pcASL-TBF was significantly higher in most meningiomas compared to schwannomas, which can help in the differential diagnosis of the 2 tumor types even without the use of contrast material

  19. Substantial dose reduction in modern multi-slice spiral computed tomography (MSCT)-guided craniofacial and skull base surgery

    International Nuclear Information System (INIS)

    Widmann, G.; Fasser, M.; Jaschke, W.; Bale, R.; Schullian, P.; Zangerl, A.; Puelacher, W.; Kral, F.; Riechelmann, H.

    2012-01-01

    Purpose: Reduction of the radiation exposure involved in image-guided craniofacial and skull base surgery is an important goal. The purpose was to evaluate the influence of low-dose protocols in modern multi-slice spiral computed tomography (MSCT) on target registration errors (TREs). Materials and Methods: An anthropomorphic skull phantom with target markers at the craniofacial bone and the anterior skull base was scanned in Sensation Open (40-slice), LightSpeed VCT (64-slice) and Definition Flash (128-slice). Identical baseline protocols (BP) at 120 kV/100 mAs were compared to the following low-dose protocols (LD) in care dose/dose modulation: (LD-I) 100 kV/35ref. mAs, (LD-II) 80 kV/40 - 41ref. mAs, and (LD-III) 80 kV/15 - 17ref. mAs. CTDIvol and DLP were obtained. TREs using an optical navigation system were calculated for all scanners and protocols. Results were statistically analyzed in SPSS and compared for significant differences (p ≤ 0.05). Results: CTDIvol for the Sensation Open/LightSpeed VCT/Definition Flash showed: (BP) 22.24 /32.48 /14.32 mGy; (LD-I) 4.61 /3.52 /1,62 mGy; (LD-II) 3.15 /2.01 /0.87 mGy; and (LD-III) na/0.76 /0.76 mGy. Differences between the BfS (Bundesamt fuer Strahlenschutz) reference CTDIvol of 9 mGy and the lowest CTDIvol were approximately 3-fold for Sensation Open, and 12-fold for the LightSpeed VCT and Definition Flash. A total of 33 registrations and 297 TRE measurements were performed. In all MSCT scanners, the TREs did not significantly differ between the low-dose and the baseline protocols. Conclusion: Low-dose protocols in modern MSCT provided substantial dose reductions without significant influence on TRE and should be strongly considered in image-guided surgery. (orig.)

  20. High-resolution Whole-Genome Analysis of Skull Base Chordomas Implicates FHIT Loss in Chordoma Pathogenesis12

    OpenAIRE

    Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T

    2012-01-01

    Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because ...

  1. Reconstruction of complicated skull base defects utilizing free tissue transfer.

    Science.gov (United States)

    Djalilian, Hamid R; Gapany, Markus; Levine, Samuel C

    2002-11-01

    We managed five patients with large skull base defects complicated by complex infections with microvascular free tissue transfer. The first patient developed an infection, cerebrospinal fluid (CSF) leak, and meningitis after undergoing a translabyrinthine resection of an acoustic neuroma. The second patient had a history of a gunshot wound to the temporal bone, with a large defect and an infected cholesteatoma that caused several episodes of meningitis. The third through the fifth patients had persistent CSF leakage and infection refractory to conventional therapy. In all cases prior attempts of closure with fat grafts or regional flaps had failed. Rectus abdominis myofascial free flap, radial forearm free flap or a gracilis muscle free flap was used after debridement of the infected cavities. The CSF leaks, local infections, and meningitis were controlled within a week. In our experience, microvascular free tissue provides the necessary bulk of viable, well-vascularized tissue, which not only assures a mechanical seal but also helps clear the local infection.

  2. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].

    Science.gov (United States)

    Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu

    2011-02-01

    To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.

  3. Radiological and acetomorphine analysis of the symmetry and direction of evolution of skulls from some historic populations

    International Nuclear Information System (INIS)

    Gawlikowska-Sroka, A.

    2006-01-01

    Introduction: Asymmetry is a common phenomenon in nature. It is typical for the human body and for the skull as its part. Knowledge of asymmetry and normal anatomy, especially of variability which does not represent pathology but distinguishes individuals is the basis for correct interpretation of radiological findings concerning the skull both in research and diagnostic examinations widely performed in surgery, neurology, neurosurgery, internal medicine, or pediatrics. Analysis of fluctuating asymmetry reveals the influence of stress factors on human development and the ability of the organism to defend itself against stress.The aim of this work was to analyse the asymmetry of skulls from some historic populations and to describe changes in their anatomy over the ages. Material and methods: The material consisted of three skull groups: one contemporary with 82 skulls and two mediaeval (52 skulls from Cedynia and 77 skulls from Grodek on Bug). Direct measurements were done and the skull was X-rayed in the Posterior-Anterior and skull-base projections. Images were scanned and calibrated with MicroStation 95 Academic Edition software. Helmert's transformation with first-order polynomial was done to attain a suitable geometry. Vectorisation of axes and areas was performed on reference material. Using tools for measurement of vector elements, the distance between bilateral points of both sides of the skull were obtained. Data were analysed statistically. Results: The results of measurements were used to study the directional and fluctuating asymmetry. It was found that asymmetry of the skull was present in both historic populations. The following conclusions were drawn: changes in the distribution of directional and fluctuating asymmetry for individual dimensions have taken place over the ages. A high level of directional asymmetry in the facial part and fluctuating asymmetry in the calvaria is typical for contemporary skulls. The reverse is true for relations in the

  4. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    Science.gov (United States)

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  5. Clinical outcome after high-precision radiotherapy for skull base meningiomas: Pooled data from three large German centers for radiation oncology.

    Science.gov (United States)

    Combs, Stephanie E; Farzin, Mostafa; Boehmer, Julia; Oehlke, Oliver; Molls, Michael; Debus, Jürgen; Grosu, Anca-Ligia

    2018-05-01

    To evaluate outcome in patients with base of skull meningiomas treated with modern high precision radiation therapy (RT) techniques. 927 patients from three centers were treated with either radiosurgery or fractionated high-precision RT for meningiomas. Treatment planning was based on CT and MRI following institutional guidelines. For radiosurgery, a median dose of 13 Gy was applied, for fractionated treatments, a median dose of 54 Gy in 1.8 Gy single fractions was prescribed. Follow-up included a clinical examination as well as contrast-enhanced imaging. All patients were followed up prospectively after radiotherapy in the three departments within a strict follow-up regimen. The median follow-up time was 81 months (range 1-348 months). Median local control was 79 months (range 1-348 months). Local control (LC) was 98% at 1 year, 94% at 3 years, 92% at 5 years and 86% at 10 years. There was no difference between radiosurgery and fractionated RT. We analyzed the influence of higher doses on LC and could show that dose did not impact LC. Moreover, there was no difference between 54 Gy and 57.6 Gy in the fractionated group. Side effects were below 5% in both groups without any severe treatment-related complications. Based on the pooled data analysis this manuscript provides a large series of meningiomas of the skull base treated with modern high precision RT demonstrating excellent local control and low rates of side effects. Such data support the recommendation of RT for skull base meningiomas in the interdisciplinary tumor board discussions. The strong role of RT must influence treatment recommendations keeping in mind the individual risk-benefit profile of treatment alternatives. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A critical inventory of preoperative skull replicas.

    Science.gov (United States)

    Fasel, J H D; Beinemann, J; Schaller, K; Gailloud, P

    2013-09-01

    Physical replicas of organs are used increasingly for preoperative planning. The quality of these models is generally accepted by surgeons. In view of the strong trend towards minimally invasive and personalised surgery, however, the aim of this investigation was to assess qualitatively the accuracy of such replicas, using skull models as an example. Skull imaging was acquired for three cadavers by computed tomography using clinical routine parameters. After digital three-dimensional (3D) reconstruction, physical replicas were produced by 3D printing. The facsimilia were analysed systematically and compared with the best gold standard possible: the macerated skull itself. The skull models were far from anatomically accurate. Non-conforming rendering was observed in particular for foramina, sutures, notches, fissures, grooves, channels, tuberosities, thin-walled structures, sharp peaks and crests, and teeth. Surgeons should be aware that preoperative models may not yet render the exact anatomy of the patient under consideration and are advised to continue relying, in specific conditions, on their own analysis of the native computed tomography or magnetic resonance imaging.

  7. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  8. Peculiarities of skull roentgenological picture during hyperparathyroid osteodystrophia

    International Nuclear Information System (INIS)

    Spuzyak, M.I.

    1985-01-01

    Results of the analysis of skull roentgenological pictures of 61 patients wih primary hyperparathyroidism are presented. All the patients were operated. Diagnosis is confirmed during the operation and histological examination. Alterations of skull are disclosed in 90% of patients

  9. Changes of the skull in general body diseases

    International Nuclear Information System (INIS)

    Koval', G.Yu.; Perepust, L.A.; Novikova, Eh.Z.

    1984-01-01

    Changes of the skull in the following body disease are considered. Diseases: endocrine diseases, fibrous osteodystrophy, reticulohistocytoses and noninfectious granulomas, the blood system diseases, disturbance of vitamin balance. Skull roentgenograms in some above-mentioned diseases are presented and analysed

  10. Direct and CT measurements of canals and foramina of the skull base

    International Nuclear Information System (INIS)

    Berlis, A.; Schumacher, M.; Putz, R.

    1992-01-01

    This investigation is based on measurements of 60 macerated adult European skulls from the Alexander-Ecker Collection at the Anatomy Department of the University of Freiburg. Computer tomographical (CT) and anatomical measurements were compared to assess the accuracy of the CT representation of osseous structures. Nine structures were examined: the optic canal, superior orbital fissure, foramen rotundum, foramen ovale, foramen spinosum,foramen Vesalii (venosum), carotid canal, internal auditory canal and hypoglossal canal. Results show a good and even excellent correlation if the cranial opening is approximately at a right angle to the scanline. For this reason, the results of the coronal examination of the internal auditory canal are less satisfactory, and the coronal and axial measurements of the hypoglossal canal show only a moderately good correlation. (author)

  11. An Anatomic Morphological Study of Occipital Spurs in Human Skulls.

    Science.gov (United States)

    Srivastava, Monika; Asghar, Adil; Srivastava, Nitya Nand; Gupta, Nandkishore; Jain, Anuj; Verma, Jayant

    2018-01-01

    Occipital spurs are quite common; however, they are also the source of frequent discomfort to the patients. Their role has been implicated in causation of pain at the base of skull, which may extend to shoulder limiting the movement of the shoulder and neck. The present was carried out to find out the prevalence of occipital spur in human skull and to find out the anatomic morphological characteristics of occipital spur. A total of 30 cadaveric skulls were examined in the Department of Anatomy, Uttar Pradesh University of Medical Sciences, for the presence of occipital spur. These skulls were the part of boneset obtained as a part of undergraduate training in the department. All the measurements were taken using a digital Vernier Caliper after taking all necessary precaution to avoid any damage to these spurs. The prevalence of occipital spur in the present study was 10%. The mean width recorded in the present study was 13.40 mm (±6.7) and the mean length recorded was 13.45 mm (±1.05). Similarly, mean thickness noted was 2.43 mm (±0.43). Thus, the present study concludes that occipital spurs are the frequent source of discomfort to patients. The knowledge of this tubercle is of paramount importance to neurosurgeons, sports physicians, and radiologists for the diagnosis of such discomfort.

  12. Leonardo da Vinci's "A Skull Sectioned" : Skull and dental formula revisited

    NARCIS (Netherlands)

    Gerrits, Peter O.; Veening, Jan G.

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing A skull sectioned (RL 19058v) by Leonardo da Vinci (14521519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned

  13. Leonardo da Vinci's "A Skull Sectioned": Skull and dental formula revisited

    NARCIS (Netherlands)

    Gerrits, P.O.; Veening, J.G.

