Sample records for late cenozoic volcanism

  1. Late Cenozoic Samtskhe-Javakheti Volcanic Highland, Georgia:The Result of Mantle Plumes Activity (United States)

    Okrostsvaridze, Avtandil


    Late Cenozoic Samtskhe-Javakheti continental volcanic highland (1500-2500 m a.s.l) is located in the SW part of the Lesser Caucasus. In Georgia the highland occupies more than 4500 km2, however its large part spreads towards the South over the territories of Turkey and Armenia. One can point out three stages of magmatic activity in this volcanic highland: 1. Early Pliocene activity (5.2-2.8 Ma; zircons U-Pb age) - when a large part of the highland was built up. It is formed from volcanic lava-breccias of andesite-dacitic composition, pyroclastic rocks and andesite-basalt lava flow. The evidences of this structure are: a large volume of volcanic material (>1500 km3); big thickness (700-1100 m in average), large-scale of lava flows (length 35 km, width 2.5-3.5 km, thickness 30-80 m), big thickness of volcanic ash horizons (300 cm at some places) and big size of volcanic breccias (diameter >1 m). Based on this data we assume that a source of this structure was a supervolcano (Okrostsvaridze et al., 2016); 2. Early Pleistocene activity (2.4 -1.6 Ma; zircons U-Pb age) - when continental flood basalts of 100-300 m thickness were formed. The flow is fully crystalline, coarse-grained, which mainly consist of olivine and basic labradorite. There 143Nd/144Nd parameter varies in the range of +0.41703 - +0.52304, and 87Sr/88Sr - from 0.7034 to 0.7039; 3. Late Pleistocene activity (0.35-0.021 Ma; zircons U-Pb age) - when intraplate Abul-Samsari linear volcanic ridge of andesite composition was formed stretching to the S-N direction for 40 km with the 8-12 km width and contains more than 20 volcanic edifices. To the South of the Abul-Samsari ridge the oldest (0.35-0.30 Ma; zircons U-Pb age) volcano Didi Abuli (3305 m a.s.l.) is located. To the North ages of volcano edifices gradually increase. Farther North the youngest volcano Tavkvetili (0.021-0. 030 Ma) is located (2583 m a.s.l.). One can see from this description that the Abul-Samsari ridge has all signs characterizing

  2. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet (United States)

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.


    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  3. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand); Okada, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Itaya, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Black, P M [Department of Geology, Auckland University, Auckland (New Zealand)


    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab.

  4. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    International Nuclear Information System (INIS)

    Smith, I.E.M.; Okada, T.; Itaya, T.; Black, P.M.


    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab

  5. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean (United States)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina


    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  6. The change of magma chamber depth in and around the Baekdu Volcanic area from late Cenozoic (United States)

    Lee, S. H.; Oh, C. W.; Lee, Y. S.; Lee, S. G.; Liu, J.


    The Baekdu Volcano is a 2750m high stratovolcanic cone resting on a basaltic shield and plateau and locates on the North Korea-China border. Its volcanic history can be divided into four stages (from the oldest to the youngest): (i) preshield plateau-forming eruptions, (ii) basalt shield formation, (iii) construction of a trachytic composite cone, and (iv) explosive ignimbrite forming eruptions. In the First stage, a fissure eruption produced basalts from the Oligocene to the Miocene (28-13 Ma) forming preshield plateau. Fissure and central eruptions occurred together during the shield-forming eruptions (4.21-1.70 Ma). In the third stage, the trachytic composite volcano formed during the Pleistocene (0.61-0.09 Ma). In this stage, magma changed to an acidic melt. The latest stage has been characterized by explosive ignimbrite-forming eruptions during the Holocene. The composite volcanic part consists of the Xiaobaishan, Lower, Middle and Upper Trachytes with rhyolites. The whole rock and clinopyroxene in basalts, trachytic and rhyolite, are analyzed to study the depth of magma chambers under the Baekdu Volcano. From the rhyolite, 9.8-12.7kbar is obtained for the depth of magma chamber. 3.7-4.1, 8.9-10.5 and 8.7 kbar are obtained from the middle, lower and Xiaobaishan trachytes. From the first and second stage basalts, 16.9-17.0 kbar and 14-14.4kbar are obtained respectively. The first stage basalt give extrusive age of 11.98 Ma whereas 1.12 and 1.09 Ma are obtained from the feldspar and groundmass in the second stage basalt. The Xiaobaishan trachyte and rhyolite give 0.25 and 0.21 Ma whereas the Middle trachyte gives 0.07-0.06 Ma. These data indicate that the magma chambers of the first and second stage basalts were located in the mantle and the magma chamber for the second stage basalt may have been underplated below continental crust. The Xiaobisan trachyte and rhyolite originated from the magma chamber in the depth of ca. 30-40 km and the Middle trachyte

  7. Cenozoic volcanic rocks of Saudi Arabia (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.


    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  8. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea (United States)

    Lindley, I. D.


    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  9. Late Cenozoic structure and stratigraphy of south-central Washington

    International Nuclear Information System (INIS)

    Reidel, S.P.; Fecht, K.R.; Lindsey, K.A.


    The structural framework of the Columbia Basin began developing before Columbia River Basalt Group (CRBG) volcanism. Prior to 17.5 Ma, the eastern part of the basin was a relatively stable area, with a basement of Paleozoic and older crystalline rock. The western part was an area of subsidence in which large volumes of sediment and volcanic rocks accumulated. Concurrent with eruption of the CRBG, anticlinal ridges of the Yakima Fold Belt (YFB) were growing under north-south compression. Topographic expression of these features was later masked by the large volume of CRBG basalt flowing west from fissures in the eastern Columbia Basin. The folds continued to develop after cessation of volcanism, leading to as much as 1,000 m of structural relief in the past 10 million years. Post-CRBG evolution of the Columbia Basin is recorded principally in folding and faulting in the YFB and sediments deposited in the basins. The accompanying tectonism resulted in lateral migration of major depositional systems into subsiding structural lows. Although known late Cenozoic faults are on anticlinal ridges, earthquake focal mechanisms and contemporary strain measurements indicate most stress release is occurring in the synclinal areas under north-south compression. There is no obvious correlation between focal mechanisms for earthquakes whose foci are in the CRBG and the location of known faults. High in situ stress values help to explain the occurrence of microseismicity in the Columbia Basin but not the pattern. Microseismicity appears to occur in unaltered fresh basalt. Faulted basalt associated with the YFB is highly brecciated and commonly altered to clay. The high stress, abundance of ground water in confined aquifers of the CRBG, and altered basalt in fault zones suggest that the frontal faults on the anticlinal ridges probably have some aseismic deformation. 85 refs

  10. Late-Cenozoic relief evolution under evolving climate: A review


    Champagnac Jean Daniel; Valla Pierre G.; Herman Frédéric


    The present review paper is an attempt to summarize quantitative evidence of Late Cenozoic changes in topographic relief. Different meanings of the word "relief" as it is commonly used and detail the metrics used to quantify it. We then specify methodological tools used to quantify relief change (primarily low temperature thermochronometry and terrestrial cosmogenic nuclides) and analyze published evidence for different regions.Our review first shows that relief changes and rates of changes a...

  11. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa (United States)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter


    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  12. Fires in the Cenozoic: a late flowering of flammable ecosystems

    Directory of Open Access Journals (Sweden)

    William John Bond


    Full Text Available Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analysed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma. Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+ for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However none of the potential global factors (oxygen, rainfall seasonality, CO2 , novel flammable growth forms provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  13. Fires in the Cenozoic: a late flowering of flammable ecosystems. (United States)

    Bond, William J


    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  14. Late Cenozoic Paleoceanography of the Central Arctic Ocean

    International Nuclear Information System (INIS)

    O'Regan, Matt


    The Arctic Ocean is the smallest and perhaps least accessible of the worlds oceans. It occupies only 26% of the global ocean area, and less than 10% of its volume. However, it exerts a disproportionately large influence on the global climate system through a complex set of positive and negative feedback mechanisms directly or indirectly related to terrestrial ice and snow cover and sea ice. Increasingly, the northern high latitude cryosphere is seen as an exceptionally fragile part of the global climate system, a fact exemplified by observed reductions in sea ice extent during the past decades [2]. The paleoceanographic evolution of the Arctic Ocean can provide important insights into the physical forcing mechanisms that affect the form, intensity and permanence of ice in the high Arctic, and its sensitivity to these mechanisms in vastly different climate states of the past. However, marine records capturing the late Cenozoic paleoceanography of the Arctic are limited - most notably because only a single deep borehole exists from the central parts of this Ocean. This paper reviews the principal late Cenozoic (Neogene/Quaternary) results from the Arctic Coring Expedition to the Lomonosov Ridge and in light of recent data and observations on modern sea ice, outlines emerging questions related to three main themes: 1) the establishment of the 'modern' Arctic Ocean and the opening of the Fram Strait 2) the inception of perennial sea ice 3) The Quaternary intensification of Northern Hemisphere glaciations.

  15. Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: Their sources and magma generation

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková-Svobodová, Jana


    Roč. 46, 1/2 (2014), s. 45-58 ISSN 0369-2086 R&D Projects: GA AV ČR(CZ) IAA300130902 Institutional support: RVO:67985831 Keywords : alkaline volcanic rocks * melilitic rocks * carbonatites * magma generation * metasomatism * Cenozoic * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  16. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.


    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  17. Sr-Nd isotope systematics of xenoliths in Cenozoic volcanic rocks from SW Japan

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Iwata, Masatoshi; Iizumi, Shigeru; Nureki, Terukazu.


    Based on new and previously published Sr and Nd isotope data, we examined the petrogenetic relationship between deep crust- and upper mantle-derived xenoliths contained in Cenozoic volcanic rocks and Cretaceous-Paleogene granitoid rocks in SW Japan. The deep crust- and upper mantle-derived mafic to ultramafic xenoliths contained in Cenozoic volcanic rocks from SW Japan have comparable initial Sr and Nd isotope ratios to the Cretaceous-Paleogene granitoid rocks in their respective districts. This may suggest that these xenoliths were genetically related to the Cretaceous-Paleogene granitoid rocks in SW Japan, and that regional variations in Sr and Nd isotope ratios observed in the granitoid rocks are attributed to differences in the geochemistry of the magma sources. (author)

  18. Changing provenance of late Cenozoic sediments in the Jianghan Basin

    Directory of Open Access Journals (Sweden)

    Lei Shao


    Full Text Available The Yangtze River is one of the most important components of the East Asia river system. In this study, sediments in the Jianghan Basin, middle Yangtze River, were selected for trace element and rare earth element (REE measurements, in order to decipher information on the change of sediment provenance and evolution of the Yangtze River. According to the elemental variations, the late Cenozoic sediments of the Jianghan Basin could be divided into four parts. During 2.68–2.28 Ma and 1.25–0 Ma, provenance of the sediments was consistent, whereas sediments were derived from variable sources during 2.28–1.25 Ma. Comparison of the elemental compositions between the Pliocene and Quaternary sediments revealed a change in sediment source from a more felsic source area to a more basic source area around the Pliocene–Quaternary boundary. Input from the Emeishan LIP should account for this provenance change. Based on the provenance analysis of sediments in the Jianghan Basin, we infer that the Yangtze River developed into a large river with its drainage basin extended to the Emeishan LIP no later than the Pliocene–Quaternary boundary.

  19. Fires in the Cenozoic: a late flowering of flammable ecosystems


    Bond, William J.


    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine...


    Directory of Open Access Journals (Sweden)

    Viktor D. Mats


    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  1. Late Cenozoic History of the Genus Micromys (Mammalia, Rodentia) in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Horáček, I.; Knitlová, M.; Wagner, Jan; Kordos, L.; Nadachowski, A.


    Roč. 8, č. 5 (2013), e62498 E-ISSN 1932-6203 R&D Projects: GA ČR GA205/09/0184 Institutional support: RVO:67985831 Keywords : Mammalia * Rodentia * Genus Micromys * Late Cenozoic Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.534, year: 2013

  2. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien


    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  3. Stratigraphy of the late Cenozoic sediments beneath the 216-B and C crib facilities

    International Nuclear Information System (INIS)

    Fecht, K.R.; Last, G.V.; Marratt, M.C.


    The stratigraphy of the late Cenozoic sediments beneath the 216-B and C Crib Facilities is presented as lithofacies cross sections and is based on textural variations of the sedimentary sequence lying above the basalt bedrock. The primary source of data in this study is geologic information obtained from well drilling operations and geophysical logging. Stratigraphic interpretations are based primarily on textural analysis and visual examination of sediment samples and supplemented by drillers logs and geophysical logs

  4. Stratigraphy of the late Cenozoic sediments beneath the 216-A Crib Facilities

    International Nuclear Information System (INIS)

    Fecht, K.R.; Last, G.V.; Marratt, M.C.


    The stratigraphy of the late Cenozoic sediments beneath the 216-A Crib Facilities is presented as lithofacies cross sections and is based on textural variations of the sedimentary sequence lying above the basalt bedrock. The primary source of data in this study is geologic information obtained from well drilling operations and geophysical logging. Stratigraphic interpretations are based primarily on textural analysis and visual examination of sediment samples and supplemented by drillers logs and geophysical logs

  5. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area (United States)

    Sherrod, David R.; Keith, Mackenzie K.


    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  6. Late cenozoic magmatism in the South Patagonian batholith: SHRIMP U-Pb zircon age evidence

    International Nuclear Information System (INIS)

    Fanning, C.M; Herve, F; Pankhurst, R.J; Thomson, S; Faundez, V


    The North Patagonian Batholith (NPB) has a zonal age pattern which includes a well defined belt of Miocene and Mio-Pliocene plutons in its central portion (Pankhurst et al., 1999) which are spatially, and probably genetically related to the Liquine-Ofqui Fault Zone. Previous geochronological studies in the Southern Patagonian Batholith (SPB), as summarized by Bruce et al. (1991), have yielded 9 late Cenozoic K-Ar or Ar-Ar ages out of a total of 116 age determinations. None of these young ages correspond to U-Pb determinations on zircons, and some of the young ages correspond to satellite plutons east of the SPB proper, such as the Torres del Paine intrusion. In this paper we present the first late Cenozoic SHRIMP U-Pb zircon ages in the area of the SPB. The morphology of the analysed zircon crystals is described and leads to some inferences on the methodology and on the geological interpretation of the obtained ages (au)

  7. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records

    Directory of Open Access Journals (Sweden)

    Y. F. Miao


    Full Text Available Cenozoic climate changes in inner Asia provide a basis for understanding linkages between global cooling, the Tibetan Plateau uplift, and possibly the development of the East Asian monsoon. Based on a compilation of palynological results from the western Qaidam Basin, this study reconstructed a 15-million-year (Ma record of changing vegetation and paleoclimates spanning the middle Miocene to present (comprising two series: ~ 18–5 Ma and ~ 3.1–0 Ma, respectively. The thermophilic percentages were highest between 18 and 14 Ma, and decreased after 14 Ma, closely corresponding to the Middle Miocene Climatic Optimum (MMCO between 18 and 14 Ma and the following global climatic cooling between 14 and 5 Ma. At the same time, decreases in the xerophytic and coniferous taxa percentages, and the increasing logarithmic ratio of non-arboreal pollen to arboreal pollen (ln (NAP/AP, reveal the continuous aridification across both the basin and surrounding mountains. Between ~ 3.1 and 0 Ma, the percentages of the thermophilic, xerophytic and coniferous pollen as well as the ln (NAP/AP imply further cooling and drying in this region since 3.1 Ma. We argue that these vegetation and climate patterns during the late Cenozoic western Qaidam Basin are primarily a result of the global cooling, with the Tibetan Plateau uplift and East Asian summer monsoon having contributions of lesser importance.

  8. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin


    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  9. K-Ar ages of basalts from the Higashi-Matsuura district, northwestern Kyushu, Japan and regional geochronology of the Cenozoic alkaline volcanic rocks in eastern Asia

    International Nuclear Information System (INIS)

    Nakamura, Eizo; Campbell, I.H.; McDougall, I.


    Seven new K-Ar age determinations are presented on whole rock samples from alkaline and tholeiitic basalts of the Higashi-Matsuura district, northwestern Kyushu, Japan. Ages obtained range from 2.92 ± 0.03 Ma to 3.01 ± 0.04 Ma; these ages are essentially identical within analytical errors and yield an average age of 2.98 ± 0.03 Ma (Late Pliocene). When combined on an isochron type diagram the six Higashi-Matsuura samples give an age of 3.00 ± 0.03 Ma with the composition of nonradiogenic 40 Ar/ 36 Ar = 294.2 ± 2.0. The excellent age agreement of samples with different K contents and petrographic characteristics provides strong evidence that the tholeiitic and alkaline basalts were erupted for an extremely short period in the Higashi-Matsuura district. A basalt from Ogawashima Island yields a K-Ar age of 3.58 ± 0.04 Ma. This study and previously reported data support the hypothesis that alkaline volcanic activity in southwestern Japan commenced some 10 Ma ago and continued intermittently until recent times. Systematic variations of age and distribution of Cenozoic alkaline basalts are recognized in northeastern China, Korea and southwestern Japan. It is suggested that these variations are related to the initiation of 'mantle plumes' resulting from convection in the mantle wedge caused or controlled by subduction of the Kula and Pacific plates. (author)

  10. Preliminary geologic map of the late Cenozoic sediments of the western half of the Pasco Basin

    International Nuclear Information System (INIS)

    Lillie, J.T.; Tallman, A.M.; Caggiano, J.A.


