WorldWideScience

Sample records for lateral acceleration

  1. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    Science.gov (United States)

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  2. The influence of tyre transient side force properties on vehicle lateral acceleration for a time-varying vertical force

    Science.gov (United States)

    Takahashi, Toshimichi

    2018-05-01

    The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.

  3. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  4. Pedestrian-induced lateral forces on footbridges

    DEFF Research Database (Denmark)

    Ingolfsson, Einar Thor; Georgakis, Christos T.; Jönsson, Jeppe

    2012-01-01

    of the underlying pavement. An extensive experimental analysis has been carried out to determine the lateral forces generated by pedestrians when walking on a laterally moving treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal...... motion at varying combinations of frequencies (0.33-1.07 Hz) and amplitudes (4.5-48 mm). The component of the pedestrian-induced force which is caused by the laterally moving surface is herewith quantified through equivalent velocity and acceleration proportional coefficients. It is shown that large...

  5. Pedestrian-induced lateral forces on footbridges

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór; Georgakis, Christos T.; Jönsson, Jeppe

    2011-01-01

    of the underlying pavement. An extensive experimental analysis has been carried out to determine the lateral forces generated by pedestrians when walking on a laterally moving treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal...... motion at varying combinations of frequencies (0.33-1.07 Hz) and amplitudes (4.5-48 mm). The component of the pedestrian-induced force which is caused by the laterally moving surface is herewith quantified through equivalent velocity and acceleration proportional coefficients. It is shown that large...

  6. 26Al tracer experiment by accelerator mass spectrometry and its application to the studies for amyotrophic lateral sclerosis and Alzheimer's disease, 1

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Yumoto, Sakae; Nagai, Hisao; Hosoyama, Yoshiyuki; Imamura, Mineo; Masuzawa, Shin-ichirou; Koizumi, Yoshinobu; Yamashita, Hiroshi.

    1990-01-01

    Accelerator mass spectrometry (AMS) was applied for 26 Al tracer experiment to study the aluminum toxicity and metabolism in rats. To investigate the cause of amyotrophic lateral sclerosis (ALS) and Alzheimer's disease, the aluminum incorporation into the brain (cerebrum) was studied by AMS using 26 Al as a tracer. When 26 Al was intraperitoneally injected into rats, a considerable amount of 26 Al was incorporated into the cerebrum after 5-35 days of the injection. (author)

  7. Modeling multi-lateral wells

    Energy Technology Data Exchange (ETDEWEB)

    Su, H. J.; Fong, W. S. [Chevron Petroleum Technology Company (United States)

    1998-12-31

    A method for modeling multi-lateral wells by using a computational scheme embedded in a general-purpose, finite difference simulator was described. The calculation of wellbore pressure profile for each lateral included the frictional pressure drop along the wellbore and proper fluid mixing at lateral connection points. To obtain a good production profile the Beggs and Brill correlation, a homogenous flow model, and the model proposed by Ouyang et al, which includes an acceleration term and accounts for the lubrication effect due to radial influx, were implemented. Well performance prediction results were compared using the three models. The impact of different tubing sizes on the well performance and the prediction contribution from each lateral were also studied. Results of the study in the hypothetical example and under normal field operating conditions were reviewed. 7 refs., 10 tabs., 3 figs.

  8. A Novel Guidance Law with Line-of-Sight Acceleration Feedback for Missiles against Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Kemao Ma

    2014-01-01

    Full Text Available Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals. To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and without measurement noises. The simulation results justify the feasibility of the design and the implementation.

  9. Accelerator design and construction in the 1950s

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1989-01-01

    This article looks into the history of the design, construction and operation of four of the large particle accelerators of the 1950s, the Cosmotron and more powerful alternating-gradient synchrotron (AGS) at Brookhaven, the Bevatron at Berkeley and the CERN proton synchrotron in Geneva with which the author was involved. The author's own contribution was in magnet design for the Cosmotron and the radiofrequency accelerating system. He later worked on linear accelerators and strong focusing later used in the AGS with Nick Christofilos from Athens. Collaboration between CERN and Brookhaven continued following a British study of alternating-gradient focusing which showed up possible resonance problems. In 1953, the ''phase transition'' problem was overcome. The author's personal contribution to the AGS project completes the article. (UK)

  10. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: modelling, simulations and experiments

    Science.gov (United States)

    Hong, Sanghyun; Erdogan, Gurkan; Hedrick, Karl; Borrelli, Francesco

    2013-05-01

    The estimation of the tyre-road friction coefficient is fundamental for vehicle control systems. Tyre sensors enable the friction coefficient estimation based on signals extracted directly from tyres. This paper presents a tyre-road friction coefficient estimation algorithm based on tyre lateral deflection obtained from lateral acceleration. The lateral acceleration is measured by wireless three-dimensional accelerometers embedded inside the tyres. The proposed algorithm first determines the contact patch using a radial acceleration profile. Then, the portion of the lateral acceleration profile, only inside the tyre-road contact patch, is used to estimate the friction coefficient through a tyre brush model and a simple tyre model. The proposed strategy accounts for orientation-variation of accelerometer body frame during tyre rotation. The effectiveness and performance of the algorithm are demonstrated through finite element model simulations and experimental tests with small tyre slip angles on different road surface conditions.

  11. Velocity- and acceleration-sensitive units in the trunk lateral line of the trout

    NARCIS (Netherlands)

    Kroese, A. B.; Schellart, N. A.

    1992-01-01

    1. The two main types of lateral line organs of lower vertebrates are the superficial neuromasts (SN), with a cupula that protrudes in the surrounding water, and the canal neuromasts (CN), located in the lateral line canal. The scales of the trunk lateral line canal of fish contain SNs as well as

  12. sup 26 Al tracer experiment by accelerator mass spectrometry and its application to the studies for amyotrophic lateral sclerosis and Alzheimer's disease, 1

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Koichi (Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology); Yumoto, Sakae; Nagai, Hisao; Hosoyama, Yoshiyuki; Imamura, Mineo; Masuzawa, Shin-ichirou; Koizumi, Yoshinobu; Yamashita, Hiroshi

    1990-12-01

    Accelerator mass spectrometry (AMS) was applied for {sup 26}Al tracer experiment to study the aluminum toxicity and metabolism in rats. To investigate the cause of amyotrophic lateral sclerosis (ALS) and Alzheimer's disease, the aluminum incorporation into the brain (cerebrum) was studied by AMS using {sup 26}Al as a tracer. When {sup 26}Al was intraperitoneally injected into rats, a considerable amount of {sup 26}Al was incorporated into the cerebrum after 5-35 days of the injection. (author).

  13. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  14. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  15. Teleportation with Multiple Accelerated Partners

    International Nuclear Information System (INIS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-01-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network. (paper)

  16. CERN Accelerator School: Cyclotrons, linacs and applications

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1994-01-01

    When the CERN Accelerator School (CAS) was set up over ten years ago it was expected that its job of training a new generation of accelerator scientists would slacken off after a few years as recruitment eased back. It has therefore been a puzzle to explain why, a decade later, there is still a steady flow of 200 or 300 participants a year coming to CAS Courses. The explanation seems to be that the ''graduates'' are from the many laboratories considerably smaller than CERN and from university physics departments and hospitals where accelerators are used. There are also factories and even production lines where small accelerators are produced

  17. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    Science.gov (United States)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  18. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  19. Acceleration of charged particles by lasers in vacuum

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Hora, H.; Scheid, W.

    1989-01-01

    For laser acceleration of electrons (and other charged particles) by lasers to the TeV energy range in vacuum, the scheme of trapping electrons in spatially moving and accelerated intensity gradients or minima of laser fields, the single electron motion in standing wave fields is evaluated in details numerically. Acceleration of the minima results in the acceleration of the electrons as expected from global results of the nonlinear forces. If half-wave length laser pulses propagating in vacuum are used the relativistic exact solutions are derived and evaluated. A disadvantage is the lateral motion requiring a large laser focus. For TeV electron energy, MJ KrF-laser pulses are necessary and the acceleration length is about 10 cm. copyright 1989 American Institute of Physics

  20. RF accelerating unit installed in the PSB

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  1. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    Science.gov (United States)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  2. The effect of a 3-point harness restraint and car seat in whiplash-type lateral impacts.

    Science.gov (United States)

    Kumar, Shrawan; Ferrari, Robert; Narayan, Yogesh; Jones, Troy

    2006-01-01

    Seventeen healthy volunteers were subjected to right and left lateral impacts 5.0, 6.8, 9.2, and 16.8 m/s acceleration while positioned in a Volvo car seat with lap and shoulder seat belt restraint in laboratory setting. The purpose of this study was to determine the effect of using a standard 3-point lap and shoulder seat belt and Volvo car seat on the response of the cervical muscles to increasing low-velocity lateral impacts. A previous study of lateral impacts in a 5-point harness restraint with head and trunk in neutral posture suggests that the burden of impact is borne primarily by the splenius capitis muscle contralateral to the direction of impact. That study, however, used a nonstandard harness for automobiles, and other studies suggest that a lap-and-shoulder seat belt may increase the risk of whiplash injury. Triaxial accelerometers recorded the acceleration of the 1) sled, 2) torso at the shoulder level, and 3) head of the participant, while bilateral electromyograms of the sternocleidomastoids, trapezii, and splenii capitis were also recorded. For participants experiencing a right or left lateral impact, the muscle responses increased with increasing levels of acceleration (P trend to progressively decrease with increasing levels of acceleration. The peak head accelerations relative to the sled ranged from 2.5 to 10.6 m/s. When the impact was a right lateral impact, at the highest sled acceleration, the left splenius capitis generated 47% of its maximal voluntary contraction (MVC), and the left trapezius also 46% of its MVC; the left and right sternocleidomastoid, right splenius capitis, and right trapezius generated 29% or less of their MVC. For the highest level of acceleration in a left lateral impact, the right splenius capitis generated 48% of its MVC and the right trapezius 57% of the MVC, the left and right sternocleidomastoid, left splenius capitis, and left trapezius generated 29% or less of their MVC. In both directions of impact, the

  3. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  4. Development of C-band Accelerating Section for SuperKEKB

    CERN Document Server

    Kamitani, T; Ikeda, M; Kakihara, K; Ohsawa, S; Oogoe, T; Sugimura, T; Takatomi, T; Yamaguchi, S; Yokoyama, K

    2004-01-01

    For the luminosity upgrade of the present KEK B-factory to SuperKEKB, the injector linac has to increase the positron acceleration energy from 3.5 to 8.0 GeV. In order to double the acceleration field gradient from 21 to 42 MV/m, design studies on C-band accelerator module has started in 2002. First prototype 1-m long accelerating section has been fabricated based upon a design which is half scale of the present S-band section. High power test of the C-band section has been performed at a test stand and later at an accelerator module in the KEKB injector linac. In a beam acceleration test, a field gradient of 41 MV/m is achieved with 43 MW RF power from a klystron. This paper report on the recent status of the high-power test and also the development of a second prototype section.

  5. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  6. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  7. One leg lateral jumps - a new test for team players evaluation.

    Science.gov (United States)

    Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E

    2013-10-01

    We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".

  8. PAC++: Object-oriented platform for accelerator codes

    International Nuclear Information System (INIS)

    Malitsky, N.; Reshetov, A.; Bourianoff, G.

    1994-06-01

    Software packages in accelerator physics have relatively long life cycles. They had been developed and used for a wide range of accelerators in the past as well as for the current projects. For example, the basic algorithms written in the first accelerator Program TRANSPORT are actual for design of most magnet systems. Most of these packages had been implemented on Fortran. But this language is rather inconvenient as a basic language for large integrated projects that possibly could include real-time data acquisition, data base access, graphic riser interface modules (GUI), arid other features. Some later accelerator programs had been based on object-oriented tools (primarily, C++ language). These range from systems for advanced theoretical studies to control system software. For the new generations of accelerators it would be desirable to have an integrated platform in which all simulation and control tasks will be considered with one point of view. In this report the basic principles of an object-oriented platform for accelerator research software (PAC++) are suggested and analyzed. Primary objectives of this work are to enable efficient self-explaining realization of the accelerator concepts and to provide an integrated environment for the updating and the developing of the code

  9. Clinical Neurogenetics: Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Harms, Matthew B.; Baloh, Robert H.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, about which our understanding is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways for target for therapeutic development. This article reviews our current understanding of the heritability of ALS, provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS. PMID:24176417

  10. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  11. Accelerators for the twenty-first century a review

    CERN Document Server

    Wilson, Edmund J N

    1990-01-01

    The development of the synchrotron, and later the storage ring, was based upon the electrical technology at the turn of this century, aided by the microwave radar techniques of World War II. This method of acceleration seems to have reached its limit. Even superconductivity is not likely to lead to devices that will satisfy physics needs into the twenty-first century. Unless a new principle for accelerating elementary particles is discovered soon, it is difficult to imagine that high-energy physics will continue to reach out to higher energies and luminosities.

  12. Use of the calorimeter in the dosimetry for electron accelerators

    International Nuclear Information System (INIS)

    Chavez B, A.

    1991-02-01

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  13. Clinical neurogenetics: amyotrophic lateral sclerosis.

    Science.gov (United States)

    Harms, Matthew B; Baloh, Robert H

    2013-11-01

    Our understanding of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways as targets for therapeutic development. This article reviews our current understanding of the heritability of ALS and provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  15. Wandering accelerators throughout my life (4)

    International Nuclear Information System (INIS)

    Nakai, Kozi

    2010-01-01

    My effort in the last stage of wandering about accelerator was to bridge the gap between nuclear and high-energy physics at the KEK-PS. Since the TRISTAN construction started, the KEK-PS has been opened to nuclear physics users. Among various possibilities, emphasis was placed on the hypernuclear experiments, K-decay experiments, and later, the long-base-line neutrino experiment (K2K), which were successfully carried out. Although the TRISTAN experiment was unable to find the top quark, the CP-test experiments at TRISTAN-II (KEKB) have proven the Kobayashi-Maskawa theory successfully. During the last three years of my tenure in KEK, I served as a science adviser to Minister of Education, and I was involved in international affairs of accelerator science. (author)

  16. Recircular accelerator to proton ocular therapy

    International Nuclear Information System (INIS)

    Rabelo, Luisa A.; Campos, Tarcisio P.R.

    2013-01-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  17. Recircular accelerator to proton ocular therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  18. Lateral femoral notch depth is not associated with increased rotatory instability in ACL-injured knees: a quantitative pivot shift analysis.

    Science.gov (United States)

    Kanakamedala, Ajay C; Burnham, Jeremy M; Pfeiffer, Thomas R; Herbst, Elmar; Kowalczuk, Marcin; Popchak, Adam; Irrgang, James; Fu, Freddie H; Musahl, Volker

    2018-05-01

    A deep lateral femoral notch (LFN) on lateral radiographs is indicative of ACL injury. Prior studies have suggested that a deep LFN may also be a sign of persistent rotatory instability and a concomitant lateral meniscus tear. Therefore, the purpose of this study was to evaluate the relationship between LFN depth and both quantitative measures of rotatory knee instability and the incidence of lateral meniscus tears. It was hypothesized that greater LFN depth would be correlated with increased rotatory instability, quantified by lateral compartment translation and tibial acceleration during a quantitative pivot shift test, and incidence of lateral meniscus tears. ACL-injured patients enrolled in a prospective ACL registry from 2014 to 2016 were analyzed. To limit confounders, patients were only included if they had primary ACL tears, no concurrent ligamentous or bony injuries requiring operative treatment, and no previous knee injuries or surgeries to either knee. Eighty-four patients were included in the final analysis. A standardized quantitative pivot shift test was performed pre-operatively under anesthesia in both knees, and rotatory instability, specifically lateral compartment translation and tibial acceleration, was quantified using tablet image analysis software and accelerometer sensors. Standard lateral radiographs and sagittal magnetic resonance images (MRI) of the injured knee were evaluated for LFN depth. There were no significant correlations between LFN depth on either imaging modality and ipsilateral lateral compartment translation or tibial acceleration during a quantitative pivot shift test or side-to-side differences in these measurements. Patients with lateral meniscus tears were found to have significantly greater LFN depths than those without on conventional radiograph and MRI (1.0 vs. 0.6 mm, p quantitative measures of rotatory instability. Concomitant lateral meniscus injury was associated with significantly greater LFN depth. Based on

  19. Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System

    Science.gov (United States)

    Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi

    Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.

  20. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  1. The formation of kappa-distribution accelerated electron populations in solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Stackhouse, Duncan J.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: d.stackhouse.1@research.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2014-12-01

    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a 'wave front' propagating forward in velocity space, so that electrons of higher energy are accelerated later; the acceleration timescales with energy according to τ{sub acc} ∼ E {sup 3/2}. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the 'leaky-box' approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.