    2013-01-01

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned

  14. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    Science.gov (United States)

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  15. Skull base osteomyelitis in otitis externa: The utility of triphasic and single photon emission computed tomography/computed tomography bone scintigraphy

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Gupta, Ashok Kumar; Panda, Naresh Kumar; Das, Ashim; Mittal, Bhagwant Rai

    2013-01-01

    Skull base osteomyelitis (SBO) refers to infection that has spread beyond the external auditory canal to the base of the skull in advanced stages of otitis externa. Clinically, it may be difficult to differentiate SBO from severe otitis externa without bony involvement. This study was performed to determine the role of three phase bone scintigraphy (TPBS) and single photon emission tomography/computed tomography (SPECT/CT) in detecting SBO. We retrospectively analyzed records of 20 patients (14 M, 6 F) with otitis externa and suspected SBO. TPBS and SPECT/CT of the skull were performed. Findings were correlated with clinical, laboratory and diagnostic CT scan findings. All patients were diabetic with elevated erythrocyte sedimentation rate. A total of 18 patients had bilateral and two unilateral symptoms. Cranial nerves were involved in eight patients and microbiological culture of ear discharge fluid positive in seven. Early images showed increased temporal vascularity in nine patients and increased soft-tissue uptake in 10, while delayed images showed increased bone uptake in 19/20 patients. Localized abnormal tracer uptake was shown by SPECT/CT in the mastoid temporal (15), petrous (11), sphenoid (3) and zygomatic (1) and showed destructive changes in five. Thus, TPBS was found positive for SBO in 10/20 patients and changed the management in four. Our study suggests that TPBS with SPECT/CT is a useful non-invasive investigation for detection of SBO in otitis externa

  16. Study of mastoid canals and grooves in north karnataka human skulls.

    Science.gov (United States)

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-08-01

    This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding.

  17. STUDY ON NORTHERN AND SOUTHERN INDIA VARIATIONS OF HUMAN SKULL- A SECONDARY RESEARCH

    Directory of Open Access Journals (Sweden)

    Jameskutty Baby Jacob Kaithackal

    2016-12-01

    Full Text Available BACKGROUND Identity of a human being with regard to sex, race, age etc. can be revealed if the skull is suitably examined. The general concept of ethnic and geographic variations being reflected in the body as variations in size, shape, etc. can be checked for in the case of skeleton also. This article is formed out of a term paper study submitted by myself in 2016 to the Yenepoya University, Mangalore, Karnataka, as part of the postgraduate diploma course in Forensic Anthropology. The research was based on a question whether there is a significant difference between human skulls from North and South India. The aims/objectives were bi-fold: to analyse the difference in male and female skull from North Indian and South Indian regions from review of scholarly literature and to explore the possibility identification of individuals from cranial features unique to North and South India. MATERIALS AND METHODS The original articles available on this type of work were extensively reviewed to recognise any traits that differentiated the skulls with regard to their regional variation. RESULTS At the end of the scrutiny of such papers, a summary of the features that distinguished skulls as belonging to northern or southern parts of India was tried. The Indian cranial series, though varied widely in shape, the absence of any statistically significant difference between them made it unreliable to predict skull as male or female by morphometric estimation. The studies by different scholars did not propose for a uniform distinctiveness between north and south Indian skulls. CONCLUSION It was concluded that analysing a single specimen to be of a distinct geographic origin should be done more cautiously when compared to a setting of series analysis where variability might be there of course.

  18. Estimation of skull table thickness with clinical CT and validation with microCT.

    Science.gov (United States)

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.

  19. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report. Introduction

  20. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report.

  1. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    Science.gov (United States)

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  2. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Directory of Open Access Journals (Sweden)

    Chris N Bayer

    Full Text Available Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  3. Gender differences in D-aspartic acid content in skull bone.

    Science.gov (United States)

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  4. Bone scintigraphy in lesions of the skull

    International Nuclear Information System (INIS)

    Fischer, M.; Wasilewski, A.; Deitmer, T.

    1982-01-01

    The value of 3-phase-scintigraphy in bone lesions of the skull with a new seeking agent 99mTc-2,3-dicarboxypropane-1,1-diphosphonic acid (DPD) is studied. A high soft tissue-bone-ratio of DPD is emphasized. For this reason DPD is used for bone scintigraphy of the skull, because the mass of soft tissue in relation to bone is high and a higher clearance improves the interpretation of the images of the first two phases. An increased tracer uptake is found for skeletal neoplasms (malignant and benign lesions) and for acute osteomyelitis. By contrast, the chronic inflammatory bone lesions showed normal tracer uptake. This new bone seeking agent allows to localize and differentiate tumorous or acute inflammatory lesions and chronic inflammatory bone lesions of the skull

  5. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    International Nuclear Information System (INIS)

    Nikoghosyan, Anna V; Rauch, Geraldine; Münter, Marc W; Jensen, Alexandra D; Combs, Stephanie E; Kieser, Meinhard; Debus, Jürgen

    2010-01-01

    Low and intermediate grade chondrosarcomas are relative rare bone tumours. About 5-12% of all chondrosarcomas are localized in base of skull region. Low grade chondrosarcoma has a low incidence of distant metastasis but is potentially lethal disease. Therefore, local therapy is of crucial importance in the treatment of skull base chondrosarcomas. Surgical resection is the primary treatment standard. Unfortunately the late diagnosis and diagnosis at the extensive stage are common due to the slow and asymptomatic growth of the lesions. Consequently, complete resection is hindered due to close proximity to critical and hence dose limiting organs such as optic nerves, chiasm and brainstem. Adjuvant or additional radiation therapy is very important for the improvement of local control rates in the primary treatment. Proton therapy is the gold standard in the treatment of skull base chondrosarcomas. However, high-LET (linear energy transfer) beams such as carbon ions theoretically offer advantages by enhanced biologic effectiveness in slow-growing tumours. The study is a prospective randomised active-controlled clinical phase III trial. The trial will be carried out at Heidelberger Ionenstrahl-Therapie (HIT) centre as monocentric trial. Patients with skull base chondrosarcomas will be randomised to either proton or carbon ion radiation therapy. As a standard, patients will undergo non-invasive, rigid immobilization and target volume definition will be carried out based on CT and MRI data. The biologically isoeffective target dose to the PTV (planning target volume) in carbon ion treatment will be 60 Gy E ± 5% and 70 Gy E ± 5% (standard dose) in proton therapy respectively. The 5 year local-progression free survival (LPFS) rate will be analysed as primary end point. Overall survival, progression free and metastasis free survival, patterns of recurrence, local control rate and morbidity are the secondary end points. Up to now it was impossible to compare two different

  6. Photo-Realistic Statistical Skull Morphotypes: New Exemplars for Ancestry and Sex Estimation in Forensic Anthropology.

    Science.gov (United States)

    Caple, Jodi; Stephan, Carl N

    2017-05-01

    Graphic exemplars of cranial sex and ancestry are essential to forensic anthropology for standardizing casework, training analysts, and communicating group trends. To date, graphic exemplars have comprised hand-drawn sketches, or photographs of individual specimens, which risks bias/subjectivity. Here, we performed quantitative analysis of photographic data to generate new photo-realistic and objective exemplars of skull form. Standardized anterior and left lateral photographs of skulls for each sex were analyzed in the computer graphics program Psychomorph for the following groups: South African Blacks, South African Whites, American Blacks, American Whites, and Japanese. The average cranial form was calculated for each photographic view, before the color information for every individual was warped to the average form and combined to produce statistical averages. These mathematically derived exemplars-and their statistical exaggerations or extremes-retain the high-resolution detail of the original photographic dataset, making them the ideal casework and training reference standards. © 2016 American Academy of Forensic Sciences.

  7. The oldest anatomical handmade skull of the world c. 1508: 'the ugliness of growing old' attributed to Leonardo da Vinci.

    Science.gov (United States)

    Missinne, Stefaan J

    2014-06-01

    The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.

  8. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.; Liebsch, Norbert J.; Paganetti, Harald, E-mail: hpaganetti@mgh.harvard.edu

    2017-04-01

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment

  9. Hand in glove: brain and skull in development and dysmorphogenesis

    Science.gov (United States)

    Flaherty, Kevin

    2013-01-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  10. Flip-avoiding interpolating surface registration for skull reconstruction.

    Science.gov (United States)

    Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

    2018-03-30

    Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Delayed cerebral radiation necrosis following treatment for a plasmacytoma of the skull.

    Science.gov (United States)

    Chambless, Lola B; Angel, Federica B; Abel, Ty W; Xia, Fen; Weaver, Kyle D

    2010-10-25

    Cerebral radiation necrosis is a relatively common complication of radiation therapy for intracranial malignancies which can also rarely be encountered after radiation of extracranial lesions of the head and neck. We present the first reported case of cerebral radiation necrosis in a patient who underwent radiation therapy for a plasmacytoma of the skull. A 68-year-old male with multiple myeloma presented with an enhancing right frontal mass, 8 years after receiving radiation therapy for a plasmacytoma of the left frontal skull. The patient underwent a diagnostic and therapeutic craniotomy for a presumed neoplastic lesion. The pathologic diagnosis made in this case was delayed radiation necrosis. The patient was followed for over a year during which this process continued to evolve before the ultimate resolution of his clinical symptoms and radiographic abnormality. This case highlights the importance of considering radiation necrosis in the differential diagnosis of any patient with an intracranial mass and a history of radiation for an extracranial head and neck malignancy, regardless of timing and laterality. This case also provides unique insights into the ongoing debate regarding the role of the aberrant immune response in the pathogenesis of delayed cerebral radiation necrosis.

  12. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    Science.gov (United States)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  13. Human skulls with turquoise inlays: pre hispanic origin or replicas?

    International Nuclear Information System (INIS)

    Silva V, Y.; Castillo M, M.T.; Bautista M, J.P.; Arenas A, J.

    2006-01-01

    The lack of archaeological context determining if the manufacture of two human skulls adorned with turquoise inlays have pre-Columbian origin or not (replicas), led to perform other studies. Under these conditions, besides orthodox methodology commonly used to assign chronology and cultural aspects as form, style, decoration, iconography, etc., it was necessary to obtain more results based on the use of characterization techniques. The techniques employed were Scanning Electron Microscopy (SEM), X-Ray Energy Dispersive Spectroscopy (EDS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR), in order to determine the manufacture techniques and chemical composition of the materials used for the cementant. SEM analysis showed the presence of zones composed by Ca, O, C and Al. In some cases Mg, Cl, Fe and Pb were identified. High concentration of Cu was present in all samples, due to residues of turquoise inlays (CuAI 6 (PO 4 ) 4 (OH) 8 (H 2 O) 4 ) with which the skulls were decorated. In the cementant was identified the Ca as base element of the cementant, as well as particles < 100 nm with irregular morphology and other amorphous zones. FTIR spectrums indicated the presence of organic substances that could be used as agglutinating in the cementant. The current work shows a progress identifying involved techniques in the manufacturing of two human skulls with turquoise inlays. (Author)

  14. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    Science.gov (United States)

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  15. Identification of sex using lateral cephalogram: Role of cephalofacial parameters

    Directory of Open Access Journals (Sweden)

    Almas Binnal

    2012-01-01

    Full Text Available Introduction: Recognition of sex is an important aspect of identification of an individual. Apart from pelvis, skull exhibits highest sexual dimorphism in the human body- Lateral cephalograms are an invaluable tool in identification of sex as they reveal architectural and morphological details of the skull on a single radiograph- The equipment required for lateral cephalometry is readily available and the technique is cost-effective, easy to perform, offers quick results, reproducible and can be implemented in any special training for the forensic examiner. The present study was undertaken to evaluate the role of lateral cephalograms and the nine cephalometric variables in the identification of sex and also to derive a discriminant function equation for identification of sex. Materials and methods: A total of 100 lateral cephalograms were taken of 50 male and 50 female subjects aged between 25 and 54 years belonging to South Indian population. The nine derived cephabmetnc parameters were used to arrive at a discriminant function equation which was further assessed for its reliability among the study subjects. Results: Among nine cephalometric parameters used, seven were reliable in the identification of sex. The derived discriminant function equation accurately identified 88% of the male study subjects as males and 84% of the female subjects as females. Conclusion: The lateral cephalograms and the nine cephalometric variables employed in the study are simple and reliable tools of sexual discrimination. The derived discriminant functional equation can be used to accurately identify sex of an individual belonging to South Indian population

  16. Brown tumors of the anterior skull base as the initial manifestation of true normocalcemic primary hyperparathyroidism: report of three cases and review of the literature.

    Science.gov (United States)

    Khalatbari, Mahmoud Reza; Hamidi, Mehrdokht; Moharamzad, Yashar; Setayesh, Ali; Amirjamshidi, Abbas

    2013-01-01

    Brown tumor is a bone lesion secondary to hyperparathyroidism of various etiologies. Skeletal involvement in primary hyperparathyroidism secondary to parathyroid adenoma is very uncommon and brown tumor has become extremely a rare clinical entity. Hyperparathyroidism is usually associated with high levels of serum calcium. Brown tumor as the only and initial symptom of normocalcemic primary hyperparathyroidism is extremely rare. Moreover, involvement of the skull base and the orbit is exceedingly rare. The authors would report three cases of brown tumor of the anterior skull base that were associated with true normocalcemic primary hyperparathyroidism. Clinical manifestations, neuroimaging findings, pathological findings, diagnosis and treatment of the patients are discussed and the relevant literature is reviewed.