    The U.S. Department of Energy, through the Basalt Waste Isolation Program within the Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in Columbia River Basalt. This report represents a portion of the geological work conducted during fiscal year 1978 to assess the geological conditions in the Pasco Basin. The surficial geology of the western half of the Pasco Basin was studied and mapped in a reconnaissance fashion at a scale of 1:62,500. The map was produced through a compilation of existing geologic mapping publications and additional field data collected during the spring of 1978. The map was produced primarily to: (1) complement other mapping work currently being conducted in the Pasco Basin and in the region by Rockwell Hanford Operations and its subcontractors; and, (2) to provide a framework for more detailed late Cenozoic studies within the Pasco Basin. A description of procedures used to produce the surficial geologic map and geologic map units is summarized in this report

  11. Within-plate Cenozoic Volcanism and Mantle Sources Within The Western-central Mediterranean Area (United States)

    Beccaluva, L.; Bianchini, G.; Bonadiman, C.; Coltorti, M.; Siena, F.

    An integrated study of anorogenic basic magmas and entrained mantle xenoliths rep- resents a promising approach for a comprehension of the magmatogenic events occur- ring within the lithospheric mantle in the western-central Mediterranean area. In this contribution we review the geochemical characteristics of mafic lavas and associated peridotite xenoliths from three anorogenic volcanic districts: Pliocene-Quaternary vol- canism of Sardinia; Pliocene-Quaternary volcanism of the Iblean area (eastern Sicily); Paleocene-Oligocene Veneto Volcanic Province. Investigations have been focused on 1) petrological features of parental magmas, which may contribute to infer the com- positional characteristics of mantle sources and to constrain the modes of partial melt- ing; 2) modelling the depletion events and metasomatic enrichments in mantle xeno- liths of the three volcanic districts, as well as the nature of their causative agents. Petrological features and Sr-Nd-Pb isotopic data, both of lava and xenoliths, indicate that DM+HIMU components distinguish the lithospheric mantle sections of Iblean and Veneto Volcanic Provinces. On the other hand, lavas and xenoliths from Sardinia display a significant different isotopic signature characterised by DM+EM1. Similar geochemical fingerprints, i.e. the significant presence of EM components are gener- ally recorded by mafic lavas and mantle xenoliths from the European Plate, whereas they are not observed in the stable African lithospheric domain.

  12. Division of volcanic activity cycles in the late mesozoic in South Jiangxi and North Guangdong

    International Nuclear Information System (INIS)

    Li Qinglong; Wu Jianhua


    Based on stratigraphical unconformity, rock association, fossil assemblage, isotope age and tectonic features, the volcanic activity in late Mesozoic in south Jiangxi and north Guandong can be divided into four cycles: Yutian volcanic activity cycle, Lianhuazhai volcanic activity cycle. Banshi volcanic activity cycle and Nanxiong volcanic activity cycle. Yutian volcanic cycle which occurs in middle Jurassic epoch is the bimodal rock association composed of rhyolite and basalt. Lianhuazhai volcanic cycle which occurs in late Jurassic epoch is unimodal rock association composed of rhyolite. Banshi volcanic cycle occurs from the late stage of early Cretaceous to the early stage of late Cretaceous epoch. There are two types of rock associations related to this cycle: unimodal rock association composed of rhyolite or basalt and bimodal rock association composed of rhyolite and basalt. Nanxiong volcanic activity cycle which occurred in late stage of late Cretaceous epoch is the unimodal rock association composed of basalt which is the interlayer of the red sedimentary series

  13. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov


    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  14. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis (United States)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.


    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  15. How Vulnerable is Perennial Sea Ice? Insights from Earth's Late Cenozoic Natural Experiments (Invited) (United States)

    Brigham-Grette, J.; Polyak, L. V.; Caissie, B.; Sharko, C. J.; Petsch, S.


    Sea ice is an important component of the climate system. Yet, reconstructions of Arctic sea ice conditions reflecting glacial and interglacial change over the past 3 million years are almost nonexistent. Our work to evaluate the sea ice and sea surface temperature record of the Bering Strait region builds on a review of the sea ice history of the pan-Arctic. The best estimates of sea ice make use of indirect proxies based on reconstructions of treeline, sea surface temperatures, depositional systems, and the ecological preferences of extant marine microfossil species. The development of new proxies of past sea ice extent including microfossil assemblages (diatoms, ostracodes) and biomarker proxies (IP25) show promise for quantifying seasonal concentrations of sea ice cover on centennial to millennial timescales. Using both marine and terrestrial information, periods of restricted sea ice and ice-free Arctic conditions can be inferred for parts of the late Cenozoic. The Arctic Ocean borderlands contain clear stratigraphic evidence for forested conditions at intervals over the past 50 million years, recording the migration of treeline from High Arctic coastal locations within the Canadian Archipelago. Metasequoia forests of the peak Eocene gave way to a variety of biomass-rich circumarctic redwood forests by 46 Ma. Between 23 and 16 Ma, cool-temperate metasequoia forests dominated NE Alaska and the Yukon while mixed conifer-hardwood forests (similar to those of modern southern maritime Canada and New England) dominated the central Canadian Archipelago. By 16 Ma, these forests gave way to larch and spruce. From 5 to 3 Ma the braid plains of the Beaufort Fm were dominated by over 100 vascular plants including pine and birch, while other locations remained dominated by spruce and larch. Boreal conditions across northern Greenland and arctic Alaska are consistent with the presence of bivalve Arctica islandica in marine sediments capping the Beaufort Formation on Meighen

  16. Late Cenozoic faulting and the stress state in the south-eastern segment of the Siberian platform

    Directory of Open Access Journals (Sweden)

    V. A. Sankov


    Full Text Available We have studied the structural geology and geomorphology of the fault zones in the junction area of the Angara-Lena uplift and the Predbaikalsky trough. We have analyzed faults and folds and reconstructed paleostresses for this junction area named the Irkutsk amphitheatre. Our study shows that syn-fold (Middle Paleozoic faults include thrusts, reverse faults and strike-slip faults with reverse components, that occurred due to compression from the neighbouring folded region. Recently, contrary to compression, faulting took place under the conditions of extension of the sedimentary cover: most of these recent faults have been classified as normal faults. In the Late Cenozoic, the platform cover was subjected to brittle and partly plicative deformation due to the NW–SE-trending extension that is most clearly observed in the adjacent Baikal rift. Thus, the divergent boundary between the Siberian block of the North Eurasian plate and the Transbaikalia block of the Amur plate is a zone of dynamic influence, which occupies the area considerably exceeding the mountainous region on the Siberian platform. Important factors of faulting are differentiated vertical movements of the blocks comprising the platform. Such vertical movements might have been related to displacements of brine volumes. In the Late Cenozoic basins, movements along separate faults took place in the Late Pleistocene – Holocene.

  17. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona (United States)

    Pelletier, J. D.


    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  18. The volcanic rocks construction of the late paleozoic era and uranium mineralization in Beishan area of Gansu province

    International Nuclear Information System (INIS)

    An Zhengchang; Luo Xiaoqiang


    Late Paleozoic volcanic rocks in Beishan area are the favorable constructions of hydrothermal type and volcanic type deposit. From the distribution of volcanic rocks, the volcanic compositions, the volcanic facies, volcanic eruption method and rhythm, chemical and trace elements compositions, and so on, it discusses the characteristics of the Late Devonian volcanic construction in this area and its relationship with uranium mineralization, analyzes the role of volcanic ore-control mechanism, and summarizes uranium ore forming regularity of volcanic construction in Late Paleozoic. (authors)

  19. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.


    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  20. Colorado Late Cenozoic Fault and Fold Database and Internet Map Server: User-friendly technology for complex information (United States)

    Morgan, K.S.; Pattyn, G.J.; Morgan, M.L.


    Internet mapping applications for geologic data allow simultaneous data delivery and collection, enabling quick data modification while efficiently supplying the end user with information. Utilizing Web-based technologies, the Colorado Geological Survey's Colorado Late Cenozoic Fault and Fold Database was transformed from a monothematic, nonspatial Microsoft Access database into a complex information set incorporating multiple data sources. The resulting user-friendly format supports easy analysis and browsing. The core of the application is the Microsoft Access database, which contains information compiled from available literature about faults and folds that are known or suspected to have moved during the late Cenozoic. The database contains nonspatial fields such as structure type, age, and rate of movement. Geographic locations of the fault and fold traces were compiled from previous studies at 1:250,000 scale to form a spatial database containing information such as length and strike. Integration of the two databases allowed both spatial and nonspatial information to be presented on the Internet as a single dataset ( The user-friendly interface enables users to view and query the data in an integrated manner, thus providing multiple ways to locate desired information. Retaining the digital data format also allows continuous data updating and quick delivery of newly acquired information. This dataset is a valuable resource to anyone interested in earthquake hazards and the activity of faults and folds in Colorado. Additional geologic hazard layers and imagery may aid in decision support and hazard evaluation. The up-to-date and customizable maps are invaluable tools for researchers or the public.

  1. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.


    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  2. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes (United States)

    Zhang, Chunfu; Wang, Yang; Li, Qiang; Wang, Xiaoming; Deng, Tao; Tseng, Zhijie J.; Takeuchi, Gary T.; Xie, Gangpu; Xu, Yingfeng


    The timing history and driving mechanisms of C4 expansion and Tibetan uplift are hotly debated issues. Paleoenvironmental evidence from within the Tibetan Plateau is essential to help resolve these issues. Here we report results of stable C and O isotope analyses of tooth enamel samples from a variety of late Cenozoic mammals, including deer, giraffe, horse, rhino, and elephant, from the Qaidam Basin in the northeastern Tibetan Plateau. The enamel-δ13C values are diets and only a few individuals (besides the exceptional rhino CD0722) may have consumed some C4 plants. Based on geological evidence, however, the Qaidam Basin was probably warmer and more humid during the late Miocene and early Pliocene than today. Thus, these δ13C values likely indicate that many individuals had significant dietary intakes of C4 plants, and the Qaidam Basin had more C4 plants in the late Miocene and early Pliocene than today. Moreover, the Qaidam Basin likely had much denser vegetation at those times in order to support such large mammals as rhinos and elephants. While the δ18O values did not increase monotonously with time, the range of variation seems to have increased considerably since the early Pliocene, indicating increased aridification in the basin. The mean δ18O values of large mammals and those reconstructed for local meteoric waters display a significant negative shift in the late Miocene, consistent with the marine δ18O record which shows a cooling trend in the same period. Taken together, the isotope data suggest a warmer, wetter, and perhaps lower Qaidam Basin during the late Miocene and early Pliocene. Increased aridification after the early Pliocene is likely due to a combined effect of regional tectonism, which resulted in a more effective barrier preventing moisture from the Indian Ocean or Bay of Bengal from reaching the basin, and global cooling.

  3. Identification of a Buried Late Cenozoic Maar-Diatreme Structure (North Moravia, Czech Republic

    Directory of Open Access Journals (Sweden)

    Šešulka Vojtěch


    Full Text Available The maar-diatreme volcanic structure in the vicinity of the village of Lomnice near the town of Bruntál (North Moravia, Czech Republic has been investigated using a set of geophysical methods including ground magnetometry, gravimetry and electrical resistivity tomography. The structure was detected by an aerial magnetic survey in the second half of the 20th century. Since its discovery only limited information about this buried structure has been available. The coherence of the magnetic anomaly of 190 nT and Bouguer anomaly of -4.7 mGal indicates a volcanic origin of the structure. The funnel-shaped maar-diatreme structure is filled with lacustrine clay and colluvium of Car-boniferous greywacke, which forms the country rock. The surface diameter of the structure is about 600 m, the depth is more than 400 m. The spatial association with other volcanic centers in the surroundings of the town of Bruntál infers the relative dating of the Lomnice maar. The phreatic eruption and maar-diatreme formation could be an indirect conse-quence of effusive activity of the nearby Velký Roudný volcano. The Lomnice structure is the first Plio-Pleistocene maar-diatreme ever described in North Moravia and Silesia.

  4. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation (United States)

    Wallace, Alan R.


    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  5. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  6. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles. (United States)

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun


    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  7. Upper mantle structure under western Saudi Arabia from Rayleigh wave tomography and the origin of Cenozoic uplift and volcanism on the Arabian Shield

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A


    The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.

  8. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin (United States)

    Pazzaglia, Frank J.; Gardner, Thomas, W.


    resulting rom sediment loading are accomodated primately by a convex-up flexural hinge, physiographically represented by the Fall Zone. Our results elucidate an inherent danger in using topography alone to constrain late-stage passive margin deformation mechanisms. Only through careful synthesis of field stratigraphic and geomorphic elements such as fluvial terraces, Coastal Plain deposits, and offshore stratigraphy can age control be extended from the offshore depositional setting to the erosionally dominated continent. This sudy demonstrates that despite a relatively subdued topography, the middle U.S. Atlantic margin experiences progressive flexural isostatic deformation similar to that proposed for high-relief margins characterized by great escarpments. Thus margin topographic diversity remains a function of other factors, such as lithospheric composition and/or structure, supracrustal stratigraphy and structure, degree of drainage integration, drainage divide migration and climate.

  9. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea (United States)

    Nelson, C.H.; Maldonado, A.


    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural

  10. 3-D thermal effect of late Cenozoic erosion and deposition within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin (United States)

    Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Olesen, Odleiv; Ottesen, Dag; Rise, Leif


    A 3-D subsurface temperature distribution within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas has been studied to understand the thermal effect of late Cenozoic erosion of old sedimentary and crystalline rocks and subsequent deposition of glacial sediments during the Pleistocene. A lithosphere-scale 3-D structural model of the Lofoten-Vesterålen area has been used as a realistic approximation of the geometries of the sedimentary infill, underlying crystalline crust and lithospheric mantle during the 3-D thermal modelling. The influence of late Cenozoic erosion and sedimentation has been included during the 3-D thermal calculations. In addition, the 3-D thermal modelling has been carried out by taking also into account the influence of early Cenozoic continental breakup. The results of the 3-D thermal modelling demonstrate that the mainland is generally colder than the basin areas within the upper part of the 3-D model. The thermal influence of the early Cenozoic breakup is still clearly recognizable within the western and deep parts of the Lofoten-Vesterålen margin segment in terms of the increased temperatures. The thermal effects of the erosion and deposition within the study area also indicate that a positive thermal anomaly exists within the specific subareas where sedimentary and crystalline rocks were eroded. A negative thermal effect occurs in the subareas affected by subsidence and sedimentation. The erosion-related positive thermal anomaly reaches its maximum of more than +27 °C at depths of 17-22 km beneath the eastern part of the Vestfjorden Basin. The most pronounced deposition-related negative anomaly shows a minimum of around -70 °C at 17-20 km depth beneath the Lofoten Basin. The second negative anomaly is located within the northeastern part of the Vøring Basin and has minimal values of around -48 °C at 12-14 km depth. These prominent thermal anomalies are associated with the subareas where

  11. The ``Problem of the quaternary'' and the taxonomic rank of the late cenozoic in the international stratigraphic scale (United States)

    Zubakov, V. A.


    An international scientific conflict has arisen around the International Stratigraphic Scale, the main document that regulates the rules of reading of geological records and, hence, concerns all Earth sciences. The matter of debate is the geological time scale of 2004, developed by the International Commission on Stratigraphy, where the Quaternary system was abandoned. This ICS decision triggered a protest among Quaternary geologists, members of INQUA, and became the subject of much controversy. This article provides a comprehensive analysis of the Quaternary problem and proposes a reasonable scientific solution that may be appropriate for both parties. The subject of Late Cenozoic geology is discussed: glaciations, human evolution, and recent deposits. In contrast to Charles Lyell's definition of the Plio-Pleistocene according to the percentage of modern mollusk species, it is defined here as a blanket formation, which is correlative to the topography and consists of mapped stratogens hosting fossils of modern biogeocenoses. Features of the description of the Plio-Pleistocene in terms of gravitational orbital tuning are considered. Four paleogeographic phases of modern environment evolution are recognized and ranked as stages: (1) The Messinian evolutionary explosion involved the appearance of many biogeocenoses and the bipedal walking of our extinct ancestors armed with sticks. It was a consequence of the Early Greenland (7.6 Ma BP) and Patagonian (6.7 Ma BP) hyperglaciations. (2) The Zanclean age is marked by climatic and hydrological but not evolutionary boundaries. (3) The appearance of the Villafranchian animal assemblage and Australopithecus, who used stones as weapon: 4.0-3.6 Ma BP. Orogeny and isolation of the Arctic Ocean changed the global climate dramatically. (4) The sexual revolution became the third evolutionary jump: the appearance of the first woman, "Eve", and the genus Homo with her: 1.9 Ma BP. According to the current view, the Plio

  12. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge (United States)

    Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; Werner, R.; van den Bogaard, P.; Garbe-Schönberg, D.


    Volcanic activity at many oceanic volcanoes, ridges and plateaus often reawakens after hiatuses of up to several million years. Compared to the earlier magmatic phases, this late-stage (rejuvenated/post-erosional) volcanism is commonly characterized by a distinct geochemical composition. Late-stage volcanism raises two hitherto unanswered questions: Why does volcanism restart after an extended hiatus and what is the origin of this volcanism? Here we present the first 40Ar/39Ar age and comprehensive trace element and Sr-Nd-Pb-Hf isotopic data from seamounts located on and adjacent to the Walvis Ridge in the South Atlantic ocean basin. The Walvis Ridge is the oldest submarine part of the Tristan-Gough hotspot track and is famous as the original type locality for the enriched mantle one (EM I) end member. Consistent with the bathymetric data, the age data indicates that most of these seamounts are 20-40 Myr younger than the underlying or nearby Walvis Ridge basement. The trace element and isotope data reveal a distinct compositional range from the EM I-type basement. The composition of the seamounts extend from the St. Helena HIMU (high time-integrated 238U/204Pb mantle with radiogenic Pb isotope ratios) end member to an enriched (E) Mid-Ocean-Ridge Basalt (MORB) type composition, reflecting a two-component mixing trend on all isotope diagrams. The EMORB end member could have been generated through mixing of Walvis Ridge EM I with normal (N) MORB source mantle, reflecting interaction of Tristan-Gough (EM I-type) plume melts with the upper mantle. The long volcanic quiescence and the HIMU-like geochemical signature of the seamounts are unusual for classical hotspot related late-stage volcanism, indicating that these seamounts are not related to the Tristan-Gough hotspot volcanism. Two volcanic arrays in southwestern Africa (Gibeon-Dicker Willem and Western Cape province) display similar ages to the late-stage Walvis seamounts and also have HIMU-like compositions

  13. Late Cenozoic basin evolution and fold-thrust deformation in the southern Central Andes: Initial constraints from synorogenic deposits of the Precordillera, Argentina (United States)

    Levina, M.; Horton, B. K.; Fuentes, F.; Stockli, D. F.