  2. European Committee for Future Accelerators

    International Nuclear Information System (INIS)

    Mulvey, John

    1983-01-01

    Nearly 21 years ago, in December 1962, Viktor Weisskopf and Cecil Powell, then respectively CERN's Director General and Chairman of the Scientific Policy Committee, called together a group of European high energy physicists to advise on steps to reach higher energy. The CERN PS had been in operation since 1959, its experimental programme was well established and the time had come to think of the future. The Chairman of the group, which later took the title 'European Committee for Future Accelerators', was Edoardo Amaldi and his influential report, presented to the CERN Council in June 1963, reviewed the whole structure and possible development of the field in the CERN Member States. Its proposals included the construction of the Intersecting Storage Rings (ISR), and of a 300 GeV proton accelerator which was then envisaged as being the major facility of a second CERN Laboratory elsewhere in Europe

  3. Expression of S100A6 in Rat Hippocampus after Traumatic Brain Injury Due to Lateral Head Acceleration

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2014-04-01

    Full Text Available In a rat model of traumatic brain injury (TBI, we investigated changes in cognitive function and S100A6 expression in the hippocampus. TBI-associated changes in this protein have not previously been reported. Rat S100A6 was studied via immunohistochemical staining, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR after either lateral head acceleration or sham. Reduced levels of S100A6 protein and mRNA were observed 1 h after TBI, followed by gradual increases over 6, 12, 24, and 72 h, and then a return to sham level at 14 day. Morris water maze (MWM test was used to evaluate animal spatial cognition. TBI- and sham-rats showed an apparent learning curve, expressed as escape latency. Although TBI-rats displayed a relatively poorer cognitive ability than sham-rats, the disparity was not significant early post-injury. Marked cognitive deficits in TBI-rats were observed at 72 h post-injury compared with sham animals. TBI-rats showed decreased times in platform crossing in the daily MWM test; the performance at 72 h post-injury was the worst. In conclusion, a reduction in S100A6 may be one of the early events that lead to secondary cognitive decline after TBI, and its subsequent elevation is tightly linked with cognitive improvement. S100A6 may play important roles in neuronal degeneration and regeneration in TBI.

  4. Beat-wave accelerator studies at the Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1985-01-01

    The study carried out in 1982-83 at the Rutherford Appleton Laboratory to examine how one might use the beat-wave principle to construct a useful high energy accelerator is reviewed, and comments are made on later developments. A number of problems are evident to which solutions cannot at present be foreseen. (author)

  5. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. By using a combination of mathematical modeling and by experimentally investigating various leach rate controlling factors, a more complete understanding of leaching processes is being developed. This, in turn, is leading to optimized accelerating conditions for a leach test

  6. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  7. Treatment planning for laser-accelerated very-high energy electrons

    International Nuclear Information System (INIS)

    Fuchs, T; Szymanowski, H; Oelfke, U; Glinec, Y; Rechatin, C; Faure, J; Malka, V

    2009-01-01

    In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.

  8. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    Science.gov (United States)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  9. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  10. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    2011-11-14

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  11. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    International Nuclear Information System (INIS)

    Colby, Eric R.; Hogan, Mark J.

    2008-01-01

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  12. Function Lateralization via Measuring Coherence Laterality

    Science.gov (United States)

    Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.

    2009-01-01

    A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736

  13. A virtual linear accelerator for verification of treatment planning systems

    International Nuclear Information System (INIS)

    Wieslander, Elinore

    2000-01-01

    A virtual linear accelerator is implemented into a commercial pencil-beam-based treatment planning system (TPS) with the purpose of investigating the possibility of verifying the system using a Monte Carlo method. The characterization set for the TPS includes depth doses, profiles and output factors, which is generated by Monte Carlo simulations. The advantage of this method over conventional measurements is that variations in accelerator output are eliminated and more complicated geometries can be used to study the performance of a TPS. The difference between Monte Carlo simulated and TPS calculated profiles and depth doses in the characterization geometry is less than ±2% except for the build-up region. This is of the same order as previously reported results based on measurements. In an inhomogeneous, mediastinum-like case, the deviations between TPS and simulations are small in the unit-density regions. In low-density regions, the TPS overestimates the dose, and the overestimation increases with increasing energy from 3.5% for 6 MV to 9.5% for 18 MV. This result points out the widely known fact that the pencil beam concept does not handle changes in lateral electron transport, nor changes in scatter due to lateral inhomogeneities. It is concluded that verification of a pencil-beam-based TPS with a Monte Carlo based virtual accelerator is possible, which facilitates the verification procedure. (author)

  14. Licensing criteria for particle accelerators categorization

    International Nuclear Information System (INIS)

    Costa, Evaldo L.C. da

    2013-01-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  15. Licensing criteria for particle accelerators categorization

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Evaldo L.C. da, E-mail: evaldo@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dir. de Radioprotecao e Seguranca; Melo, Paulo F.F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    From the international experience of research centers in various parts of the world, where there are particle accelerators of various sizes and energies, it was found that operating energy of particle accelerators is one of the parameters used by categorization models in the licensing of these radiation facilities, and the facility size is an important aspect to be considered in this model. A categorization based on these two key parameters is presented, also taking into account the kinds of accelerated particles and radiation produced, the operating related technology and the possible applications concerned. The categorization models of national nuclear authorities of five countries are reviewed, emphasizing the contribution of Brazil, and the new model proposed is also based on the experience of these countries, modified by those two parameter discussed above: facility size and operating energy of particle accelerators. Later, some changes are suggested, considering risk factors and safety features related to these facilities, emphasizing some analytical tools commonly used in nuclear facilities and chemical plants, such as: risk-informing decision making, layer of protection analysis (LOPRA) and safety integrity levels (SIL), the two latter ones having its origin in the broader concept of system safety. We also discuss the problem of scarcity of reliability data (common in the analyses involving risk factors and safety), due to security concerns and other factors, being the possible alternative solutions the use of generic databases and the adoption of reference facilities that provide partial data publicly. (author).

  16. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    Science.gov (United States)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  17. Body acceleration distribution and O2 uptake in humans during running and jumping

    Science.gov (United States)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  18. Delivering the lateral inhibition punchline: it's all about the timing.

    Science.gov (United States)

    Axelrod, Jeffrey D

    2010-10-26

    Experimental and theoretical biologists have long been fascinated with the emergence of self-organizing patterns in developing organisms, and much attention has focused on Notch-mediated lateral inhibition. Within sheets of cells that may adopt either of two possible cell fates, lateral inhibition establishes patterns through the activity of a negative intercellular feedback loop involving the receptor, Notch, and its ligands Delta or Serrate. Despite a long history of intensive study in Drosophila, where the mechanism was first described, as well as in other organisms, new work continues to yield important insights. Mathematical modeling, combined with biological analyses, has now shed light on two features of the process: how antagonistic and activating ligand-receptor interactions work together to accelerate inhibition and ensure fidelity, and how filopodial dynamics contribute to the observed pattern refinement and spacing.

  19. The Stress Acceleration Hypothesis of Nightmares

    Directory of Open Access Journals (Sweden)

    Tore Nielsen

    2017-06-01

    Full Text Available Adverse childhood experiences can deleteriously affect future physical and mental health, increasing risk for many illnesses, including psychiatric problems, sleep disorders, and, according to the present hypothesis, idiopathic nightmares. Much like post-traumatic nightmares, which are triggered by trauma and lead to recurrent emotional dreaming about the trauma, idiopathic nightmares are hypothesized to originate in early adverse experiences that lead in later life to the expression of early memories and emotions in dream content. Accordingly, the objectives of this paper are to (1 review existing literature on sleep, dreaming and nightmares in relation to early adverse experiences, drawing upon both empirical studies of dreaming and nightmares and books and chapters by recognized nightmare experts and (2 propose a new approach to explaining nightmares that is based upon the Stress Acceleration Hypothesis of mental illness. The latter stipulates that susceptibility to mental illness is increased by adversity occurring during a developmentally sensitive window for emotional maturation—the infantile amnesia period—that ends around age 3½. Early adversity accelerates the neural and behavioral maturation of emotional systems governing the expression, learning, and extinction of fear memories and may afford short-term adaptive value. But it also engenders long-term dysfunctional consequences including an increased risk for nightmares. Two mechanisms are proposed: (1 disruption of infantile amnesia allows normally forgotten early childhood memories to influence later emotions, cognitions and behavior, including the common expression of threats in nightmares; (2 alterations of normal emotion regulation processes of both waking and sleep lead to increased fear sensitivity and less effective fear extinction. These changes influence an affect network previously hypothesized to regulate fear extinction during REM sleep, disruption of which leads to

  20. Geomagnetic displacement of the electron beam in the LIU-30 accelerator

    International Nuclear Information System (INIS)

    Rakityanskij, S.A.

    1987-01-01

    An influence of weak lateral magnetic field upon the motion of the intense electron beam inside a linear cylindrical vacuum channel is numerically explored. The problem is solved in the framework of a simple model with a thread-like beam. It also takes into account the charge and current of the image, induced in conducting surface of the vacuum tube. The dependence of the beam displacement from axis, caused by the lateral magnetic field, on the energy and on the degree of nonuniformity of the longitudinal focusing field is explored. A calculation of the beam displacement for the LIU-30 accelerating structure is performed. It is shown by this example that the earth magnetic field may cause a significant displacement. It is also shown that a smoothing away of the longitudinal field nonuniformities reduces the displacement by some times. A conclusion about advisability of orientation of the short accelerators along the geomagnetic lines and about indispensability of a removal of geomagnetic field in beginning parts of the long mashines is made

  1. Accelerator Disaster Scenarios, the Unabomber, and Scientific Risks

    OpenAIRE

    Kapusta, Joseph I.

    2008-01-01

    The possibility that experiments at high-energy accelerators could create new forms of matter that would ultimately destroy the Earth has been considered several times in the past quarter century. One consequence of the earliest of these disaster scenarios was that the authors of a 1993 article in "Physics Today" who reviewed the experiments that had been carried out at the Bevalac at Lawrence Berkeley Laboratory were placed on the FBI's Unabomber watch list. Later, concerns that experiments ...

  2. Lateral sample motion in the plate-rod impact experiments

    International Nuclear Information System (INIS)

    Zaretsky, Eugene; Levi-Hevroni, David; Shvarts, Dov; Ofer, Dror

    2000-01-01

    Velocity of the lateral motion of cylindrical, 9 mm diameter 20 mm length, samples impacted by WHA impactors of 5-mm thickness was monitored by VISAR at the different points of the sample surface at distance of 1 to 4 mm from the sample impacted edge. The impactors were accelerated in the 25-mm pneumatic gun up to velocities of about 300 m/sec. Integrating the VISAR data recorded at the different surface points after the impact with the same velocity allows to obtain the changes of the sample shape during the initial period of the sample deformation. It was found that the character of the lateral motion is different for samples made of WHA and commercial Titanium alloy Ti-6Al-4V. 2-D numerical simulation of the impact allows to conclude that the work hardening of the alloys is responsible for this difference

  3. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  4. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  5. Optimizing conditions for an accelerated leach test

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Fuhrmann, M.; Heiser, J.; Franz, E.M.; Colombo, P.

    1988-01-01

    An accelerated leach test for low-level radioactive waste forms is being developed to provide, in a short time, data that can be extrapolated to long time periods. The approach is to provide experimental conditions that will accelerate leaching without changing the dominant release mechanism. Experimental efforts have focused on combining individual factors that have been observed to accelerate leaching. These include elevated temperature, increased leachant volume, and reduced specimen size. The response of diffusion coefficients to various acceleration factors have been evaluated and provide information on experimental parameters that need to be optimized to increase leach rates. For example, these data show that large volumes of leachant are required when leaching portland cement waste forms at elevated temperatures because of high concentrations of dissolved species. Sr-85 leaching is particularly susceptible to suppression due to concentration effects while Cs-137 leaching is less so. Preliminary modeling using a diffusion mechanism (allowing for depletion) of a finite cylinder geometry indicates that during early portions of experiments (daily sampling intervals), leaching is diffusion controlled and more rapid than later in the same experiments (weekly or greater sampling intervals). For cement waste forms, this reduction in rate may be partially controlled by changes in physical structure and chemistry (sometimes related to environmental influences such as CO 2 ), but it is more likely associated with the duration of the sampling interval. 9 refs., 6 figs

  6. A provisional study of ADS within Turkic Accelerator Complex project

    International Nuclear Information System (INIS)

    Bilgin, P.S.; Caliskan, A.; Sultansoy, S.

    2011-01-01

    The Turkic Accelerator Complex (TAC) project has been developed with the support of the Turkish State Planning Organization by the collaboration of 10 Turkish universities. The complex is planned to have four main facilities, namely: SASE FEL Facility based on 1 GeV Electron Linac, Third Generation Synchrotron Radiation Facility (SR) based on 3.56 GeV Positron Synchrotron, Super-Charm factory (√s = 3.77 GeV) by colliding the electron beam coming from the linac with an energy of 1 GeV and positron beam coming through the positron ring with an energy of 3.56 GeV, GeV scale proton accelerator. Later has two-fold goal: Neutron Spallation Source (NSS) and ADS. The proton accelerator construction will have 3 MeV, 100 MeV, and 1 GeV phases. The technical design report is planned to be finished in 2013. Since Turkey has essential Thorium reserves the ADS becomes very attractive for our country as emerging energy technology. (author)

  7. A multipurpose accelerator facility for Kharkov National Scientific Center

    International Nuclear Information System (INIS)

    Bulyak, E.; Dolbnya, A.; Gladkikh, P.; Karnaukhov, I.; Kononenko, S.; Kozin, V.; Lapshin, V.; Mytsykov, A.; Peev, F.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.

    2000-01-01

    The project of the multifunctional accelerator storage ring complex with electron energy of up to 2 GeV is described. The lattice of the complex was chosen taking into account of the existing equipment, layout of the buildings, and infrastructure of the 2 GeV electron linear accelerator, the necessity of obtaining precise parameters of photon and electron beams, and the economic efficiency. The principle parameters of the storage ring are the circumference of 91 m, the energy range 0.3-2.0 GeV, the natural beam emittance 25 nm and the stored beam current 0.5 A. This complex are provided with photon beams (6-7 beam lines at first stage, up to 20 later on) and CW electron beams (energy region 0.3-0.5 GeV) for scientific and industrial application

  8. A multipurpose accelerator facility for Kharkov National Scientific Center

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Dolbnya, A.; Gladkikh, P.; Karnaukhov, I.; Kononenko, S.; Kozin, V.; Lapshin, V.; Mytsykov, A.; Peev, F.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2000-06-21

    The project of the multifunctional accelerator storage ring complex with electron energy of up to 2 GeV is described. The lattice of the complex was chosen taking into account of the existing equipment, layout of the buildings, and infrastructure of the 2 GeV electron linear accelerator, the necessity of obtaining precise parameters of photon and electron beams, and the economic efficiency. The principle parameters of the storage ring are the circumference of 91 m, the energy range 0.3-2.0 GeV, the natural beam emittance 25 nm and the stored beam current 0.5 A. This complex are provided with photon beams (6-7 beam lines at first stage, up to 20 later on) and CW electron beams (energy region 0.3-0.5 GeV) for scientific and industrial application.

  9. A multipurpose accelerator facility for Kharkov National Scientific Center

    CERN Document Server

    Bulyak, E V; Gladkikh, P; Karnaukhov, I; Kononenko, S; Kozin, V; Lapshin, V G; Mytsykov, A; Peev, F; Shcherbakov, A; Tarasenko, A; Telegin, Yu P; Zelinsky, A

    2000-01-01

    The project of the multifunctional accelerator storage ring complex with electron energy of up to 2 GeV is described. The lattice of the complex was chosen taking into account of the existing equipment, layout of the buildings, and infrastructure of the 2 GeV electron linear accelerator, the necessity of obtaining precise parameters of photon and electron beams, and the economic efficiency. The principle parameters of the storage ring are the circumference of 91 m, the energy range 0.3-2.0 GeV, the natural beam emittance 25 nm and the stored beam current 0.5 A. This complex are provided with photon beams (6-7 beam lines at first stage, up to 20 later on) and CW electron beams (energy region 0.3-0.5 GeV) for scientific and industrial application.

  10. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    International Nuclear Information System (INIS)

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables

  11. Case study: Accelerated schedule for MULTI LIMS installation

    International Nuclear Information System (INIS)

    Ibsen, T.G.

    1994-05-01

    This presentation focuses on the steps taken by the Westinghouse Hanford Company to meet an accelerated schedule for configuration and implementation of the MULTI LIMS in a multiple laboratory environment. The Westinghouse Hanford Company purchased the MULTI LIMS Laboratory Information Management System in August, 1993. Hardware delivery began in October, 1993. Less than four months later, the initial configuration was released for use in two Westinghouse Hanford Company laboratories. Several major obstacles were overcome during implementation. These include information gathering for base table loading, user training, acceptance of the new system by users of a legacy system, and hardware configuration issues. In summary, steps needed to be taken to meet the accelerated implementation schedule of the MULTI LIMS at the Hanford Site. The obstacles faced were overcome through the in-depth knowledge and help of the vendor and the dedication and drive of the technical staff

  12. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  13. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  14. Report of the advisory group meeting on the utilization of particle accelerators for proton therapy

    International Nuclear Information System (INIS)

    1998-07-01

    Accelerated protons and light ions, being electrically charged and much heavier than electrons, have definite ranges in tissue with distinct Bragg peak with sharp distal falloffs and sharp lateral dose penumbra. Radiations oncologists could take advantage of these characteristics to deposit a high dose in an irregularly shaped tumor volume while sparing the surrounding healthy tissues and critical organs. This could lead to enhanced tumor control with reduced complications. The Advisory Group has recommended a number of measures to promote and support the spread of medically dedicated particle accelerator facilities and technology

  15. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  16. An Adaptively Accelerated Bayesian Deblurring Method with Entropy Prior

    Directory of Open Access Journals (Sweden)

    Yong-Hoon Kim

    2008-05-01

    Full Text Available The development of an efficient adaptively accelerated iterative deblurring algorithm based on Bayesian statistical concept has been reported. Entropy of an image has been used as a “prior” distribution and instead of additive form, used in conventional acceleration methods an exponent form of relaxation constant has been used for acceleration. Thus the proposed method is called hereafter as adaptively accelerated maximum a posteriori with entropy prior (AAMAPE. Based on empirical observations in different experiments, the exponent is computed adaptively using first-order derivatives of the deblurred image from previous two iterations. This exponent improves speed of the AAMAPE method in early stages and ensures stability at later stages of iteration. In AAMAPE method, we also consider the constraint of the nonnegativity and flux conservation. The paper discusses the fundamental idea of the Bayesian image deblurring with the use of entropy as prior, and the analytical analysis of superresolution and the noise amplification characteristics of the proposed method. The experimental results show that the proposed AAMAPE method gives lower RMSE and higher SNR in 44% lesser iterations as compared to nonaccelerated maximum a posteriori with entropy prior (MAPE method. Moreover, AAMAPE followed by wavelet wiener filtering gives better result than the state-of-the-art methods.