  17. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    Science.gov (United States)

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Evolutionary origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  19. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    Science.gov (United States)

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  20. Anatomy of the skull base and the cranial nerves in slice imaging; Anatomie der Schaedelbasis und Hirnnerven in der Schnittbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Bink, A.; Berkefeld, J.; Zanella, F. [Klinikum der Goethe-Universitaet Frankfurt, Institut fuer Neuroradiologie, Frankfurt am Main (Germany)

    2009-07-15

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples. (orig.) [German] Zur Untersuchung der Schaedelbasis sind sowohl die Computertomographie (CT) als auch Magnetresonanztomographie (MRT) geeignet. Waehrend mittels CT vorzugsweise die exakte knoecherne Ausbreitung von Pathologien z. B. zur operativen Therapieplanung erfasst werden, dient die MRT sowohl der Darstellung von Pathologien bzgl. ihrer Ausbreitung im Weichteilgewebe als auch dem Nachweis knoecherner Infiltration. Bei der Untersuchung der Schaedelbasis wird eine hochaufloesende Darstellung mit geringer Schichtdicke fuer beide Modalitaeten angestrebt. Die genaue Kenntnis der Anatomie ist bereits bei der Untersuchungsplanung notwendig. Sie ist zudem Voraussetzung fuer das Erkennen und die korrekte Interpretation von Pathologien. Die MRT ist die bildgebende Methode der Wahl zur Abklaerung von Pathologien der Hirnnerven. Dabei ist es durch gezielte Sequenzauswahl, die sich nach den die Hirnnerven umgebenen Strukturen richtet, moeglich, den gesamten Verlauf der Hirnnerven zu beurteilen. Dieser Artikel beschreibt die Untersuchung der Schaedelbasis

  1. The ontogenetic origins of skull shape disparity in the Triturus cristatus group.

    Science.gov (United States)

    Cvijanović, Milena; Ivanović, Ana; Kalezić, Miloš L; Zelditch, Miriam L

    2014-09-01

    Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur. © 2014 Wiley Periodicals, Inc.

  2. 3D shape recovery of a newborn skull using thin-plate splines.

    Science.gov (United States)

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  3. Effects of the freezing and thawing process on biomechanical properties of the human skull.

    Science.gov (United States)

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Koizumi, Yoshinori; Hayakawa, Mutsumi; Yajima, Daisuke; Inokuchi, Go; Makino, Yohsuke; Motomura, Ayumi; Chiba, Fumiko; Iwase, Hirotaro

    2014-03-01

    The aim of this study was to determine if biomechanical investigations of skull samples are reliable after skulls have been subjected to a freezing and thawing process. The skulls were obtained from 105 Japanese cadavers (66 males, 39 females) of known age that were autopsied in our department between October 2012 and June 2013. We obtained bone specimens from eight sites (four bilaterally symmetrical pairs) of each skull and measured the mass of each specimen. They were then classified into three groups (A, B, C) based on the duration of freezing of the experimental samples. The left-side samples were subjected to frozen storage (experimental group). The corresponding right-side samples were their controls. Bending tests were performed on the controls immediately after they were obtained. The experimental samples were preserved by refrigeration at -20 °C for 1 day (group A), 1 month (group B), or 3 months (group C). Following refrigeration, these samples were placed at 37 °C to thaw for 1 h and then were subjected to bending tests using a three-point-bending apparatus attached to a Handy force gauge. The device recorded the fracture load automatically when the specimen fractured. Statistical analyses revealed that there were no significant differences in sample fracture loads between the frozen preserved/thawed samples and the unfrozen controls for each of the cryopreservation intervals. We eliminated any possible sample mass bias by using controls from the same skull in each case. The results suggest that the freezing/thawing process has little effect on the mechanical properties of human skulls. Thus, frozen storage for up to 3 months is a good method for preserving human skulls. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Morphological diversity in tenrecs (Afrosoricida, Tenrecidae: comparing tenrec skull diversity to their closest relatives

    Directory of Open Access Journals (Sweden)

    Sive Finlay

    2015-04-01

    Full Text Available It is important to quantify patterns of morphological diversity to enhance our understanding of variation in ecological and evolutionary traits. Here, we present a quantitative analysis of morphological diversity in a family of small mammals, the tenrecs (Afrosoricida, Tenrecidae. Tenrecs are often cited as an example of an exceptionally morphologically diverse group. However, this assumption has not been tested quantitatively. We use geometric morphometric analyses of skull shape to test whether tenrecs are more morphologically diverse than their closest relatives, the golden moles (Afrosoricida, Chrysochloridae. Tenrecs occupy a wider range of ecological niches than golden moles so we predict that they will be more morphologically diverse. Contrary to our expectations, we find that tenrec skulls are only more morphologically diverse than golden moles when measured in lateral view. Furthermore, similarities among the species-rich Microgale tenrec genus appear to mask higher morphological diversity in the rest of the family. These results reveal new insights into the morphological diversity of tenrecs and highlight the importance of using quantitative methods to test qualitative assumptions about patterns of morphological diversity.

  5. Assessment of skull base involvement in nasopharyngeal carcinoma: comparisons of single-photon emission tomography with planar bone scintigraphy and X-ray computed tomography

    International Nuclear Information System (INIS)

    Lee Chianghsuan; Wang Peiwen; Chen Hueyong; Lui Chunchung; Su Chihying

    1995-01-01

    The diagnostic contribution of single-photon emission tomography (SPET) to the detection of bone lesions of the skull base was explored in 200 patients with nasopharyngeal carcinoma (NPC). Comparison of SPET with planar bone scintigraphy showed that SPET improved the contrast and better defined the lesions in 107 out of the 200 patients. Comparison of SPET with X-ray computed tomography (CT) showed that SPET did not miss the lesions detected by CT while CT missed 49% of the lesions detected by SPET. The only false-positive lesion with SPET was detected in the mastoid bone. SPET detected skull base lesions in all of the 35 patients with cranial nerve involvement, while CT missed eight and planar bone scintigraphy missed four. The findings suggest that SPET should be included in the routine check-up examinations of patients with NPC. (orig.)

  6. Late toxicity of proton beam therapy for patients with the nasal cavity, para-nasal sinuses, or involving the skull base malignancy: importance of long-term follow-up

    International Nuclear Information System (INIS)

    Zenda, Sadamoto; Kawashima, Mitsuhiko; Arahira, Satoko; Kohno, Ryosuke; Nishio, Teiji; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2015-01-01

    Although several reports have shown that proton beam therapy (PBT) offers promise for patients with skull base cancer, little is known about the frequency of late toxicity in clinical practice when PBT is used for these patients. Here, we conducted a retrospective analysis to clarify the late toxicity profile of PBT in patients with malignancies of the nasal cavity, para-nasal sinuses, or involving the skull base. Entry to this retrospective study was restricted to patients with (1) malignant tumors of the nasal cavity, para-nasal sinuses, or involving the skull base; (2) definitive or postoperative PBT (>50 GyE) from January 1999 through December 2008; and (3) more than 1 year of follow-up. Late toxicities were graded according to the common terminology criteria for adverse events v4.0 (CTCAE v4.0). From January 1999 through December 2008, 90 patients satisfied all criteria. Median observation period was 57.5 months (range, 12.4-162.7 months), median time to onset of grade 2 or greater late toxicity except cataract was 39.2 months (range, 2.7-99.8 months), and 3 patients had toxicities that occurred more than 5 years after PBT. Grade 3 late toxicities occurred in 17 patients (19%), with 19 events, and grade 4 late toxicities in 6 patients (7%), with 6 events (encephalomyelitis infection 2, optic nerve disorder 4). In conclusion, the late toxicity profile of PBT in patients with malignancy involving the nasal cavity, para-nasal sinuses, or skull base malignancy was partly clarified. Because late toxicity can still occur at 5 years after treatment, long-term follow-up is necessary. (author)

  7. Contributions to the functional morphology of caudate skulls: kinetic and akinetic forms

    Directory of Open Access Journals (Sweden)

    Nikolay Natchev

    2016-09-01

    Full Text Available A strongly ossified and rigid skull roof, which prevents parietal kinesis, has been reported for the adults of all amphibian clades. Our μ-CT investigations revealed that the Buresch’s newt (Triturus ivanbureschi possess a peculiar cranial construction. In addition to the typical amphibian pleurokinetic articulation between skull roof and palatoquadrate associated structures, we found flexible connections between nasals and frontals (prokinesis, vomer and parasphenoid (palatokinesis, and between frontals and parietals (mesokinesis. This is the first description of mesokinesis in urodelans. The construction of the skull in the Buresch’s newts also indicates the presence of an articulation between parietals and the exocipitals, discussed as a possible kind of metakinesis. The specific combination of pleuro-, pro-, meso-, palato-, and metakinetic skull articulations indicate to a new kind of kinetic systems unknown for urodelans to this date. We discuss the possible neotenic origin of the skull kinesis and pose the hypothesis that the kinesis in T. ivanbureschi increases the efficiency of fast jaw closure. For that, we compared the construction of the skull in T. ivanbureschi to the akinetic skull of the Common fire salamander Salamandra salamandra. We hypothesize that the design of the skull in the purely terrestrial living salamander shows a similar degree of intracranial mobility. However, this mobility is permitted by elasticity of some bones and not by true articulation between them. We comment on the possible relation between the skull construction and the form of prey shaking mechanism that the species apply to immobilize their victims.

  8. Imaging basilar skull fractures in the horse: a review

    International Nuclear Information System (INIS)

    Ramirez, O. III; Jorgensen, J.S.; Thrall, D.E.

    1998-01-01

    Due to the complex nature of the anatomy of the equine head, superimposition of numerous structures, and poor soft tissue differentiation, radiography may be of limited value in the diagnosis of basilar skull fractures. However, in many horses radiographic changes such as soft tissue opacification of the guttural pouch region, irregular bone margination at the sphenooccipital line, attenuation of the nasopharynx, ventral displacement of the dorsal pharyngeal wall and the presence of irregularly shaped bone fragments in the region of the guttural pouches are suggestive of a fracture of the skull base. These findings in conjunction with physical examination findings and historical information may lead to a presumptive diagnosis of a fracture. When available and when the patient will accommodate the equipment, computed tomography may give a definitive diagnosis owing to its superior resolution and differentiation of soft tissue structures

  9. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  10. Coexistence of Wormian Bones With Metopism, and Vice Versa, in Adult Skulls.

    Science.gov (United States)

    Cirpan, Sibel; Aksu, Funda; Mas, Nuket; Magden, Abdurrahman Orhan

    2016-03-01

    The aim of the study is to investigate coexistence of Wormian bones with metopism, and vice versa, in adult skulls. A total of 160 dry adult human skulls of unknown sex and ages were randomly selected from the Gross Anatomy Laboratory of Medical School of Dokuz Eylul University. The skulls were examined for presence of metopism, Wormian bones (WB), and coexistence of WBs with metopism and vice versa. Topographic distribution of the WBs was macroscopically evaluated within the skulls including metopism. The photographs were being taken with Canon 400B (55 mm objective). The frequency of metopism and WBs in 160 skulls is 7.50% (12/160) and 59.3% (95/160), respectively, P coexistence of WBs with metopism was found as 11 of 12 skulls (91.66%), whereas the incidence of coexistence of metopism with WBs was found as 11 of 95 skulls (11.58%), P coexistence of WBs with metopism (11/12, 91.66%) and coexistence of metopism with WBs (11/95, 11.58%). The factors leading to metopism may also lead to WBs, whereas that the factors leading to WBs may not lead to metopism.

  11. The copper-beaten skull | Mahomed | SA Journal of Radiology

    African Journals Online (AJOL)

    The copper-beaten skull appearance is typically associated with craniosynostosis, where premature fusion of the cranial bone sutures results in the growing brain exerting pressure on the malleable cranium, producing a pattern known as the copper-beaten skull appearance. SA JOURNAL OF RADIOLOGY • February 2012 ...