    In the Precordillera region of the Argentine Andes, Cenozoic shortening associated with flattening of the Pampean segment of the subducting Nazca plate has resulted in a series of thin skinned fold-thrust systems that partitioned and uplifted Cenozoic foreland basin deposits. The kinematic and temporal evolution of the Andean Precordillera can be approached through detailed analyses of the sedimentary fill now preserved in intermontane regions and the bedrock low-temperature thermochronology of the fold-thrust belt. In this project, we focus on Neogene foreland basin fill exposed in the central and eastern Precordillera along the San Juan River (Quebrada Albarracín and Pachaco regions), on the western flank of the Sierra Talacasto, and in the Loma de las Tapias area near the Ullum dam. The sedimentary successions exposed in these regions record the hinterland development of the Frontal Cordillera (detrital zircon provenance and composition of sandstone and conglomeratic units), regional volcanism (pyroclastic flows and tuffaceous sandstone units), and initial construction of the Precordillera (fault cutoff relationships, growth strata, and paleocurrent changes). We investigate the development and subsequent partitioning and deformation of these synorogenic sections using sediment provenance (detrital zircon U-Pb geochronology, conglomerate clast counts, sandstone petrography, and paleocurrent measurements), facies analysis of measured stratigraphic successions, and initial apatite (U-Th)/He cooling histories to constrain the age of uplift-induced exhumation of successive thrust sheets in the Andean Precordillera.

  14. Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: Petrological and geochemical characteristics

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Fediuk, F.; Lang, Miloš; Martinec, Petr


    Roč. 64, č. 2 (2004), s. 127-153 ISSN 0009-2819 R&D Projects: GA AV ČR(CZ) IAA3013903 Keywords : Late Paleozoic * volcanic rocks * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.643, year: 2004

  15. Volcanic activity in Late Variscan Krkonoše Piedmont Basin: petrological and geochemical constraints

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková, Jana; Novák, Jiří Karel; Pivec, Edvín; Prouza, V.


    Roč. 8, 3-4 (2002), s. 219-234 ISSN 1335-096X R&D Projects: GA AV ČR(CZ) IAA3013903 Keywords : Late Palaeozoic volcanism * Krkonoše Piedmont Basin * geochemistry Subject RIV: DB - Geology ; Mineralogy

  16. Isotopic composition of late neogene K-Na alkaline basalts of eastern Kamchatka: indicators of the heterogeneity of the Mantle magma sources

    International Nuclear Information System (INIS)

    Volynets, O.N.; Karpenko, S.F.; Kehj, R.U.; Gorring, M.


    Isotopic composition of Sr, O, Nd, and Pb was determined in K-Na alkaline gabbroids and basaltoids that formed in eastern Kamchatka during Middle Miocene (gabbroids of the sub volcanic complex) and Late Miocene (basaltoids of the volcanic complex) time, before the origin of the Eastern Kamchatka Volcanic Belt. Isotopic data provide further evidence that the sources of the late Cenozoic volcanics of the within-plate and island-arc geochemical types were different

  17. Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillan y Copahue-Callaqui (Andes del Sur, 36-39°S Cenozoic basins and their control on volcanism of Nevados de Chillan and Copahue-Callaqui complexes (36-39°S, Southern Andes

    Directory of Open Access Journals (Sweden)

    Juan Pablo Radic


    Full Text Available La Cordillera Principal de los Andes entre los 36° y 39°S constituye un excelente lugar para el estudio de la relación entre volcanismo y tectónica. Por medio del análisis tectonoestratigráfico de las cuencas cenozoicas se ha podido reconocer una clara coincidencia espacial entre estructuras de primer orden pertenecientes a estas cuencas y la distribución del volcanismo plio-pleistocénico. Las cuencas cenozoicas comenzaron su desarrollo durante el Oligoceno-Mioceno como depresiones extensionales, conformando un sistema de al menos tres subcuencas orientadas N-S y conectadas por dos zonas de acomodación estructural. Posteriormente este sistema de cuencas fue tectónicamente invertido hacia finales del Mioceno y los antiguos depocentros fueron deformados y exhumados, reutilizando las fallas originalmente extensionales. Las zonas de acomodación estructural permanecieron como estructuras de primer orden a escala de cuenca y constituyeron zonas de debilidad que favorecieron el posterior desarrollo del volcanismo y magma-tismo en los complejos volcánicos Nevados de Chillan y Copahue-Callaqui. Cada uno de estos complejos volcánicos se caracteriza por una orientación de sus centros de emisión, morfología y depósitos volcánicos en forma subparalela a la orientación de las zonas de acomodación estructural inmediatamente por debajo.The Cordillera Principal at 36° to 39°S is an excellent place to address the relationship between tectonics and volcanism. Based on tectonostratigraphic analysis of the Cenozoic basins it has been possible to recognize a clear spatial coincidence between first order basin scale structures and Plio-Pleistocene volcanism. Cenozoic basins started in the Oligocene-Miocene as extensional depocenters, characterized by at least three north-south oriented sub-basins connected by two structural accommodation zones. Towards the Late Miocene this extensional system was tectonically inverted deforming and uplifting the

  18. U–Pb geochronology and geochemistry of late Palaeozoic volcanism in Sardinia (southern Variscides

    Directory of Open Access Journals (Sweden)

    L. Gaggero


    Full Text Available The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime. Volcanism produced a wide range of intermediate–silicic magmas including medium- to high-K calc-alkaline andesites, dacites, and rhyolites. A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins (Nurra, Perdasdefogu, Escalaplano, and Seui–Seulo, and contains substantial stratigraphic, geochemical, and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic. Based on major and trace element data and LA-ICP-MS U–Pb zircon dating, it is possible to reconstruct the timing of post-Variscan volcanism. This volcanism records active tectonism between the latest Carboniferous and Permian, and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides. In particular, igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between 299 ± 1 and 288 ± 3 Ma, thereby constraining the development of continental strike-slip faulting from south (Escalaplano Basin to north (Nurra Basin. Notably, andesites emplaced in medium-grade metamorphic basement (Mt. Cobingius, Ogliastra show a cluster of older ages at 332 ± 12 Ma. Despite the large uncertainty, this age constrains the onset of igneous activity in the mid-crust. These new radiometric ages constitute: (1 a consistent dataset for different volcanic events; (2 a precise chronostratigraphic constraint which fits well with the biostratigraphic data and (3 insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.

  19. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region (United States)

    Eyuboglu, Yener; Santosh, M.; Yi, Keewook; Bektaş, Osman; Kwon, Sanghoon


    The Cenozoic magmatic record within the ca. 500 km long eastern Pontides orogen, located within the Alpine metallogenic belt, is critical to evaluate the tectonic history and geodynamic evolution of the eastern Mediterranean region. In this paper we report for the first time late Miocene adakitic rocks from the southeastern part of the eastern Pontides belt and present results from geochemical and Sr-Nd isotopic studies as well as zircon U-Pb geochronology. The Tavdagi dacite that we investigate in this study is exposed as round or ellipsoidal shaped bodies, sills, and dikes in the southeastern part of the belt. Zircons in the dacite show euhedral crystal morphology with oscillatory zoning and high Th/U values (up to 1.69) typical of magmatic origin. Zircon LA-ICPMS analysis yielded a weighted mean 206Pb/238U age of 7.86 ± 0.15 Ma. SHRIMP analyses of zircons with typical magmatic zoning from another sample yielded a weighted mean 206Pb/238U age of 8.79 ± 0.19 Ma. Both ages are identical and constrain the timing of dacitic magmatism as late Miocene. The Miocene Tavdagi dacite shows adakitic affinity with high SiO2 (68.95-71.41 wt.%), Al2O3 (14.88-16.02 wt.%), Na2O (3.27-4.12 wt.%), Sr (331.4-462.1 ppm), Sr/Y (85-103.7), LaN/YbN (34.3-50.9) and low Y (3.2-5 ppm) values. Their initial 143Nd/144Nd (0.512723-0.512736) and 87Sr/86Sr (0.70484-0.70494) ratios are, respectively, lower and higher than those of normal oceanic crust. The geological, geochemical and isotopic data suggest that the adakitic magmatism was generated by partial melting of the mafic lower crust in the southeastern part of the eastern Pontide belt during the late Miocene. Based on the results presented in this study and a synthesis of the geological and tectonic information on the region, we propose that the entire northern edge of the eastern Pontides-Lesser Caucasus-Elbruz magmatic arc was an active continental margin during the Cenozoic. We identify a migration of the Cenozoic magmatism towards

  20. Late Miocene marine tephra beds : recorders of rhyolitic volcanism in North Island, New Zealand

    International Nuclear Information System (INIS)

    Shane, P.; Black, T.; Eggins, S.; Westgate, J.


    A deep-sea sequence of 72 rhyolitic tephra beds, now exposed at Mahia Peninsula in the Hawke's Bay region of the east coast, North Island, New Zealand, provides a record of Late Miocene volcanism of the Coromandel Volcanic Zone (CVZ): the precursor to large-scale explosive volcanism of the Quaternary Taupo Volcanic Zone (TVZ). The geochemical signature of the glasses in the Miocene tephra has been protected from hydrothermal alteration and prolonged subaerial exposure that have affected proximal CVZ deposits. The tephra beds are primarily eruption-driven sediment gravity flows that have been emplaced into a trench-slope basin, some 300 km from active volcanoes. Their occurrence is consistent with long-distance fluvial transport followed by a point-source discharge into the deep-sea environment, and has no implications for the paleogeographic location of the basins relative to the volcanic arc. The tephra beds are calc-alkaline rhyolites with SiO 2 contents in the range 72-78 wt% (recalculated on a volatile-free basis), and are broadly similar to glassy rocks of the CVZ. Their major oxide, trace element, and REE compositions are indistinguishable from glasses of TVZ rhyolites. The trace element and REE compositional variability in the Late Miocene tephra beds, which were erupted over an estimated duration of c. 0.5-2.4 m.y. is no greater than that of large silicic eruptives of the last 350 ka, and is suggestive of a long-lived source and/or similar magmatic processes. However, the individual tephra beds are products of discrete homogeneous magma batches. New fission track ages of the Miocene tephra beds suggest the main period of volcaniclastic deposition occurred in the interval c. 9-7 Ma. This corresponds well with the initiation of rhyolitic volcanism in the CVZ at c. 10 Ma, and a major period of caldera formation that took place to c. 7 Ma. The ages suggest a sediment accumulation rate of between 0.23 and 1.2 m/ka (av. 0.4 m/ka), and a frequency of eruption of

  1. Late cenozoic tectonic and geomorphic evolution of the Patagonian Andes between 42oS and 52oS, southern Chile assessed using fission-track thermochronology

    International Nuclear Information System (INIS)

    Thomson, S.N; Herve, F; Stockhert, B.; Brix, M.R.; Adriasola, A


    Fission-track (FT) analysis has been applied in the Patagonian Andes of southern Chile to assess the late Cenozoic geomorphic and tectonic response of the overriding plate to subduction of the Chile rise active oceanic spreading centre (Thomson et al., 2001). The timing and nature of tectonic uplift and denudation along the southern parts of the major transpression intra-arc Liquine-Ofqui fault (LOF) system have also been investigated (Thomson, 2001, submitted). Results from 130 FT ages (72 zircon and 58 apatite ages) and 39 apatite track length measurements reveal initiation of rapid cooling and denudation at ca. 30 Ma at the western margin of southern continental South America. This was followed by a ca. 200km eastward migration of the locus of maximum denudation to the position of the present day topographic divide between ca. 30 Ma and ca. 12 to 10 Ma. East of the Andean divide less than 3 km of denudation has occurred since the Late Cretaceous. Enhanced denudation is interpreted to be the result of increased tectonic uplift driven by a large increase in convergence rates at ca. 28 to 26 Ma that triggered orographically enhanced precipitation on the west-side of the Patagonian Andes allowing increased erosion by fluvial incision and mass transport processes. The eastward migration of the locus of maximum denudation can be related to either coeval eastward migration of the retro-arc deformation front, the effects of subduction erosion in the overriding plate at the Peru-Chile trench or shallowing of the angle of subduction. Away from the influence of the LOF the process of spreading centre subduction and collision itself coincides with an overall slow-down in denudation rates in the overriding plate most likely caused by a major reduction in the main tectonic force driving tectonic uplift in the upper plate to subduction. In contrast to the Andes south of ca. 46 o S, increased cooling and denudation related to transpression induced rock uplift and erosion along

  2. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology (United States)

    Tan, Xi-Bin; Xu, Xi-Wei; Lee, Yuan-Hsi; Lu, Ren-Qi; Liu, Yiduo; Xu, Chong; Li, Kang; Yu, Gui-Hua; Kang, Wen-Jun


    The Cenozoic orogenic process of the Longmen Shan (LMS) and the kinematics of major faults along the LMS are crucial for understanding the growth history and mechanism of the eastern Tibetan Plateau. Three major faults, from west to east, are present in the central segment of the LMS: the Wenchuan-Maoxian Fault (WMF), the Beichuan-Yingxiu Fault (BYF), and the Jiangyou-Guanxian Fault (JGF). Previous researchers have placed great impetus on the Pengguan Massif, between the WMF and BYF. However, limited low-temperature thermochronology data coverage in other areas prevents us from fully delineating the tectonic history of the LMS. In this study, we collect 22 samples from vertical profiles in the Xuelongbao Massif and the range frontal area located at the hanging walls of the WMF and JGF respectively, and conduct apatite and zircon fission track analyses. New fission track data reveal that the Xuelongbao Massif has been undergoing rapid exhumation with an average rate of 0.7-0.9 mm/yr since 11 Ma, and the range frontal area began rapid exhumation at 7.5 Ma with total exhumation of 2.5-4.5 km. The exhumation histories indicate that the three major faults (WMF, BYF and JGF) in the central LMS are all reverse faults, and show a basinward in-sequence propagation from middle Miocene to present-day. Such a pattern further implies that upper crustal shortening is the primary driver for the LMS' uplift during the Late Cenozoic. Nevertheless, middle-lower crustal deformation is difficult to be constrained by the exhumation histories, and its contribution to LMS' uplift cannot be ruled out.

  3. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism (United States)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Klaver, Gerard Th.; Saunders, Andrew D.


    Late Cretaceous mafic volcanic sequences in Western Colombia and in the southern Caribbean have a striking coherence in their chemistry and compositional range which suggests they are part of the same magmatic province. The chemical characteristics of the majority of the mafic lavas are totally unlike those of island arc or marginal basin basalts, so the sequences cannot represent accreted arc terranes. On the other hand their trace element characteristics closely resemble those of Icelandic/Reykjanes Ridge basalts that represent an oceanic plateau formed by extensive decompression melting of an uprising deep mantle plume. The occurrence of komatiites on Gorgona and high-MgO picritic lavas in S.E. Colombia and on Curaçao, representing high temperature melts of the plume tail, confirms this analogy. Likewise, late stage rhyolites within the Colombian mafic volcanics may well be the equivalent of the extensive silicic magmas on Iceland and at Galapagos, possibly formed by remelting of the deep parts of the overthickened basaltic crust above the plume head. These volcanics, plus others around the Caribbean, including the floor of the Central Caribbean, probably all represent part of an oceanic plateau that formed rapidly at the Galapagos hotspot at 88 Ma, and that was too hot and buoyant to subduct beneath the margin of S. America as it migrated westwards with the opening of the South Atlantic, and so was imbricated along the continental margin. Minor arc-like volcanics, tonalites and hornblende leucogabbro veins may represent the products of subduction-flip of normal ocean crust against the buoyant plateau, or hydrous melts developed during imbrication/obduction.

  4. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    International Nuclear Information System (INIS)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.


    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  5. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.


    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  6. The ICE hypothesis stands: How the dogma of late Cenozoic tectonic uplift can no longer be sustained in the light of data and physical laws (United States)

    Nielsen, S. B.; Clausen, O. R.; Jacobsen, B. H.; Thomsen, E.; Huuse, M.; Gallagher, K.; Balling, N.; Egholm, D.


    In this reply, we address the issues raised by the comment of Chalmers et al. (2010) regarding our ICE hypothesis for the evolution of western Scandinavia. We reject their conjectures as based, uncritically and without consideration of physical mechanisms, on the long-standing dogma of late Cenozoic tectonic uplift. Our hypothesis, in contrast, honours well-documented physical laws and the present wealth of actual data constraints (as opposed to dogma-biased inferences). After careful consideration of the points raised by Chalmers et al. (2010) we maintain our simple explanation for the evolution of Scandinavian topography, as it honours well-documented actual data constraints, such as crustal structure (including its spatio-temporal variability), thermal history in the eastern North Sea, global and regional climatic change (including eustacy) and sedimentation in the adjacent basins. The inevitable conclusion is that, although more data constraints are desirable, the current best fit hypothesis, is that the Scandinavian topography is of Caledonide origin, and has been shaped by fluvial and glacial buzzsaw and periglacial processes, and most recently (last few Myr) been re-invigorated by extensive glacial erosion in the fjords and on the shelf.