  17. Single-bunch beam loading on the SLAC two-mile accelerator

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1976-01-01

    The experiments described were initially prompted by interest in the radiation loss of relativistic electron rings passing through periodic structures. Later, the same experiments became relevant to the theory of energy loss of electrons in large storage rings. In both of these cases, energy loss to the higher order modes of the respective structures could seriously limit their effective operation as acceleration devices. In these experiments, single bunches of electrons with intensities up to 7 x 10 8 electrons per bunch are accelerated through the SLAC three-kilometer accelerator, and their energy spectra are analyzed. Early experiments over a wide energy range (900 MeV to 19 GeV) demonstrated that the energy loss was proportional to the total charge in the bunch but was independent of beam energy. The average energy loss of a single bunch normalized to 10 9 electrons was initially measured to be 38 MeV. The experiments, including much of the equipment development, are described and are compared with theoretical predictions made to date

  18. Average accelerator simulation Truebeam using phase space in IAEA format

    International Nuclear Information System (INIS)

    Santana, Emico Ferreira; Milian, Felix Mas; Paixao, Paulo Oliveira; Costa, Raranna Alves da; Velasco, Fermin Garcia

    2015-01-01

    In this paper is used a computational code of radiation transport simulation based on Monte Carlo technique, in order to model a linear accelerator of treatment by Radiotherapy. This work is the initial step of future proposals which aim to study several treatment of patient by Radiotherapy, employing computational modeling in cooperation with the institutions UESC, IPEN, UFRJ e COI. The Chosen simulation code is GATE/Geant4. The average accelerator is TrueBeam of Varian Company. The geometric modeling was based in technical manuals, and radiation sources on the phase space for photons, provided by manufacturer in the IAEA (International Atomic Energy Agency) format. The simulations were carried out in equal conditions to experimental measurements. Were studied photons beams of 6MV, with 10 per 10 cm of field, focusing on a water phantom. For validation were compared dose curves in depth, lateral profiles in different depths of the simulated results and experimental data. The final modeling of this accelerator will be used in future works involving treatments and real patients. (author)

  19. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  20. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  1. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  2. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  3. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  4. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  5. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  6. Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle

    Directory of Open Access Journals (Sweden)

    Yeon-Jun Kim

    2016-07-01

    Full Text Available Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty.

  7. Lateral Concepts

    DEFF Research Database (Denmark)

    Gad, Christopher; Bruun Jensen, casper

    2016-01-01

    This essay discusses the complex relation between the knowledges and practices of the researcher and his/her informants in terms of lateral concepts. The starting point is that it is not the prerogative of the (STS) scholar to conceptualize the world; all our “informants” do it too. This creates...... the possibility of enriching our own conceptual repertoires by letting them be inflected by the concepts of those we study. In a broad sense, the lateral means that there is a many-to-many relation between domains of knowledge and practice. However, each specific case of the lateral is necessarily immanent...... to a particular empirical setting and form of inquiry. In this sense lateral concepts are radically empirical since it locates concepts within the field. To clarify the meaning and stakes of lateral concepts, we first make a contrast between lateral anthropology and Latour’s notion of infra-reflexivity. We end...

  8. Accelerated long-term forgetting in aging and intra-sleep awakenings

    Directory of Open Access Journals (Sweden)

    Alison eMary

    2013-10-01

    Full Text Available The architecture of sleep and the functional neuroanatomical networks subtending memory consolidation processes are both modified with aging, possibly leading to accelerated forgetting in long-term memory. We investigated associative learning and declarative memory consolidation processes in 16 young (18–30 years and 16 older (65–75 years healthy adults. Performance was tested using a cued recall procedure at the end of learning (immediate recall, and 30 minutes and 7 days later. A delayed recognition test was also administered on day 7. Daily sleep diaries were completed during the entire experiment. Results revealed a similar percentage of correct responses at immediate and 30-minute recall in young and older participants. However, recall was significantly decreased 7 days later, with an increased forgetting in older participants. Additionally, intra-sleep awakenings were more frequent in older participants than young adults during the 7 nights, and were negatively correlated with delayed recall performance on day 7 in the older group. Altogether, our results suggest a decline in verbal declarative memory consolidation processes with aging, eventually leading to accelerated long-term forgetting indicating that increased sleep fragmentation due to more frequent intra-sleep awakenings in older participants contribute to the reported age-related decline in long-term memory retrieval. Our results highlight the sensitivity of long-term forgetting measures to evidence consolidation deficits in healthy aging.

  9. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  10. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  11. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  12. Electron beam potential measurements on an inductive-store, opening-switch accelerator

    International Nuclear Information System (INIS)

    Riordan, J.C.; Goyer, J.R.; Kortbawi, D.; Meachum, J.S.; Mendenhall, R.S.; Roth, I.S.

    1993-01-01

    Direct measurement of the accelerating potential in a relativistic electron beam accelerator is difficult, particularly when the diode is downstream from a plasma opening switch. An indirect potential measurement can be obtained from the high energy tail of the bremsstrahlung spectrum generated as the electron beam strikes the anode. The authors' time-resolved spectrometer contains 7 silicon pin diode detectors filtered with 2 to 15 mm of lead to span an electron energy range of 0.5 to 2 MeV. A Monte-Carlo transport code was used to provide calibration curves, and the resulting potential measurements have been confirmed in experiments on the PITHON accelerator. The spectrometer has recently been deployed on PM1, an inductive-store, opening-switch testbed. The diode voltage measurements from the spectrometer are in good agreement with the diode voltage measured upstream and corrected using transmission line relations. The x-ray signal and spectral voltage rise 10 ns later than the corrected electrical voltage, however, indicating plasma motion between the opening switch and the diode

  13. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  14. Effect of hypovolemia, infusion, and oral rehydration on gradual onset +Gz acceleration tolerance

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1976-01-01

    The purpose of this study was to determine the effect of blood withdrawal, blood infusion, and oral fluid intake on +Gz tolerance at an acceleration rate of 0.5 G/min. Six healthy men aged 21-27 yr were centrifuged after the withdrawal of 400 ml of blood (hypovolemia) from each man; they were centrifuged again following blood infusion (Phase I). Three weeks later the men were accelerated after similar hypovolemia and again after consuming 800 ml of an isotonic NaCl drink (Phase II). Phase I hypovolemia resulted in a reduction in tolerance in all subjects from a mean control level of 6.42 + or - 0.35 min to 5.45 + or - 0.17 min (-15.1%, p less than 0.05). Both infusion and drinking returned tolerances to control levels. During acceleration there were significant (p less than 0.05) increases in plasma vasopressin levels to 35 pg/ml; these were not influenced appreciably by infusion or drinking. In all acceleration runs there was an obligatory shift (loss) of plasma volume and electrolytes, especially potassium, regardless of the experimental treatments. Oral rehydration is shown to be as effective as blood replacement in restoring +Gz acceleration tolerance decrements due to hypovolemia.

  15. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  16. Accelerating tube for the ''EG-1'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Krupnov, E.P.; Debin, V.K.; Dudkin, N.I.; Volodin, V.I.

    1980-01-01

    A design of an accelerating tube (AT) for an electrostatic accelerator of the EG-1 type is described. Primary consideration in the development of the AT has been given to increasing the electric strength of accelerating gaps, the vacuum conductivity and better insulator screening from charged particles. After AT vacuum and high-voltage ageing in the accelerator, a hydrogen ions beam of up to 80 μA has been produced. The beam was adequately shaped in the energy range from 1.8 to 5.0 MeV [ru

  17. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  18. Use of the calorimeter in the dosimetry for electron accelerators; Uso del calorimetro en la dosimetria para aceleradores de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A

    1991-02-15

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  19. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  20. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  1. Single-bunch beam loading on the SLAC two-mile accelerator

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1976-05-01

    The experiments described were initially prompted by interest in the radiation loss of relativistic electron rings passing through periodic structures. Later the same experiments became relevant to the theory of energy loss of electrons in large storage rings. In both of these cases energy loss to the higher order modes of the respective structures could seriously limit their effective operation. In these experiments, single bunches of electrons with intensities up to 7 x 10 8 electrons per bunch are accelerated through the SLAC three-kilometer accelerator, and their energy spectra are analyzed. Early experiments over a wide energy range (900 MeV to 19 GeV) demonstrated that the energy loss was proportional to the total charge in the bunch but was independent of beam energy. The average energy loss of a single bunch normalized to 10 9 electrons was initially measured to be 38 MeV

  2. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  3. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  4. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  5. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  6. Cognitive and functional correlates of accelerated long-term forgetting in temporal lobe epilepsy.

    Science.gov (United States)

    Audrain, Samantha; McAndrews, Mary P

    2018-03-30

    While we know that hippocampal dysfunction is responsible for the memory deficits that patients with temporal lobe epilepsy exhibit at relatively short study-test delays, the role of this region in accelerated long-term forgetting (ALF) is not yet clear. In the present study, we probed the role of the hippocampus in ALF by directly comparing memory for associations to memory that could be supported by item recognition during a forced choice recognition task over delays ranging from 15-min to 72-h. We additionally examined resting-state functional connectivity between the hippocampus and cortical regions known to be involved in processing these types of stimuli, as well as the relationship between ALF and various clinical variables including structural abnormality in the hippocampus, lateralization of epileptic focus, presence of seizures across the retention period, and standardized composite memory scores. We found evidence of accelerated forgetting for item stimuli (but not associative stimuli) by 6 h post-learning, which became statistically reliable by 72-h. This finding suggests that unlike controls, patients were unable to utilize novelty to reject the incorrect object-scene pair. While none of the examined clinical variables were related to long-term forgetting, reduced resting-state functional connectivity between the affected anterior hippocampus and unaffected lateral temporal cortex predicted forgetting of item stimuli over the 72-h delay. Implications for the role of the hippocampus in accelerated long-term forgetting, and existing theories of systems consolidation in this context are discussed. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  8. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    Voitsik, L.R.

    1985-01-01

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  9. Standing Wave Linear Accelerators: An Investigation of the Fundamental Field Stability and Tuning Characteristics

    International Nuclear Information System (INIS)

    2002-01-01

    The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made

  10. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  13. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  14. Motor laterality as an indicator of speech laterality.

    Science.gov (United States)

    Flowers, Kenneth A; Hudson, John M

    2013-03-01

    The determination of speech laterality, especially where it is anomalous, is both a theoretical issue and a practical problem for brain surgery. Handedness is commonly thought to be related to speech representation, but exactly how is not clearly understood. This investigation analyzed handedness by preference rating and performance on a reliable task of motor laterality in 34 patients undergoing a Wada test, to see if they could provide an indicator of speech laterality. Hand usage preference ratings divided patients into left, right, and mixed in preference. Between-hand differences in movement time on a pegboard task determined motor laterality. Results were correlated (χ2) with speech representation as determined by a standard Wada test. It was found that patients whose between-hand difference in speed on the motor task was small or inconsistent were the ones whose Wada test speech representation was likely to be ambiguous or anomalous, whereas all those with a consistently large between-hand difference showed clear unilateral speech representation in the hemisphere controlling the better hand (χ2 = 10.45, df = 1, p laterality are related where they both involve a central control of motor output sequencing and that a measure of that aspect of the former will indicate the likely representation of the latter. A between-hand measure of motor laterality based on such a measure may indicate the possibility of anomalous speech representation. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  16. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  17. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  18. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  19. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  20. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  1. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps

    Directory of Open Access Journals (Sweden)

    Guangchuan Yang

    2016-10-01

    Full Text Available This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend with distance. While for the ramp with an auxiliary lane that has sufficient acceleration distance, it was found that the acceleration behavior is to have a high acceleration rate in the beginning, then acceleration rate decrease with speed increase, and high acceleration rate again as drivers approach the merging area. Field data show that the truck acceleration performance data documented in the ITE’s (Institute of Transportation Engineers “Traffic Engineering Handbook” are much lower than the field collected data. Also, based on the regression analysis of speed versus distance profiles, it was found that the AASHTO’s (American Association of State Highway and Transportation Officials Green Book acceleration length design guidance is insufficient to accommodate trucks at metered on-ramps. The required acceleration lengths for medium and heavy trucks are approximately 1.3 and 1.6 times of the Green Book design guideline, respectively.

  2. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  3. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  4. Channel-accelerating gap interaction and beam acceleration and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.

    1992-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations

  5. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  6. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  7. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  8. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    Science.gov (United States)

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  9. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  10. Requirements of a proton beam accelerator for an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-01-01

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam

  11. Integrated vehicle's lateral safety: the LATERAL SAFE experience

    NARCIS (Netherlands)

    Amditis, A.; Floudas, N.; Kaiser-Dieckhoff, U.; Hackbarth, T.; Broek, S.P. van den; Miglietta, M.; Danielson, L.; Gemou, M.; Bekiaris, E.

    2008-01-01

    The applications developed and the evaluation results of the EU funded automotive safety PReVENT IP subproject LATERAL SAFE are described. The data synthesis algorithms that aim at achieving a reliable representation of the objects and their kinematics, in the lateral and rear fields of the host

  12. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  13. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    International Nuclear Information System (INIS)

    Propp, Adrienne

    2015-01-01

    jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  14. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  15. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    Science.gov (United States)

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  16. Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations

    International Nuclear Information System (INIS)

    Morel, Jim E.; Brian Yang, T.-Y.; Warsa, James S.

    2007-01-01

    The linear multifrequency-grey acceleration (LMFGA) technique is used to accelerate the iterative convergence of multigroup thermal radiation diffusion calculations in high energy density simulations. Although it is effective and efficient in one-dimensional calculations, the LMFGA method has recently been observed to significantly degrade under certain conditions in multidimensional calculations with large discontinuities in material properties. To address this deficiency, we recast the LMFGA method in terms of a preconditioned system that is solved with a Krylov method (LMFGK). Results are presented demonstrating that the new LMFGK method always requires fewer iterations than the original LMFGA method. The reduction in iteration count increases with both the size of the time step and the inhomogeneity of the problem. However, for reasons later explained, the LMFGK method can cost more per iteration than the LMFGA method, resulting in lower but comparable efficiency in problems with small time steps and weak inhomogeneities. In problems with large time steps and strong inhomogeneities, the LMFGK method is significantly more efficient than the LMFGA method

  17. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  18. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  19. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  20. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  1. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  2. Response format, magnitude of laterality effects, and sex differences in laterality.

    Science.gov (United States)

    Voyer, Daniel; Doyle, Randi A

    2012-01-01

    The present study examined the evidence for the claim that response format might affect the magnitude of laterality effects by means of a meta-analysis. The analysis included the 396 effect sizes drawn from 266 studies retrieved by Voyer (1996) and relevant to the main effect of laterality and sex differences in laterality for verbal and non-verbal tasks in the auditory, tactile, and visual sensory modality. The response format used in specific studies was the only moderator variable of interest in the present analysis, resulting in four broad response categories (oral, written, computer, and pointing). A meta-analysis analogue to ANOVA showed no significant influence of response format on either the main effect of laterality or sex differences in laterality when all sensory modalities were combined. However, when modalities were considered separately, response format affected the main effect of laterality in the visual modality, with a clear advantage for written responses. Further pointed analyses revealed some specific differences among response formats. Results are discussed in terms of their implications for the measurement of laterality.

  3. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  4. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  5. Neuro-fuzzy control of structures using acceleration feedback

    Science.gov (United States)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  6. Accelerator structure for a charged particle linear accelerator working in standing wave mode

    International Nuclear Information System (INIS)

    Tran, D.T.; Tronc, Dominique.

    1977-01-01

    Charged particle accelerators generally include a pre-grouping or pre-accelerating structure associated with the accelerator structure itself. But pre-grouping or pre-accelerating structures of known type (Patent application No. 70 39261 for example) present electric and dimensional characteristics that rule them out for accelerators working at high frequencies (C or X bands for example), since the distance separating the interaction spaces becomes very small in this case. The accelerator structure mentioned in this invention can be used to advantage for such accelerators [fr

  7. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  8. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    Directory of Open Access Journals (Sweden)

    Lin Shun-Ping

    2014-12-01

    Full Text Available Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5 and a sub-elite group (SG; n = 5. The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML acceleration (r = −0.83 to −0.93, p < 0.05, and between anterior-posterior (AP acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05, but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.

  9. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J. F.; Williams, J.