  12. Prediction of the microsurgical window for skull-base tumors by advanced three-dimensional multi-fusion volumetric imaging

    International Nuclear Information System (INIS)

    Oishi, Makoto; Fukuda, Masafumi; Saito, Akihiko; Hiraishi, Tetsuya; Fujii, Yukihiko; Ishida, Go

    2011-01-01

    The surgery of skull base tumors (SBTs) is difficult due to the complex and narrow surgical window that is restricted by the cranium and important structures. The utility of three-dimensional multi-fusion volumetric imaging (3-D MFVI) for visualizing the predicted window for SBTs was evaluated. Presurgical simulation using 3-D MFVI was performed in 32 patients with SBTs. Imaging data were collected from computed tomography, magnetic resonance imaging, and digital subtraction angiography. Skull data was processed to imitate actual bone resection and integrated with various structures extracted from appropriate imaging modalities by image-analyzing software. The simulated views were compared with the views obtained during surgery. All craniotomies and bone resections except opening of the acoustic canal in 2 patients were performed as simulated. The simulated window allowed observation of the expected microsurgical anatomies including tumors, vasculatures, and cranial nerves, through the predicted operative window. We could not achieve the planned tumor removal in only 3 patients. 3-D MFVI afforded high quality images of the relevant microsurgical anatomies during the surgery of SBTs. The intraoperative deja-vu effect of the simulation increased the confidence of the surgeon in the planned surgical procedures. (author)

  13. Effects of the murine skull in optoacoustic brain microscopy.

    Science.gov (United States)

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A statistical skull geometry model for children 0-3 years old.

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    Full Text Available Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO. To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.

  15. A statistical skull geometry model for children 0-3 years old.

    Science.gov (United States)

    Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2015-01-01

    Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.

  16. The skull of Chios: trepanation in Hippocratic medicine.

    Science.gov (United States)

    Tsermoulas, Georgios; Aidonis, Asterios; Flint, Graham

    2014-08-01

    Cranial trepanation is the oldest neurosurgical operation and its roots date back to prehistory. For many centuries, religion and mysticism were strongly linked to the cause of diseases, and trepanation was associated with superstitions such as releasing evil spirits from inside the skull. The Hippocratic treatise "On injuries of the head" was therefore a revolutionary work, as it presented a systematic approach to the management of cranial trauma, one that was devoid of spiritual elements. Unfortunately, there are only a limited number of skeletal findings that confirm that the practice of trepanation was performed as part of Hippocratic medicine. In this historical vignette, the authors present a trepanned skull that was found in Chios, Greece, as evidence of the procedure having been performed in accordance with the Hippocratic teaching. The skull bears a parietal bur hole in association with a linear fracture, and it is clear that the patient survived the procedure. In this analysis, the authors examine the application of the original Hippocratic teaching to the skull of Chios. The rationalization of trepanation was clearly a significant achievement in the evolution of neurosurgery.

  17. Radiological skull diagnosing - questions of the neurosurgeon to the radiologist

    International Nuclear Information System (INIS)

    Fahlbusch, R.; Hamburger, C.; Ringel, K.

    1982-01-01

    A well-adjusted overall picture of the skull is very important to the neurosurgeon for diagnosis and therapy. Without an overall picture of the skull the neurosurgeon is hardly likely to begin a trepanation. There are, however, still same questions open in radiological diagnostics. A solution of the problem might be offered soon by computerized radiography which might even replace the conventional X-ray examination of the skull. The radiological CT-total skeletal examination of polytraumatised patients, which can be carried out in 30 seconds by modern CT equipment makes it possible to also obtain overall pictures of the skull and the upper cervical vertebral column. An advantage in addition to the fast information is the significant reduction of the radiation exposure in comparison to conventional methods. (orig./APR) [de

  18. Treatment experience of surgical repair for long-term skull defect

    Directory of Open Access Journals (Sweden)

    Shou-cheng FAN

    2015-12-01

    Full Text Available Retrospective analysis was performed on 30 patients of skull defect who underwent surgical repair. Intraoperative and postoperative curative effect was evaluated on those patients, and the results showed that the incidence rate of intraoperative dura mater defect (P = 0.001, early postoperative complications [new epilepsy (P = 0.035 and effusion (P = 0.021] and late postoperative complications [foreign body sensation (P = 0.035 and dizziness and headache (P = 0.050] in long-term skull defect group were all higher than those in control group. In conclusion, surgical repair of long-term skull defect incurring high risk and various complications will not be an ideal management. Therefore, early surgical treatment for skull defect is suggested. DOI: 10.3969/j.issn.1672-6731.2015.12.016

  19. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  20. Epigenetic control of skull morphogenesis by histone deacetylase 8

    Science.gov (United States)

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  1. Two-Dimensional High Definition Versus Three-Dimensional Endoscopy in Endonasal Skull Base Surgery: A Comparative Preclinical Study.

    Science.gov (United States)

    Rampinelli, Vittorio; Doglietto, Francesco; Mattavelli, Davide; Qiu, Jimmy; Raffetti, Elena; Schreiber, Alberto; Villaret, Andrea Bolzoni; Kucharczyk, Walter; Donato, Francesco; Fontanella, Marco Maria; Nicolai, Piero

    2017-09-01

    Three-dimensional (3D) endoscopy has been recently introduced in endonasal skull base surgery. Only a relatively limited number of studies have compared it to 2-dimensional, high definition technology. The objective was to compare, in a preclinical setting for endonasal endoscopic surgery, the surgical maneuverability of 2-dimensional, high definition and 3D endoscopy. A group of 68 volunteers, novice and experienced surgeons, were asked to perform 2 tasks, namely simulating grasping and dissection surgical maneuvers, in a model of the nasal cavities. Time to complete the tasks was recorded. A questionnaire to investigate subjective feelings during tasks was filled by each participant. In 25 subjects, the surgeons' movements were continuously tracked by a magnetic-based neuronavigator coupled with dedicated software (ApproachViewer, part of GTx-UHN) and the recorded trajectories were analyzed by comparing jitter, sum of square differences, and funnel index. Total execution time was significantly lower with 3D technology (P < 0.05) in beginners and experts. Questionnaires showed that beginners preferred 3D endoscopy more frequently than experts. A minority (14%) of beginners experienced discomfort with 3D endoscopy. Analysis of jitter showed a trend toward increased effectiveness of surgical maneuvers with 3D endoscopy. Sum of square differences and funnel index analyses documented better values with 3D endoscopy in experts. In a preclinical setting for endonasal skull base surgery, 3D technology appears to confer an advantage in terms of time of execution and precision of surgical maneuvers. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bilaterally symmetric Fourier approximations of the skull outlines of ...

    Indian Academy of Sciences (India)

    Present work illustrates a scheme of quantitative description of the shape of the skull outlines of temnospondyl amphibians using bilaterally symmetric closed Fourier curves. Some special points have been identified on the Fourier fits of the skull outlines, which are the local maxima, or minima of the distances from the ...

  3. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    International Nuclear Information System (INIS)

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak

  4. Efficacy and Safety of Adjuvant Proton Therapy Combined With Surgery for Chondrosarcoma of the Skull Base: A Retrospective, Population-Based Study

    Energy Technology Data Exchange (ETDEWEB)

    Feuvret, Loïc, E-mail: loic.feuvret@psl.aphp.fr [Department of Radiation Oncology, Groupe Hospitalier La Pitié-Salpêtrière–Charles Foix (Assistance Publique–Hôpitaux de Paris), Paris (France); Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d' Orsay (CPO), Orsay (France); Bracci, Stefano [Institute of Radiation Oncology, Sapienza University, Sant' Andrea Hospital, Rome (Italy); Calugaru, Valentin [Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d' Orsay (CPO), Orsay (France); Bolle, Stéphanie [Department of Radiation Oncology, Gustave Roussy, Villejuif (France); Mammar, Hamid; De Marzi, Ludovic [Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d' Orsay (CPO), Orsay (France); Bresson, Damien [Department of Neurosurgery, Hôpital Lariboisière (Assistance Publique–Hôpitaux de Paris), Paris (France); Habrand, Jean-Louis [Department of Radiation Oncology, Centre François Baclesse, Caen (France); Mazeron, Jean-Jacques [Department of Radiation Oncology, Groupe Hospitalier La Pitié-Salpêtrière–Charles Foix (Assistance Publique–Hôpitaux de Paris), Paris (France); Dendale, Rémi [Department of Radiation Oncology, Institut Curie–Centre de protonthérapie d' Orsay (CPO), Orsay (France); and others

    2016-05-01

    Purpose: Chondrosarcoma is a rare malignant tumor of the cartilage affecting young adults. Surgery, followed by charged-particle irradiation, is considered the reference standard for the treatment of patients with grade I to II skull base chondrosarcoma. The present study was conducted to assess the effect of the quality of surgery and radiation therapy parameters on local control (LC) and overall survival (OS). Methods and Materials: From 1996 to 2013, 159 patients (median age 40 years, range 12-83) were treated with either protons alone or a combination of protons and photons. The median total dose delivered was 70.2 Gy (relative biologic effectiveness [RBE]; range 67-71). Debulking and biopsy were performed in 133 and 13 patients, respectively. Results: With a median follow-up of 77 months (range 2-214), 5 tumors relapsed based on the initial gross tumor volume. The 5- and 10-year LC rates were 96.4% and 93.5%, respectively, and the 5- and 10-year OS rates were 94.9% and 87%, respectively. A total of 16 patients died (13 of intercurrent disease, 3 of disease progression). On multivariate analysis, age <40 years and primary disease status were independent favorable prognostic factors for progression-free survival and OS, and local tumor control was an independent favorable predictor of OS. In contrast, the extent of surgery, dosimetric parameters, and adjacent organs at risk were not prognostic factors for LC or OS. Conclusions: Systematic high-dose postoperative proton therapy for skull base chondrosarcoma can achieve a high LC rate with a low toxicity profile. Maximal safe surgery, followed by high-dose conformal proton therapy, is therefore recommended.

  5. Trans-zygomatic middle cranial fossa approach to access lesions around the cavernous sinus and anterior parahippocampus: a minimally invasive skull base approach.

    Science.gov (United States)

    Melamed, Itay; Tubbs, R Shane; Payner, Troy D; Cohen-Gadol, Aaron A

    2009-08-01

    Exposure of the cavernous sinus or anterior parahippocampus often involves a wide exposure of the temporal lobe and mobilization of the temporalis muscle associated with temporal lobe retraction. The authors present a cadaveric study to illustrate the feasibility, advantages and landmarks necessary to perform a trans-zygomatic middle fossa approach to lesions around the cavernous sinus and anterior parahippocampus. The authors performed bilateral trans-zygomatic middle fossae exposures to reach the cavernous sinus and parahippocampus in five cadavers (10 sides). We assessed the morbidity associated with this procedure and compared the indications, advantages, and disadvantages of this method versus more extensive skull base approaches. A vertical linear incision along the middle portion of the zygomatic arch was extended one finger breadth inferior to the inferior edge of the zygomatic arch. Careful dissection inferior to the arch allowed preservation of facial nerve branches. A zygomatic osteotomy was followed via a linear incision through the temporalis muscle and exposure of the middle cranial fossa floor. A craniotomy along the inferolateral temporal bone and middle fossa floor allowed extradural dissection along the middle fossa floor and exposure of the cavernous sinus including all three divisions of the trigeminal nerve. Intradural inspection demonstrated adequate exposure of the parahippocampus. Exposure of the latter required minimal or no retraction of the temporal lobe. The trans-zygomatic middle fossa approach is a simplified skull base exposure using a linear incision, which may avoid the invasivity of more extensive skull base approaches while providing an adequate corridor for resection of cavernous sinus and parahippocampus lesions. The advantages of this approach include its efficiency, ease, minimalism, preservation of the temporalis muscle, and minimal retraction of the temporal lobe.

  6. The Radiological Diagnosis of Defects of the Skull Vault

    African Journals Online (AJOL)

    scalp and its inner relationship to meninges and brain. Brain lesions which produce skull defects usually present as brain lesions and scalp lesions which produce skull defects always present as scalp lesions. This leave" us with the same general principle, that, though there may be 40 more or less common diseases which ...

  7. Outcomes of endonasal endoscopic dacryocystorhinostomy after maxillectomy in patients with paranasal sinus and skull base tumors.