  7. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand (United States)

    Qian, Xin; Wang, Yuejun; Feng, Qinglai; Zi, Jian-Wei; Zhang, Yuzhi; Chonglakmani, Chongpan


    The volcanic rocks exposed within the Chiang Khong-Lampang-Tak igneous zone in NW Thailand provide important constraints on the tectonic evolution of the eastern Paleotethys ocean. An andesite sample from the Chiang Khong area yields a zircon U-Pb age of 229 ± 4 Ma, significantly younger than the continental-arc and syn-collisional volcanic rocks (ca. 238-241 Ma). The Chiang Khong volcanic rocks are characterized by low MgO (1.71-6.72 wt.%) and high Al2O3 (15.03-17.76 wt.%). They are enriched in LILEs and LREEs and depleted in HFSEs, and have 87Sr/86Sr (i) ratios of 0.7050-0.7065, εNd (t) of - 0.32 to - 1.92, zircon εHf (t) and δ18O values of 3.5 to - 11.7 and 4.30-9.80 ‰, respectively. The geochemical data for the volcanic rocks are consistent with an origin from the enriched lithospheric mantle that had been modified by slab-derived fluid and recycled sediments. Based on available geochronological and geochemical evidences, we propose that the Late Triassic Chiang Khong volcanic rocks are equivalent to the contemporaneous volcanic rocks in the Lancangjiang igneous zone in SW China. The formation of these volcanic rocks was possibly related to the upwelling of the asthenospheric mantle during the Late Triassic, shortly after slab detachment, which induced the melting of the metasomatized mantle wedge.

  8. Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the East equatorial and central north Pacific Ocean

    International Nuclear Information System (INIS)

    Keigwin, L.D. Jr


    Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new information on the paleoceanography of the Pacific Neogene. The history of delta 18 O change in planktonic foraminifera reflects the changing isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminfera largely reflect changes in the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental galaciation: (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago). (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta 18 O of about 0.5% throughout, indicating instability of Antarctic ice cap size or bottom-water temperature. (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature. (4) Growth of permanent Northern Hemisphere ice sheets is inferred to have begun about 3 m.y. ago. (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. (Auth.)

  9. Late Cretaceous and Cenozoic seafloor and oceanic basement roughness: Spreading rate, crustal age and sediment thickness correlations (United States)

    Bird, Robert T.; Pockalny, Robert A.


    Single-channel seismic data from the South Australian Basin and Argentine Basin, and bathymetry data from the flanks of the Mid-Atlantic Ridge, East Pacific Rise and Southwest Indian Ridge are analysed to determine the root-mean-square (RMS) roughness of the seafloor and oceanic basement created at seafloor spreading rates ranging from 3 to 80 km/Ma (half-rate). For these data, crustal ages range from near zero to 85 Ma and sediment thicknesses range from near zero to over 2 km. Our results are consistent with a negative correlation of basement roughness and spreading rate where roughness decreases dramatically through the slow-spreading regime (oceanic basement roughness and spreading rate appears to have existed since the late Cretaceous for slow and intermediate spreading rates, suggesting that the fundamental processes creating abyssal hill topography may have remained the same for this time period. Basement roughness does not appear to decrease (smooth) with increasing crustal age, and therefore off-ridge degradation of abyssal hill topography by mass wasting is not detected by our data. Seismic data reveal that sediment thickness increases with increasing crustal age in the South Australian Basin and Argentine Basin, but not monotonically and with significant regional variation. We show that minor accumulations of sediment can affect roughness significantly. Average sediment accumulations of less that 50 m (for our 100 km long sample seismic profiles and half-spreading rates ocean ridges.

  10. K-Ar Geochronology and isotopic composition of the late oligocene- early miocene Ancud volcanic complex, Chiloe

    International Nuclear Information System (INIS)

    Munoz B, Jorge; Duhart O, Paul; Farmer, G. Lang; Stern, Charles R


    The Ancud Volcanic Complex (Gally and Sanchez , 1960) forms a portion of the Mid-Tertiary Coastal Magmatic Belt which outcrops in the area of northern Chiloe island. Main exposures occur at Ancud, Punta Polocue, Punihuil, Pumillahue, Tetas de Teguaco and Bahia Cocotue. The Ancud Volcanic Complex consists of basaltic to basaltic andesites lava flows and volcanic necks and rhyolitic pyroclastic flows and vitric domes. Previous studies indicate a Late Oligocene-Early Miocene age (Garcia et al., 1988; Stern and Vergara, 1992; Munoz et al., 2000). The Ancud Volcanic Complex covers and intrudes Palaeozoic-Triassic metamorphic rocks and is partially covered by an early to middle Miocene marine sedimentary sequence known as Lacui Formation (Valenzuela, 1982) and by Pleistocene glacial deposits (Heusser, 1990). At Punihuil locality, lava flows are interbedded with the lower part of the marine sedimentary sequence, which includes significant amounts of redeposited pyroclastic components. Locally, the presence of hyaloclastic breccias suggests interaction of magma with marine water (au)

  11. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes (United States)

    Biasatti, Dana; Wang, Yang; Gao, Feng; Xu, Yingfeng; Flynn, Lawrence


    increased significantly after ˜3.5 Ma. The oxygen isotope results from Yuanmou (Xiaohe Formation) show a positive shift after ˜8.5 Ma, which is similar in timing and magnitude to δ 18O shifts observed in horses and rhinos from the Linxia Basin and in fossils and paleosols from Pakistan and Nepal, suggesting a shift toward a drier climate at the northeast, southeast, and southern borders of the Tibetan Plateau during the late Miocene. Taken together, the carbon and oxygen isotope data indicate a general drying of the local climate over time and a change from a largely dense-forest environment at ˜8 Ma to a more open environment with a mosaic of forests and grasslands after 3-4 Ma in the Yuanmou region. Intra-tooth δ 13C and δ 18O variations within individual fossil teeth from Yuanmou suggest a stronger seasonality of rainfall at ˜1.7 Ma than in the late Miocene. The spatial and temporal δ 13C and δ 18O variations observed in mammalian teeth from Yunnan likely reflect changes in regional climate and/or tectonics, but more data are needed to fully explore the significance of the regional patterns in the δ 18O and δ 13C data in relation to climate and tectonic evolution of the region.

  12. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt (United States)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon


    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  13. The Source of Volcanic Ash in Late Classic Maya Pottery at El Pilar, Belize (United States)

    Catlin, B. L.; Ford, A.; Spera, F. J.


    The presence of volcanic ash used as temper in Late Classic Maya pottery (AD 600-900) at El Pilar has been long known although the volcano(s) contributing ash have not been identified. We use geochemical fingerprinting, comparing compositions of glass shards in potsherds with volcanic sources to identify the source(s). El Pilar is located in the Maya carbonate lowlands distant from volcanic sources. It is unlikely Maya transported ash from distant sites: ash volumes are too large, the terrain too rugged, and no draft animals were available. Ash layer mining is unlikely because mine sites have not been found despite intensive surveys. Nearest volcanic sources to El Pilar, Belize and Guatemala, are roughly 450 km to the south and east. The ash found in potsherds has a cuspate morphology. This suggests ash was collected during, or shortly after, an ash airfall event following eruption. Analyses of n=333 ash shards from 20 ceramic (pottery) sherds was conducted by electron microprobe for major elements, and LA-ICPMS for trace elements and Pb isotopes. These analyses can be compared to volcanic materials from candidate volcanoes in the region. The 1982 El Chichon eruption caused airfall deposition (archaeological samples and El Chichon has been made. The atomic ratios of La/Yb, Nb/Ta, Zr/Hf, Sr/Ba and Th/U of n=215 glass shards in the potsherds are 12.2±7.1, 10.9±3.4, 31.2±11.5, 0.09±0.05 and 2.5±0.9, respectively. These ratios for 1982 El Chichon are 15.4±2.1, 26.3, 36.1±5.3, 1.4±0.06 and 3.16, respectively. Data for the 1475 AD El Chichon eruption (Macias et al, 2003) can also be compared; the ratios from are 13.2±2.2, 7.3±1.8, 30.4±9.6, 1.51±0.4 and 2.88±0.23, respectively. The mean 208Pb/206Pb ratio of n=5 potsherds is 2.0523±0.002 compared to 2.0514±0.00074 for n=7 samples from El Chichon. The two most recent eruptions from El Chichon overlap with the potsherd glass data except for Sr/Ba, which might be modified by Sr-Ca exchange during firing. In

  14. Late cenozoic evolution of Fortymile Wash: Major change in drainage pattern in the Yucca Mountain, Nevada region during late miocene volcanism

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Warren, R.G.


    The site characterization of Yucca Mountain, NV as a potential high level nuclear waste repository includes study of the surficial deposits as a record of the paleoenvironmental history of the Yucca Mountain region. An important aspect of this history is an understanding of the evolution of paleogeography leading to establishment of the present drainage pattern. Establishment of drainage basin evolution is needed before geomorphic response to paleoclimate and tectonics can be assessed, because a major change in drainage basin geometry can predominantly affect the sedimentary record. Because alluvial aquifers are significant to regional hydrology, a major change in surface drainage resulting in buried alluvium could have hydrogeologic significance. In this paper, we report on geologic evidence for a major modification in surface drainage pattern in the Yucca Mountain region, resulting in the probable establishment of the Fortymile Wash drainage basin by latest Miocene time

  15. Volcaniclastic and sedimentary deposits in Late Oligocene/Early Miocene Smrekovec Volcanic Complex, northern Slovenia (United States)

    Kralj, Polona


    Late Oligocene/Early Miocene volcanic activity in northern Slovenia is related to post-collisional accommodation of continental Apulian and oceanic European plates (von Blanckenburg and Davis, 1996). It occurred in one of small south-western marginal depressions of the Pannonian basin system, locally termed the Smrekovec Basin (Hanfland et al., 2004). Contemporaneous clastic sedimentation is evidenced by several hundred metres thick succession composed mainly of mudstone, siltstone and sand. Smrekovec Volcanic Complex (SVC) is an eroded and tectonically uplifted remain of a larger submarine stratovolcano edifice, built of lavas, shallow or subsurface intrusive bodies, and pyroclastic, hyaloclastic, syn-eruptively resedimented volcaniclastic and reworked volcaniclastic-sedimentary deposits (Kralj, 1996). The development of lithofacies of syn-eruptively resedimented deposits is controlled by the proximity to the ancient volcano summit and the volcano sloping. Moreover, close to the rising volcano edifice, distinct shallow-water environments with siliciclastic sedimentation developed. Syn-eruptively resedimented deposits are the most widespread and are related to volcaniclastic debris flows and volcaniclastic tubidity flows. Volcaniclastic debris flow deposits are subdivided into lithofacies Bx - polymict volcaniclastic breccia, and Bt - volcaniclastic tuff-breccia. Bx occurs as tabular, up to some ten metres thick bodies with abundant up to 5 dm large angular lava clasts and angular or rounded clasts of fine-grained tuff, and tuffaceous matrix. Bt forms basal, massive layers in fining-upward sequences. The main constituent is tuffaceous matrix; up to 1.5 dm large clasts of lavas and tuffs are subordinate. In a distance up to 2 km from the former volcano summit (proximal area), Bt predominates in the sequence lithofacies composition (~75 %), and attains a thickness of up to 4 m. At a distance of 2-4 km (distal area), a maximum Bt thickness rarely exceeds 5 dm, an

  16. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture (United States)

    Harbor, D. J.; Barnhart, W. D.


    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in

  17. Late Cenozoic cooling history of the central Menderes Massif and the contribution of erosion to rock exhumation during active continental extension (United States)

    Nilius, Nils-Peter; Wölfler, Andreas; Heineke, Caroline; Glotzbach, Christoph; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István


    erosion rates from catchments in the exposed footwall of the Büyük Menderes detachment indicates that erosion has contributed 10-40% to the exhumation of metamorphic rocks beneath the detachment. Our finding underlines that the contribution of erosion to rock exhumation cannot be neglected in regions of active continental extension. References Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I, Glotzbach, C., Struffert, A., Akal, C., Rätz, M. 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London. 170, 669-683. Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W., Güngör, T., 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29, 611-614. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N., 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24, 243-274. Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I., Christl, M. (manuscript in revision for Tectonophysics). Late Cenozoic cooling history of the central Menderes Massif: timing and slip rate of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation.

  18. Spain as an emergency air traffic hub during volcanic air fall events? Evidence of past volcanic ash air fall over Europe during the late Pleistocene (United States)

    Hardiman, Mark; Lane, Christine; Blockley, Simon P. E.; Moreno, Ana; Valero-Garcés, Blas; Ortiz, José E.; Torres, Trino; Lowe, John J.; Menzies, Martin A.


    Past volcanic eruptions often leave visible ash layers in the geological record, for example in marine or lake sedimentary sequences. Recent developments, however, have shown that non-visible volcanic ash layers are also commonly preserved in sedimentary deposits. These augment the record of past volcanic events by demonstrating that past ash dispersals have been more numerous and widely disseminated in Europe than previously appreciated. The dispersal ‘footprints' of some large late Pleistocene European eruptions are examined here in the light of the recent Eyjafjallajökull eruption. For example, the Vedde Ash which was erupted from Iceland around 12 thousand years ago, delivered distal (and non-visible) glass deposits as far south as Switzerland and as far east as the Ural Mountains in Russia, with an overall European distribution remarkably similar to the dominant tracks of the recent Eyjafjallajökull plumes. The Eyjafjallajökull eruption has demonstrated that relatively small amounts of distal volcanic ash in the atmosphere can seriously disrupt aviation activity, with attendant economic and other consequences. It has raised fundamental questions about the likelihood of larger or more prolonged volcanic activity in the near future, and the possibility of even more serious consequences than those experienced recently. Given that there are several other volcanic centres that could cause such disruption in Europe (e.g. Campania and other volcanic centres in Italy; Aegean volcanoes), a key question is whether there are parts of Europe less prone to ash plumes and which could therefore operate as emergency air traffic hubs during times of ash dispersal. Although not generated to answer this question, the recent geological record might provide a basis for seeking the answer. For example, four palaeo-records covering the time frame of 8 - 40 Ka BP that are geographically distributed across Spain have been examined for non-visible distal ash content. All four have

  19. Review of and contribution to the Stratigraphy of the Cenozoic Igneous Rocks in the Republic of Yemen

    International Nuclear Information System (INIS)

    El-Nakhal, H.A.


    In Yemen the Cenozoic igneous rocks consists of intrusive and extrusive rocks with interlayered sediments, all of which are included within the Manakha Group (latest Cretaceous-Holocene). This group is subdivided into the Haraz Formation which includes the latest Cretaceous-Tertiary volcanics and the interlayered sediments, the Aden Formation which includes the Late Tertiary-Holocene volcanics, and the Bura Formations are introduced here as new units. The Haraz Formation replaces the informal names: Trap Series, Yemen Volcanics and Aden Trap Series, Yemen Volcanics and Adan Trap Series.The Adan Formation are a readaptation of the term Aden Vocanic Series. A startotype for the Aden Formation is designated in the Shuqra-Ahwar area. (author)

  20. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area (United States)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing


    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  1. A Cenozoic record of the equatorial Pacific carbonate compensation depth. (United States)

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E


    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

  2. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia (United States)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert


    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  3. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.


    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  4. Tracing the HIMU component within Pan-African lithosphere beneath northeast Africa: Evidence from Late Cretaceous Natash alkaline volcanics, Egypt (United States)

    Abu El-Rus, M. A.; Chazot, G.; Vannucci, R.; Paquette, J.-L.


    A large late Cretaceous ( 90 Ma) volcanic field (the Natash volcanic province) crops out in southeast Egypt at the northwestern boundary of the Arabian-Nubian shield. The lavas are mainly of alkaline affinity and exhibit a continuous compositional range from alkali olivine basalt (AOB) to trachyte and rhyolite. All basaltic lavas in the province record various extents of fractional crystallization of olivine, clinopyroxene, plagioclase and spinel. The basaltic lavas show variations in Sr-Nd-Pb-Hf isotopic ratios [(87Sr/86Sr)i = 0.7030-0.70286; (143Nd/144Nd)i = 0.512653-0.512761; (206Pb/204Pb)i = 19.28-19.94; (177Hf-176Hf)i = 0.28274-0.28285], that correlate markedly with the major and trace element ratios and abundances. Assimilation of crustal material cannot explain these correlations, and we invoke instead melting of a multicomponent mantle source. We infer the existence of High-μ (HIMU), Enriched mantle type-I (EM-I) and Depleted mantle (DM) domains in the melting source, with a predominant contribution from the HIMU-type. We suggests further that the basaltic lavas originate from low degrees of partial melting (F negative K-anomalies in the primitive mantle-normalized patterns of the fractionation-corrected melts. The presence of amphibole within the lithosphere is a strong evidence that the lithospheric mantle underwent metasomatic enrichment prior to melting in Late Cretaceous. This metasomatic event affected on the Pb isotopic compositions of the Natash volcanics by adding Th and U to the melting source. Time-integrated calculations to remove the decoupling between 206Pb and 207Pb isotopes that most probably resulted from the metasomatic event indicate a tentative link between the metasomatism occurring in the Pan-African lithospheric mantle and the formation of juvenile crust during the Pan-African Orogeny. A two stage evolution model is therefore proposed for volcanism in the Natash area: fluxing of the lithosphere by hydrous fluids during Pan

  5. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar (United States)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare


    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the

  6. Climatic fluctuations as a significant contributing factor for volcanic collapses. Evidence from Mexico during the Late Pleistocene (United States)

    Capra, L.; Bernal-Uruchurtu, J. P.; Carrasco, G.