    2005-01-01

    Accelerator-based γ-ray-induced positron annihilation spectroscopy performs positron annihilation spectroscopy by utilizing MeV bremsstrahlung radiation generated from an accelerator (We have named the technique 'accelerator-based γ-ray-induced PAS', even though 'bremsstrahlung' is more correct here than 'γ rays'. The reason for that is to make the name of the technique more general, since PAS may be performed by utilizing MeV γ rays emitted from nuclei through the use of accelerators as described later in this article and as in the case of positron lifetime spectroscopy [F.A. Selim, D.P. Wells, and J.F. Harmon, Rev. Sci. Instrum. 76, 033905 (2005)].) instead of using positrons from radioactive sources or positron beams. MeV γ rays create positrons inside the materials by pair production. The induced positrons annihilate with the material electrons emitting a 511-keV annihilation radiation. Doppler broadening spectroscopy of the 511-keV radiation provides information about open-volume defects and plastic deformation in solids. The high penetration of MeV γ rays allows probing of defects at high depths in thick materials up to several centimeters, which is not possible with most of the current nondestructive techniques. In this article, a detailed description of the technique will be presented, including its benefits and limitations relative to the other nondestructive methods. Its application on the investigation of plastic deformation in thick steel alloys will be shown

  10. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    Science.gov (United States)

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  11. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  12. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  13. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  14. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  15. A fast-starting mechanical fish that accelerates at 40 m s-2

    International Nuclear Information System (INIS)

    Conte, J; Modarres-Sadeghi, Y; Watts, M N; Hover, F S; Triantafyllou, M S

    2010-01-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consists of a thin metal beam covered by a urethane rubber, the fish body and an appropriately shaped tail. The body form of the mechanical fish was modeled after a pike species and selected because it is a widely-studied fast-start specialist. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by a pneumatic cutting mechanism. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish. We measured the resulting acceleration, and calculated the efficiency of propulsion for the mechanical fish model, defined as the ratio of the final kinetic energy of the fish and the initially stored potential energy in the body beam. We also ran a series of flow visualization tests to observe the resulting flow patterns. The maximum start-up acceleration was measured to be around 40 m s -2 , with the maximum final velocity around 1.2 m s -1 . The form of the measured acceleration signal as function of time is quite similar to that of type I fast-start motions studied by Harper and Blake (1991 J. Exp. Biol. 155 175-92). The hydrodynamic efficiency of the fish was found to be around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration peaks are associated with the shedding of two vortex rings in near-lateral directions.

  16. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  17. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  18. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  19. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  20. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  1. Accelerators and the Midwestern Universities Research Association in the 1950s

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1989-01-01

    The birth of the cooperative research group, the Midwestern Universities Research Association (MURA) is documented in this article, following the promise high energy particles heralded by the invention of alternating-gradient focusing. Regular meetings were established and theoretical research work concentrated on orbits, with the help of the new digital computers. Space charge effects for charge distributions in the beam and the radio frequency ''knock out'' diagnostic technique were also studied. Experimental work on the Cosmotron confirmed the findings and also led to the discovery and use of the fixed-field alternating gradient (FFAG) magnet for direct-current operation which occupied much of MURA's future activities. FFAG accelerators with direct current ring magnets were invented with greatly increased beam intensities. These in turn made colliding beam machines possible. The MURA group later built a 50MeV electron model of a colliding-beam FFAG synchrotron, later used for beam stacking. (UK)

  2. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  3. Potential of a precrash lateral occupant movement in side collisions of (electric) minicars.

    Science.gov (United States)

    Hierlinger, T; Lienkamp, M; Unger, J; Unselt, T

    2015-01-01

    In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact. The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP). The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads. The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.

  4. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  5. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  6. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  7. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  8. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  9. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  10. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  11. CAS CERN Accelerator School second advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)

  12. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  13. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  14. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  15. The pace of vocabulary growth helps predict later vocabulary skill

    Science.gov (United States)

    Rowe, Meredith L.; Raudenbush, Stephen W.; Goldin-Meadow, Susan

    2011-01-01

    Children vary widely in the rate at which they acquire words—some start slow and speed up, others start fast and continue at a steady pace. Do early developmental variations of this sort help predict vocabulary skill just prior to kindergarten entry? This longitudinal study starts by examining important predictors (SES, parent input, child gesture) of vocabulary growth between 14 and 46 months (n=62), and then uses growth estimates to predict children's vocabulary at 54 months. Velocity and acceleration in vocabulary development at 30 months predicted later vocabulary, particularly for children from low socioeconomic backgrounds. Understanding the pace of early vocabulary growth thus improves our ability to predict school readiness, and may help identify children at risk for starting behind. PMID:22235920

  16. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  17. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  18. Status report of pelletron accelerator and ECR based heavy ion accelerator programme

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator is completing twenty seven years of round-the-clock operation, serving diverse users from institutions within and outside DAE. Over the years, various developmental activities and application oriented programs have been initiated at Pelletron Accelerator Facility, resulting into enhanced utilization of the accelerator. We have also been pursuing an ECR based heavy ion accelerator programme under XII th Plan, consisting of an 18 GHz superconducting ECR (Electron Cyclotron Resonance) ion source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting niobium resonator cavities. This talk will provide the current status of Pelletron Accelerator and the progress made towards the ECR based heavy ion accelerator program at BARC. (author)

  19. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  20. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  1. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  2. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  3. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  4. Integrated vehicle’s lateral safety: the LATERAL SAFE experience

    NARCIS (Netherlands)

    Amditis, A.; Floudas, N.; Kaiser-Dieckhoff, U.; Hackbarth, T.; Broek, S.P. van den; Miglietta, M.; Danielson, L.; Gemou, M.; Bekiaris, E.

    2008-01-01

    The applications developed and the evaluation results of the EU funded automotive safety PReVENT IP subproject LATERAL SAFE are described. The data synthesis algorithms that aim at achieving a reliable representation of the objects and their kinematics, in the lateral and rear fields of the host

  5. Racquet string tension directly affects force experienced at the elbow: implications for the development of lateral epicondylitis in tennis players.

    Science.gov (United States)

    Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P; Abboud, Rami J

    2016-07-01

    Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s(2)) was compared with that at 222 N tension (acceleration of 6.83 m/s(2)) and 245 N tension (acceleration of 7.45 m/s(2)). The 200 N racket induced the least acceleration at the elbow. Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE.

  6. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    International Nuclear Information System (INIS)

    Fischer, Richard P.; Gold, Steven H.

    2016-01-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  7. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  8. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  9. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  10. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  11. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  12. Interacting with accelerators

    International Nuclear Information System (INIS)

    Dasgupta, S.

    1994-01-01

    Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref

  13. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  14. 2016 Accelerators meeting

    International Nuclear Information System (INIS)

    Spiro, Michel; Revol, Jean-Luc; Biarrotte, Jean-Luc; Napoly, Olivier; Jardin, Pascal; Chautard, Frederic; Thomas, Jean Charles; Petit, Eric

    2016-09-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Ganil - Grand accelerateur national d'ions lourds/Big national heavy-ion accelerator, Caen (Jardin, Pascal); 2 - Presentation of the Accelerators division of the French Society of Physics (Revol, Jean-Luc); 3 - Forward-looking and Prospective view (Napoly, Olivier); 4 - Accelerators at the National Institute of Nuclear and particle physics, situation, Forward-looking and Prospective view (Biarrotte, Jean-Luc); 5 - GANIL-SPIRAL2, missions and goals (Thomas, Jean Charles); 6 - The SPIRAL2 project (Petit, Eric)

  15. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  16. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  17. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  18. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  19. Signatures of particle acceleration at SN1987a

    Science.gov (United States)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1988-01-01

    Young SNRs may be bright sources of energetic photons and neutrinos generated by the collisions of particles accelerated within the remnant. Due to the large opacity of the shell at these early times, a photon signal may be suppressed; at later times, due to adiabatic losses of the magnetically-trapped particles in the expanding envelope, both neutron and neutrino signals will begin to decrease. There is therefore a window during which the secondary photon signal will be at its maximum. It is presently noted that if the observed decline of the optical light curve of SN1987a is due to Ni-56, Co-56 decay, this may place upper limits on such other sources of light as a central pulsar.

  20. Preparing accelerator systems for the RHIC sextant commissioning

    International Nuclear Information System (INIS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-01-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings

  1. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  2. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  3. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  4. RAPIDE 0.0 RHIC Accelerator Physics Intrepid Development Environment

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Saltmarsh, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1993-08-01

    This document is a guide to the common environmental features of computing in (and around) the RHIC Accelerator Physics.sectio on the 'zoo' cluster of UNJX workstations, in RAPIDE, the RHIC Accelerator Physics Intrepid Development Environment It is hoped tliat later revisions of this document will approach a more professional 'style guide', beyond the convenient collection of pointers and hints presented here. RAP does two kinds of computing, "controls" and "general", addressed in sections 2 and 3 of this document For general computing, efficient system administration requires cooperation in using a common environment There is a much stronger need to define - and adhere to - a commonly agreed set of styles (or rules) in developing controls software. Right now, these rules have been set "de facto". Future improvements to the controls environment, particularly in response to the opinions of users, depends on broad knowledge of what the rules are. There are environmental issues that are basic to both controls and general computing, and that are so fundamental that they are (almost) unarguable. They are described immediately below, in the next section.

  5. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  6. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  7. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  8. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  9. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  10. Plasma-based and novel accelerators

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Nishida, Yasushi

    1992-05-01

    This publication is a collection of papers presented at Workshop on Plasma-Based and Novel Accelerators held at National Institute for Fusion Science, Nagoya, on December 19-20, 1991. Plasma-based accelerators are attracting considerable attention in these days a new, exciting field of plasma applications. The study gives rise to and spurs study of other unique accelerators like laser-based accelerators. The talks in the Workshop encompassed beat-wave accelerator (BWA), plasma wake field accelerator (PWFA), V p x B accelerator, laser-based accelerators and some novel methods of acceleration. They also covered the topics such as FEL, cluster acceleration and plasma lens. Small scale experiments as those in universities have exhibited brilliant results while larger scale experiments like BWA in Institute of Laser Engineering, Osaka University, and PWFA in KEK start showing significant results as well. (J.P.N.)

  11. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  12. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  13. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  14. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  15. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  16. Plasma-focused cyclic accelerators

    International Nuclear Information System (INIS)

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. This paper discusses an alternative means of plasma production for IFR, viz. by using RF breakdown. For this approach the accelerator chamber acts as a waveguide. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  17. Acceleration of polarized protons in the IHEP accelerator complex

    International Nuclear Information System (INIS)

    Anferov, V.A.; Ado, Yu.M.; Shoumkin, D.

    1995-01-01

    The paper considers possibility to accelerate polarized beam in the IHEP accelerator complex (including first stage of the UNK). The scheme of preserving beam polarization is described for all acceleration stages up to 400 GeV beam energy. Polarization and intensity of the polarized proton beam are estimated. The suggested scheme includes using two Siberian snakes in opposite straight sections of the UNK-1, where each snake consists of five dipole magnets. In the U-70 it is suggested to use one helical Siberian snake, which is turned on adiabatically at 10 GeV, and four pulsed quadrupoles. To incorporate the snake into the accelerator lattice it is proposed to make modification of one superperiod. This would make a 13 m long straight section. Spin depolarization in the Booster is avoided by decreasing the extraction energy to 0.9 GeV. Then no additional hardware is required in the Booster

  18. SU-E-T-81: A Study On Correlation Between Gamma Analysis for Midline and Lateralized Tumors Using VMAT

    International Nuclear Information System (INIS)

    Kumar, Syam; Anjana

    2015-01-01

    Purpose: To evaluate the fluence for the midline and lateralized tumors for VMAT technique using 2D seven29 detector array combined with the Octavius phantom. Methods: 60 cases that are already being treated with volumetric modulated arc therapy (VMAT) have selected for this study. This includes tumors situated at the medial and lateral. Medial refers to the tumor situated at the midline of the body and lateral means toward the side or away from the midline of the body. Verification plans were created for each treatment plan in Varian Eclipse treatment planning system (version10, Varian medical systems, Palo Alto,CA) with the 2D Seven29 detector array and the Octavius phantom(PTW, Freiburg, Germany). Measurements were performed on a Varian Clinac 2100 iX, linear accelerator equipped with a millennium 120 leaf collimator. Analysis was done by comparing the fluence measured for the tumors situated on the midline and tumors situated laterally. Results: Fluence measured for all the delivered plans were analyzed using Verisoft software (PTW, Freiburg, Germany). The gamma pass percentage for midline tumors were found to be higher compared with the lateralized ones. The standard deviation between gamma values for midline and lateralized tumors is 2.18 and 3.5 respectively. Also the standard deviation between the point doses for midline and lateralized tumors is 0.38 and 0.29 respectively. The average gamma passing rate for midline tumors is 96.55% and for lateralized tumors are 94.94% for 3%DD and 3mm DTA criteria. From the T test, it was found that there is no significant difference between the gamma pass percentage between midline and lateralized tumors with p value of 0.28. Conclusion: There is no particular correlation found in the gamma pass criteria for midline and lateralized tumors

  19. [Brain lateralization and seizure semiology: ictal clinical lateralizing signs].

    Science.gov (United States)

    Horváth, Réka; Kalmár, Zsuzsanna; Fehér, Nóra; Fogarasi, András; Gyimesi, Csilla; Janszky, József

    2008-07-30

    Clinical lateralizing signs are the phenomena which can unequivocally refer to the hemispheric onset of epileptic seizures. They can improve the localization of epileptogenic zone during presurgical evaluation, moreover, their presence can predict a success of surgical treatment. Primary sensory phenomena such as visual aura in one half of the field of vision or unilateral ictal somatosensory sensation always appear on the contralateral to the focus. Periictal unilateral headache, although it is an infrequent symptom, is usually an ipsilateral sign. Primary motor phenomena like epileptic clonic, tonic movements, the version of head ubiquitously appear contralateral to the epileptogenic zone. Very useful lateralization sign is the ictal hand-dystonia which lateralizes to the contralateral hemisphere in nearly 100%. The last clonus of the secondarily generalized tonic-clonic seizure lateralizes to the ipsilateral hemisphere in 85%. The fast component of ictal nystagmus appears in nearly 100% on the contralateral side of the epileptic focus. Vegetative symptoms during seizures arising from temporal lobe such as spitting, nausea, vomiting, urinary urge are typical for seizures originating from non-dominant (right) hemisphere. Ictal pallor and cold shivers are dominant hemispheric lateralization signs. Postictal unilateral nose wiping refers to the ipsilateral hemispheric focus compared to the wiping hand. Ictal or postictal aphasia refers to seizure arising from dominant hemisphere. Intelligable speech during complex partial seizures appears in non-dominant seizures. Automatism with preserved consciousness refers to the seizures of non-dominant temporal lobe.

  20. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    International Nuclear Information System (INIS)

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-01-01

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  1. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  2. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  3. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  4. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  5. Analysis of FFAG accelerators and the evolution of circular accelerators

    International Nuclear Information System (INIS)

    Laslett, J.

    1961-01-01

    After rapidly comparing circular machines with the linear accelerator and the reasons for the choice of an annular high energy and very high intensity accelerator, recent problems concerning accelerator theory are discussed, with emphasis on their physical character. The FFAG principle. The limit of the energy of FFAG cyclotron. The setting-up and interpreting of mean energy of focusing terms for a spiral FFAG synchrotron. The limiting amplitude stable near the non-linear resonance 2Q z = Q r , as well as the linear coupling resonance of Walkinshaw 2Q z = Q r . The crossed-beam accelerator. The 40 MeV electron model of MURA. Two other parts deal with linear and non-linear methods of injection and extraction using a variable disturbance applied to the magnetic field, as well as to collective effects. The interaction of the beam with the accelerating cavities and the walls. The modification of the phase oscillation equation. The influence of the beams' high frequency fields on the Nielsen longitudinal instability. (author) [fr

  6. Laterality and Lateralization in Autism Spectrum Disorder, Using a Standardized Neuro-Psychomotor Assessment.

    Science.gov (United States)

    Paquet, A; Golse, B; Girard, M; Olliac, B; Vaivre-Douret, L

    2017-01-01

    A detailed assessment of laterality in children with Autism Spectrum Disorder (ASD) was realized, including handedness and other measures (muscle tone, manual performance, dominant eye), using a standardized battery for the developmental assessment of neuro-psychomotor functions. The results of the laterality tests relating to cerebral hemisphere organization (spontaneous gestural laterality and tonic laterality) were different in ASD children, and indicate that the cerebral organization could be disrupted. These assessments, added to the observations of usual laterality most often reported in the literature, provide better understanding of the developmental organization from the pathophysiological point of view in children with ASD.

  7. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  8. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  9. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  10. Acceleration ion focusing (IFR) and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Puokey, J.W.; Bennett, L.F.; Wagner, J.S.; Olson, W.R.; George, M.; Turman, B.N.; Prestwich, K.R.; Struve, K.W.

    1992-01-01

    The focusing and transport of intense relativistic electron beams in the Sandia Laboratories Recirculating Linear Accelerator (RLA) is accomplished with the aid of an ion focusing channel (IFR). We report here experiments evaluating the beam generation in the injector and its subsequent acceleration and transport through the first post-accelerating cavity. Two injectors and one type of post-accelerating cavity were studied. Beams of 6-20 kA current were injected and successfully transported and accelerated through the cavity. The transport efficiencies were 90% - 100%, and the beam Gaussian profile (4 MeV injector) and radius (5 mm) remained the same through acceleration. We describe the RLA, present the experimental results and compare them with numerical simulations. (Author) 3 refs., 7 figs

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  12. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  13. LATERAL SURVIVAL: AN OT ACCOUNT

    Directory of Open Access Journals (Sweden)

    Moira Yip

    2004-12-01

    Full Text Available When laterals are the targets of phonological processes, laterality may or may not survive. In a fixed feature geometry, [lateral] should be lost if its superordinate node is eliminated by either the spreading of a neighbouring node, or by coda neutralization. So if [lateral] is under Coronal (Blevins 1994, it should be lost under Place assimilation, and if [lateral] is under Sonorant Voicing (Rice & Avery 1991 it should be lost by rules that spread voicing. Yet in some languages lateral survives such spreading intact. Facts like these argue against a universal attachment of [lateral] under either Coronal or Sonorant Voicing, and in favour of an account in terms of markedness constraints on feature-co-occurrence (Padgett 2000. The core of an OT account is that IFIDENTLAT is ranked above whatever causes neutralization, such as SHARE-F or *CODAF. laterality will survive. If these rankings are reversed, we derive languages in which laterality is lost. The other significant factor is markedness. High-ranked feature co-occurrence constraints like *LATDORSAL can block spreading from affecting laterals at all.