    Science.gov (United States)

    Abu-Ghanem, Sara; Ben-Cnaan, Ran; Leibovitch, Igal; Horowitz, Gilad; Fishman, Gadi; Fliss, Dan M; Abergel, Avraham

    2014-06-01

    Maxillectomy followed by radiotherapy and/or chemotherapy can result in lacrimal blockage and the need for subsequent dacryocystorhinostomy (DCR). Endonasal endoscopic DCR, as opposed to external DCR, allows better accuracy and leaves no scar. To date no report was published regarding the results of endoscopic DCR in these patients. The current study presents a retrospective review of all patients with paranasal and skull base tumors who developed nasolacrimal duct blockage after ablative maxillectomy with or without radiotherapy and/or chemotherapy and underwent endonasal endoscopic DCR between January 2006 and October 2012 in a tertiary reference medical center. According to our results, ten patients underwent 11 subsequent endonasal endoscopic DCR. There were 6 men and 4 women with a median age of 55 years (range, 19-81 years); four suffered from benign tumors and six had malignant tumors. All underwent maxillectomy. Six received high-dose radiotherapy. Time interval between primary ablative surgery and endonasal endoscopic DCR was 18 months (range, 7-118 months). Silicone stents were removed after median period of 11 weeks (range, 1-57 weeks). Nine out of ten patients experienced symptomatic improvement following one endonasal endoscopic DCR. One patient had recurrent epiphora and underwent a successful endonasal endoscopic revision DCR. In conclusion, endonasal endoscopic DCR in patients with paranasal and skull base tumors, who previously underwent maxillectomy, is generally successful and not associated with a high rate of complications or failure. Moreover, our findings may suggest that silicone stents can be removed shortly after the operation with high success rate.

  8. Reappraisal of Pediatric Diastatic Skull Fractures in the 3-Dimensional CT Era: Clinical Characteristics and Comparison of Diagnostic Accuracy of Simple Skull X-Ray, 2-Dimensional CT, and 3-Dimensional CT.

    Science.gov (United States)

    Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun

    2017-12-01

    Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Developmental changes in the skull morphology of common minke whales Balaenoptera acutorostrata.

    Science.gov (United States)

    Nakamura, Gen; Kato, Hidehiro

    2014-10-01

    We investigated growth-related and sex-related morphological changes in the skulls of 144 North Pacific common minke whales Balaenoptera acutorostrata. Measurement was conducted at 39 points on the skull and mandible to extract individual allometric equations relating the length and zygomatic width of the skull. The results revealed no significant differences in skull morphology by sex except for width of occipital bone. The size relative to the skull of the anatomical parts involved in feeding, such as the rostrum and mandible, increased after birth. In contrast, the sensory organs and the anatomical regions involved in neurological function, such as the orbit, tympanic bullae, and foramen magnum, were fully developed at birth, and their relative size reduced over the course of development. This is the first study to investigate developmental changes in the skull morphology using more than 100 baleen whale specimens, and we believe the results of this study will contribute greatly to multiple areas of baleen whale research, including taxonomy and paleontology. © 2014 Wiley Periodicals, Inc.

  10. Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma

    International Nuclear Information System (INIS)

    Terahara, Atsuro; Niemierko, Andrzej; Goitein, Michael; Finkelstein, Dianne; Hug, Eugen; Liebsch, Norbert; O'Farrell, Desmond; Lyons, Sue; Munzenrider, John

    1999-01-01

    Purpose: When irradiating a tumor that abuts or displaces any normal structures, the dose constraints to those structures (if lower than the prescribed dose) may cause dose inhomogeneity in the tumor volume at the tumor-critical structure interface. The low-dose region in the tumor volume may be one of the reasons for local failure. The aim of this study is to quantitate the effect of tumor dose inhomogeneity on local control and recurrence-free survival in patients with skull base chordoma. Methods and Materials: 132 patients with skull base chordoma were treated with combined photon and proton irradiation between 1978 and 1993. This study reviews 115 patients whose dose-volume data and follow-up data are available. The prescribed doses ranged from 66.6 Cobalt-Gray-Equivalent (CGE) to 79.2 CGE (median of 68.9 CGE). The dose to the optic structures (optic nerves and chiasma), the brain stem surface, and the brain stem center was limited to 60, 64, and 53 CGE, respectively. We used the dose-volume histogram data derived with the three-dimensional treatment planning system to evaluate several dose-volume parameters including the Equivalent Uniform Dose (EUD). We also analyzed several other patient and treatment factors in relation to local control and recurrence-free survival. Results: Local failure developed in 42 of 115 patients, with the actuarial local control rates at 5 and 10 years being 59% and 44%. Gender was a significant predictor for local control with the prognosis in males being significantly better than that in females (P 0.004, hazard ratio = 2.3). In a Cox univariate analysis, with stratification by gender, the significant predictors for local control (at the probability level of 0.05) were EUD, the target volume, the minimum dose, and the D 5cc dose. The prescribed dose, histology, age, the maximum dose, the mean dose, the median dose, the D 90% dose, and the overall treatment time were not significant factors. In a Cox multivariate analysis, the

  11. Facial asymmetry correction with moulded helmet therapy in infants with deformational skull base plagiocephaly.

    Science.gov (United States)

    Kreutz, Matthias; Fitze, Brigitte; Blecher, Christoph; Marcello, Augello; Simon, Ruben; Cremer, Rebecca; Zeilhofer, Hans-Florian; Kunz, Christoph; Mayr, Johannes

    2018-01-01

    The recommendation issued by the American Academy of Pediatrics in the early 1990s to position infants on their back during sleep to prevent sudden infant death syndrome (SIDS) has dramatically reduced the number of deaths due to SIDS but has also markedly increased the prevalence of positional skull deformation in infants. Deformation of the base of the skull occurs predominantly in very severe deformational plagiocephaly and is accompanied by facial asymmetry, as well as an altered ear position, called ear shift. Moulded helmet therapy has become an accepted treatment strategy for infants with deformational plagiocephaly. The aim of this study was to determine whether facial asymmetry could be corrected by moulded helmet therapy. In this retrospective, single-centre study, we analysed facial asymmetry of 71 infants with severe deformational plagiocephaly with or without deformational brachycephaly who were undergoing moulded helmet therapy between 2009 and 2013. Computer-assisted, three-dimensional, soft-tissue photographic scanning was used to record the head shape before and after moulded helmet therapy. The distance between two landmarks in the midline of the face (i.e., root of the nose and nasal septum) and the right and left tragus were measured on computer-generated indirect and objective 3D photogrammetry images. A quotient was calculated between the two right- and left-sided distances to the midline. Quotients were compared before and after moulded helmet therapy. Infants without any therapy served as a control group. The median age of the infants before onset of moulded helmet therapy was 5 months (range 3-16 months). The median duration of moulded helmet therapy was 5 months (range 1-16 months). Comparison of the pre- and post-treatment quotients of the left vs. right distances measured between the tragus and root of the nose (n = 71) and nasal septum (n = 71) revealed a significant reduction of the asymmetry (Tragus-Nasion-Line Quotient: 0

  12. Endoscopic endonasal repair of spontaneous sphenoid sinus lateral wall meningocele presenting with cerebrospinal fluid leak

    Directory of Open Access Journals (Sweden)

    Ali Erdem Yildirim

    2014-01-01

    Full Text Available Spontaneous sphenoid sinus lateral wall meningoceles are rare lesions with an unknown etiology. Endoscopic endonasal technique is a considerable route in the treatment of this condition. The aim of this paper is to report the etiology, surgical technique, and outcome in a patient repaired via endoscopic endonasal approach. A 51-year-old male patient applied with rhinorrhea started three months ago after an upper respiratory infection. There were no history of trauma or sinus operation. Biochemical analysis of the fluid was positive for beta-2-transferrin. This asypthomatic patient had undergone for repairment of lateral sphenoid sinus meningocele with endoscopic endonasal transsphenoidal approach. After endoscopic endonasal meningocele closure procedure no complications occured and a quick recovery was observed. Endoscopic endonasal approach is an effective and safe treatment modality of spontaneous lateral sphenoid sinus meningoceles and efficient in anterior skull base reconstruction.

  13. Proton radiotherapy in management of pediatric base of skull tumors

    International Nuclear Information System (INIS)

    Hug, Eugen B.; Sweeney, Reinhart A.; Nurre, Pamela M.; Holloway, Kitty C.; Slater, Jerry D.; Munzenrider, John E.

    2002-01-01

    Purpose: Primary skull base tumors of the developing child are rare and present a formidable challenge to both surgeons and radiation oncologists. Gross total resection with negative margins is rarely achieved, and the risks of functional, structural, and cosmetic deficits limit the radiation dose using conventional radiation techniques. Twenty-nine children and adolescents treated with conformal proton radiotherapy (proton RT) were analyzed to assess treatment efficacy and safety. Methods and Materials: Between July 1992 and April 1999, 29 patients with mesenchymal tumors underwent fractionated proton (13 patients) or fractionated combined proton and photon (16 patients) irradiation. The age at treatment ranged from 1 to 19 years (median 12); 14 patients were male and 15 female. Tumors were grouped as malignant or benign. Twenty patients had malignant histologic findings, including chordoma (n=10), chondrosarcoma (n=3), rhabdomyosarcoma (n=4), and other sarcomas (n=3). Target doses ranged between 50.4 and 78.6 Gy/cobalt Gray equivalent (CGE), delivered at doses of 1.8-2.0 Gy/CGE per fraction. The benign histologic findings included giant cell tumors (n=6), angiofibromas (n=2), and chondroblastoma (n=1). RT doses for this group ranged from 45.0 to 71.8 Gy/CGE. Despite maximal surgical resection, 28 (97%) of 29 patients had gross disease at the time of proton RT. Follow-up after proton RT ranged from 13 to 92 months (mean 40). Results: Of the 20 patients with malignant tumors, 5 (25%) had local failure; 1 patient had failure in the surgical access route and 3 patients developed distant metastases. Seven patients had died of progressive disease at the time of analysis. Local tumor control was maintained in 6 (60%) of 10 patients with chordoma, 3 (100%) of 3 with chondrosarcoma, 4 (100%) of 4 with rhabdomyosarcoma, and 2 (66%) of 3 with other sarcomas. The actuarial 5-year local control and overall survival rate was 72% and 56%, respectively, and the overall survival

  14. The Incidence and Topographic Distribution of Sutures Including Wormian Bones in Human Skulls.

    Science.gov (United States)

    Cirpan, Sibel; Aksu, Funda; Mas, Nuket

    2015-07-01

    The Wormian Bones are accessory bones located within the cranial sutures and fontanelles. The present article examines the incidence of Wormian Bones and compares the number and topographic distribution between the sutures including Wormian Bones in skulls of West Anatolian Population. One hundred fifty crania were examined. The parameters evaluated in the present study were as follows: the rate of skulls including Wormian Bones; the topographic distribution and frequencies of the sutures including Wormian Bones; the number of these sutures for each skull; the name and number of sutures that were bilaterally and symmetrically located on the right and left side of skull (paired sutures) and which coincidentally had Wormian Bones for each skull; the differences of frequencies between the paired sutures including Wormian Bones. The rate of skulls including Wormian Bones was determined as 59.3%. The maximum and minimum numbers of sutures, including Wormian Bones, were 6 in 1 skull and 1 in each of 30 skulls, respectively. The maximum and minimum rates of sutures that had Wormian Bones were found in left lambdoid 40.7% and right occipitomastoid 1.3% sutures, respectively. There was only a significant difference between the rate of right and left squamous sutures (P = 0.04). Forty-five skulls were including 55 pairs of bilaterally and symmetrically located sutures that coincidentally had Wormian Bones in each pair. Each of 35 skulls had 1 pair of sutures including Wormian Bones and each of 10 skulls had 2 pairs. In the present study, the rate of Wormian Bones was determined as 59.3% in West Anatolian Population. This incidence rate is considerably lower than the other reports, and it may be as a result of racial variations. These divergent bones were more frequently found in left lambdoid sutures (40.7%) and less frequently in right occipitomastoid sutures (1.3%). This study may guide the investigators dealing with the neurosurgery, orthopedy, radiology, anatomy, and

  15. Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up

    International Nuclear Information System (INIS)

    Steinvorth, Sarah; Welzel, Grit; Fuss, Martin; Debus, Juergen; Wildermuth, Susanne; Wannenmacher, Michael; Wenz, Frederik

    2003-01-01

    Purpose: The purpose of this study was to evaluate the cognitive outcome after fractionated stereotactic radiotherapy (FSRT) in patients with base of skull meningiomas. Methods and material: A total of 40 patients with base of skull meningiomas were neuro psychologically evaluated before, after the first fraction (1.8 Gy), at the end of FSRT (n=37), 6 weeks (n=24), 6 (n=18) and 12 months (n=14) after FSRT. A comprehensive test battery including assessment of general intelligence, attention and memory functions was used. Alternate forms were used and current mood state was controlled. Results: After the first fraction a transient decline in memory function and simultaneous improvements in attention functions were observed. No cognitive deteriorations were seen during further follow-up, but increases in attention and memory functions were observed. Mood state improved after the first fraction, at the end of radiotherapy and 6 weeks after radiotherapy. Conclusion: The present data support the conclusion that the probability for the development of permanent cognitive dysfunctions appears to be very low after FSRT. The transient memory impairments on day 1 are interpreted as most likely related to an increase of a preexisting peritumoral edema, whereas the significant acute improvements in attention functions are interpreted as practice effects. An analysis of localization specific effects of radiation failed to show clear hemisphere specific cognitive changes

  16. [Maxillary swing approach in the management of tumors in the central and lateral cranial base].