    Climate oscillations have significantly contributed to the planet's evolution, including volcanic activity. Major glaciations have been considered not only as a triggering mechanism for large magmatic eruptions but also inducing volcano instability. Generally, volcano instability can be inferred from detailed volcanological and structural studies of a volcano and its associated depositional sequence, but the triggering mechanism has been always difficult to infer. In this paper, we present evidence of how climatic variations during the Late Pleistocene could have forced sector collapses of the main Mexican stratovolcanoes and enhanced the mobility of associated massive flows inducing the transformation of debris avalanche into debris flows. In particular, the climatic record based on atmospheric moisture content from robustly dated lake record from Guatemala and a U/Th dated speleothem from New Mexico are used here as indicators of summer and winter precipitation. Depositional sequences associated with Late Pleistocene sector collapses of Volcan de Colima, Nevado de Toluca, Citlaltepetl (Pico de Orizaba) and Cofre de Perote volcanoes are here analyzed. Comparing the timing of the event with the climatic record, a combination of summer and/or winter pluvial conditions could have forced and triggered the failure of already unstable volcanoes, even during glacier advances (as for the Citlaltepetl event). Independently of the main cause of the volcano instability (magmatic or tectonic) it is important to highlight that the climatic factor played an important role in enhancing the volcano instability and promoted the lateral transformation of debris avalanches, which under dry conditions would have affected more limited areas.

  7. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet (United States)

    Liu, De-Liang; Shi, Ren-Deng; Ding, Lin; Zou, Hai-Bo


    This study deals with arc-type and subsequent bimodal volcanic rocks interbedded with (late) Cretaceous sedimentary formations near Gaize, central Tibet that shed new light on the Tethyan evolution along the Bangong-Nujiang suture. Unit I consists of trachyandesites interbedded with fine-grained sandstone, slate, and limestone. Zircon dating on a trachyandesite sample yields a 206Pb/238U age of 99 ± 1 Ma. The trachyandesites are characterized by strong enrichment in LILE but depletion in HFSE, low zircon saturation temperatures (TZr = 642-727 °C), and high oxygen fugacity (Δ FMQ = - 0.67-0.73), indicating their arc affinities. Unit II comprises a bimodal basalt-rhyolite suite interbedded with coarse-grained sandstone and conglomerate. Zircon dating on two rhyolitic samples yield 206Pb/238U ages of 97.1-87.0 Ma. In contrast with Unit I trachyandesites, Unit II basalts and rhyolites exhibit OIB-like trace element patterns, high temperatures (T = 1298-1379 °C for basalts, TZr = 855-930 °C for rhyolites), and low oxygen fugacity (Δ FMQ = - 3.37 - 0.43), suggesting that Unit II bimodal volcanic rocks probably formed in an extensional setting. The Sr-Nd isotopes of both Unit I (87Sr/86Sri = 0.7052-0.7074, εNd(t) = - 2.21-1.02) and Unit II (87Sr/86Sri = 0.7057-0.7098, εNd(t) = - 3.22-0.88) rocks are similar to mantle-wedge-derived volcanic rocks within the southern Qiangtang block. The parental magma of Unit I trachyandesites was formed by fluid induced melting of the mantle wedge above the subducted Bangong-Nujiang Tethyan slab, and contaminated by crustal materials during MASH process within a deep crustal hot zone; and Unit II bimodal volcanic rocks were derived by melting of upwelling asthenosphere and a mildly metasomatized mantle wedge during the Lhasa-Qiangtang collision. We propose that the transition from the Bangong-Nujiang Tethyan subduction to the Lhasa-Qiangtang collision occurred during the Late Cretaceous in central Tibet.

  8. Late Miocene volcanic sequences in northern Victoria Land, Antarctica: products of glaciovolcanic eruptions under different thermal regimes (United States)

    Smellie, J. L.; Rocchi, S.; Armienti, P.


    Late Miocene (c. 13-5 Ma) volcanic sequences of the Hallett Volcanic Province (HVP) crop out along >250 km of western Ross Sea coast in northern Victoria Land. Eight primary volcanic and six sedimentary lithofacies have been identified, and they are organised into at least five different sequence architectures as a consequence of different combinations of eruptive and/or depositional conditions. The volcanoes were erupted in association with a Miocene glacial cover and the sequences are overwhelmingly glaciovolcanic. The commonest and most representative are products of mafic aa lava-fed deltas, a type of glaciovolcanic sequence that has not been described before. It is distinguished by (1) a subaerially emplaced relatively thin caprock of aa lavas lying on and passing down-dip into (2) a thicker association of chaotic to crudely bedded hyaloclastite breccias, water-chilled lava sheets and irregular lava masses, collectively called lobe-hyaloclastite. A second distinctive sequence type present is characterised by water-cooled lavas and associated sedimentary lithofacies (diamictite (probably glacigenic) and fluvial sands and gravels) similar to some mafic glaciovolcanic sheet-like sequences (see Smellie, Earth-Science Reviews, 74, 241-268, 2008), but including (for the first time) examples of likely sheet-like sequences with felsic compositions. Other sequence types in the HVP are minor and include tuff cones, cinder cones and a single ice-marginal lacustrine sequence. The glacial thermal regime varied from polar, characterised by sequences lacking glacial erosion, glacigenic sediments or evidence for free water, to temperate or sub-polar for sequences in which all of these features are conspicuously developed.

  9. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.


    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  10. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.


    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  11. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA (United States)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.


    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  12. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose


    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  13. Late Cretaceous sub-volcanic structure in the continental shelf off Portugal and its implications on tectonics and seismicity (United States)

    Neres, Marta; Terrinha, Pedro; Custódio, Susana; Noiva, João; Brito, Pedro; Santos, Joana; Carrilho, Fernando


    Long-lasting and widespread alkaline magmatism is recognized in the west Portuguese margin. Offshore, several volcanic seamounts punctuate the Tore-Madeira Rise and the Estremadura Spur, with known ages between 80 and 100 Ma. Onshore, the major events are the Monchique (69-73 Ma), Sines (75-77 Ma) and Sintra (75-82 Ma) plutons - whose location (aligned along 200 km) and age discrepancy inspired some geodynamic models for Iberia during the Cretaceous - and the Lisbon Volcanic Complex (90-100 Ma). Structural links between them have been proposed but no direct evidence was yet found for it. In this work we present new magnetic data from recent marine magnetic surveys (ROCHEL and MINEPLAT project) conducted off the west Portuguese coast on the continental shelf and slope. A total area of about 3000 km2 between Sintra and Sines was surveyed with line spacing of 1 mile. Very high-resolution multi-channel seismic profiles were simultaneously acquired with the magnetics covering an area of 400 km2 off Sines. Two main primary outcomes arise from these data. On one hand, higher-resolution mapping in regions where magnetic anomalies were already known allows a better understanding of the buried sub-volcanic system. On the other hand, previously unknown NNW-SSE aligned magnetic anomalies were identified along the coast off Sines, possibly corresponding to buried Late Cretaceous alkaline magmatic intrusives. The presence of magmatic bodies was up to now unknown in this region, and these findings reignite the discussion about a structural link connecting the three main on land intrusive complexes, Sintra, Sines and Monchique. In addition to the structural control of the magmatic complexes, seismicity is also an issue as a cluster of seismicity coincident with the Monchique complex has long been known. Smaller clusters coincide with the magnetic anomalies mapped during the ROCHEL and MINEPLAT surveys, as well. We interpret these results in the light of the tectono-magmatism of

  14. Silicic magmatism associated with Late Cretaceousrifting in the Arctic Basin – petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Holm, Paul Martin; Duprat, Helene Inga


    The bimodal, Late Cretaceous–Palaeocene (71–61 Ma) Kap Washington Group volcanic sequence on the north coast of Greenland was erupted in a continental rift setting during the opening of the Arctic Ocean. On Kap Kane ca. 70 Ma silicic lavas and ignimbrites dominate over mildly alkaline basalts...

  15. Late Cenozoic Magmatic and Tectonic Evolution of the Ancestral Cascade Arc in the Bodie Hills, California and Nevada: Insights from Integrated Geologic, Geophysical, Geochemical and Geochronologic Studies (United States)

    John, D. A.; du Bray, E. A.; Box, S. E.; Blakely, R. J.; Fleck, R. J.; Vikre, P. G.; Cousens, B.; Moring, B. C.


    Geologic mapping integrated with new geophysical, geochemical, and geochronologic data characterize the evolution of Bodie Hills volcanic field (BHVF), a long-lived eruptive center in the southern part of the ancestral Cascade arc. The ~700 km2 field was a locus of magmatic activity from ~15 to 8 Ma. It includes >25 basaltic andesite to trachyandesite stratovolcanoes and silicic trachyandesite to rhyolite dome complexes. The southeastern part of the BHVF is overlain by the ~3.9 to 0.1 Ma, post-arc Aurora Volcanic Field. Long-lived BHVF magmatism was localized by crustal-scale tectonic features, including the Precambrian continental margin, the Walker Lane, the Basin and Range Province, and the Mina deflection. BHVF eruptive activity occurred primarily during 3 stages: 1) dominantly trachyandesite stratovolcanoes (~15.0 to 12.9 Ma), 2) coalesced trachydacite and rhyolite lava domes and trachyandesite stratovolcanoes (~11.6 to 9.7 Ma), and 3) dominantly silicic trachyandesite to dacite lava dome complexes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Relatively mafic stratovolcanoes surrounded by debris flow aprons lie on the margins of the BHVF, whereas more silicic dome fields occupy its center. Detailed gravity and aeromagnetic data suggest the presence of unexposed cogenetic granitic plutons beneath the center of the BHVF. Isotopic compositions of BHVF rocks are generally more radiogenic with decreasing age (e.g., initial Sr isotope values increase from ~0.7049 to 0.7061), which suggests progressively greater magma contamination by crustal components during evolution of the BHVF. Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during BHVF formation. Extensive alluvial gravel deposits that grade laterally into fluvial gravels and finer grained lacustrine sediments and the westerly sourced Eureka Valley Tuff (EVT; ~9.4 Ma) blanket large parts of the BHVF. The earliest sediments

  16. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth


    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  17. U-Pb zircon geochronology of Late Devonian to Early Carboniferous extension-related silicic volcanism in the northern New England Fold Belt

    International Nuclear Information System (INIS)

    Bryan, S.E.; Holcombe, R.J.; Fielding, C.R.; Allen, C.M.


    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360-350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U-Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km 2 and >500 km inboard of plate margin) and protracted, occurring over a period of -15 million years. Zircon inheritance is commonplace in the Late Devonian - Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385-370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation This contrasts with a lack of significant zircon inheritance in younger Permo-Carboniferous igneous rocks intruded through,and emplaced on top of, the Devonian-Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr-Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent. Copyright (2004) Geological Society of Australia

  18. Dietary analysis of Late Cenozoic Mexican equids from three different geographic/geologic settings using stable carbon isotopes: Coincidences, differences and paleobiologic significance (United States)

    Pérez-Crespo, Víctor Adrian; Ferrusquía-Villafranca, Ismael; Bravo-Cuevas, Víctor Manuel; Morales-Puente, Pedro; Ruiz-González, José E.


    The development of Vertebrate Paleontology in Mexico is uneven, so that there is a strong bias in favor of Neogene/Quaternary mammals largely collected in the Trans-Mexican Volcanic Belt (TMVB hereafter) and Central Plateau (CeP hereafter) Morphotectonic Provinces [MP hereafter]; however, the time is ripe for pursuing research in other than taxonomic areas. Here we investigate C3/C4 plant consumption in the equid lineage in three such provinces, which provide different geographic/geologic and paleoecologic scenarios during the Barstovian, Hemphillian and Rancholabrean times. Our results show that the Barstovian equids from Oaxaca, Sierra Madre del Sur MP Cormohipparion aff. C. quinni, Merychippus cf. M. sejunctus and Pliohippus sp. largely fed on C3 plants, which were the chief food stuff of horses in Mexico, particularly in the Southeast. On the other hand, the Hemphillian equid from Guanajuato, CeP Astrohippus stocki, was an unbalanced C3/C4 mixed feeders in favor of C4 plants, a fact that indicates a profound plant diversification due to the inception and rapid diversification of C4 plants that occurred there at this time, as it occurred in temperate North America, resulting in the differential consumption of C4 plants over that of C3 plants. Such trend prevailed until the Rancholabrean, as born out by the inferred diet for Equus conversidens and Equus sp. from Hidalgo, TMVB. Clearly then, the coeval diet change observed in Mexico and temperate North America implies a correlative vegetation change resulting in the appearance and rapid diversification of C4 plants, which largely formed the preferred food stuff of equids since the Hemphillian, although some C3 plant consumption was maintained till the Rancholabrean. It should be noted that the development of hypsodonty in equids and many artiodactyls, has long been interpreted as the adaptive mammalian response to the new feeding conditions.

  19. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan


    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  20. Possible Late Pleistocene volcanic activity on Nightingale Island, South Atlantic Ocean, based on geoelectrical resistivity measurements, sediment corings and 14C dating

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Björck, Svante; Cronholm, Anders


    . The irregular shapes of the basins and the lack of clear erosional features indicate that they are not eruption craters and were not formed by erosion. Instead, we regard them as morphological depressions formed between ridges of trachytic lava flows and domes at a late stage of the formation of the volcanic...... edifice. The onset of sedimentation within these basins appears to have occurred between 24 and 37 ka with the highest situated wetland yielding the highest ages. These ages are very young compared to the timing of the main phase of the formation of the island, implying volcanic activity on the island......Tristan da Cunha is a volcanic island group situated in the central South Atlantic. The oldest of these islands, Nightingale Island, has an age of about 18Ma. In the interior of the island, there are several wetlands situated in topographic depressions. The ages of these basins have been unknown...

  1. Petrogenesis of the Cenozoic alkaline volcanic rock series of the České Středohoří Complex (Bohemian Massif), Czech Republic: A case for two lineages

    Czech Academy of Sciences Publication Activity Database

    Dostal, J.; Schellnutt, J. G.; Ulrych, Jaromír


    Roč. 317, June (2017), s. 677-706 ISSN 0002-9599 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Central European volcanic province * continental alcaline volcanism * fractional crystallization * magmatic fluids Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 4.099, year: 2016

  2. Transition of neogene arc volcanism in central-western Hokkaido, viewed from K-Ar ages, style of volcanic activity, and bulk rock chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Wataru; Iwasaki, Miyuki; Nakagawa, Mitsuhiro [Hokkaido Univ., Sapporo (Japan)


    Spatial and temporal variations in late Cenozoic volcanism of southwestern Hokkaido at the northern end of NE-Japan arc have been clarified by 261 K-Ar and 76 FT ages including 49 newly determined K-Ar ages, volcanic stratigraphy, physical volcanology and whole-rock geochemistry. Arc volcanism characterized by rocks with low-Ti and Nb, and by across-arc increase in K{sub 2}O content in these rocks has continued at least since 12 Ma. Based on volcanic stratigraphy, physical volcanology and whole-rock geochemistry, volcanism after 12 Ma can be subdivided into 4 stages, 12-5, 5-1.7, and 1.7-0 Ma. The volcanism from 12 Ma to 5 Ma extended northward widely compared with distribution of Quaternary arc volcanism (1.7-0 Ma). This suggests that the arc trench junction between Kuril and NE-Japan arc's trenches was located about 100 km northward from the present position. Since around 5 Ma until 1.7 Ma, different type of volcanism under local extension field, characterized by a group of monogenetic volcanoes of alkali basalt and shield volcanoes of calc-alkaline andesite, had occurred at northern end of the volcanic region (Takikawa-Mashike region). During and after this volcanism, the northern edge of arc volcanism in the area has migrated southward. This suggests that the trench junction has migrated about 100 km southward since {approx}5 Ma. The quaternary arc volcanism (1.7-0 Ma) has been restricted at the southern part of the region. The volcanism since 12 Ma might be influenced by oblique subduction of Pacific plate beneath Kuril arc, resulting in the formation of local back arc basin at the junction and to southward migration of the trench junction. (author)

  3. New paleomagnetic and paleointensity results from late pliocene volcanic sequences from southern Georgia (Caucasus)

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Rathert, Manuel; Bogalo, Maria-Felicidad; Carrancho, Angel; Villalain, Juan Jose [Universidad de Burgos, Burgos (Spain). Departamento de Fisica, EPS; Goguichaichvili, Avto [Universidad Nacional Autonoma de Mexico, Morelia (Mexico). Laboratorio de Magnetismo Natural, Instituto de Geofisica; Vegas-Tubia, Nestor [Universidad del Pais Vasco, Bilbao (Spain). Departamento de Geodinamica; Sologashvili, Jemal [Ivane Javakhishvili State University of Tbilisi, Tbilisi (Georgia). Department of Geophysics


    Complete text of publication follows. Paleomagnetic and rock-magnetic experiments were carried out on 21 basaltic lava flows belonging to four different sequences of late Pliocene age from southern Georgia (Caucasus): Dmanisi (11 flows), Diliska (5 flows), Kvemo Orozmani (5 flows), and Zemo Karabulaki (3 flows). Paleomagnetic analysis generally showed the presence of a single component (mainly in the Dmanisi sequence) but also two more or less superimposed components in several other cases. All sites except one clearly displayed a normal-polarity characteristic component. Rock-magnetic experiments included measurement of thermomagnetic curves and hysteresis parameters. Susceptibility-versus-temperature curves measured in argon atmosphere on whole-rock powdered samples yielded low-Ti titanomagnetite as main carrier of remanence, although a lower T{sub C}-component was also observed in several cases. Both reversible and non-reversible k-T curves were measured. A pilot paleointensity study was performed with the Coe (1967) method on two samples of each of those sites considered suitable after interpretation of rock-magnetic and paleomagnetic data from all sites. The pilot study showed that reliable paleointensity results were mainly obtained from sites of the Dmanisi sequence. This thick sequence of basaltic lava flows records the upper end of the normal-polarity Olduvai subchron, a fact confirmed by {sup 40}Ar/{sup 39}Ar dating of the uppermost lava flow and overlying volcanogenic ashes, which yields ages of 1.8 to 1.85 My. A second paleointensity experiment was carried out only on samples belonging to the Dmanisi sequence. Preliminary results show that paleointensities often are low, their values lying between 10 and 20 muT in many cases. For comparison, present day field is 47 muT. The Dmanisi sequence of lava flows directly underlies the Dmanisi paleoanthropologic site, in which the end of the Olduvai subchron is recorded.