  14. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  15. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  16. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  17. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  18. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  19. Racquet string tension directly affects force experienced at the elbow: implications for the development of lateral epicondylitis in tennis players

    Science.gov (United States)

    Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P

    2016-01-01

    Background Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Methods Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Results Statistically significant differences (p elbow at 200 N string-tension (acceleration of 5.58 m/s2) was compared with that at 222 N tension (acceleration of 6.83 m/s2) and 245 N tension (acceleration of 7.45 m/s2). The 200 N racket induced the least acceleration at the elbow. Conclusions Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE. PMID:27583017

  20. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  1. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  2. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression.

    Science.gov (United States)

    Kochunov, Peter; Glahn, David C; Rowland, Laura M; Olvera, Rene L; Winkler, Anderson; Yang, Yi-Hong; Sampath, Hemalatha; Carpenter, Will T; Duggirala, Ravindranath; Curran, Joanne; Blangero, John; Hong, L Elliot

    2013-03-01

    Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (paccelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  4. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  5. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  6. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  7. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  8. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  9. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  10. 2014 Accelerators meeting, Grenoble

    International Nuclear Information System (INIS)

    Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre

    2014-10-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)

  11. Simultaneous versus Sequential Accelerated Corneal Collagen Cross-Linking and Wave Front Guided PRK for Treatment of Keratoconus: Objective and Subjective Evaluation.

    Science.gov (United States)

    Abou Samra, Waleed Ali; El Emam, Dalia Sabry; Farag, Rania Kamel; Abouelkheir, Hossam Youssef

    2016-01-01

    Aim . To compare objective and subjective outcome after simultaneous wave front guided (WFG) PRK and accelerated corneal cross-linking (CXL) in patients with progressive keratoconus versus sequential WFG PRK 6 months after CXL. Methods . 62 eyes with progressive keratoconus were divided into two groups; the first including 30 eyes underwent simultaneous WFG PRK with accelerated CXL. The second including 32 eyes underwent subsequent WFG PRK performed 6 months later after accelerated CXL. Visual, refractive, topographic, and aberrometric data were determined preoperatively and during 1-year follow-up period and the results compared in between the 2 studied groups. Results . All evaluated visual, refractive, and aberrometric parameters demonstrated highly significant improvement in both studied groups (all P PRK and accelerated CXL is an effective and safe option to improve the vision in mild to moderate keratoconus. In one-year follow-up, there is no statistically significant difference between the simultaneous and sequential procedure.

  12. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.

    Science.gov (United States)

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-07

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life.

  13. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  14. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  15. Technical assessment of the Loma Linda University proton therapy accelerator

    International Nuclear Information System (INIS)

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ

  16. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    Science.gov (United States)

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-06

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  17. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    Science.gov (United States)

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  18. Saskatchewan Accelerator Laboratory annual report 1985

    International Nuclear Information System (INIS)

    Caplan, H.S.

    1985-11-01

    Last year was reported on the first year of the upgrading project to add an energy compressor system, a pulse stretcher ring, and a magnetic spectometer to our existing 300 MeV electron linear accelerator. As well as giving a description of the project, the 1984 Annual Report included statements on the function of the laboratory and how its performance is evaluated. This year two items have been added to the upgrading project. In April 1985 a photon tagging systems was funded by NSERC and in October 1985 a surplus 44 inch magnetic spectrometer was received from the High Energy Physics Laboratory at Stanford. The status of these two items is given later in this report. During 1985 there have been two visits of the Saskatchewan Advisory Committee: SAC 5 on 14th-15th March and SAC 6 on 24th-25th October. The committee has continued to report satisfactory progress in the project to the presidents of NSERC and the University of Saskatchewan

  19. Accelerator mass analysis at tandem accelerator in Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Masanobu; Tazawa, Yuji; Matsumoto, Hiroshi; Hirose, Masanori [Kyoto Univ. (Japan). Faculty of Science; Ogino, Koya; Kohno, Masuchika; Funaba, Hiroyuki

    1996-12-01

    Tandem accelerator in Science Faculty, Kyoto University was renewed from 5 MV in the highest terminal voltage of Van de Graaff to 8 MV of Peletron in 1992. And, AMS effective for cosmic ray, dating, environment measurement and so forth is determined to a column of collaborative studies by universities and institutes in Japan. On this renewal, because of using high energy beam transportation of the present tandem accelerator, super high sensitivity measurement of long half-life radioactive isotopes of heavy elements such as {sup 36}Cl, {sup 41}Ca, {sup 129}I and so forth is aimed, although having some limitations due to small magnet. The accelerator is active in characteristics of the middle size tandem accelerator, and developing {sup 14}C measurement for its standard technology, as aiming at {sup 36}Cl measurement, at first. As a result, in this tandem accelerator stable and high beam transmittance could be obtained by adding a slit at negative ion source to make emittance of incident beam smaller. {sup 14}C/{sup 12}C ratio of Modan`s sample obtained by graphitizing NBS oxalic acid and Ded`s sample consisting of mineral graphite produced in Sri Lanka are measured to confirm better reproductivity of this system. Future development of successive incident method is planned to test actual carbon samples. (G.K.)

  20. Dealing with post-accelerated electrons in the ITER SINGAP accelerator

    International Nuclear Information System (INIS)

    Esch, H. de; Hemsworth, R.S.

    2006-01-01

    Electrons formed by stripping of the negative deuterium beam can be accelerated up to 960 keV in the 1 MeV SINGAP 40 A negative ion accelerator proposed by Europe for the ITER neutral beam injectors. SINGAP accelerates 1280 pre-accelerated 40 keV deuterium beamlets to 1 MeV in a single 350 mm wide gap. At the expected gas pressure of 0.03 Pa inside the accelerator, 2.7 MW of electrons are calculated to leave the accelerator and strike various beamline components, especially the neutraliser. The accelerators of the ITER injectors are designed to produce 4 '' column '' beams which pass through the 4 vertical channels of the neutraliser. Unperturbed the accelerated electrons create small, high power density, 3.3 kW/cm 2 , spots on the leading edges of the neutraliser channels, which is far in excess of their power handling capability. The hot spots arise from the overlapping of beamlets due to the bending induced by the far field of the magnetic filter in the ion source. The proposed solution bends the electrons further downwards, redistributing the power over the neutraliser floor, a vertical electron dump perpendicular to the beam axis located below the neutraliser entrance, and the neutraliser entrance. The bending is to be effected by a magnetic field transverse to the beam direction at the exit of the post-acceleration grid. This field is created by vertical columns of permanent magnets either side of each column beam. After passing between the magnet columns, the electron beams reach the electron dump with a maximum power density of 2.1 kW/cm 2 . The peak power density on the neutraliser entrance is 1.35 kW/cm 2 and on the neutraliser floor 0.82 kW/cm 2 . Electron backscattering would reduce all the numbers by 20%. To further reduce the average power density seen by the beamline components it is proposed to sweep the electron beam in an oscillatory fashion. It is suggested that a failsafe, inexpensive, way is to use a power supply with a ripple of ± 10% to

  1. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    Science.gov (United States)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  2. Control of electron injection and acceleration in laser-wakefield accelerators

    International Nuclear Information System (INIS)

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  3. Denervation of the lateral humeral epicondyle for treatment of chronic lateral epicondylitis.

    Science.gov (United States)

    Rose, Nicholas E; Forman, Scott K; Dellon, A Lee

    2013-02-01

    Chronic lateral epicondylitis remains a treatment challenge. Traditional surgical treatments for lateral epicondylitis involve variations of the classic Nirschl lateral release. Anatomic studies reveal that the posterior branch or branches of the posterior cutaneous nerve of the forearm consistently innervate the lateral humeral epicondyle. We undertook the present study to determine the effectiveness of denervation of the lateral humeral epicondyle in treating chronic lateral epicondylitis. An institutional review board-approved prospective study included 30 elbows in 26 patients. Inclusion criteria included failure to respond to nonoperative treatment for more than 6 months and improvement in grip strength and in visual analog pain scale after diagnostic nerve block of the posterior branches of the posterior cutaneous nerve of the forearm proximal to the lateral humeral epicondyle. We excluded patients who had undergone previous surgery for lateral epicondylitis. Outcome measures included visual analog pain scale and grip strength testing. Denervation surgery involved identification and transection of the posterior cutaneous nerve of the forearm branches with implantation into the triceps. The presence of radial tunnel syndrome was noted but did not affect inclusion criteria; if it was present, we did not correct it surgically. We used no postoperative splinting and permitted immediate return to activities of daily living. At a mean of 28 months of follow-up, the average visual analog scale score decreased from 7.9 to 1.9. Average grip strength with the elbow extended improved from 13 to 24 kg. A total of 80% of patients had good or excellent results, as defined by an improvement of 5 or more points on the visual analog scale for pain. Denervation of the lateral epicondyle was effective in relieving pain in 80% of patients with chronic lateral epicondylitis who had a positive response to a local anesthetic block of the posterior branches of the posterior

  4. CAS CERN accelerator school: 5. general accelerator physics course. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1994-01-01

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics. (orig.)

  5. Direct drive acceleration of planar liquid deuterium targets

    International Nuclear Information System (INIS)

    Sethian, J.D.; Bodner, S.E.; Colombant, D.G.; Dahlburg, J.P.; Obenschain, S.P.; Pawley, C.J.; Serlin, V.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Deniz, A.V.; Lehecka, T.; Klapisch, M.

    1999-01-01

    The Nike laser (∼2 - 3 kJ, ∼10 14 W/cm 2 ) has been used to ablatively accelerate planar liquid deuterium targets. These experiments are designed to test some aspects of a high gain direct drive target design. The target consists of a low-density foam that is filled with liquid deuterium and covered with a thin polyimide membrane. The measured target trajectory agrees well with one-dimensional (1D) simulations. The growth of the areal mass modulations were measured with a new, 1.26 keV x-ray backlighter. The modulations appear later and grow to a smaller amplitude when the foot of the laser pulse is made spatially smoother. A thin layer of gold on the front of the target reduces the modulations. The results are compared with 2D modeling

  6. Usefulness of a Lateral Thoracodorsal Flap after Breast Conserving Surgery in Laterally Located Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jung Dug Yang

    2013-07-01

    Full Text Available BackgroundBreast-conserving surgery is widely accepted as an appropriate method in breast cancer, and the lateral thoracodorsal flap provides a simple, reliable technique, especially when a mass is located in the lateral breast. This study describes the usefulness of a lateral thoracodorsal flap after breast conserving surgery in laterally located breast cancer.MethodsFrom September 2008 to February 2013, a lateral thoracodorsal flap was used in 20 patients with laterally located breast cancer treated at our institution. The technique involves a local medially based, wedge shaped, fasciocutaneous transposition flap from the lateral region of the thoracic area. Overall satisfaction and aesthetic satisfaction surveys were conducted with the patients during a 6-month postoperative follow-up period. Aesthetic results in terms of breast shape and symmetry were evaluated by plastic surgeons.ResultsThe average specimen weight was 76.8 g. The locations of the masses were the upper lateral quadrant (n=15, the lower lateral quadrant (n=2, and the central lateral area (n=3. Complications developed in four of the cases, partial flap necrosis in one, wound dehiscence in one, and fat necrosis in two. The majority of the patients were satisfied with their cosmetic outcomes.ConclusionsPartial breast reconstruction using a lateral thoracodorsal flap is well matched with breast color and texture, and the surgery is less aggressive than other techniques with few complications. Therefore, the lateral thoracodorsal flap can be a useful, reliable technique in correcting breast deformity after breast conserving surgery, especially in laterally located breast cancer.

  7. Usefulness of a Lateral Thoracodorsal Flap after Breast Conserving Surgery in Laterally Located Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ho Yong Park

    2013-07-01

    Full Text Available Background Breast-conserving surgery is widely accepted as an appropriate method in breast cancer, and the lateral thoracodorsal flap provides a simple, reliable technique, especially when a mass is located in the lateral breast. This study describes the usefulness of a lateral thoracodorsal flap after breast conserving surgery in laterally located breast cancer.Methods From September 2008 to February 2013, a lateral thoracodorsal flap was used in 20 patients with laterally located breast cancer treated at our institution. The technique involves a local medially based, wedge shaped, fasciocutaneous transposition flap from the lateral region of the thoracic area. Overall satisfaction and aesthetic satisfaction surveys were conducted with the patients during a 6-month postoperative follow-up period. Aesthetic results in terms of breast shape and symmetry were evaluated by plastic surgeons.Results The average specimen weight was 76.8 g. The locations of the masses were the upper lateral quadrant (n=15, the lower lateral quadrant (n=2, and the central lateral area (n=3. Complications developed in four of the cases, partial flap necrosis in one, wound dehiscence in one, and fat necrosis in two. The majority of the patients were satisfied with their cosmetic outcomes.Conclusions Partial breast reconstruction using a lateral thoracodorsal flap is well matched with breast color and texture, and the surgery is less aggressive than other techniques with few complications. Therefore, the lateral thoracodorsal flap can be a useful, reliable technique in correcting breast deformity after breast conserving surgery, especially in laterally located breast cancer.

  8. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  9. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  10. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  11. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  12. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem

  13. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no

  14. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  15. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  16. Lateral epicondylitis and beyond: imaging of lateral elbow pain with clinical-radiologic correlation

    International Nuclear Information System (INIS)

    Kotnis, Nikhil A.; Chiavaras, Mary M.; Harish, Srinivasan

    2012-01-01

    The diagnosis of lateral epicondylitis is often straightforward and can be made on the basis of clinical findings. However, radiological assessment is valuable where the clinical picture is less clear or where symptoms are refractory to treatment. Demographics, aspects of clinical history, or certain physical signs may suggest an alternate diagnosis. Knowledge of the typical clinical presentation and imaging findings of lateral epicondylitis, in addition to other potential causes of lateral elbow pain, is necessary. These include entrapment of the posterior interosseous and lateral antebrachial cutaneous nerves, posterolateral rotatory instability, posterolateral plica syndrome, Panner's disease, osteochondritis dissecans of the capitellum, radiocapitellar overload syndrome, occult fractures and chondral-osseous impaction injuries, and radiocapitellar arthritis. Knowledge of these potential masquerades of lateral epicondylitis and their characteristic clinical and imaging features is essential for accurate diagnosis. The goal of this review is to provide an approach to the imaging of lateral elbow pain, discussing the relevant anatomy, various causes, and discriminating factors, which will allow for an accurate diagnosis. (orig.)

  17. Particle accelerators in the Czech lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The paper is structured as follows: A short look into history of accelerators; Particle accelerators in the Czech lands (Accelerators at the Institute of Nuclear Physics; Accelerators at the Faculty of Mathematics and Physics, Charles University; Czechoslovak betatron, accelerators for non-destructive testing and radiotherapy; Czechoslovak high-frequency linear electron accelerator; Czechoslovak-Soviet microtron; Accelerators at the State Research Institute of Textiles; Accelerators at the Kablo Vrchlabi plant; and Cyclotrons in the medical sector. (P.A.)

  18. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  19. Plasma-focused cyclic accelerators

    International Nuclear Information System (INIS)

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. For cyclic accelerators a technique is required for carrying the plasma channel and the beam around a bend. Multiple laser-generated channels with dipole magnetic fields to switch the beam from one channel to the next have been tested at Sandia. This paper discusses an alternative means of plasma production for IFR, viz. by using rf breakdown. For this approach the accelerator chamber acts as a waveguide. With a suitable driving frequency, a waveguide mode can be driven which has its peak field intensity on the axis with negligible fields at the chamber walls. The plasma production and hence the beam propagation is thereby isolated from the walls. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  20. FPGA Compute Acceleration for High-Throughput Data Processing in High-Energy Physics Experiments

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The upgrades of the four large experiments of the LHC at CERN in the coming years will result in a huge increase of data bandwidth for each experiment which needs to be processed very efficiently. For example the LHCb experiment will upgrade its detector 2019/2020 to a 'triggerless' readout scheme, where all of the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40MHz. This increases the data bandwidth from the detector down to the event filter farm to 40TBit/s, which must be processed to select the interesting proton-proton collisions for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered.    In the high performance computing sector more and more FPGA compute accelerators are being used to improve the compute performance and reduce the...

  1. EFFECTIVENESS OF MEDIAL TO LATERAL TAPING WITH EXERCISE PROGRAMME IN SUBJECTS WITH LATERAL EPICONDYLITIS

    Directory of Open Access Journals (Sweden)

    Bhavana Dattaram Desai

    2014-06-01

    Full Text Available Background: Medial to lateral tapping and exercise programme has been found to be effective in Lateral epicondylitis. The purpose to find the combined effect of Medial to lateral tapping with exercise programme for subjects with lateral epicondylitis on pain intensity and functional ability. Method: An experimental study design, selected 40 subjects with Lateral epicondylitis randomized 20 subjects each into Study and Control group. Control group received only exercise programme while study group received combined medial to lateral tapping with exercise programme thrice a week for 4 weeks. Pain intensity was measured using Visual analogue scale and functional ability was measured using Patient Rated Tennis Elbow Evaluation questionnaire before and after 4 weeks of treatment. Results: When the post-intervention means were compared between Study and Control group after 4 weeks of treatment found statistically significant difference in the improvement in outcomes measures in means of VAS and PRTEE before and after intervention within the groups. Conclusion: It is concluded that the Medial to lateral tapping with exercise programme is more effective than the exercise programme in reduction of pain and improve functional abilities for subjects with Lateral epicondylitis.

  2. Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology

    Directory of Open Access Journals (Sweden)

    Khan Mehbub

    2018-01-01

    Full Text Available Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.