    Science.gov (United States)

    Liao, Hua; Hua, Qing-quan; Wu, Zhan-yuan

    2006-04-01

    patients developed serous otitis media (58.8%), and four patients developed a certain degree of trismus (23.5%). Cerebrospinal fluid leak occurred in two patients. They subsequently healed with conservative management. The maxillary swing approach is a proven method for access to the central and lateral skull base with good exposure and acceptable morbidity. Complications and sequelae associated with this approach include facial scarring, transaction of the infraorbital nerve, impaired lacrimal drainage, eustachian tube dysfunction and serous otitis, palatal fistula, trismus etc. Some procedures should be performed for reducing the incidence and severity of complications in the maxillary swing approach.

  17. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    Science.gov (United States)

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  18. Skull repair materials applied in cranioplasty: History and progress

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Yu; Lin Chen; Zhiye Qiu; Yuqi Zhang; Tianxi Song; Fuzhai Cui

    2017-01-01

    The skull provides protection and mechanical support, and acts as a container for the brain and its accessory organs. Some defects in the skull can fatally threaten human life. Many efforts have been taken to repair defects in the skull, among which cranioplasty is the most prominent technique. To repair the injury, numerous natural and artificial materials have been adopted by neurosurgeons. Many cranioprostheses have been tried in the past decades, from autoplast to bioceramics. Neurosurgeons have been evaluating their advantages andshortages through clinical practice. Among those prostheses, surgeons gradually prefer bionic ones due to their marvelous osteoconductivity, osteoinductivity, biocompatibility,and biodegradability. Autogeneic bone has been widely recognized as the"gold standard" for renovating large-sized bone defects. However, the access to this technique is restricted by limited availability and complications associated with its use. Many metal and polymeric materials with mechanical characteristics analogous to natural bones were consequently applied to cranioplasty. But most of them were unsatisfactory concerning osteoconductiion and biodegradability owe to their intrinsic properties. With the microstructures almost identical to natural bones, mineralized collagen hasbiological performance nearly identical to autogeneic bone, such as osteoconduction. Implants made of mineralized collagen can integrate themselves into the newly formed bones through a process called"creeping substitution". In this review, the authors retrospect the evolution of skull repair material applied in cranioplasty. The ultimate skull repair material should have microstructure and bioactive qualities that enable osteogenesis induction and intramembranous ossification.

  19. Inca - interparietal bones in neurocranium of human skulls in central India.

    Science.gov (United States)

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  20. Traumatic epistaxis: Skull base defects, intracranial complications and neurosurgical considerations.

    Science.gov (United States)

    Veeravagu, Anand; Joseph, Richard; Jiang, Bowen; Lober, Robert M; Ludwig, Cassie; Torres, Roland; Singh, Harminder

    2013-01-01

    Endonasal procedures may be necessary during management of craniofacial trauma. When a skull base fracture is present, these procedures carry a high risk of violating the cranial vault and causing brain injury or central nervous system infection. A 52-year-old bicyclist was hit by an automobile at high speed. He sustained extensive maxillofacial fractures, including frontal and sphenoid sinus fractures (Fig. 1). He presented to the emergency room with brisk nasopharyngeal hemorrhage, and was intubated for airway protection. He underwent emergent stabilization of his nasal epistaxis by placement of a Foley catheter in his left nare and tamponade with the Foley balloon. A six-vessel angiogram showed no evidence of arterial dissection or laceration. Imaging revealed inadvertent insertion of the Foley catheter and deployment of the balloon in the frontal lobe (Fig. 2). The balloon was subsequently deflated and the Foley catheter removed. The patient underwent bifrontal craniotomy for dural repair of CSF leak. He also had placement of a ventriculoperitoneal shunt for development of post-traumatic hydrocephalus. Although the hospital course was a prolonged one, he did make a good neurological recovery. The authors review the literature involving violation of the intracranial compartment with medical devices in the settings of craniofacial trauma. Caution should be exercised while performing any endonasal procedure in the settings of trauma where disruption of the anterior cranial base is possible. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Sella turcica measurements on lateral cephalograms of patients with neurofibromatosis type 1

    Directory of Open Access Journals (Sweden)

    Friedrich, Reinhard E.

    2017-03-01

    Full Text Available The aim of this study was to measure line segments and areas of sella turcica on lateral cephalograms with respect to the clinical diagnosis of facial phenotype of patients with neurofibromatosis type 1 (NF1. Special attention was given to correlate the measured values with certain tumour types that are typical for this disease.Material and methods: Lateral cephalograms of 194 individuals were investigated. Patients with NF1 were further divided according to the detection and topography of facial plexiform neurofibromas (PNF taking into account the distribution pattern of the trigeminal nerve. All patients with PNF showed unilateral tumour localisation. Patients without any facial PNF constituted a separate group. Healthy volunteers with ideal occlusion and no history of any intervention in the maxillofacial region served as a control group. The following items were determined on the radiographs: sella entrance, sella width, sella depths, sella diagonal, and sella area.Results: Patients with PNF of the first and second trigeminal nerve branch or affected in all branches showed highly statistically significant enlarged sella tucica measurement values. On the other hand, patients with PNF restricted to one branch only or simultaneously in the second and third branches showed measurement values that were not different to those obtained in NF1 patients devoid of facial PNF. The latter group also showed no difference of sella turcica parameters obtained in the control group.Conclusion: This study provides evidence for the association of a certain NF1 phenotype with distinct skeletal alterations of the skull base, shown here using the example of the representation of the sella turcica in the lateral radiograph. These findings are also relevant in the discussion of NF1 as a disease of bones and in the assessment of brain development in NF1. Both items are discussed in relationship to a facial plexiform neurofibroma. Furthermore, the knowledge of this

  2. Skull morphometry and vault sutures of Myrmecophaga tridactyla and Tamandua tetradactyla

    Directory of Open Access Journals (Sweden)

    Camila M. de S. Hossotani

    2017-10-01

    Full Text Available ABSTRACT This study aimed to examine the relationship between skull size and the level of cranial vault suture closure. A total of 50 Myrmecophaga tridactyla Linnaeus, 1758 and 178 Tamandua tetradactyla Linnaeus, 1758 skulls were analyzed in relation to 18 skull dimensions. The skulls were grouped into three levels of suture closure: no sutures closed (level 0, one or all the fallowing sutures closed: interfrontalis, sagitalis and coronalis (level 1 and all sutures closed (level 2. The results indicated that among the 18 variables measured, 17 showed significant differences (p ≤ 0.01 between level 0 and level 1 skulls of T. tetradactyla; as well as between level 0 and level 1, and level 0 and level 2 skulls of M. tridactyla. M. tridactyla level 1 and level 2 had no significant difference among any of the 18 dimensions. The foramen magnum height in both species showed no significant difference (p > 0.05 among any suture categories. In principle, suture closure level and cranial dimensions are related. The specimens with larger cranial dimensions showed greater number of cranial vault sutures closed for both species of anteaters. Tamandua tetradactyla and M. tridactyla specimens with none of the cranial vault suture closed have a foramen magnum height similar to those with cranial vault suture closed.

  3. Implant-retained skull prosthesis to cover a large defect of the hairy skull resulting from treatment of a basal cell carcinoma : A clinical report

    NARCIS (Netherlands)

    Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita

    Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted

  4. The application of finite element analysis in the skull biomechanics and dentistry.

    Science.gov (United States)

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  5. Complex single step skull reconstruction in Gorham's disease - a technical report and review of the literature.

    Science.gov (United States)

    Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M

    2015-03-11

    Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an

  6. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  7. Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952.

    Science.gov (United States)

    Porro, Laura B; Rayfield, Emily J; Clack, Jennifer A

    2015-01-01

    The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.

  8. Descriptive Anatomy and Three-Dimensional Reconstruction of the Skull of the Early Tetrapod Acanthostega gunnari Jarvik, 1952

    Science.gov (United States)

    Porro, Laura B.; Rayfield, Emily J.; Clack, Jennifer A.

    2015-01-01

    The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals. PMID:25760343

  9. Lateral Transorbital Endoscopic Access to the Hippocampus, Amygdala, and Entorhinal Cortex: Initial Clinical Experience.

    Science.gov (United States)

    Chen, H Isaac; Bohman, Leif-Erik; Emery, Lyndsey; Martinez-Lage, Maria; Richardson, Andrew G; Davis, Kathryn A; Pollard, John R; Litt, Brian; Gausas, Roberta E; Lucas, Timothy H

    2015-01-01

    Transorbital approaches traditionally have focused on skull base and cavernous sinus lesions medial to the globe. Lateral orbital approaches to the temporal lobe have not been widely explored despite several theoretical advantages compared to open craniotomy. Recently, we demonstrated the feasibility of the lateral transorbital technique in cadaveric specimens with endoscopic visualization. We describe our initial clinical experience with the endoscope-assisted lateral transorbital approach to lesions in the temporal lobe. Two patients with mesial temporal lobe pathology presenting with seizures underwent surgery. The use of a transpalpebral or Stallard-Wright eyebrow incision enabled access to the intraorbital compartment, and a lateral orbital wall 'keyhole' opening permitted visualization of the anterior temporal pole. This approach afforded adequate access to the surgical target and surrounding structures and was well tolerated by the patients. To the best of our knowledge, this report constitutes the first case series describing the endoscope-assisted lateral transorbital approach to the temporal lobe. We discuss the limits of exposure, the nuances of opening and closing, and comparisons to open craniotomy. Further prospective investigation of this approach is warranted for comparison to traditional approaches to the mesial temporal lobe. © 2015 S. Karger AG, Basel.

  10. Skull deformations in craniosynostosis and endocrine disorders: morphological and tomographic analysis of the skull from the crypt of the Silesian Piasts in Brzeg (16th-17th century), Poland.

    Science.gov (United States)

    Kozłowski, T; Cybulska, M; Błaszczyk, B; Krajewska, M; Jeśman, C

    2014-10-01

    of morphological and tomographic (CT) studies of the skull that was found in the crypt of the Silesian Piasts in the St. Jadwiga church in Brzeg (Silesia, Poland) are presented and discussed here. The established date of burial of probably a 20-30 years old male was 16th-17th century. The analyzed skull showed premature obliteration of the major skull sutures. It resulted in the braincase deformation, similar to the forms found in oxycephaly and microcephaly. Tomographic analysis revealed gross pathology. Signs of increased intracranial pressure, basilar invagination and hypoplasia of the occipital bone were observed. Those results suggested the occurrence of the very rare Arnold-Chiari syndrome. Lesions found in the sella turcica indicated the development of pituitary macroadenoma, which resulted in the occurrence of discreet features of acromegaly in the facial bones. The studied skull was characterized by a significantly smaller size of the neurocranium (horizontal circumference 471 mm, cranial capacity ∼ 1080 ml) and strongly expressed brachycephaly (cranial index=86.3), while its height remained within the range for non-deformed skulls. A narrow face, high eye-sockets and prognathism were also observed. Signs of alveolar process hypertrophy with rotation and displacement of the teeth were noted. The skull showed significant morphological differences compared to both normal and other pathological skulls such as those with pituitary gigantism, scaphocephaly and microcephaly. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Trepanation and enlarged parietal foramen on skulls from the Loyalty Islands (Melanesia).

    Science.gov (United States)

    Vasilyev, Sergey V; Sviridov, Alexey A

    2017-06-01

    The goal of this study is a comprehensive examination of openings discovered on two skulls in the collection of skeletal remains from the Loyalty Islands (Melanesia). The skull No. 1524 displayed an evidence of successful trepanation, and the skull No. 7985 revealed openings that were reminiscent of a trepanation, however, we are inclined to believe that in the latter case we are dealing with a rare genetic anomaly - enlarged parietal foramen.