  4. Late Cenozoic deep weathering patterns on the Fennoscandian shield in northern Finland: A window on ice sheet bed conditions at the onset of Northern Hemisphere glaciation (United States)

    Hall, Adrian M.; Sarala, Pertti; Ebert, Karin


    The nature of the regolith that existed on the shields of the Northern Hemisphere at the onset of ice sheet glaciation is poorly constrained. In this paper, we provide the first detailed account of an exceptionally preserved, deeply weathered late Neogene landscape in the ice sheet divide zone in northern Finland. We mine data sets of drilling and pitting records gathered by the Geological Survey of Finland to reconstruct regional preglacial deep weathering patterns within a GIS framework. Using a large geochemical data set, we give standardised descriptions of saprolite geochemistry using a variant of the Weathering Index of Parker (WIP) as a proxy to assess the intensity of weathering. We also focus on mineral prospects and mines with dense pit and borehole data coverage in order to identify links between geology, topography, and weathering. Geology is closely linked to topography on the preglacial shield landscape of northern Finland and both factors influence weathering patterns. Upstanding, resistant granulite, granite, gabbro, metabasalt, and quartzite rocks were associated with fresh rock outcrops, including tors, or with thin (floors developed along mineralised shear and fracture zones, weathering penetrated locally to depths of > 50 m and included intensely weathered kaolinitic clays with WIPfines values below 1000. Late Neogene weathering profiles were varied in character. Tripartite clay-gruss-saprock profiles occur only in limited areas. Bipartite gruss-saprock profiles were widespread, with saprock thicknesses of > 10 m. Weathering profiles included two discontinuities in texture, materials and resistance to erosion, between saprolite and saprock and between saprock and rock. Limited core recovery when drilling below the soil base in mixed rocks of the Tana Belt indicates that weathering locally penetrated deep below upper fresh rock layers. Such deep-seated weathered bands in rock represent a third set of discontinuities. Incipient weathering and

  5. Mid–Late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    Linqi Xia


    Full Text Available Early Cambrian and Mid–Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercontinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two major magma types: HT (Ti/Y > 500 and LT (Ti/Y  0.85 and HT2 (Nb/La ≤ 0.85, and LT1 (Nb/La > 0.85 and LT2 (Nb/La ≤ 0.85 subtypes, respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere- (or plume- derived magmas, whereas the parental magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric contamination. These volcanics exhibit at least three characteristics: (1 most have a compositional bimodality; (2 they were formed in an intracontinental rift setting; and (3 they are genetically linked with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mid–Neoproterozoic and Early Cambrian coincided temporally with the separation between Australia–East Antarctica, South China and Laurentia and between Australia and Tarim, respectively. The Mid–Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.

  6. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone (United States)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence

  7. Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting (United States)

    Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.


    Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.

  8. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina) (United States)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.


    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the

  9. Ciclos tectónicos, volcánicos y sedimentarios del Cenozoico del sur de Mendoza-Argentina (35°-37°S y 69°30'W Cenozoic tectonic, volcanic and sedimentary cycles in southern Mendoza Province, Argentina (35°-37°S y 69°30'W

    Directory of Open Access Journals (Sweden)

    Ana María Combina


    Full Text Available En este trabajo se describe la estratigrafía sedimentaria y volcánica asociada a los procesos de deformación de las unidades con edades del Cretácico Tardío al Plioceno Tardío aflorantes en el sur de Mendoza, Argentina, entre los ríos Atuel y Barrancas en el ámbito de la Cordillera Principal. Se proponen tres ciclos tectovolcano-sedimentarios, limitados por discordancias regionales generadas por la acción de las Fases Incaica, Quechua, Pehuenche y Diaguita. El primer ciclo comprende las unidades volcánicas y sedimentarias del Cretácico Superior hasta el Oligoceno Superior (Formaciones Roca y Pircala-Coihueco y el Ciclo Eruptivo Molle. El segundo abarca desde el Oligoceno Tardío al Mioceno Tardío (Formación Agua de la Piedra y las Andesitas Huincán. Por último, el tercer ciclo comprende desde el Mioceno Tardío al Plioceno (Formaciones Butaló, Pincheiras, Loma Fiera, Río Diamante y las Andesitas La Brea.This article describes the volcanic and sedimentary stratigraphy and their associated proces-ses with the Andean deformation during the Late Cretaceous to Late Pliocene. The studied área is located between the Atuel and Barrancas rivers and the Main Cordillera, in southern Mendoza, Argentina. Three tectovolcano-sedimentary cycles limited by regional discordances (Inca, Quechua, Pehuenche and Diaguita are proposed. The first comprises Upper Oligocene to Upper Miocene volcanic and sedimentary units (Roca and Pircala-Coihueco formations and the Volcanic Cycle Molle. The second extends from the Late Oligocene to Late Miocene (Agua de la Piedra Formation and the Huincán Andesites volcanic cycle. Finally, the third cycle ranges from the Late Miocene to Pliocene (Butaló, Pincheiras, Loma Fiera and Rio Diamante formations and La Brea Andesites.

  10. Outline of tectonic geology of the cenozoic Pacific volcanic zone concerned with geothermal areas in the central America; Chubei ni okeru chinetsutai wo tomonau shinseidai Taiheiyo kazantai no chishitsu gaisetsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, T [Kyushu University, Fukuoka (Japan); Matsumoto, Y [Yamaguchi University, Yamaguchi (Japan)


    For the purpose of technological cooperation on geothermal development, investigations and discussions have been given on the geological background in the geothermal areas in Central America where the Pacific volcanic zone stretches. The geology in Central America is divided largely into three geological structures distributed in a band form in the east-west direction. Among these structure, the Pacific Volcanic Province is a Caenozoic volcanic area ranging along the Pacific Ocean coast in the south-east direction, where young and active Quarternary volcanoes are lined straight over a distance of 1,400 km. The geological structure is such that continuously traceable rift valley or pit structure agrees with the array of volcanoes. The long and wide rift valley that governs this volcanic activity forms the base of the geothermal areas dotted in the above structure. Guatemala had been proceeding with a 24-MW power plant plan in Zunil, the most important point, but the construction has been delayed because of a landslide that caused impediment to the productive wells. The plant completion is now scheduled for 1995. El Salvador is the most advanced country in geothermal power generation, which operates three plants in the Ahuachapa geothermal area, with the output reaching 95 MW. The geothermal condition per production well is 110 tons per hour at 250{degree}C. Nicaragua had been successful in generating power of 70 KW with two plants in Momtombo by 1989. 22 refs., 8 figs., 4 tabs.

  11. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov


    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  12. Patterns of Cenozoic sediment flux from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.


    deposits in the North Sea, the post-mid-Miocene Molo and Kai Formations of the Norwegian Shelf, the southern North Sea delta system and large volumes of the Late Pliocene-Holocene Naust Formation. The sediment flux from Scandinavia during the Cenozoic is in general agreement with the detrital flux...

  13. Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai (United States)

    Sheth, Hetu C.; Pande, Kanchan


    Post-K-Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone. Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps, including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and "intertrappean" sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow marine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2σ) and 62.9 ± 0.2 Ma (2σ) for samples taken from two separate outcrops of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism was at least 8-9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly even 62 Ma, and could not have formed by 65-64 Ma as concluded in a recent study.

  14. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent


    -feedback mechanism that (usually inhibits the complete collapse of atmospheric pCO2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to pCO2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for ice ages. The safety valve that prevents excessive atmospheric pCO2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Excess organic carbon burial seems to have played a negligible role in atmospheric pCO2 over the Late Cretaceous and Cenozoic.

  15. Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M. -A.; Khodri, M.; Mignot, J.


    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and long......-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling...... and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades....

  16. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi


    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  17. Mineral chemistry, thermobarometry and tectonomagmatic setting of Late-Cretaceous volcanic rocks from the Kojid area (south of Lahijan, northern Alborz

    Directory of Open Access Journals (Sweden)

    morteza delavari


    Full Text Available The volcanic rocks of Kojid area (south of Lahijan crop out in northern Alborz. They show mainly pillow structure with numerous cross-cutting dykes. Based on lithostratigraphic relationships and interpillow pelagic limestones, the volcanics are Late Cretaceous in age. The volcanics of Kojid area are predominantly basic in composition (olivine basalt and basalt and minor more evolved suites such as trachyandesite and dacite. Olivine phenocrysts display forsterite (Fo content of 63 to 83%. The phenocrystic and interstitial clinopyroxene crystals are augite to diopside in composition, with Na2O, Al2O3 and TiO2 contents of 0.24- 0.68, 2.3-6.53 and 1-5.1 wt.%, respectively. Furthermore, plagioclase is labradorite (An%= 51-68. The results of various geothermobarometric methods of clinopyroxene, plagioclase and olivine indicate good correlation with each other. Different thermometric calculations yielded temperatures in the range of 1100 to 1250 °C which are compatible with temperatures of basic melts. Moreover, clinopyroxene and plagioclase barometry of the phenocrysts (4 to 8 Kb and interstitial phases (

  18. Permo-Carboniferous volcanism in late Variscan continental basins of the Bohemian Massif (Czech Republic): geochemical characteristic

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Pešek, J.; Štěpánková-Svobodová, Jana; Bosák, Pavel; Lloyd, F. E.; Seckendorff, von, V.; Lang, Miloš; Novák, Jiří Karel


    Roč. 66, č. 1 (2006), s. 37-56 ISSN 0009-2819 R&D Projects: GA AV ČR(CZ) IAA3013903 Institutional research plan: CEZ:AV0Z30130516 Keywords : Permo-Carboniferous * volcanics * continental basin * Bohemian Massif * underplating * crustal anatexis * Sr-Nd isotopes Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.824, year: 2006

  19. Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano (United States)

    Pánisová, Jaroslava; Balázs, Attila; Zalai, Zsófia; Bielik, Miroslav; Horváth, Ferenc; Harangi, Szabolcs; Schmidt, Sabine; Götze, Hans-Jürgen


    Three-dimensional geophysical modelling of the early Late Miocene Pásztori volcano (ca. 11-10 Ma) and adjacent area in the Little Hungarian Plain Volcanic Field of the Danube Basin was carried out to get an insight into the most prominent intra-crustal structures here. We have used gridded gravity and magnetic data, interpreted seismic reflection sections and borehole data combined with re-evaluated geological constraints. Based on petrological analysis of core samples from available six exploration boreholes, the volcanic rocks consist of a series of alkaline trachytic and trachyandesitic volcanoclastic and effusive rocks. The measured magnetic susceptibilities of these samples are generally very low suggesting a deeper magnetic source. The age of the modelled Pásztori volcano, buried beneath a 2 km-thick Late Miocene-to-Quaternary sedimentary sequence, is 10.4 +/- 0.3 Ma belonging to the dominantly normal C5 chron. Our model includes crustal domains with different effective induced magnetizations and densities: uppermost 0.3-1.8 km thick layer of volcanoclastics underlain by a trachytic-trachyandesitic coherent and volcanoclastic rock units of a maximum 2 km thickness, with a top situated at minimal depth of 2.3 km, and a deeper magmatic pluton in a depth range of 5-15 km. The 3D model of the Danube Basin is consistent with observed high ΔZ magnetic anomalies above the volcano, while the observed Bouguer gravity anomalies correlate better with the crystalline basement depth. Our analysis contributes to deeper understanding of the crustal architecture and the evolution of the basin accompanied by alkaline intraplate volcanism.

  20. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.


    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  1. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.


    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  2. Cenozoic plant diversity of Yunnan: A review

    Directory of Open Access Journals (Sweden)

    Yongjiang Huang


    Full Text Available Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to

  3. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Crowe, B.M.; Vaniman, D.T.; Carr, W.J.


    Volcanism studies of the Nevada Test Site (NTS) region are concerned with hazards of future volcanism with respect to underground disposal of high-level radioactive waste. The hazards of silicic volcanism are judged to be negligible; hazards of basaltic volcanism are judged through research approaches combining hazard appraisal and risk assessment. The NTS region is cut obliquely by a N-NE trending belt of volcanism. This belt developed about 8 Myr ago following cessation of silicic volcanism and contemporaneous with migration of basaltic activity toward the southwest margin of the Great Basin. Two types of fields are present in the belt: (1) large-volume, long-lived basalt and local rhyolite fields with numerous eruptive centers and (2) small-volume fields formed by scattered basaltic scoria cones. Late Cenozoic basalts of the NTS region belong to the second field type. Monogenetic basalt centers of this region were formed mostly by Strombolian eruptions; Surtseyean activity has been recognized at three centers. Geochemically, the basalts of the NTS region are classified as straddle A-type basalts of the alkalic suite. Petrological studies indicate a volumetric dominance of evolved hawaiite magmas. Trace- and rare-earth-element abundances of younger basalt ( - 8 to 10 - 10 as calculated for a 1-yr period. Potential disruptive and dispersal effects of magmatic penetration of a repository are controlled primarily by the geometry of basalt feeder systems, the mechanism of waste incorporation in magma, and Strombolian eruption processes

  4. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Burton, B.W.


    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10 -9 /km 2 /y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10 -7 /y

  5. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.


    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  6. Early cenozoic differentiation of polar marine faunas.

    Directory of Open Access Journals (Sweden)

    J Alistair Crame

    Full Text Available The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  7. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.


    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  8. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains (United States)

    Xie, W.


    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  9. Zircon Hf-O isotopic constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China (United States)

    Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong


    The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new

  10. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina (United States)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.


    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  11. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. (United States)

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N


    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  12. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj


    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  13. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone


    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  14. The Volcanic Myths of the Red Sea - Temporal Relationship Between Magmatism and Rifting (United States)

    Stockli, D. F.; Bosworth, W.


    The Cenozoic Red Sea is one of the premier examples of continental rifting and active break-up. It has been cited as an example for both prototypical volcanic, pure shear rift systems with limited crustal stretching as well as magma-poor simple-shear rifting and highly asymmetric rift margins characterized by low-angle normal faults. In light of voluminous Oligocene continental flood basalts in the Afar/Ethiopian region, the Red Sea has often been viewed as a typical volcanic rift, despite evidence for asymmetric extension and hyperextended crust (Zabargad Island). An in-depth analysis of the timing, spatial distribution, and nature of Red Sea volcanism and its relationship to late Cenozoic extensional faulting should shed light on some of the misconceptions. The Eocene appearance of the East African super-plume was not accompanied by any recognized significant extensional faulting or rift-basin formation. The first phase of volcanism more closely associated with the Red Sea occurred in northern Ethiopia and western Yemen at 31-30 Ma and was synchronous with the onset of continental extension in the Gulf of Aden. Early Oligocene volcanism has also been documented in southern and central Saudi Arabia and southern Sudan. However, this voluminous Oligocene volcanism entirely predates Red Sea extensional faulting and rift formation. Marking the onset of Red Sea rifting, widespread, spatially synchronous intrusion of basaltic dikes occurred at 24-21 Ma along the entire Red Sea-Gulf of Suez rift and continuing into northern Egypt. While the initiation of lithospheric extension in the central and northern and central Red Sea and Gulf of Suez was accompanied by only sparse basaltic volcanism and possible underplating, the main phase of rifting in the Miocene Red Sea/Gulf of Suez completely lacks any significant rift-related volcanism, suggesting plate-boundary forces probably drove overall separation of Arabia from Africa. During progressive rifting, there is also no

  15. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin (United States)

    Galloway, W.; Ganey-Curry, P. E.


    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  16. Late Hercynian volcanic and hypovolcanic phenomena in South of the French Massif Central. Associated mineralization: U, F, Ba, Pb, Zn, Sn, W

    International Nuclear Information System (INIS)

    Badia; Fuchs


    Volcanism of the Stephanian period produced lava rich in potassium and fluorine with mineralization of U, F, Sn, W without Mo in the French Massif Central. Permian volcanism and associated magmatism are reviewed. Studied elements allow the characterization of their thermalism. These mineralizations are important for prospection [fr

  17. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    Directory of Open Access Journals (Sweden)

    Steffen Kiel

    Full Text Available We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema. In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large

  18. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.


    It is well known that sediment deposition in the North Sea and on the Norwegian Shelf varied significantly during the Cenozoic as a consequence of varying erosion rate mainly in Western Scandinavia, in Scotland and in the Alps. Recent results have demonstrated that a causal relationship exists...... of variations in erosion rates. Here we present the rationale behind the project, the data available and some preliminary results. The dense seismic and well coverage in the area makes it possible to estimate the rate of deposition of matrix mass. Assuming that sediment storage is not important, this provides...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  19. Age and isotopic systematics of Cretaceous borehole and surface samples from the greater Los Angeles Basin region: Implications for the types of crust that might underlie Los Angeles and their distribution along late Cenozoic fault systems (United States)

    Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.


    Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.