  3. Resent advance in electron linear accelerators

    International Nuclear Information System (INIS)

    Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu

    1986-01-01

    In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)

  4. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  5. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  6. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  7. JACoW Decoupling CERN accelerators

    CERN Document Server

    Dworak, Andrzej

    2018-01-01

    The accelerator complex at CERN is a living system. Accelerators are being dismantled, upgraded or change their purpose. New accelerators are built. The changes do not happen overnight, but when they happen they may require profound changes across the handling systems. Central timings (CT), responsible for sequencing and synchronization of accelerators, are good examples of such systems. This paper shows how over the past twenty years the changes and new requirements influenced the evolution of the CTs. It describes experience gained from using the Central Beam and Cycle Manager (CBCM) CT model, for strongly coupled accelerators, and how it led to a design of a new Dynamic Beam Negotiation (DBN) model for the AD and ELENA accelerators, which reduces the coupling, increasing accelerator independence. The paper ends with an idea how to merge strong points of both models in order to create a single generic system able to efficiently handle all CERN accelerators and provide more beam time to experiments and LHC.

  8. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  9. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    Science.gov (United States)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  10. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  11. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  12. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  13. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  14. New accelerator ideas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow.

  15. Accelerators Spanish steps

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In September, the CERN Accelerator School (CAS) held its third General Accelerator Physics Course, the venue this time being Salamanca, the oldest university in Spain. Spain, which rejoined CERN in 1982, now has a vigorous and steadily growing high energy physics community making substantial contributions to physics detector development and successfully involving Spanish industry. However the embryonic accelerator community cannot yet generate an equivalent level of activity, and this important channel for introducing new high technology into industry has yet to be fully exploited

  16. Lateral epicondylitis and beyond: imaging of lateral elbow pain with clinical-radiologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kotnis, Nikhil A. [McMaster University, Departments of Radiology, Hamilton, ON (Canada); Sheffield Teaching Hospitals, Department of Medical Physics and Medical Imaging, Sheffield (United Kingdom); Chiavaras, Mary M. [McMaster University, Departments of Radiology, Hamilton, ON (Canada); Harish, Srinivasan [McMaster University, Departments of Radiology, Hamilton, ON (Canada); St. Joseph' s Healthcare, Department of Diagnostic Imaging, Hamilton, ON (Canada)

    2012-04-15

    The diagnosis of lateral epicondylitis is often straightforward and can be made on the basis of clinical findings. However, radiological assessment is valuable where the clinical picture is less clear or where symptoms are refractory to treatment. Demographics, aspects of clinical history, or certain physical signs may suggest an alternate diagnosis. Knowledge of the typical clinical presentation and imaging findings of lateral epicondylitis, in addition to other potential causes of lateral elbow pain, is necessary. These include entrapment of the posterior interosseous and lateral antebrachial cutaneous nerves, posterolateral rotatory instability, posterolateral plica syndrome, Panner's disease, osteochondritis dissecans of the capitellum, radiocapitellar overload syndrome, occult fractures and chondral-osseous impaction injuries, and radiocapitellar arthritis. Knowledge of these potential masquerades of lateral epicondylitis and their characteristic clinical and imaging features is essential for accurate diagnosis. The goal of this review is to provide an approach to the imaging of lateral elbow pain, discussing the relevant anatomy, various causes, and discriminating factors, which will allow for an accurate diagnosis. (orig.)

  17. Phase-of-flight method for setting the accelerating fields in the ion linear accelerator

    International Nuclear Information System (INIS)

    Dvortsov, S.V.; Lomize, L.G.

    1983-01-01

    For setting amplitudes and phases of accelerating fields in multiresonator ion accelerators presently Δt-procedure is used. The determination and setting of two unknown parameters of RF-field (amplitude and phase) in n-resonator is made according to the two increments of particle time-of-flight, measured experimentally: according to the change of the particle time-of-flight Δt 1 in the n-resonator, during the field switching in the resonator, and according to the change of Δt 2 of the time-of-flight in (n+1) resonator without RF-field with the switching of accelerating field in the n-resonator. When approaching the accelerator exit the particle energy increases, relative energy increment decreases and the accuracy of setting decreases. To enchance the accuracy of accelerating fields setting in a linear ion accelerator a phase-of-flight method is developed, in which for the setting of accelerating fields the measured time-of-flight increment Δt only in one resonator is used (the one in which the change of amplitude and phase is performed). Results of simulation of point bunch motion in the IYaI AN USSR linear accelerator are presented

  18. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  19. CAS CERN Accelerator School. Third advanced accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)

  20. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  1. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  2. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  3. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  4. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  5. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  6. RF linear accelerators

    CERN Document Server

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  7. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  8. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  9. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  10. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  11. The Fermilab Accelerator control system

    Science.gov (United States)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  12. The Fermilab accelerator control system

    International Nuclear Information System (INIS)

    Bogert, D.

    1986-01-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A ''Host'' computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded ''events'' in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of 'exception conditions' and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the ''Host'' processors. (orig.)

  13. Complex calculation and improvement of beam shaping and accelerating system of the ''Sokol'' small-size electrostatic accelerator

    International Nuclear Information System (INIS)

    Simonenko, A.V.; Pistryak, V.M.; Zats, A.V.; Levchenko, Yu.Z.; Kuz'menko, V.V.

    1987-01-01

    Features of charged particle accelerated beam shaping in the electrostatic part of the ''Sokol'' small-size accelerator are considered in complex taking into account the electrode real geometry. Effect of the extracting, accelerating electorde potential and accelerator total voltage on beam behaviour is investigated. A modified variation of the beam shaping system, allowing to decrease 2 times the required interval of accelerating electrode potential adjustment and to decrease the beam size in the starting acceleration region, is presented. It permits to simplify the construction and to improve accelerator operation. Comparison of experimental and calculational data on the beam in the improved accelerator variation is carried out. Effect of peripheral parts of accelerating tube electrodes on the beam is investigated

  14. Special issue - Applying the accelerator

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The

  15. Special issue - Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-07-15

    T'he CERN Courier is the international journal of high energy physics, covering current developments in and around this branch of basic science. A recurrent theme is applying the technology developed for particle accelerators, the machines which produce beams of high energy particles for physics experiments. Twentieth-century science is full of similar examples of applications derived from pure research. This special issue of the CERN Courier is given over to one theme - the applications of accelerators. Accelerator systems and facilities are normally associated with highenergy particle physics research, the search for fundamental particles and the quest to understand the physics of the Big Bang. To the layman, accelerator technology has become synonymous with large and expensive machines, exploiting the most modern technology for basic research. In reality, the range of accelerators and their applications is much broader. A vast number of accelerators, usually much smaller and operating for specific applications, create wealth and directly benefit the population, particularly in the important areas of healthcare, energy and the environment. There are well established applications in diagnostic and therapeutic medicine for research and routine clinical treatments. Accelerators and associated technologies are widely employed by industry for manufacturing and process control. In fundamental and applied research, accelerator systems are frequently used as tools. The biennial conference on the Applications of Accelerators in Industry and Research at Denton, Texas, attracts a thousand participants. This special issue of the CERN Courier includes articles on major applications, reflecting the diversity and value of accelerator technology. Under Guest Editor Dewi Lewis of Amersham International, contributions from leading international specialists with experience of the application end of the accelerator chain describe their fields of direct interest. The contributions

  16. Lateral loadings on snubber assemblies

    International Nuclear Information System (INIS)

    Raphael, L.S.

    1981-01-01

    This paper examines the installation of snubber assemblies in power plants with respect to transverse or lateral loads as well as axial loads. Evaluation of the effects of low level, lateral loads was performed by analytical means. At higher loadings, the snubber assembly could no longer be treated as a column; therefore, the effects of lateral loadings was determined by test. The test consisted of applying both lateral and axial loads simultaneously. Results of both the analysis and the test showed that the application of lateral loads had a considerable effect on the snubber assemblies

  17. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  18. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  19. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. This paper is intended to review the current progress, expectations, and limitations of the different approaches. (author)

  20. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. A review is given of the current progress, expectations, and limitations of the different approaches

  1. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  2. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  3. Collective acceleration investigations with the ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.; VanDevender, J.P.; Owyoung, A.; Pearlman, J.S.

    1977-01-01

    Part I of a three part program to demonstrate feasibility of the Ionization Front Accelerator (IFA) has been completed and is successful. Experiments describing intense relativistic electron beam (IREB) propagation in Cs are reported. The threshold pressure for electron beam ionization of Cs is found to agree with earlier theoretical predictions. These results experimentally establish Cs as a feasible working gas for the IFA. Numerical simulation results are also reported which demonstrate controlled potential well motion and collective ion acceleration with the IFA

  4. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.

    Science.gov (United States)

    Bath, K; Manzano-Nieves, G; Goodwill, H

    2016-06-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Recalcitrant Lateral Premalleolar Bursitis of the Ankle Associated with Lateral Ankle Instability

    Directory of Open Access Journals (Sweden)

    Masashi Naito

    2017-01-01

    Full Text Available Lateral premalleolar bursitis of the ankle is a rarely reported disorder in the English literature although it is not uncommon in Asian countries where people commonly sit on their feet. Here, we present the case of a 66-year-old woman with recalcitrant lateral premalleolar bursitis associated with lateral ankle instability which was successfully treated with surgical resection of the bursa and repair of the anterior talofibular ligament. Operative findings revealed a communication between the bursa and articular cavity of the ankle joint via the sheath of the extensor digitorum longus tendon, which was considered to act as a check valve leading to a large and recalcitrant bursitis. This report provides a novel concept about the etiology of recalcitrant lateral premalleolar bursitis of the ankle.

  6. CAS CERN Accelerator School: Fourth general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1991-01-01

    The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)

  7. Segmental sensory disturbance in brain stem infarctions of the lateral lower pons and lateral medulla

    International Nuclear Information System (INIS)

    Matsumoto, Sadayuki; Yamasaki, Masahiro; Maya, Kiyomi; Imai, Terukuni; Okuda, Bungo.

    1987-01-01

    We reported on seven cases of brainstem infarctions of the lateral lower pons and lateral medulla, the sensory deficit manifested over the trunk or the leg namely segmental sensory disturbances. All patients showed dissociated sensory disturbance of pain and temperature with retained deep sensations except two cases in which touch was also slightly impaired. The sensory distribution was classified into two types. The first ''crossed type'', ipsilatral face and contralateral trunk and leg below the level was involved in 4 cases, and the second ''unilateral type'' contralateral face and trunk above the level in 3 cases. Clinico-anatomical evaluation was executed by MRI. Lesions were detected in the lateral lower pons in two cases and in the lateral medulla in one case. The location of lesions by MRI revealed more lateral lesions showed ''crossed type'' of segmental sensory disturbance and more medial lesions ''unilateral type''. It was shown that the segmental sensory disturbance could be explained by the partial involvement of the lateral spinothalamic tract, which is arranged with the fibers from the sacral segments most lateral. We considered it very important to differentiate the segmental sensory disturbance by brainstem lesion in practical clinical diagnosis. We also emphasize the type of segmental sensory disturbance could be a localizing sign in the lateral brainstem as such, ''crossed type'' indicating the lesion of the lateral portion and ''unilateral type'' the medial portion of the lateral lower brainstem. (author)

  8. Percutaneous lateral ligament reconstruction with allograft for chronic lateral ankle instability.

    Science.gov (United States)

    Youn, Hyunkook; Kim, Yong Sang; Lee, Jongseok; Choi, Woo Jin; Lee, Jin Woo

    2012-02-01

    The majority of lateral ankle instability can be treated successfully with conservative method. However, if such treatments fail, surgical treatment should be considered. A wide variety of procedures have been introduced to treat chronic lateral ankle instability. The percutaneous method avoids dissection which is associated with open surgery and can lead to excessive morbidity. The purpose of this study was to evaluate the clinical and radiological outcomes of percutaneous lateral ligament reconstruction with an allograft in the treatment of chronic lateral ankle instability. Between October 2006 and April 2009, percutaneous lateral ligament reconstruction using an allograft was performed on 15 ankles in 13 patients for chronic lateral ankle instability. The patients included in this study satisfied at least one of the following criteria: a previously failed reconstruction of the ligament, severe ankle instability (more than 15 degrees of talar tilt, more than 10 mm of anterior drawer), general laxity of ligaments, body mass index (BMI) higher than 25. The mean followup period was 18.1 (range, 12 to 40) months. The grafted tendon was secured by double tenodeses at both the talus and calcaneus or triple tenodeses which included a fibular tenodesis. The clinical outcomes were evaluated with Visual Analogue Scale (VAS) for pain, Karlsson-Peterson ankle score, and patients' subjective satisfaction. The radiological results were evaluated using the varus tilting angle and the anterior displacement distance. The VAS improved from preoperative 3.7 ±2.2 to 1.6 ±1.3 at the last followup (p = 0.002). The Karlsson-Peterson ankle score increased from 54.2 ±8.8 to 80.9 ±7.2 (p = 0.001). Patients were satisfied in 13 cases (86.7%) with excellent or good results. Radiologically, the mean varus tilting angle was 15.5 ±4.4 degrees preoperatively and 7.3 ±3.6 at the last followup (p = 0.001). The anterior drawer distance was 10.1 ±3.3 mm preoperatively and 7.2 ±2.7 mm at

  9. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    International Nuclear Information System (INIS)

    Badziak, J; Rosiński, M; Jabłoński, S; Pisarczyk, T; Chodukowski, T; Parys, P; Rączka, P; Krousky, E; Ullschmied, J; Liska, R; Kucharik, M

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes. (paper)

  10. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  11. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  12. Lateral Trunk Surface as a new parameter to estimate live body weight by Visual Image Analysis

    Directory of Open Access Journals (Sweden)

    S. Terramoccia

    2010-02-01

    Full Text Available Live weight of 74 milking Mediterranean buffaloes (Bubalus bubalis L. have been estimated by Visual Image Analysis. The total surface of lateral profile, tested in previous researches with viable result, was substituted by the measurement of the Lateral Trunk Surface (LTrS. The measurements were recorded by a camera equipped by a laser distance recorder and data were elaborated by a specific software. This parameter, eliminating the surface of neck, head and legs, that are less easily measurable, simplified and accelerated the procedure. Correlation between LTrS and live weight was r = 0.90 (P < 0.01. A significant equation (P < 0.01 was obtained from the recorded data of a random sample of 38 buffaloes. When the validation of the equation was tested on the other 36 subjects, the estimated live weight had a mean of 691.74 kg ± 68.55. This was corresponding to a 1.08% overestimation of the real weight.

  13. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  14. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  15. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    Science.gov (United States)

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  16. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  17. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  18. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  19. Nuclear techniques for the analysis and dating of cultural heritage with the tandetron accelerator at the CEDAD

    Directory of Open Access Journals (Sweden)

    Lucio Calcagnile

    2014-12-01

    Full Text Available The Accelerator Mass Spectrometry technique for measuring carbon isotopes and dating artifacts, together with nuclear techniques of ion beam analysis are widely used in the field of cultural heritage owing to the great advantage of their being non-destructive. In Italy, CEDAD - CEntro Di DAtazione e Diagnostica of the University of Salento, with its tandetron accelerator of 3MV, has played a major role for over ten years, in studying materials of cultural assets requiring the determination of their elemental composition and determination of absolute chronology using radiocarbon. This study describes the Accelerator Mass Spectrometry technique used with the accelerator at CEDAD to determine age by means of radiocarbon and PIXE-PIGE techniques, and to determine elements, even in traces, present in materials. Some case studies carried out at CEDAD are reported, including those on the Riace Bronzes and Capitoline Wolf. The latter has been definitively dated to the Middle Ages, 17 centuries later than the previously attributed dating by historians. In addition, an important technical innovation is described, achieved within the framework of the IT@CHA Project enabling organic materials to be dated using only 10 μg of carbon.

  20. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  1. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  2. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  3. [Lateral epicondylitis: conservative - operative].

    Science.gov (United States)

    Altintas, Burak; Greiner, Stefan

    2016-10-01

    Lateral epicondylitis is a common disease of the common extensor origin at the lateral humerus. Despite its common self-limitation it can lead to chronic therapy-resistant pain with remarkable functional disability of the affected arm. Different conservative and operative treatment options of lateral epicondylitis are described and compared regarding benefits and risks. Additionally, recent surgical techniques and their complications are mentioned. Based on the current literature, it is shown which treatment option can be recommended. This review was based on the literature analysis in PubMed regarding "conservative and operative therapy of lateral epicondylitis" as well as the clinical experience of the authors. Conservative treatment is the primary choice for the treatment of lateral epicondylitis if concomitant pathologies such as instability among others can be excluded. It should include strengthening against resistance with eccentric stretching of the extensor group. In persistent cases, operative treatment is warranted. Resection of the pathologic tissue at the extensor origin with debridement and refixation of the healthy tendinous tissue yields good results. Most patients with lateral epicondylitis can be treated conservatively with success. Radiological evaluation should be performed in therapy-resistant cases. In the case of partial or complete rupture of the extensor origin, operative therapy is indicated.

  4. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  5. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  6. Ultra-high vacuum photoelectron linear accelerator

    Science.gov (United States)

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  7. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  8. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  9. Accelerators in industrial and clinical practice

    International Nuclear Information System (INIS)

    Kulinich, S.

    1983-01-01

    Various possible accelerator applications in the USSR are given, namely the use of a linear electron accelerator in crack detection of thick-walled steel products, the use of accelerators in the radiation-chemical production of antimicrobial fabrics, the use of a pulsed electron accelerator for the disinfection of sewage waters, the use of accelerators for the treatment of tumors. Instruments have been developed on the basis of linear electron accelerators for the activation analysis of ores. (M.D.)