  12. MALDI-TOF MS contribution to the diagnosis of Campylobacter rectus multiple skull base and brain abscesses

    Directory of Open Access Journals (Sweden)

    D. Martiny

    2017-09-01

    Full Text Available Campylobacter rectus is rarely associated with invasive infection. Both the isolation and the identification requirements of C. rectus are fastidious, probably contributing to an underestimation of its burden. We report the case of a 66-year-old man who developed several skull base and intracerebral abscesses after dental intervention. Campylobacter rectus was isolated from the brain biopsy. Within 45 minutes of reading the bacterial plate, the strain was accurately identified by MALDI-TOF MS. This rapid identification avoided the extra costs and delays present with 16S rRNA gene sequencing and allowed for a rapid confirmation of the adequacy of the empirical antibiotic treatment.

  13. Inca - interparietal bones in neurocranium of human skulls in central India

    Directory of Open Access Journals (Sweden)

    R R Marathe

    2010-01-01

    Full Text Available Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%. The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  14. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    Science.gov (United States)

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  15. Use of Tranexamic Acid Is Associated with Reduced Blood Product Transfusion in Complex Skull Base Neurosurgical Procedures: A Retrospective Cohort Study.

    Science.gov (United States)

    Mebel, Dmitry; Akagami, Ryojo; Flexman, Alana M

    2016-02-01

    Compared with other procedures, complex skull base neurosurgery has the potential for increased intraoperative blood loss yet coagulation near eloquent cranial structures should be minimized. The safety and efficacy of the antifibrinolytic, tranexamic acid in elective neurosurgical procedures is not known. Our primary objective was to determine the relationship between the use of tranexamic acid and transfusion at our institution. Our secondary objective was to determine the incidence of adverse events associated with the use of tranexamic acid. In this retrospective cohort study, we included all patients who underwent complex skull base neurosurgical procedures at our institution between 2001 and 2013. Tranexamic acid was introduced during these procedures in 2006. Patient and surgical variables, transfusion data, and adverse events in the perioperative period were abstracted from the medical record. The rates of transfusion and adverse events were compared between patients who did and did not receive tranexamic acid. Multivariate regression was used to identify independent predictors of perioperative transfusion. We compared 245 patients who received tranexamic acid with 274 patients who did not receive the drug during the study period. The 2 groups were similar, with the exception that patients who received tranexamic acid had larger tumors (mean, 3.5 vs 2.9 cm; P tranexamic acid was lower (7% vs 13%, P = 0.04). After adjusting for preoperative hemoglobin, tumor diameter, and surgical procedure category, the use of tranexamic acid was independently predictive of perioperative transfusion (adjusted odds ratio, 0.32; 95% confidence interval, 0.15-0.65, P = 0.002). The rates of thromboembolic events and seizure were similar between the 2 groups. Our results demonstrate that tranexamic acid use is associated with reduced transfusion rates in our study population, with no apparent increase in seizure or thrombotic complications. Our data support the need for further

  16. Traumas of the middle skull base with TMJ involvement. Case report.

    Science.gov (United States)

    Bottini, D J; Gnoni, G; De Angelis, B; Savo, P; Trimarco, A; Cervelli, G; Cervelli, V

    2006-03-01

    The authors report their experience with temporomandibular joint (TMJ) traumas involving breakage of the roof of the glenoid cavity, an infrequent event that occurs in those cases in which, as a result of the condylar neck not fracturing, the traumatic energy is transmitted to the middle skull base. As the literature contains no valid series for establishing standardized protocols for the treatment of these fractures, we propose our own orthopedic-functional approach. The patient observed by us had suffered a cranio-facial trauma and presented the classical symptoms and signs of TMJ traumas and complete bilateral Bell paralysis. He was subjected to a CAT scan and then to 2-stage treatment consisting of functional rest with liquid diet followed by physiotherapy. An almost total recovery in TMJ function was observed after 1 month. At 1-year follow-up the facial paralysis had resolved completely. On the basis of our experience, breakages of the glenoid cavity can be compared, in terms of treatment procedure, to intracapsular fractures of the TMJ with surgery confined to cases of ankylosis sequelae. To avoid the onset of ankylosis careful control of clinical, functional and radiological follow-up is required.

  17. Skull metastases detecting on arterial spin labeling perfusion: Three case reports and review of literature.

    Science.gov (United States)

    Ryu, Kyeong H; Baek, Hye J; Cho, Soo B; Moon, Jin I; Choi, Bo H; Park, Sung E; An, Hyo J

    2017-11-01

    Detection of skull metastases is as important as detection of brain metastases because early diagnosis of skull metastases is a crucial determinant of treatment. However, the skull can be a blind spot for assessing metastases on routine brain magnetic resonance imaging (MRI). To the best of our knowledge, the finding of skull metastases on arterial spin labeling (ASL) has not been reported. ASL is a specific MRI sequence for evaluating cerebral blood flow using magnetized endogenous inflow blood. This study uses ASL as a routine sequence of brain MRI protocol and describes 3 clinical cases of skull metastases identified by ASL. The study also highlights the clinical usefulness of ASL in detecting skull metastases. Three patients with known malignancy underwent brain MRI to evaluate for brain metastases. All of the skull metastases were conspicuously depicted on routine ASL images, and the lesions correlated well with other MRI sequences. Three patients received palliative chemotherapy. Three patients are being followed up regularly at the outpatient department. The routine use of ASL may help to detect lesions in blind spots, such as skull metastases, and to facilitate the evaluation of intracranial pathologies without the use of contrast materials in exceptional situations.

  18. Study of Mastoid Canals and Grooves in North Karnataka Human Skulls

    OpenAIRE

    Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa

    2013-01-01

    Introduction: This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study.

  19. Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts.

    Science.gov (United States)

    Shaoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2015-07-01

    The objective of this study was to determine the responses of 5th-percentile female, and 50th- and 95th-percentile male human heads during lateral impacts at different velocities and determine the role of the stiffness and shape of the impacting surface on peak forces and derived skull fracture metrics. A state-of-the-art validated finite element (FE) head model was used to study the influence of different population human heads on skull fracture for lateral impacts. The mass of the FE head model was altered to match the adult size dummies. Numerical simulations of lateral head impacts for 45 cases (15 experiments×3 different population human heads) were performed at velocities ranging from 2.4 to 6.5m/s and three impacting conditions (flat and cylindrical 90D; and flat 40D padding). The entire force-time signals from simulations were compared with experimental mean and upper/lower corridors at each velocity, stiffness (40 and 90 durometer) and shapes (flat and cylindrical) of the impacting surfaces. Average deviation of peak force from the 50th male to 95th male and 5th female were 6.4% and 10.6% considering impacts on the three impactors. These results indicate hierarchy of variables which can be used in injury mitigation efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Morphological and Radiographic Studies on the Skull of Indian Blackbuck (Antilope cervicapra)

    OpenAIRE

    Choudhary, Om Prakash; Singh, Ishwer

    2016-01-01

    The phenotypic appearance of the head of animal species depends strongly on the shape of the skull. The present study has been carried out on morphological and radiographic characteristics of skull of the Indian Blackbuck. The skull comprised of cranial and facial bones. The cranial bones included occipital, sphenoid, ethmoid, interparietal, parietal, frontal and temporal. The occipital was a single bone surrounding the foramen magnum. The sphenoid was a single bone and situated between the o...

  1. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    Energy Technology Data Exchange (ETDEWEB)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoronto.ca; Jones, Ryan M. [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Birman, Gabriel [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Hynynen, Kullervo [Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada)

    2016-09-15

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  2. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    Science.gov (United States)

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  3. Born criminal? Differences in structural, functional and behavioural lateralization between criminals and noncriminals.

    Science.gov (United States)

    Savopoulos, Priscilla; Lindell, Annukka K

    2018-02-15

    Over 100 years ago Lombroso [(1876/2006). Criminal man. Durham: Duke University Press] proposed a biological basis for criminality. Based on inspection of criminals' skulls he theorized that an imbalance of the cerebral hemispheres was amongst 18 distinguishing features of the criminal brain. Specifically, criminals were less lateralized than noncriminals. As the advent of neuroscientific techniques makes more fine-grained inspection of differences in brain structure and function possible, we review criminals' and noncriminals' structural, functional, and behavioural lateralization to evaluate the merits of Lombroso's thesis and investigate the evidence for the biological underpinning of criminal behaviour. Although the body of research is presently small, it appears consistent with Lombroso's proposal: criminal psychopaths' brains show atypical structural asymmetries, with reduced right hemisphere grey and white matter volumes, and abnormal interhemispheric connectivity. Functional asymmetries are also atypical, with criminal psychopaths showing a less lateralized cortical response than noncriminals across verbal, visuo-spatial, and emotional tasks. Finally, the incidence of non-right-handedness is higher in criminal than non-criminal populations, consistent with reduced cortical lateralization. Thus despite Lombroso's comparatively primitive and inferential research methods, his conclusion that criminals' lateralization differs from that of noncriminals is borne out by the neuroscientific research. How atypical cortical asymmetries predispose criminal behaviour remains to be determined.

  4. Epigenetic control of skull morphogenesis by histone deacetylase 8

    OpenAIRE

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of...

  5. The remarkable convergence of skull shape in crocodilians and toothed whales.

    Science.gov (United States)

    McCurry, Matthew R; Evans, Alistair R; Fitzgerald, Erich M G; Adams, Justin W; Clausen, Philip D; McHenry, Colin R

    2017-03-15

    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey. © 2017 The Author(s).

  6. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes.

    Science.gov (United States)

    Sahgal, Arjun; Chan, Michael W; Atenafu, Eshetu G; Masson-Cote, Laurence; Bahl, Gaurav; Yu, Eugene; Millar, Barbara-Ann; Chung, Caroline; Catton, Charles; O'Sullivan, Brian; Irish, Jonathan C; Gilbert, Ralph; Zadeh, Gelareh; Cusimano, Michael; Gentili, Fred; Laperriere, Normand J

    2015-06-01

    We report our preliminary outcomes following high-dose image-guided intensity modulated radiotherapy (IG-IMRT) for skull base chordoma and chondrosarcoma. Forty-two consecutive IG-IMRT patients, with either skull base chordoma (n = 24) or chondrosarcoma (n = 18) treated between August 2001 and December 2012 were reviewed. The median follow-up was 36 months (range, 3-90 mo) in the chordoma cohort, and 67 months (range, 15-125) in the chondrosarcoma cohort. Initial surgery included biopsy (7% of patients), subtotal resection (57% of patients), and gross total resection (36% of patients). The median IG-IMRT total doses in the chondrosarcoma and chordoma cohorts were 70 Gy and 76 Gy, respectively, delivered with 2 Gy/fraction. For the chordoma and chondrosarcoma cohorts, the 5-year overall survival and local control rates were 85.6% and 65.3%, and 87.8% and 88.1%, respectively. In total, 10 patients progressed locally: 8 were chordoma patients and 2 chondrosarcoma patients. Both chondrosarcoma failures were in higher-grade tumors (grades 2 and 3). None of the 8 patients with grade 1 chondrosarcoma failed, with a median follow-up of 77 months (range, 34-125). There were 8 radiation-induced late effects-the most significant was a radiation-induced secondary malignancy occurring 6.7 years following IG-IMRT. Gross total resection and age were predictors of local control in the chordoma and chondrosarcoma patients, respectively. We report favorable survival, local control and adverse event rates following high dose IG-IMRT. Further follow-up is needed to confirm long-term efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Descriptive anatomy and three-dimensional reconstruction of the skull of the early tetrapod Acanthostega gunnari Jarvik, 1952.

    Directory of Open Access Journals (Sweden)

    Laura B Porro

    Full Text Available The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.

  8. Repair of large frontal temporal parietal skull defect with digitally reconstructed titanium mesh: a report of 20 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2013-09-01

    Full Text Available Objective To explore the clinical effect and surgical technique of the repair of large defect involving frontal, temporal, and parietal regions using digitally reconstructed titanium mesh. Methods Twenty patients with large frontal, temporal, and parietal skull defect hospitalized in Air Force General Hospital from November 2006 to May 2012 were involved in this study. In these 20 patients, there were 13 males and 7 females, aged 18-58 years (mean 39 years, and the defect size measured from 7.0cm×9.0cm to 11.5cm×14.0cm (mean 8.5cm×12.0cm. Spiral CT head scan and digital three-dimensional reconstruction of skull were performed in all the patients. The shape and geometric size of skull defect was traced based on the symmetry principle, and then the data were transferred into digital precision lathe to reconstruct a titanium mesh slightly larger (1.0-1.5cm than the skull defect, and the finally the prosthesis was perfected after pruning the border. Cranioplasty was performed 6-12 months after craniotomy using the digitally reconstructed titanium mesh. Results The digitally reconstructed titanium mesh was used in 20 patients with large frontal, temporal, parietal skull defect. The surgical technique was relatively simple, and the surgical duration was shorter than before. The titanium mesh fit to the defect of skull accurately with satisfactory molding effect, good appearance and symmetrical in shape. No related complication was found in all the patients. Conclusion Repair of large frontal, temporal, parietal skull defect with digitally reconstructed titanium mesh is more advantageous than traditional manual reconstruction, and it can improve the life quality of patients.