  20. Reply to: Terry, J. and Goff, J. comment on “Late Cenozoic sea level and the rise of modern rimmed atolls” by Toomey et al. (2016), Palaeogeography, Palaeoclimatology, Palaeoecology 4 51: 73–83. (United States)

    Toomey, Michael; Ashton, Andrew; Raymo, Maureen E.; Perron, J. Taylor


    We appreciate Terry and Goff's thoughtful comment in response to our proposed atoll development model. Flank collapse of reef-built slopes likely does affect plan-form atoll morphology in some locations and potentially poses a tsunami hazard to low-lying Pacific islands (Terry and Goff, 2013). However, given the often rapid rates of lagoon infill (> 1 mm/yr; Montaggioni, 2005), such failure events would likely need to be frequent and widespread in order to leave a morphologic imprint on modern western Pacific atoll lagoon depths. Few atoll flank collapse features have been dated but many of the arcuate bight-like structures (ABLS) identified could be inherited from scars incised into the initial volcanic edifice (e.g. Terry and Goff, 2013 and refs. therein) — submarine mass wasting has been extensively documented on young hotspot islands (e.g. Hawaiian Islands: Moore et al., 1989; Reunion: Oehler et al., 2008). Atolls in the Marshall Islands, where our main study site Enewetak Atoll is located, are likely ~ 50–100 million years old (Larson et al., 1995) and dating of adjacent deep-water turbidite aprons in the Nauru Basin (DSDP Site 462; Schlanger and Silva, 1986) suggests that large atoll flank collapse events have been relatively infrequent there since the mid-Miocene (wasting events, will be essential for exploring the plan-form and 3D shapes of atolls. To our knowledge, no quantitative model of long-term atoll development has explicitly linked lagoon restriction/sedimentation to episodic flank collapse events (e.g. Montaggioni et al., 2015; Paterson et al., 2006; Quinn, 1991; Warrlich et al., 2002). Testing Terry and Goff's proposed conceptual model for how rim failure processes affect atoll morphology in a numerical context will require deep drilling along arcuate bight-like structures, as well as adjacent, unaffected, rim and lagoon areas, in order quantify how often failures occur and how quickly the rim/lagoon is rebuilt afterwards. The model we present

  1. Genesis of Cenozoic intraplate high Mg# andesites in Northeast China (United States)

    Liu, J. Q.; Chen, L. H.; Zhong, Y.; Wang, X. J.


    High-Mg# andesites (HMAs) are usually generated in the converged plate boundary and have genetic relationships with slab subduction. However, it still remained controversial about the origin of those HMAs erupted in the intra-plate setting. Here we present major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate HMAs from Northeast China to constrain their origin and formation process. Cenozoic Xunke volcanic rocks are located in the northern Lesser Khingan Range, covering an area of about 3, 000 km2. These volcanic rocks are mainly basaltic andesite and basaltic trachyandesite, with only several classified as trachyandesite and andesites. They have high SiO2 contents (54.3-57.4 wt%) and Mg# (49.6-57.8), falling into the scope of high Mg# andesites. The Xunke HMAs are enriched in large ion lithophile elements but depleted in high field strength elements, with positive Ba, K, Sr and negative Zr-Hf, and Ti anomalies. Their trace element absolute concentrations are between those of potassic basalts and Wuchagou HMAs. The Xunke HMAs have relatively enriched Sr-Nd-Hf isotopes (87Sr/86Sr = 0.705398-0.705764, ɛNd=-8.8-3.8, ɛHf=0.5-11.7), and low radiogenic Pb isotopes (206Pb/204Pb = 16.701-17.198), towards to the EM1 end-member, which indicates that they are ultimately derived from ancient, recycled crustal components. Primitive silica-rich melts were generated from higher degrees of partial melting of recycled crustal materials (relative to potassic basalts) and then interacted with the peridotite to produce the Xunke HMAs.

  2. Dynamic topography and the Cenozoic carbonate compensation depth (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.


    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  3. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.


    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  4. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard


    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  5. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians

    Directory of Open Access Journals (Sweden)

    Réka Lukács


    Full Text Available This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS and secondary ionization mass spectrometry (SIMS U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania. The analyses were performed on unpolished zircon prism faces (termed rim analyses and on crystal interiors exposed through mechanical grinding an polishing (interior analyses. 206Pb/238U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th/He zircon geochronology data in the research article entitled “The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians: eruption chronology and magma type variation” (Molnár et al., 2018 [1].

  6. Insights into the Early to Late Oligocene Izu-Bonin Mariana Arc Magmatic History from Volcanic Minerals and Glass within Volcaniclastic Sediments of IODP Site U1438 and DSDP Site 296 (United States)

    Samajpati, E.; Hickey-Vargas, R.


    The Kyushu-Palau Ridge (KPR) is a remnant of the early Izu-Bonin-Mariana (IBM) island arc, separated by arc rifting and seafloor spreading. We examine and compare volcanic materials from two sites where the transition from IBM arc building to rifting is well sampled: DSDP Site 296 on the northern KPR crest, and recent IODP Site U1438 in the adjacent Amami-Sankaku basin to the west. The purpose of the study is to understand the origin and depositional regime of volcaniclastic sediments during the arc rifting stage. Site 1438 sedimentary Unit II and the upper part of Unit III (300 and 453 mbsf) correlate in time with sedimentary Units 1G and 2 of DSDP Site 296 (160 and 300 mbsf). The upper part of Site U1438 Unit III and Site 296 Unit 2 consist of early to late Oligocene coarse volcaniclastic sedimentary rocks. These are overlain by late Oligocene nannofossil chalks with volcanic sand and ash-rich layers at Site 296 Unit 1G, and tuffaceous silt, sand, siltstone and sandstone at Site 1438 Unit II. The chemical composition of volcanic glass shards, pyroxenes with melt inclusions and amphiboles separated from volcaniclastic sediments were analyzed by EPMA and LA-ICPMS. Glasses are found at Site 296 only, range from medium-K basalt to rhyolite and have trace element patterns typical of arc volcanics. Clinopyroxene and orthopyroxene are found as detrital grains in sediments from both sites. Mg-numbers range from 58 to 94. Interestingly, the alumina content of pyroxene grain populations from both sites increase and then decrease with decreasing Mg-number. This probably reflects control of Al contents in magma and pyroxene by suppressed plagioclase saturation, which apparently was a consistent feature of KPR volcanoes. Melt-inclusions within the pyroxenes are typically small (30-50 microns) and have similar chemical compositions within one grain. The melt inclusions range from basalt to rhyolite with moderate alkali content. Amphibole is more prevalent in late Oligocene

  7. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco) (United States)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.


    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  8. East African Cenozoic vegetation history. (United States)

    Linder, Hans Peter


    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  9. Icelandic volcanic ash from the Late-glacial open-air archaeological site of Ahrenshöft LA 58 D, North Germany

    DEFF Research Database (Denmark)

    Housley, R. A.; Lane, C. S.; Cullen, V. L.


    Cryptotephra of Icelandic origin from the open-air archaeological site of Ahrenshöft LA 58 D (Kr. Nordfriesland, Schleswig-Holstein), northern Germany overlies a Late-glacial Havelte lithic assemblage, hitherto dated by 14C and biostratigraphy to the earliest part of the Late-glacial interstadial...

  10. Geochemical Signatures of Potassic to Sodic Adang Volcanics, Western Sulawesi: Implications for Their Tectonic Setting and Origin

    Directory of Open Access Journals (Sweden)

    Godang Shaban


    Full Text Available DOI:10.17014/ijog.3.3.195-214The Adang Volcanics represent a series of (ultra potassic to sodic lavas and tuffaceous rocks of predominantly trachytic composition, which forms the part of a sequence of Late Cenozoic high-K volcanic and associated intrusive rocks occurring extensively throughout Western Sulawesi. The tectonic setting and origin of these high-K rocks have been the subject of considerable debates. The Adang Volcanics have mafic to mafitic-intermediate characteristics (SiO2: 46 - 56 wt% and a wide range of high alkaline contents (K2O: 0.80 - 9.08 %; Na2O: 0.90 - 7.21 % with the Total Alkali of 6.67 - 12.60 %. Al2O3 values are relatively low (10.63 - 13.21 % and TiO2 values relatively high (1.27 - 1.91 %. Zr and REE concentrations are also relatively high (Zr: 1154 - 2340 ppm; Total REE (TREY = TRE: 899.20 - 1256.50 ppm; TRExOy: 1079.76 - 1507.97 ppm, with an average Zr/TRE ratio of ~ 1.39. The major rock forming minerals are leucite/pseudoleucite, diopside/aegirine, and high temperature phlogopite. Geochemical plots (major oxides and trace elements using various diagrams suggest the Adang Volcanics formed in a postsubduction, within-plate continental extension/initial rift tectonic setting. It is further suggested magma was generated by minor (< 0.1 % partial melting of depleted MORB mantle material (garnet-lherzolite with the silicate melt having undergone strong metasomatism. Melt enrichment is reflected in the alkaline nature of the rocks and geochemical signatures such as Nb/Zr > 0.0627 and (Hf/SmPM > 1.23. A comparison with the Vulsini ultrapotassic volcanics from the Roman Province in Italy shows both similarities (spidergram pattern indicating affinity with Group III ultrapotassics volcanics and differences (nature of mantle metasomatism.

  11. Review of cenozoic ooidal ironstones (United States)

    van Houten, Franklyn B.


    Cenozoic (Tertiary) ooidal ironstones (COI) in 20 districts (39 deposits) developed between the equatorial zone and 60° N, except for one Eocene district in mid-southern latitude. Stratigraphic distribution. Paleocene OI occur in northern Pakistan, western Siberia, southern Germany, northwestern Venezuela, and northeastern Colombia: Eocene OI in western Siberia, southern Germany, northwestern Romania, central North Africa, central-west Saudi Arabia, southwestern Central Africa, northwestern Venezuela, northeastern Colombia, south-central USA, and northwestern Australia; Oligocene OI in northwest and west-central Kazakhstan, central Denmark, and north-central Iran?; Miocene OI in northwestern Venezuela, northeastern Colombia, and southeastern Malaysia; Pliocene OI in southeastern Ukraine. Geotectonic framework. Ten districts developed in an interior or fractured craton: five along the south-trending Uralian Seaway, and one along the east-trending Northern European Seaway, the south-trending Trans-Saharan Seaway, in or near an early Red Sea embayment, in southeastern Malaysia, and in northwestern Australia. Ten districts lay near a eratonic margin: one along divergent margin and nine along the broad east-trending Caribbean and Tethyan seaways. Almost all COI accumulated during the Paleogene relatively high stand of sea level, especially in Early and Middle Eocene time. As sea level fell gradually in Neogene time COI developed in only three marginal districts (including the giant Pliocene Kerch-Taman deposit in southeastern Ukraine). Sedimentary environment. Almost all of the COI developed in deltaic to shallow marine facies. These are commonly associated with shoaling-upward siliciclastic sequences; a few are in mixed siliciclastic-carbonate sequences. A few COI apparently occurred in fluvial and lacustrine facies; some of these may have been reworked from laterite or from marine ironstones. Sedimentary petrology. Many COI are less than a few tens of centimeters

  12. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate. (United States)

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L.; Pease, V.L.; Hillhouse, J.W.


    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  13. Timing of Late Cretaceous Gulf Coast volcanism and chronostratigraphic constraints on deposition of the Ripley Formation from a newly recognized bentonite bed, Pontotoc County, Mississippi (United States)

    Vitale, E. J.; Gifford, J.; Platt, B. F.


    The Upper Cretaceous Ripley Formation is present throughout the Mississippi (MS) Embayment and contains local bentonite lenses related to regional volcanism. The Pontotoc bentonite is such a lens located near the town of Pontotoc, MS, that was strip-mined and has not been accessible since reclamation of the land. Recent investigations in Pontotoc County south of the Pontotoc bentonite site resulted in the discovery of a previously unknown bentonite bed. Litho- and biostratigraphy indicate that the bentonite is younger than known volcanism from MS. The purposes of the present investigation are 1) to test whether the new bentonite bed is correlative to the Pontotoc bentonite & 2) to recover volcanogenic zircons for U-Pb dating to better constrain timing of volcanism and chronostratigraphy of the Ripley Fm. Outcrops in an active sand pit in the field area expose 2.5 m of fine sand, and an upper gradational contact with an overlying 2.5 m of sandy clay, containing the bentonite bed. Two trenches were excavated through the outcrop, and in each trench a stratigraphic section was measured and bulk samples collected for zircons. Sampling began in the lower bounding sand and continued upsection in 1 m intervals, corresponding to the gradational contact with the bentonite, and 2 locations within the bentonite. The Ripley Fm. consists of 73 m of fossiliferous clay, sand, and calcareous sand beds. Recent stratigraphic revisions of the lateral facies in MS recognize a lower transitional clay facies, a limestone, marl, and calcareous sand facies, a sandy upper Ripley facies, and the formally named Chiwapa Sandstone Member. Ammonite biostratigraphy places the contact between the Chiwapa and the overlying Owl Creek/Prairie Bluff at 68.5 Ma. Unlike the mined area north of Pontotoc where the bentonite is within the Chiwapa, the bed here is directly above the Chiwapa section and its upper contact represents the Ripley Fm. / Owl Creek Fm. contact. Where the bentonite is present, it

  14. Contraints on the cenozoic position of Sundaland (United States)

    Powell, C. McA.; Johnson, B. D.


    The Cenozoic ocean-floor path of the continental fragment, Greater India, is overlapped by the present western part of Malaysia and Sumatra which are now part of a coherent continental block, Sundaland. This part of Southeast Asia must consequently have lain further east during the Cenozoic. The past positions of Greater India, combined with published paleomagnetic data indicating that Sundaland has lain near the Equator since the Permian and rotated anticlockwise since the mid-Cretaceous, are used to reconstruct constraints on the relative motions of Sundaland and the Indian—Australian plate in 10 m.y. intervals. We show that the northern part of Sundaland has rotated a minimum of 550 km westward with respect to India in the last 50 m.y. (since Early Eocene) with most of the rotation occurring in the latter half of the Cenozoic. Accepting geological evidence for an even larger Cenozoic sinistral shear between Sundaland and Australia, we construct a model consistent with ocean-floor and paleomagnetic constraints in which Australia and Sundaland made their closest approach between 10 and 20 m.y. ago (Miocene). The S-shape of the Banda Arcs may have formed since mid-Miocene from an initially linear, E-W trending pair of arcs by the interaction of the large sinistral shear between Sundaland and Australia and the collision of the leading edge of Australia with these paired arcs commencing approximately 15 m.y. ago.

  15. Permo-triassic volcanism in the San Rafael Block (Mendoza province) and its uraniferous potential

    International Nuclear Information System (INIS)

    Kleiman, L.E.


    This paper describes the Permo-triassic volcanism in the San Rafael Block, Mendoza, Argentina, which forms part of the Choiyoi province and it represents by large volumes of intermediate to silicic ignimbrites with minor sub volcanic bodies of rhyolites, andesites and basandesites. Three different suites can be distinguished: the first one (Lower Section) of Early Permian age, is composed of dacites and rhyolites (SiO 2 up to 71 %) with minor andesites, the second one (Upper Section) of Late Permian-Early Triassic age is made up of rhyolites (SiO 2 up to 77 %) with some basandesites and andesites, and the third one, of Triassic age is composed of rhyolites (SiO 2 > 75 %) and basandecites. These suites are easily distinguished by means of trace element data and are believed to represent the transition between a subduction-related magmatic arc and an extensional tectonic regime. This tectonic setting is similar to the prevalent during the Cenozoic in the Sierra Occidental of Mexico and is favourable for the development of long-lived hydrothermal systems which lead to economic U concentrations (i.e. Sierra de Pena Blanca). In the San Rafael Block, the Dr. Baulies-Los Reyunos U deposit, which is hosted in volcanic sediments, is associated to the first suite (Lower Section). Although minor U concentrations are known, up to date, to be related to the second and third suites, these rocks are fertile and seen to be potential source for the formation of uranium deposits within a volcanic caldera environment. (Author)

  16. Late Triassic Porphyritic Intrusions And Associated Volcanic Rocks From The Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Implications For Adakitic Magmatism And Porphyry Copper Mineralization (United States)

    Wang, B.; Zhou, M.; Li, J.; Yan, D.


    The Yidun terrane, located on the eastern margin of the Tibetan plateau, has been commonly considered to be a Triassic volcanic arc produced by subduction of the Ganzi-Litang oceanic lithosphere. The Yidun terrane is characterized by numerous arc-affinity granitic intrusions located along a 500-km-long, north-south-trending belt. Among these granitic bodies, several small porphyritic intrusions in the southern segment of the terrane (Shangri-La region) are associated with large porphyry copper deposits. These porphyritc intrusions are composed of diorite and quartz diorite, and spatially associated with andesites and dacites. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The andesites and dacites are intercalated with slates and sandstones and have ages of around 220 Ma. The intrusive and volcanic rocks have SiO2 contents from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from 1.9 to 4.2 wt.%. They show significant negative Nb-Ta anomalies on primitive mantle-normalized spidergrams. They have high La/Yb (13-49) ratios with no prominent Eu anomalies. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). The geochemical features indicate that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and ɛNd (-1.88 to -4.93) values, but can be further divided into two groups: high silica (HSA) and low silica adakitic rocks (LSA). The HSA, representing an early stage of magmatism (230 to 215 Ma), were derived from oceanic slab melts with limited interaction with the overlying mantle wedge. At 215 Ma, more extensive interaction resulted in the formation of LSA. We propose that HSA were produced by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the LSA. Compared with

  17. Origin and potential geothermal significance of China Hat and other late Pleistocene topaz rhyolite lava domes of the Blackfoot Volcanic Field, SE Idaho (United States)

    McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.