  10. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  11. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  12. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  13. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  14. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  15. Acceleration of a compact torus

    International Nuclear Information System (INIS)

    Hartmann, C.W.; Eddleman, J.L.; Hammer, J.H.; Kusse, B.

    1987-01-01

    The authors report the first results of a study of acceleration of spheromak-type compact toruses in the RACE experiment (plasma Ring ACceleration Experiment). The RACE apparatus consists of (1) a magnetized, coaxial plasma gun 50 cm long, 35 cm OD, 20 cm ID, (2) 600 cm long coaxial acceleration electrodes 50 cm OD, 20 cm ID, (3) a 250 kJ electrolytic capacitor bank to drive the gun solenoid for initial magnetization, (4) a 200 kJ gun bank, (5) a 260 kJ accelerator bank, and (6) magnetic probes and other diagnostics, and vacuum apparatus. To outer acceleration electrode is an extension, at larger OD, of the gun outer electrode, and the inner acceleration electrode is supported and fed by a coaxial insert in the gun center electrode as shown

  16. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  17. Radioprotection of patients in radiotherapy: the gonadal doses resulting from treatments at electron accelerators

    International Nuclear Information System (INIS)

    Nuesslin, F.; Hassenstein, E.

    1977-01-01

    Using LiF-dosemeters in a polystyrene phantom dose profiles have been measured. The influence of the following parameters has been studied: accelerator type, primary beam quality (45 and 8 MV X-rays, 45, 18 and 10 MeV electrons), orientation of the phantom, depth in the phantom (0, 1 and 10 cm) and thickness of additional lead sheets put on the phantom surface. Because the dose distribution of the leakage radiation of the accelerator depends mainly on the mechanism of beam production, i.e. on the accelerator type, different anisotropic isodose-patterns have been found. For instance, in case of the betatron the dose maxima are located at opposite sides within the plane of electron orbits. On the other side, there does not exist any favourable direction femal patients should be positioned at to minimize the gonadal dose, because already at 10 cm depth in the phantom the isodose distributions are nearly isotropic. This is caused by the low penetrating capacity of the leakage radiation (2 to 0.6 mm Pb HVL thickness at 45 MV X-rays, depending on the lateral distance from the field). These findings suggest to cover the gonads of male patients undergoing radiotherapy with lead sheets of 1 or 2 mm thickness

  18. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Gore, J.A.; Sparrow, H.; Bhagwat, P.V.; Kailas, S.

    2006-01-01

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radio isotope 36 Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  19. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  20. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  1. Fixed-Target Electron Accelerators

    International Nuclear Information System (INIS)

    Brooks, William K.

    2001-01-01

    A tremendous amount of scientific insight has been garnered over the past half-century by using particle accelerators to study physical systems of sub-atomic dimensions. These giant instruments begin with particles at rest, then greatly increase their energy of motion, forming a narrow trajectory or beam of particles. In fixed-target accelerators, the particle beam impacts upon a stationary sample or target which contains or produces the sub-atomic system being studied. This is in distinction to colliders, where two beams are produced and are steered into each other so that their constituent particles can collide. The acceleration process always relies on the particle being accelerated having an electric charge; however, both the details of producing the beam and the classes of scientific investigations possible vary widely with the specific type of particle being accelerated. This article discusses fixed-target accelerators which produce beams of electrons, the lightest charged particle. As detailed in the report, the beam energy has a close connection with the size of the physical system studied. Here a useful unit of energy is a GeV, i.e., a giga electron-volt. (ne GeV, the energy an electron would have if accelerated through a billion volts, is equal to 1.6 x 10 -10 joules.) To study systems on a distance scale much smaller than an atomic nucleus requires beam energies ranging from a few GeV up to hundreds of GeV and more

  2. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  3. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  4. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  5. Measurement and interpretation of laser accelerated protons at GSI

    International Nuclear Information System (INIS)

    Al-Omari, Husam

    2014-01-01

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  6. Measurement and interpretation of laser accelerated protons at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, Husam

    2014-04-28

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  7. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  8. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  9. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  10. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  11. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  12. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  13. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  14. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  15. A periodic plasma waveguide accelerator

    International Nuclear Information System (INIS)

    Cole, F.T.

    1985-01-01

    The increasing cost of synchrotrons and storage rings has given new interest in the search for new methods of acceleration. The primary goal of this search is very large accelerating fields, because the cost of an accelerator to reach TeV energies is dominated by costs that scale with length. Very large electric fields are possible in plasmas and in lasers and many geometries are being studied that make use of plasmas, lasers, or combinations of them. In a plasma accelerator, the plasma can have several different functions. It may act as a medium for the propagation of accelerating electric-field waves. In addition, these waves may also act as a source of the energy needed to accelerate particles. Accelerators using various waves in plasmas have been built and studied in many laboratories. The device proposed here is an attempt to separate the two functions of providing a medium and providing an energy source. A relatively low-energy electron beam is used as a non-neutral plasma only to make a slow-wave medium for the propagation of an externally generated wave. The wave is a TM electromagnetic wave and the device may be thought of as a conventional electron linear accelerator with the evacuated volume and metallic envelope replaced by the electron beam. A separate second beam, which may be electrons or heavier particles, is accelerated. The application in mind here is a single-pass collider

  16. Converging-barrel plasma accelerator

    International Nuclear Information System (INIS)

    Paine, T.O.

    1971-01-01

    The invention comprises a device for generating and accelerating plasma to extremely high velocity, while focusing the plasma to a decreasing cross section for attaining a very dense high-velocity plasma burst capable of causing nuclear fusion reactions. A converging coaxial accelerator-electrode configuration is employed with ''high-pressure'' gas injection in controlled amounts to achieve acceleration by deflagration and focusing by the shaped electromagnetic fields. (U.S.)

  17. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  18. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  19. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  20. Particle acceleration in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  1. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  2. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  3. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  4. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  5. High-energy cosmic-ray acceleration

    OpenAIRE

    Bustamante, M; Carrillo Montoya, G; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi accelera...

  6. Motor neuron disease (amyotrophic lateral sclerosis) arising from longstanding primary lateral sclerosis

    NARCIS (Netherlands)

    Bruyn, R. P.; Koelman, J. H.; Troost, D.; de Jong, J. M.

    1995-01-01

    Three men were initially diagnosed as having primary lateral sclerosis (PLS), but eventually developed amyotrophic lateral sclerosis (ALS) after 7.5, 9, and at least 27 years. Non-familial ALS and PLS might be different manifestations of a single disease or constitute completely distinct entities.

  7. Muon acceleration in cosmic-ray sources

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-01-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10 13 keV cm –1 . At gradients above 1.6 keV cm –1 , muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  8. Status of accelerator development at Fermilab

    International Nuclear Information System (INIS)

    Owen, C.W.

    1976-01-01

    The Fermilab accelerator is comprised of four major systems: the high-energy beam-extraction and switching system, the main accelerator (main ring), the booster, and the linear accelerator. The Fermilab accelerator produces accelerated beams for a vigorous international high-energy physics program. The basic design features and operation for high-energy physics have been described a number of times in the past. A report is given which, for the most part, discusses in detail only those features that are particularly significant in increasing the usefulness of the accelerator as a tool for high-energy physics

  9. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  10. Lateralization of the Huggins pitch

    Science.gov (United States)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  11. Accelerator mass spectrometry and associated facilities at Inter-University Accelerator Centre, New Delhi, India

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bohra, Archna; Ojha, S.; Gargari, S.; Joshi, R.; Roonwal, G.S.; Chopra, S.; Pattanaik, J.K.; Balakrishnan, S.

    2011-01-01

    Accelerator Mass Spectrometry (AMS) facility at Inter-University Accelerator Centre (IUAC) is developed by upgrading its existing 15UD Pelletron accelerator. Since last two decades Pelletron is mainly used for nuclear physics, materials science, atomic physics, radiation biology and accelerator mass spectrometry is recent development. In addition, a chemistry laboratory in clean room for the chemical processing of samples for AMS studies has also been established. At present the AMS facility is used for 10 Be, 26 Al measurements and soon other long lived radio-isotopes will also be used

  12. The Accelerator Markup Language and the Universal Accelerator Parser

    International Nuclear Information System (INIS)

    Sagan, D.; Forster, M.; Cornell U., LNS; Bates, D.A.; LBL, Berkeley; Wolski, A.; Liverpool U.; Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; CERN; Walker, N.J.; DESY; Larrieu, T.; Roblin, Y.; Jefferson Lab; Pelaia, T.; Oak Ridge; Tenenbaum, P.; Woodley, M.; SLAC; Reiche, S.; UCLA

    2006-01-01

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format

  13. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  14. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  15. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  16. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  17. Electrostatic accelerators fundamentals and applications

    CERN Document Server

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  18. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  19. Proceedings of CAS - CERN Accelerator School: Course on Superconductivity for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    These proceedings collate lectures given at the twenty-seventh specialized course organised by the CERN Accelerator School (CAS). The course was held at the Ettore Majorana Foundation and Centre for Scientific Culture (EMFCSC) in Erice, Italy, from 24 April to 4 May 2013. Following recapitulation lectures on basic accelerator physics and superconductivity, the course covered topics related to the design, production and operation of superconducting RF systems and superconducting magnets for accelerators. The participants pursued one of six case studies in order to get ’hands-on’ experience of the issues connected with the design of superconducting systems. A series of topical seminars completed the programme.

  20. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  1. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  2. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  3. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Turner, S.

    1995-01-01

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 87-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.)

  4. CAS CERN Accelerator School. 5. Advanced accelerator physics course. Proceedings. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1995-11-22

    The fifth CERN Accelerator School (CAS) advanced course on Accelerator Physics was given at the Paradise Hotel, Rhodes, Greece from 20 September to 1 October 1993. Its syllabus was based on the previous similar courses held at Oxford 1985, Berlin 1987, Uppsala 1989 and Noordwijkerhout 1991, and whose proceedings were published as CERN Reports 97-03, 89-01, 90-04 and 92-01, respectively. The present volumes are intended to replace and to bring up to date all the material in earlier publications. They contain not only all the lectures given in the Rhodes course but a number of important contributions to previous courses which are thought to be essential for a complete understanding of all aspects of the design and construction of particle accelerators at an advanced level. They include sections on Hamiltonian equations and accelerator optics, chromaticity and dynamic beam aperture, particle tracking, the kinetic theory, longitudinal beam optics, coherent instabilities, beam-beam dynamics, intra-beam scattering, beam cooling, Schottky noise, beam radiation, neutralisation, beam polarisation, radio-frequency quadrupoles, as well as chapters on space charge, superconducting magnets, crystal bending, beam-beam measurement and accelerator medical applications. (orig.).

  5. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. PD-1-2

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2007-01-01

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half-life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radioisotope 36 Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc . The AMS programme at the 14 UD Mumbai Pelletron Accelerator has taken off with the installation of the state of the art Terminal Potential Stabilizer setup and operation of the accelerator in Generating Volt Meter (GVM) mode. Feasibility studies have been carried out for detection/identification of 14 C from a charcoal sample and 3 He in natural Helium. As the primary interest of AMS programme at Mumbai Pelletron Accelerator is related to the cosmogenic nuclei, 36 Cl and 129 I, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has also been developed

  6. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  7. Lateral collateral ligament (image)

    Science.gov (United States)

    The lateral collateral ligament connects the end of the femur (thigh) to the top of the fibula (the thin bone that runs next to the shin bone). The lateral collateral ligament provides stability against varus stress. Varus stress ...

  8. Several problems in accelerator shielding study

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Hirayama, Hideo; Ban, Shuichi.

    1980-01-01

    Recently, the utilization of accelerators has increased rapidly, and the increase of accelerating energy and beam intensity is also remarkable. The studies on accelerator shielding have become important, because the amount of radiation emitted from accelerators increased, the regulation of the dose of environmental radiation was tightened, and the cost of constructing shielding rose. As the plans of constructing large accelerators have been made successively, the survey on the present state and the problems of the studies on accelerator shielding was carried out. Accelerators are classified into electron accelerators and proton accelerators in view of the studies on shielding. In order to start the studies on accelerator shielding, first, the preparation of the cross section data is indispensable. The cross sections for generating Bremsstrahlung, photonuclear reactions generating neutrons, generation of neutrons by hadrons, nuclear reaction of neutrons and generation of gamma-ray by hadrons are described. The generation of neutrons and gamma-ray as the problems of thick targets is explained. The shielding problems are complex and diversified, but in this paper, the studies on the shielding, by which basic data are obtainable, are taken up, such as beam damping and side wall shielding. As for residual radioactivity, main nuclides and the difference of residual radioactivity according to substances have been studied. (J.P.N.)

  9. 100 MeV laser accelerator demonstration and 1 GeV baseline design development. 1992 Annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The acceleration of relativistic electrons using the inverse Cerenkov effect was first demonstrated at Stanford University in 1981. Later, Fontana and Pantell developed an improved configuration for the inverse Cerenkov acceleration (ICA) process. A radially polarized laser beam is focused by an axicon onto the e-beam traveling through a gas-filled interaction region. The light intersects the e-beam at the Cerenkov angle θ c , where θ c = cos -1 (1/nβ), n is the index of refraction of the gas, and β is the ratio of the electron velocity to the speed of light. The goal of the present program is to demonstrate improved laser acceleration using the Fontana and Pantell configuration. The experiments will be performed on the Accelerator Test Facility (ATF) located at Brookhaven National Laboratory (BNL). This facility features a 50 MeV linac fed by a Nd:YAG (4ω) laser-driven photocathode e-gun. It will be upgraded to 65 MeV in the near future. The ATF also has a high peak power CO 2 laser, which was developed for laser acceleration studies. The present ICA experiment was divided into two phases. Phase 1 was to examine certain experimental issues in preparation for Phase 2. Phase 1 was successfully completed in the spring of 1992. Phase 2 is to perform the actual laser acceleration experiments on the ATF e-beam. The authors are currently waiting for the availability of the e-beam so that they can begin the Phase 2 experiments. In this section, the theory and experimental hardware for the present program are described. The results of the Phase 1 experiments are presented, and an update on the Phase 2 experiment is given

  10. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  11. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  12. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  13. Present state of control system of tandem accelerator in JAERI. Accidents frequently occurred in 1995 fiscal year

    Energy Technology Data Exchange (ETDEWEB)

    Hanashima, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    Tandem accelerator in JAERI (Japan Atomic Energy Research Institute) has been controlled by parallel processing control system using plural microprocessors and parallel processing programming since 1992. As the control system has been smoothly operated since beginning of its usage, many system downs have been experienced at later half of 1995. After each system down, original damage has not been found and it has been recovered by usual restarting operation. Some found remarkable defects were corrected by correction of electric circuit. As a result, frequency of the system down was decreased remarkably but its level could not be reduced to a level before occurring this phenomenon. As operation of the accelerator is preferable without control line for urgent measure, fundamental determination method is planned by controlling humidity of the control room and replacing serial highway driver with a new type producing now. (G.K.)

  14. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  15. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed ...

  16. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  17. An Adiabatic Phase-Matching Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  18. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  19. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  20. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  1. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  2. All-inside, anatomical lateral ankle stabilization for revision and complex primary lateral ankle stabilization: a technique guide.

    Science.gov (United States)

    Prissel, Mark A; Roukis, Thomas S

    2014-12-01

    Lateral ankle instability is a common mechanical problem that often requires surgical management when conservative efforts fail. Historically, myriad open surgical approaches have been proposed. Recently, consideration for arthroscopic management of lateral ankle instability has become popular, with promising results. Unfortunately, recurrent inversion ankle injury following lateral ankle stabilization can occur and require revision surgery. To date, arthroscopic management for revision lateral ankle stabilization has not been described. We present a novel arthroscopic technique combining an arthroscopic lateral ankle stabilization kit with a suture anchor ligament augmentation system for revision as well as complex primary lateral ankle stabilization. © 2014 The Author(s).

  3. High-energy inverse free-electron laser accelerator

    International Nuclear Information System (INIS)

    Courant, E.D.; Pellegrini, C.; Zakowicz, W.

    1985-01-01

    We study the inverse free electron laser (IFEL) accelerator and show that it can accelerate electrons to the few hundred GeV region with average acceleration rates of the order of 200 meV/m. Several possible accelerating structures are analyzed, and the effect of synchrotron radiation losses is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian description, which takes into account the dissipative features of the IFEL accelerator, is introduced to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to estimate the change of the electron phase space density during the acceleration process

  4. Industrial use of electron accelerators

    International Nuclear Information System (INIS)

    Tabata, Y.

    1980-01-01

    Use of accelerators in various fields of Japan is reviewed. The total number of accelerators in Japan and its relation with others fields, the number of accelerators for use in radiation processing, comparison between the use of low and high energy machines, etc... is done. (E.G.) [pt

  5. Health physics practices at research accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  6. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  7. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  8. 38 CFR 9.14 - Accelerated Benefits.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  9. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  10. New techniques for particle accelerators

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers. 26 refs., 5 figs., 1 tab

  11. ACCELERATORS: Nonlinear dynamics in Sardinia

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981

  12. ACCELERATORS: Nonlinear dynamics in Sardinia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981.

  13. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  14. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  15. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  16. Unified 1.9...4.0 MeV linear accelerators with interchangeable accelerating structures for customs inspection

    International Nuclear Information System (INIS)

    Budtov, A.A.; Klinov, A.P.; Krestianinov, A.S.