  9. Leg length, skull circumference, and the prevalence of dementia in low and middle income countries; a 10/66 population-based cross sectional survey

    Science.gov (United States)

    Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Llibre Rodriguez, Juan J.; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D.; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E.; Ferri, Cleusa P.; Stewart, Robert; Gaona, Ciro; Jotheeswaran, AT.; Senthil Kumar, P; Li, Shuran; Llibre Guerra, Juan C.; Rodriguez, Diana; Rodriguez, Guillermina

    2017-01-01

    Background Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. Methods One phase cross-sectional surveys of all over 65 year old residents (n=14,960) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 Dementia, controlling for age, gender, education and family history of dementia. Results The pooled meta-analysed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Conclusions Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration. PMID:20701817

  10. Leg length, skull circumference, and the prevalence of dementia in low and middle income countries: a 10/66 population-based cross sectional survey.

    Science.gov (United States)

    Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, K S; Rodriguez, Juan J Llibre; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E; Ferri, Cleusa P; Stewart, Robert; Gaona, Ciro; Jotheeswaran, A T; Kumar, P Senthil; Li, Shuran; Guerra, Juan C Llibre; Rodriguez, Diana; Rodriguez, Guillermina

    2011-03-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. One phase cross-sectional surveys were carried out of all residents aged over 65 years in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru (n = 14,960). The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 dementia, controlling for age, gender, education and family history of dementia. The pooled meta-analyzed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration.

  11. Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.

    Science.gov (United States)

    Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan

    2015-08-01

    Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.

  12. Relationships between head fixation pins for radiosurgery and the skull bone. Usefulness of a torque wrench

    International Nuclear Information System (INIS)

    Toyota, Shun; Seta, Hidetoshi; Muramatsu, Masatoshi; Kubo, Hitoshi; Takeda, Kan

    2003-01-01

    In stereotactic radiosurgery (SRS), fixation devices are secured to the patient's head with pins. However, there have been no standards for the use of such pins, which must be inserted with appropriate torque based on the surgeon's clinical judgment. Therefore, the pins may sometimes be tightened excessively and penetrate too deeply into the patient's skull. To improve safety in SRS, a torque wrench was used for pin insertion. The usefulness of the torque wrench was then evaluated by examining the relationships between the pins and skull bone and identifying differences according to the wrench used and the patient's bone thickness. CT images of patients who had previously undergone SRS were used to assess the relationships between the pins and skull bone. Differences according to the wrench used and pin insertion site were investigated. Compared with a standard wrench, use of the torque wrench decreased the insertion depth of pins in the skull bone. In terms of site, pins in the forehead were inserted more deeply. No differences related to the frontal sinus were observed. The use of a torque wrench improved safety during pin insertion for SRS procedures. (author)

  13. Peramorphic traits in the tokay gecko skull.

    Science.gov (United States)

    Daza, Juan D; Mapps, Aurelia A; Lewis, Patrick J; Thies, Monte L; Bauer, Aaron M

    2015-08-01

    Traditionally, geckos have been conceived to exhibit paedomorphic features relative to other lizards (e.g., large eyes, less extensively ossified skulls, and amphicoelous and notochordal vertebrae). In contrast, peramorphosis has not been considered an important process in shaping their morphology. Here, we studied different sized specimens of Gekko gecko to document ontogenetic changes in cranial anatomy, especially near maturity. Comparison of this species with available descriptions of other geckos resulted in the identification of 14 cranial characteristics that are expressed more strongly with size increase. These characteristics become move evident in later stages of post-hatching development, especially near maturation, and are, therefore, attributed to peramorphosis (hyperossification). ACCTRAN and DELTRAN character optimizations were applied to these characters using a tree of 11 genera derived from a gekkotan molecular phylogeny. This analysis revealed that G. gecko expresses the majority of these putative peramorphic features near maturity, and that some of these features are also expressed in species closely related to G. gecko. The characters studied have the potential to be applied in future phylogenetic and taxonomic studies of this group of lizards. © 2015 Wiley Periodicals, Inc.

  14. A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors.

    Science.gov (United States)

    Graffeo, Christopher S; Dietrich, August R; Grobelny, Bartosz; Zhang, Meng; Goldberg, Judith D; Golfinos, John G; Lebowitz, Richard; Kleinberg, David; Placantonakis, Dimitris G

    2014-08-01

    Endoscopic endonasal surgery has been established as the safest approach to pituitary tumors, yet its role in other common skull base lesions has not been established. To answer this question, we carried out a systematic review of reported series of open and endoscopic endonasal approaches to four major skull base tumors: olfactory groove meningiomas (OGM), tuberculum sellae meningiomas (TSM), craniopharyngiomas (CRA), and clival chordomas (CHO). Data from 162 studies containing 5,701 patients were combined and compared for differences in perioperative mortality, gross total resection (GTR), cerebrospinal fluid (CSF) leak, neurological morbidity, post-operative visual function, post-operative anosmia, post-operative diabetes insipidus (DI), and post-operative obesity/hyperphagia. Weighted average rates for each outcome were calculated using relative study size. Our findings indicate similar rates of GTR and perioperative mortality between open and endoscopic approaches for all tumor types. CSF leak was increased after endoscopic surgery. Visual function symptoms were more likely to improve after endoscopic surgery for TSM, CRA, and CHO. Post-operative DI and obesity/hyperphagia were significantly increased after open resection in CRA. Recurrence rates per 1,000 patient-years of follow-up were higher in endoscopy for OGM, TSM, and CHO. Trends for open and endoscopic surgery suggested modest improvement in all outcomes over time. Our observations suggest that endonasal endoscopy is a safe alternative to craniotomy and may be preferred for certain tumor types. However, endoscopic surgery is associated with higher rates of CSF leak, and possibly increased recurrence rates. Prospective study with long-term follow-up is required to verify these preliminary observations.

  15. Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases.

    Science.gov (United States)

    Topsakal, Cahide; Al-Mefty, Ossama; Bulsara, Ketan R; Williford, Veronica S

    2008-01-01

    The fundamental goal of skull base surgery is tumor removal with preservation of neurological function. Injury to the lower cranial nerves (LCN; CN 9-12) profoundly affects a patient's quality of life. Although intraoperative cranial nerve monitoring (IOM) is widely practiced for other cranial nerves, literature addressing the LCN is scant. We examined the utility of IOM of the LCN in a large patient series. One hundred twelve patients underwent 123 skull base operations with IOM between January 1994 to December 1999. The vagus nerve (n=37), spinal accessory nerve (n=118), and the hypoglossal nerve (n=83) were monitored intraoperatively. Electromyography (EMG) and compound muscle action potentials (CMAP) were recorded from the relevant muscles after electrical stimulation. This data was evaluated retrospectively. Patients who underwent IOM tended to have larger tumors with more intricate involvement of the lower cranial nerves. Worsening of preoperative lower cranial nerve function was seen in the monitored and unmonitored groups. With the use of IOM in the high risk group, LCN injury was reduced to a rate equivalent to that of the lower risk group (p>0.05). The immediate feedback obtained with IOM may prevent injury to the LCN due to surgical manipulation. It can also help identify the course of a nerve in patients with severely distorted anatomy. These factors may facilitate gross total tumor resection with cranial nerve preservation. The incidence of high false positive and negative CMAP and the variability in CMAP amplitude and threshold can vary depending on individual and technical factors.

  16. Computed tomography of Paget disease of the skull versus fibrous dysplasia

    International Nuclear Information System (INIS)

    Tehranzadeh, J.; Anavim, A.; Pribram, H.W.; Fung Ying; Donohue, M.

    1998-01-01

    Objective. Radiologists are often challenged to review CT examinations of the skull without pertinent clinical information or plain radiographs. Skull lesions of fibrous dysplasia (FD) may often be confused with Paget disease (PD). The purpose of this article is to evaluate radiographic similarities and to find the signs that can differentiate PD from FD of the skull on head CT and to describe the CT imaging features of PD and FD. Design and patients. CT scans of the skull in eight cases of PD, 18 cases of FD (13 cases of skull and facial bones, five cases of only facial bones) and 10 normals were studied retrospectively. Results. Ten features were found to be similar in PD and FD and 10 other features were found to be dissimilar. The frequency of the 10 differentiating features was evaluated to determine their reliability in distinguishing one disorder from the other. The differentiating features in order of significance include: (1) ''groundglass'' appearance, (2) symmetry, (3) involvement of the paranasal sinuses, (4) thickness of the cranial cortices, (5) involvement of the sphenoid bone, (6) orbital involvement, (7) nasal cavity involvement, (8) presence of a soft tissue mass, (9) maxillary involvement, and (10) the presence of cyst-like changes. Conclusion. These 10 signs improve the radiologist's skill in differentiating FD and PD. (orig.)

  17. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    Science.gov (United States)

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Brachyury, SOX-9, and Podoplanin, New Markers in the Skull Base Chordoma Vs Chondrosarcoma Differential: A Tissue Microarray Based Comparative Analysis

    Science.gov (United States)

    Oakley, GJ; Fuhrer, K; Seethala, RR

    2014-01-01

    The distinction between chondrosarcoma and chordoma of the skull base/head and neck is prognostically important; however, both have sufficient morphologic overlap to make distinction difficult. As a result of gene expression studies, additional candidate markers have been proposed to help in this distinction. Hence, we sought to evaluate the performance of new markers: brachyury, SOX-9, and podoplanin alongside the more traditional markers glial fibrillary acid protein, carcinoembryonic antigen, CD24 and epithelial membrane antigen. Paraffin blocks from 103 skull base/head and neck chondroid tumors from 70 patients were retrieved (1969-2007). Diagnoses were made based on morphology and/or whole section immunohistochemistry for cytokeratin and S100 protein yielding 79 chordomas (comprising 45 chondroid chordomas and 34 conventional chordomas), and 24 chondrosarcomas. A tissue microarray containing 0.6 mm cores of each tumor in triplicate was constructed using a manual array (MTA-1, Beecher Instruments). For visualization of staining, the ImmPRESS detection system (Vector Laboratories) with 2 - diaminobenzidine substrate was used. Sensitivities and specificities were calculated for each marker. Core loss from the microarray ranged from 25-29% yielding 66-78 viable cases per stain. The classic marker, cytokeratin, still has the best performance characteristics. When combined with brachyury, accuracy improves slightly (sensitivity and specificity for detection of chordoma 98% and 100%, respectively). Positivity for both epithelial membrane antigen and AE1/AE3 had a sensitivity of 90% and a specificity of 100% for detecting chordoma in this study. SOX-9 is apparently common to both notochordal and cartilaginous differentiation, and is not useful in the chordoma-chondrosarcoma differential diagnosis. Glial fibrillary acid protein, carcinoembryonic antigen, CD24, and epithelial membrane antigen did not outperform other markers, and are less useful in the diagnosis of

  19. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep.

    Science.gov (United States)

    Hunter, Damien Seth; Hazel, Susan J; Kind, Karen L; Liu, Hong; Marini, Danila; Giles, Lynne C; De Blasio, Miles J; Owens, Julie A; Pitcher, Julia B; Gatford, Kathryn L

    2017-09-01

    Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.

  20. A homicide in the Ukraine: DNA-based identification of a boiled, skeletonized, and varnished human skull, and of bone fragments found in a fireplace.

    Science.gov (United States)

    Sivolap, Y; Krivda, G; Kozhuhova, N; Chebotar, S; Benecke, M

    2001-12-01

    In an apartment, bone fragments were found in a fireplace. Furthermore, a varnished skull was found elsewhere in the same apartment. The tenant confessed to a murder and stated that the head of a victim, a girl, was boiled for 12 hours. He stated that the soft tissue was then removed and the skull was varnished. Other parts of the body were burned to ashes in an open field. Comparison of loci D19S252, CD4, CYAR04, TII01, F13A01, F13B, and D6S366 from the skull and the bone remains to loci of the mother of a missing girl showed that the skull came from that missing child. Biological maternity was calculated as 99.99%. The bone pieces were DNA typed as male and did not share alleles with the mother in several systems. Therefore, they belonged to a different (human) victim.