    2004-01-01

    A series of compact linear electron accelerators for 1.9, 2.5 and 4.0 MeV equipped with a local radiation shielding has been designed and constructed in the NPK LUTS, the D.V.Efremov Institute (NIIEFA). The accelerators are intended for mobile facilities used for customs inspection of large-scale containers. Results of optimizing calculations of irradiator parameters and electron dynamics, verified under accelerators testing, are presented in the report. The main design approaches allowing the construction of unified accelerators with interchangeable accelerating structures for energies in the range of 1.9...4.0 MeV are also given

  17. Accelerators for research and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  18. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  19. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  20. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  1. Evaluation of a new method of RF power coupling to acceleration cavity of charged particles accelerators

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available In this paper, the feasibility studty of a new method of RF power coupling to acceleration cavity of charged particles accelerator will be evaluated. In this method a slit is created around the accelerator cavity, and RF power amplifier modules is connected directly to the acceleration cavity. In fact, in this design, the cavity in addition to acting as an acceleration cavity, acts as a RF power combiner. The benefits of this method are avoiding the use of RF vacuum tubes, transmission lines, high power combiner and coupler. In this research, cylindrical and coaxial cavities were studied, and a small sample coaxial cavity is build by this method. The results of the resarch showed that compact, economical and safe RF accelerators can be achieved by the proposed method

  2. A Pascalian lateral drift sensor

    International Nuclear Information System (INIS)

    Jansen, H.

    2016-01-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  3. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  4. Research of Virtual Accelerator Control System

    Institute of Scientific and Technical Information of China (English)

    DongJinmei; YuanYoujin; ZhengJianhua

    2003-01-01

    A Virtual Accelerator is a computer process which simulates behavior of beam in an accelerator and responds to the accelerator control program under development in a same way as an actual accelerator. To realize Virtual Accelerator, control system should provide the same program interface to top layer Application Control Program, it can make 'Real Accelerator' and 'Virtual Accelerator'use the same GUI, so control system should have a layer to hide hardware details, Application Control Program access control devices through logical name but not through coded hardware address. Without this layer, it is difficult to develop application program which can access both 'Virtual' and 'Real' Accelerators using same program interfaces. For this reason, we can create CSR Runtime Database which allows application program to access hardware devices and data on a simulation process in a unified way. A device 'is represented as a collection of records in CSR Runtime Database. A control program on host computer can access devices in the system only through names of record fields, called channel.

  5. Development of new electron beam accelerator

    International Nuclear Information System (INIS)

    Tanaka, Jiro

    1976-01-01

    Approximately two decades have elapsed since electron accelerators were first employed in industry. It is widely used in the fields of chemical and food industries and the prevention of pollution. The accelerators for industrial use are limited to those obtainable high current or high output, low cost and easy handling. The low energy (up to 2 or 3 MeV) accelerators applicable to industry include the rectification type (Cockcroft, Dynamitron, Van de Graaff etc.), the AC transformer type (resonance transformer, cascade transformer) and the transformer type. As the accelerators of higher energy (more than 3 MeV), there exist the linear accelerator and the electromagnetic induction type. The linear accelerators are widely employed for industrial and medical uses as the large output can be obtained. Though various types of accelerators are used in industry, more increasing demands in accordance with the diversification of application are not always satisfied. As it seems that the realization of a new accelerator of improved performance and cost requires long time, it may be important to perform the standardization by dividing the energy and output ranges. (Wakatsuki, Y.)

  6. Low-β acceleration with a MEQALAC

    International Nuclear Information System (INIS)

    van Amersfoort, P.W.; Siebenlist, F.; Thomae, R.W.; Woljke, R.; Schonewille, F.G.; Ivanov, S.T.; Klein, H.; Schempp, A.; Weis, T.

    1986-01-01

    In a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) a number of parallel beams is accelerated simultaneously. This devise is useful for exit energies up to 1 MeV per nucleon. Radial stability is provided by electrostatic quadrupole lenses placed between successive acceleration gaps. The proof-of-principle MEQALAC presently available at FOM features four He + ion beams which are accelerated to an energy of 120 keV. The resonator cavity has a modified Interdigital-H-structure and contains 20 acceleration gaps. Its resonance frequency is 40 MHz. Transmission measurements on injected beams with currents ranging from 1 to 15 mA are presented. The transverse phase advance per cell of the quadrupole channels is varied between 43 0 and 114 0 . A maximum current of 2.2 mA per channel has been accelerated. A design for a MEQALAC which will be used for acceleration of N + ions to 1 MeV is presented. This accelerator will be operated at various frequencies to allow for a variation of the exit energy

  7. Laterality and mental disorders in the postgenomic age--A closer look at schizophrenia and language lateralization.

    Science.gov (United States)

    Ocklenburg, Sebastian; Güntürkün, Onur; Hugdahl, Kenneth; Hirnstein, Marco

    2015-12-01

    Most people are right-handed and show left-hemispheric language lateralization, but a minority exhibits left-handedness and right-hemispheric language lateralization. This atypical laterality pattern is observed significantly more often in schizophrenia patients than in the general population, which led several authors to conclude that there is a genetic link between laterality and schizophrenia. It has even been suggested that a failure in the lateralization process, orchestrated by genes, could be the primary cause of schizophrenia. However, the molecular genetic evidence for a link between laterality and schizophrenia is weak. Recent genetic evidence indicates that schizophrenia is not a single disorder but a group of heritable disorders caused by different genotypic networks leading to distinct clinical symptoms. To uncover the link between schizophrenia and laterality we therefore suggest a paradigm shift where genetics are not mapped on schizophrenia as a whole but on discrete schizophrenia symptoms. In addition, we provide a critical evaluation of current theories on the genetic link between schizophrenia and brain asymmetry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    Terebilo, Andrei

    2001-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  9. Electron cyclotron harmonic wave acceleration

    Science.gov (United States)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  10. Electron cyclotron harmonic wave acceleration

    International Nuclear Information System (INIS)

    Karimabadi, H.; Menyuk, C.R.; Sprangle, P.; Vlahos, L.; Salonika Univ., Greece)

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts. 31 references

  11. LATERAL ANKLE INJURY

    OpenAIRE

    Pollard, Henry; Sim, Patrick; McHardy, Andrew

    2002-01-01

    Background: Injury to the ankle joint is the most common peripheral joint injury. The sports that most commonly produce high ankle injury rates in their participating athletes include: basketball, netball, and the various codes of football. Objective: To provide an up to date understanding of manual therapy relevant to lateral ligament injury of the ankle. A discussion of the types of ligament injury and common complicating factors that present with lateral ankle pain is presented along with ...

  12. Reliability data collection on IC and VLSI devices tested under accelerated life conditions

    International Nuclear Information System (INIS)

    Barry, D.M.; Meniconi, M.

    1986-01-01

    As part of a more general investigation into the reliability and failure causes of semiconductor devices, statistical samples of integrated circuit devices (LM741C) and dynamic random access memory devices (TMS4116) were tested destructively to failure using elevated temperature as the accelerating stress. The devices were operated during the life test and the failure data generated were collected automatically using a multiple question-and-answer program and a process control computer. The failure data were modelled from the lognormal, inverse Gaussian and Weibull distribution using an Arrhenius reaction rate model. The failed devices were later decapsulated for failure cause determination. (orig./DG)

  13. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  14. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  15. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  16. High-current proton accelerators-meson factories

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1979-01-01

    A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru

  17. Safety and regulatory aspects of accelerators

    International Nuclear Information System (INIS)

    Singh, Pitamber

    2017-01-01

    Particle accelerators are devices that produce beams of energetic ions and electrons which have applications in various fields. Historically, particle accelerators were developed for nuclear physics research. Although the particle physics community is still the main user group, joined by others. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation an many other applications. Accelerators are also being used for nuclear energy generation using Thorium and waste management through incineration of minor actinides using accelerator driven sub-critical reactor system (ADS). This is of great interest to India as it has large resources of good quality thorium. The ADS are considered to be an inherently safe system as the reactor is sub-critical. However, ADS require high energy and high current proton beams which involve complex technologies. Accelerators deliver energy to the charged particles by means of electromagnetic fields. Depending on how the electric and magnetic fields are used, the accelerators can be grouped in three categories namely electrostatic or DC accelerators, RF accelerators and colliding rings. In DC accelerators, particles pass through a high voltage and gain energy given by E= qV where q is the charge of ion and V is the voltage tough which ion pass. In order to sustain high voltage accelerator column section is housed inside a pressure vessel which is filled with gas, normally SF_6, at high pressure (100 -150 psig)

  18. Analysis of beam acceleration and instability on TWRR accelerator structure in PNC by beam-cavity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up (BBU). The CW electron linac is designed in order to study BBU experimentally. The design is primary on the consideration which type of accelerator structure is suitable to reduce the BBU threshold, and how to observe and control BBU when it appears. The contribution of beam charge for the acceleration characteristics is surveyed by means of the comparison between traveling wave and standing wave structures in this report. At first, the characteristics of both traveling wave and standing wave structures are calculated analytically and the conversion efficiency and accelerator gain are presented. The merits and drawbacks are also mentioned concerning with unit accelerator length. Next, the choice of RF frequency on energy conversion is mentioned as independent matter of the types of accelerator structure. After that, the characteristics of TWRR are described as the advanced accelerator structure compared with above structures. The effect of longitudinal induced field is estimated by means of the loss parameter. The result from the analysis shows that the unit accelerator length is 1 m to get high conversion ratio from RF to beam power and that the BBU for transverse component is small. Therefore, total BBU is expected small in the accelerator, for transverse BBU is already expected small in previous reports. (author)

  19. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  20. A hardware acceleration based on high-level synthesis approach for glucose-insulin analysis

    Science.gov (United States)

    Daud, Nur Atikah Mohd; Mahmud, Farhanahani; Jabbar, Muhamad Hairol

    2017-01-01

    In this paper, the research is focusing on Type 1 Diabetes Mellitus (T1DM). Since this disease requires a full attention on the blood glucose concentration with the help of insulin injection, it is important to have a tool that able to predict that level when consume a certain amount of carbohydrate during meal time. Therefore, to make it realizable, a Hovorka model which is aiming towards T1DM is chosen in this research. A high-level language is chosen that is C++ to construct the mathematical model of the Hovorka model. Later, this constructed code is converted into intellectual property (IP) which is also known as a hardware accelerator by using of high-level synthesis (HLS) approach which able to improve in terms of design and performance for glucose-insulin analysis tool later as will be explained further in this paper. This is the first step in this research before implementing the design into system-on-chip (SoC) to achieve a high-performance system for the glucose-insulin analysis tool.

  1. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    Science.gov (United States)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  2. Damage limits of accelerator equipment

    CERN Document Server

    Rosell, Gemma

    2014-01-01

    Beam losses occur in particle accelerators for various reasons. The effect of lost particles on accelerator equipment becomes more severe with the increasing energies and intensities. The present study is focused on the damage potential of the proton beam as a function of particle energy and beam size. Injection and extraction energies of different accelerators at CERN were considered.

  3. Stochastic acceleration by hydromagnetic turbulence

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1979-03-01

    A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes

  4. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  5. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  6. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  7. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  8. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  9. Overview of SSC accelerator requirements

    International Nuclear Information System (INIS)

    Dugan, G.

    1992-03-01

    This paper will present a general overview of the requirements of the Superconducting Super Collider (SSC) accelerators. Each accelerator in the injector chain will be discussed separately, followed by a discussion of the collider itself. In conclusion, the top level requirements of the overall accelerator system will be presented. For each accelerator, the primary operating parameters will be presented in tabular form. A brief narrative discussion of the principal technical features of each machine will be given. Finally, the principal technical design challenges for the machine will be noted, together with the currently planned solution to these challenges

  10. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  11. Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology

    International Nuclear Information System (INIS)

    Harris, F.A.

    1998-01-01

    The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components

  12. Spacetime transformations from a uniformly accelerated frame

    International Nuclear Information System (INIS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-01-01

    We use the generalized Fermi–Walker transport to construct a one-parameter family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the weak hypothesis of locality, we obtain local spacetime transformations from a uniformly accelerated frame K′ to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. (paper)

  13. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  14. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  15. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  16. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    Science.gov (United States)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  17. A new awakening for accelerator cavities

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Imagine: an accelerator unbound by length; one that can bring a beam up to the TeV level in just a few hundred metres. Sounds like a dream? Perhaps not for long. At CERN’s Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE), physicists may soon be working to bring this contemporary fairy-tale to life.   The AWAKE experiment in the CNGS facility. Wherever you find a modern linear particle accelerator, you’ll find with it a lengthy series of RF accelerating cavities. Although based on technology first developed over half a century ago, RF cavities have dominated the accelerating world since their inception. However, new developments in plasma accelerator systems may soon be bringing a new player into the game. By harnessing the power of wakefields generated by beams in plasma cells, physicists may be able to produce accelerator gradients of many GV/m –  hundreds of times higher than those achieved in current RF cavities. “Plasma wakef...

  18. ACFA and IPAC announce accelerator prizes

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Steve Myers, CERN's Director for Accelerators and Technology. The Asian Committee for Future Accelerators (ACFA) has joined forces with the first International Particle Accelerator Conference, IPAC’10, to award prizes for outstanding work in the field of accelerators. The conference replaces the regional conferences of the Americas, Europe and Asia and will be hosted by the three regions on a rotational basis (see CERN Courier). The ACFA/IPAC’10 Prizes Selection Committee, chaired by Won Namkung of Pohang Accelerator Laboratory, decided on the prizes and the names of the winners at a meeting on 20 January. The awards will be made during IPAC’10, which will be held in Kyoto on 23-28 May. Jie Wei. (Courtesy Tsinghua University.) Steve Myers, Director for Accelerators and Technology at CERN, receives an Achievement Prize for Outstanding Work in the Accelerator Field with no Age Limit “for his numerous outstanding contributions to the design, construction, commissio...

  19. Applications of proton and deuteron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Corporate Research Center, Princeton, NJ (United States))

    1993-06-01

    Applications of positive and negative hydrogen and deuterium ion accelerators beyond basic research are increasing. Large scale proposed national laboratory/industrial projects include the Accelerator Production of Tritium (APT) which will utilize protons, and the International Fusion Material Irradiation Facility (IFMIF) which will accelerate a deuteron beam into a lithium target. At the small scale end, radio-frequency quadrupole (RFQ) accelerator based systems have been built for neutron activation analysis and for applications such as explosive detection. At an intermediate scale, the Loma Linda proton therapy accelerator is now successfully treating a full schedule of patients, and more than half a dozen such hospital based units are under active study world-wide. At this same scale, there are also several ongoing negative ion, military accelerator projects which include the Continuous Wave Deuterium Demonstrator (CWDD) and the Neutral Particle Beam Space Experiment (NPBSE). These respective deuterium and hydrogen accelerators, which have not been previously described, are the focus of this paper. (orig.)

  20. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  1. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Machi, Sueo

    2003-01-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  2. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  3. submitter Introduction to Collective Effects in Particle Accelerators

    CERN Document Server

    Zimmermann, Frank

    2016-01-01

    The beam intensity and the beam brightness of particle accelerators or colliders operated for high - energy physics were, and are, often severely limited by “collective effects” (e.g.[1]). By contrast, new light sources, such as linac - based free electron lasers, may even rely on collective instabilities to accomplish their mission! The term “collective effects” refers to the interaction of beam particles with each other through a variety of processes, e.g. (1) non-delayed self-fields and image fields present even for constant perfectly conducting and magnetic boundaries (direct and indirect “space - charge effects”), (2) longer - lived electro-magnetic “wake fields” due to a finite chamber resistivity or geometric variation in the beam - pipe cross section, which typically affect later parts of the beam, (3) coherent synchrotron radiation, which on a curved trajectory may even influence earlier parts of the beam, giving rise to “non-causal” wake fields, otherwise not normally encountered...

  4. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  5. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  6. Pressure fluctuation caused by moderate acceleration

    Science.gov (United States)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  7. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  8. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark

    Science.gov (United States)

    Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.

    2015-02-01

    We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.

  9. Modern accelerators in ancient Rome

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams

  10. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  11. Modern accelerators in ancient Rome

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams.

  12. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  13. -MoS2 Lateral Heterojunctions

    KAUST Repository

    Li, Ming-yang

    2018-02-28

    2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic p–n junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two-step and location-selective chemical vapor deposition, is reported to synthesize self-aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light-emitting devices. The proposed fabrication process enables the growth of high-quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type-I alignment at the interface rather than commonly believed type-II alignment. This self-aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.

  14. Lagrangian Studies of Lateral Mixing

    Science.gov (United States)

    2017-09-19

    Final Technical 3. DATES COVERED (From - To) 01/01/2009 – 12/31/2015 4. TITLE AND SUBTITLE Lagrangian Studies of Lateral Mixing 5a. CONTRACT NUMBER...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Lateral Mixing Experiment (LATMIX) focused on mixing and...anomalies. LATMIX2 targeted the wintertime Gulf Stream, where deep mixed layers, strong lateral density gradients (Gulf Stream north wall) and the

  15. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  16. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  17. A study of reflex tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Takao; Morinobu, Shunpei; Gono, Yasuyuki; Sagara, Kenji; Sugimitsu, Tsuyoshi; Mitarai, Shiro; Nakamura, Hiroyuki; Ikeda, Nobuo; Morikawa, Tsuneyasu [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1996-12-01

    An investigation on `developing research theme and its realizing experimental apparatus` based on the tandem accelerator facility is executed. At a standpoint of recognition on essentiality of preparation, improvement or novel technical development capable of extreme increase in capacity of the tandem accelerator facility to form COE with high uniqueness, proposal of numerous ideas and their investigations and searches were conducted. In this paper, consideration results of `beam reacceleration using tandem accelerator` were shown as follows: (1) Short life unstable nuclei formed by nuclear reaction using tandem acceleration primary beam is ionized to negative and to reaccelerate by using the same tandem accelerator. And (2) by combination of plural electrons with the tandem primary accelerated beam, numbers of charge is reduced to reaccelerate by the tandem. (G.K.)

  18. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  19. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  20. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.