    The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.

  18. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    Koepnick, R.B.; Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Nelson, H.F.; Otto, J.B.; Waite, L.E.


    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87 Sr/ 86 Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87 Sr/ 86 Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87 Sr/ 86 Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87 Sr/ 86 Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  19. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S) (United States)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.


    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  20. Late Holocene forest dynamics, volcanism, and climate change at Whitewing Mountain and San Joaquin Ridge, Mono County, Sierra Nevada, CA, USA (United States)

    Constance I. Millar; John C. King; Robert D. Westfall; Harry A. Alden; Diane L. Delany


    Deadwood tree stems scattered above treeline on tephra-covered slopes of Whitewing Mtn (3051 m) and San Joaquin Ridge (3122 m) show evidence of being killed in an eruption from adjacent Glass Creek Vent, Inyo Craters. Using tree-ring methods, we dated deadwood to AD 815-1350 and infer from death dates that the eruption occurred in late summer AD 1350. Based on wood...

  1. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.


    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  2. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R. [Purdue University, W. Lafayette, IN (United States). Dept. of Earth & Atmospheric Science


    Analysis of late Mesozoic and Cenozoic sedimentary basins, metamorphic rocks, and major faults in the eastern and central Alaska Range documents the progressive development of a suture zone that formed as a result of collision of an island-arc assemblage (the Wrangellia composite terrane) with the former North American continental margin. New basin-analysis, structural, and geochronologic data indicate the following stages in the development of the suture zone: (1) Deposition of 3-5 km of Upper Jurassic-Upper Cretaceous marine strata (the Kahiltna assemblage) recorded the initial collision of the island-arc assemblage with the continental margin. (2) Metamorphism of submarine-fan deposits of the Kahiltna basin, located near the leading edge of the island-arc assemblage, occurred at ca. 74 Ma, as determined from a new U-Pb zircon age for a synkinematic sill. (3) Shortening and exhumation of the suture zone peaked from 65 to 60 Ma on the basis of metamorphic and geochronologic data. (4) From 60 to 54 Ma, about 3 km of volcanic strata were deposited over deformed sedimentary strata of the Cantwell basin, and several granitic plutons (the McKinley sequence) were emplaced along the suture zone. (5) Following igneous activity, strike-slip displacement occurred from ca. 54 to 24 Ma along the Denali fault system, which had developed in the existing suture zone. (6) Regional transpressive shortening characterized the suture zone from ca. 24 Ma to the present. Regional subsidence resulted in Miocene coal seams up to 20 m thick and well-developed lacustrine deposits. Overlying the Miocene deposits are about 1.2 km of Pliocene and Holocene conglomeratic deposits. These mapping relationships provide evidence that regional shortening continues to the present in the eastern and central Alaska Range.

  3. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization (United States)

    Wang, Bai-Qiu; Zhou, Mei-Fu; Li, Jian-Wei; Yan, Dan-Ping


    Early Mesozoic porphyritic intrusions in the Shangri-La region, southern Yidun terrane, SW China, are spatially associated with andesites and dacites. These intrusions are composed of diorite and quartz diorite, and are closely related to copper mineralization. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The associated andesites and dacites are interlayered with slates and sandstones and have ages of around 220 Ma. All of the intrusive and extrusive rocks have similar, highly fractionated REE patterns and high La/Yb (13-49) ratios with no prominent Eu anomalies. They display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Their SiO2 contents range from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from1.9 to 4.2 wt.%. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). These features suggest that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and εNd (- 1.88 to - 4.93) values, but belong to high silica (HSA) and low silica adakitic rocks (LSA). The HSA represent an early stage of magmatism (230 to 215 Ma) and were derived from oceanic slab melts with limited interaction with the overlying mantle wedge during ascent. At 215 Ma, more extensive interaction produced the LSA. We propose that the early adakitic magmas (HSA) formed by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the later adakitic magmas (LSA).

  4. Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous) (United States)

    Scaife, J. D.; Ruhl, M.; Dickson, A. J.; Mather, T. A.; Jenkyns, H. C.; Percival, L. M. E.; Hesselbo, S. P.; Cartwright, J.; Eldrett, J. S.; Bergman, S. C.; Minisini, D.


    Oceanic Anoxic Event 2 (OAE 2), during the Cenomanian-Turonian transition (˜94 Ma), was the largest perturbation of the global carbon cycle in the mid-Cretaceous and can be recognized by a positive carbon-isotope excursion in sedimentary strata. Although OAE 2 has been linked to large-scale volcanism, several large igneous provinces (LIPs) were active at this time (e.g., Caribbean, High Arctic, Madagascan, Ontong-Java) and little clear evidence links OAE 2 to a specific LIP. The Mid-Cenomanian Event (MCE, ˜96 Ma), identified by a small, 1‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2. However, no underlying cause has yet been demonstrated and its relationship to OAE 2 is poorly constrained. Here we report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean. We find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the MCE and the OAE 2. However, the increases found in these sites are of a lower magnitude than those found in records of many other Mesozoic events, possibly characteristic of a marine rather than atmospheric dispersal of mercury for both events. Combined, the new mercury data presented here are consistent with an initial magmatic pulse at the time of the MCE, with a second, greater pulse at the onset of OAE 2, possibly related to the emplacement of LIPs in the Pacific Ocean and/or the High Arctic.

  5. Mid Cenozoic freshwater wetlands of the Sunda region

    Directory of Open Access Journals (Sweden)

    Robert J. Morley


    Full Text Available The Sunda region was the scene of widespread rifting during the mid-Cenozoic, resulting in the development of numerous large lake-filled rifts, analogous in scale to the rift valley system of East Africa. The Tonle Sap in Cambodia forms the closest modern analogue for these lakes in the Southeast Asian region. Many of the palaeolakes were long lived, continuing uninterrupted as open lakes for several millions of years during the Oligocene. Smaller rift systems infilled with fluvial sediments, but the larger ones remained as lakes, and with Late Oligocene subsidence, were transformed by brackish, and in the earliest Miocene, by marine incursion, into large inland seas. These seas reached their greatest extent at the time of the mid Miocene thermal maximum. This paper describes the development and eventual demise of these lakes following marine transgression, and, based on their rich content of pollen and spores, illustrates the variety of fresh and brackish water swamp communities which developed around their margins. The marginal swamps can be divided into: i seasonally inundated swamps, mainly during the Oligocene, characterised by Barringtonia, Lagerstroemia and grasses/sedges; ii fern swamps and iii from the Late Oligocene onward alluvial swamps, often characterised by Pandanus; and iv peat swamps. The latter can be differentiated into kerapah peat swamps, first occurring during the Oligocene, and basinal peat swamps, becoming widespread from the Early Miocene onward.

  6. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33° 36°S.L.) (United States)

    Charrier, R.; Baeza, O.; Elgueta, S.; Flynn, J. J.; Gans, P.; Kay, S. M.; Muñoz, N.; Wyss, A. R.; Zurita, E.


    The mainly volcanic Cenozoic deposits that make up much of the western part of the Principal Cordillera in Central Chile are generally subdivided into two major units: an older Abanico or Coya-Machalí Formation and a younger Farellones Formation. Difficulty in differentiating these units has led to considerable debate. On the basis of the wide distribution, great thickness, and presence of sedimentary intercalations, it has been postulated that these arc volcanics were deposited in an intermontane basin; more recently, it has been proposed that this basin developed under extensional conditions and underwent subsequent tectonic inversion. We present field, geochronologic, geochemical, and thermal maturity data that support the latter interpretation. Collectively, this new information clarifies the stratigraphic, tectonic, and paleogeographic evolution of these deposits. The vast geographic extent of the Abanico Formation and lateral equivalents, which reach from at least 32°30' to 44°S along the Principal Cordillera, its great thickness, and the presence of repeated thick fluvial and lacustrine intercalations all indicate deposition in a large, strongly subsident, and probably north-south oriented basin, developed between middle to late Eocene and Oligocene. The unconformable contact with underlying Mesozoic units observed at several localities indicates that deposition followed a substantial erosional episode during late Cretaceous and/or early Cenozoic time. Basal deposits of the Abanico Formation near Termas del Flaco increase rapidly in thickness to the west. Still further to the west, a thick Abanico section contains, in its upper part, mammal fossils older than those found in the basal deposits near Termas. This evidence indicates a major space of deposition west of this locality, which had been filled before deposition took place at Termas. The east-vergent, high-angle El Fierro thrust fault on the east side of the westward-growing deposits is interpreted

  7. Application of modern technologies in popularization of the Czech volcanic geoheritage

    Czech Academy of Sciences Publication Activity Database

    Rapprich, V.; Lisec, M.; Fiferna, P.; Závada, Prokop


    Roč. 9, č. 3 (2017), s. 413-420 ISSN 1867-2477 Institutional support: RVO:67985530 Keywords : Cenozoic volcanism * augmented reality * volcano tourism Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 1.472, year: 2016

  8. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: Petrology and mineral chemistry

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Ulrych, Jaromír; Krmíček, Lukáš; Fediuk, F.; Balogh, K.; Hegner, E.


    Roč. 66, č. 3 (2015), s. 197-216 ISSN 1335-0552 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic volcanism * isotope geochemistry * melilitic rock * mineralogy * petrology Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.523, year: 2015

  9. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.


    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  10. Thermochronological Evidence for Cenozoic Segmentation of Transantarctic Mountains (United States)

    Zattin, M.; Pace, D.; Andreucci, B.; Rossetti, F.; Talarico, F.


    The Transantarctic Mountains (TAM) represent the boundary between the cratonic East Antarctica and the West Antarctica and are thus related to formation of the Western Antarctic Rift system (WARS). However, temporal relationships between timing of TAM uplift and evolution of the WARS are not clear. The large amount of existing thermochronological data indicate that exhumation of the TAM occurred at different times and extents, with main cooling events in the Early Cretaceous, Late Cretaceous, and early Cenozoic. Uplift of the different segments of the TAM was not recorded according to regular trends along the mountain chain, but instead appears diachronous and without a recognizable spatial pattern. Here we present apatite fission-track (AFT) data from 20 samples, collected from metamorphic and intrusive rocks from the region comprised between the Blue Glacier and the Byrd Glacier. AFT data show a large variety of ages, ranging from 28.0 to 88.8 Ma and without a clear correlation between age and elevation. As a whole, spatial variations suggest a decrease of ages from S to the region of the Koettlitz Glacier, where ages suddenly raise up to Cretaceous values. A marked increase of ages has been detected also south of Darwin Glacier, that is in correspondence of the Britannia Range. Thermal modelling shows that cooling paths are usually composite, with a main cooling event followed by slower cooling to present day temperatures. Time of main cooling event is late Cretaceous for samples from the Britannia Range whereas it is Eocene-Oligocene for samples from Koettlitz and Mulock areas. In any case, cooling rates are always quite low also during periods of enhanced uplift, with values not exceeding 5°C/Ma. These data support the idea of tectonic block segmentation of the TAM during the last phases of exhumation. Most of vertical displacements occurred during the Oligocene across transverse fault zones such as the Discovery Accommodation Zone to the north and the

  11. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin (United States)

    Suo, Yanhui; Li, Sanzhong; Yu, Shan; Somerville, Ian D.; Liu, Xin; Zhao, Shujuan; Dai, Liming


    Late Mesozoic extrusion tectonics, the Cenozoic NW-directed crustal extension, and the regional far-field eastward flow of the western asthenosphere due to the India-Eurasia plate collision, accompanied by eastward jumping and roll-back of subduction zones of the Pacific Plate.

  12. Assessment of the atmospheric impact of volcanic eruptions (United States)

    Sigurdsson, H.


    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  13. Petrology and geochemistry and K-Ar ages for Cenozoic tinguaites from the Ohře/Eger Rift (NW Bohemia)

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Novák, Jiří Karel; Lang, Miloš; Balogh, K.; Hegner, E.; Řanda, Zdeněk


    Roč. 183, č. 1 (2006), s. 41-61 ISSN 0077-7757 R&D Projects: GA AV ČR IAA3048201 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : České středohoří Mts. * Ohře/Eger Rift * Roztoky Intrusive Center * tinguaite dikes * Cenozoic volcanism Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.577, year: 2006

  14. The Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Morley, R.


    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. This paper discusses a detailed Study Plan which was prepared describing planned geochronology and field studies to assess the chronology of the Lathrop Wells volcanic center and other Quaternary volcanic centers in the region. A paper was published discussing the geomorphic and soil evidence for a late Pleistocene or Holoceno age for the main cone of the center. The purpose of this paper was to expose the ideas concerning the age of the Lathrop Wells center to scientific scrutiny. Additionally, field evidence was described suggesting the Lathrop Wells center may have formed from multiple eruptive events with significant intervals of no activity between events. This interpretation breaks with established convention in the volcanological literature that small volume basalt centers are monogenetic

  15. Regionwide Geodynamic Analyses of the Cenozoic Carbonate Burial in Sri Lanka Related to Climate and Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Amila Sandaruwan Ratnayake


    Full Text Available Asian tectonism and exhumation are critical components to develop modern icehouse climate. In this study, stratigraphic sections of eight wells in the Mannar and Cauvery basins were considered. The author demonstrated that this local system records a wealth of information to understated regional and global paleoclimatic trends over the Cenozoic era. The lithostratigraphic framework has been generally characterized by deposition of carbonate-rich sediments since the Middle Cenozoic. Geological provenance of carbonate sediments had probably related to local sources from Sri Lankan and Indian land masses. The main controlling factor of carbonate burial is rather questionable. However, this carbonate burial has indicated the possible link to the Middle to Late Cenozoic global climatic transition. This major climatic shift was characterized by long-term reduction of atmospheric carbon dioxide concentration over the Cenozoic era. Consequently, this geological trend (carbonate burial has a straightforward teleconnection to the global cooling towards the glaciated earth followed by the development of polar ice sheets that persist today.

  16. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.


    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  17. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.


    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  18. Uranium mineralization in fluorine-enriched volcanic rocks

    International Nuclear Information System (INIS)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.


    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements

  19. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism (United States)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.


    During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.

  20. Cenozoic Tectonic Characteristics in the Adare Basin, West Ross Sea: Evidence From Seismic Profiles (United States)

    Zhang, Q.; Gao, J.; Ding, W.


    Based on the geophysical data obtained from the Adare Basin and its adjacent areas, West Ross Sea, the authors employed the frequency wave-number filtering technique to recover the newly processed dataset with high signal noise ratio and complete seismic event which highly contributes to reveal more detailed deep-seated geological structures than previously thought. The structural features and magmatism of the study area in Cenozoic were classified and analyzed. Combined with glaciation, the associated sedimentary facies were summarized systematically. The authors' analysis revealed that, at 16 Ma, under the influence of the thermal effect caused by residual magmatism and asymmetric spreading of Adare Basin in the initial period, surrounding areas of two flanks of the Adare trough were characterized by uplift folds and tilted uplift zone, respectively. The small-scale uplift fold zone was characterized by nearly upright faults and folds and was located in the southern part of the eastern flank, whereas the tilted uplift zone dominated in the corresponding district of western flank that reached the continental margin. By utilizing the contact relationship between igneous rocks and surrounding rocks, igneous rocks can be divided into two periods: early-stage and late Cenozoic igneous rocks. The early-stage rocks are generally located dispersedly in the tilted uplift zone and the age is poorly known. It is suggested that they were related to the residual magmatism. On the other hand, the spatial distribution of Late Cenozoic igneous rocks, formed not earlier 5.5 Ma, was extensive and scattered, almost covering the whole study area, which indicates that they might be unrelated to the rifting in space and time, instead they were affected by decompression melting of the mantle because of the large-scale deglaciation since Pliocene.

  1. Geochemistry, age and strontium isotope composition of late tertiary and quaternary basalts and andesites in western Nevada and their relation to geothermal potential. Final report, October 1, 1982-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Fultz, L.A.; Bell, E.J.; Trexler, D.T.


    This research was undertaken to characterize the late Cenozoic volcanic rocks associated with active geothermal systems in west-central Nevada. Petrographic and microprobe, geochemical and isotopic analysis and age dating techniques were used to characterize these young volcanic rocks. These data were combined with the limited data previously reported in the literature on these same volcanic areas to interpret their petrogenesis. The overall characterization resulted from integrating the petrogenesis with a structural-tectonic model of the region. Potassium-argon isotopic ages ranging up to 14 million years were determined for eight localities within the Reno 1 x 2/sup 0/ study region. These ages are consistent with the morphology of the volcanic landforms, the active geothermal systems associated with them, and with other isotopic ages reported in the literature for these and similar rocks within the study region. Petrographic analysis of hand specimens and thin-sections indicated mineralogic assemblages of the respective rock types and specific mineral textures and phenocryst compositions and characteristics. These identifications were further substantiated by microprobe analysis of selected phenocrysts and groundmass phases. Classification of the respective rock types was also based on chemical composition and normative calculations using the program PETCAL. Basaltic andesites are identified and described for Steamboat Hills, Table Mountain, Silver Springs, Churchill Butte, Cleaver Peak, Desert Peak and Carson City sites.

  2. Petrogenesis of Miocene alkaline volcanic suites from western Bohemia. Whole rock geochemistry and Sr-Nd-Pb isotopic signatures.

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Krmíček, Lukáš; Tomek, Č.; Lloyd, F. E.; Ladenberger, A.; Ackerman, Lukáš; Balogh, K.


    Roč. 76, č. 1 (2016), s. 77-93 ISSN 0009-2819 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic alkaline volcanism * Geochemistry * K-Ar ages * Sr-Nd-Pb isotopes Subject RIV: DD - Geochemistry Impact factor: 1.380, year: 2016

  3. Interactions between magma and the lithospheric mantle during Cenozoic rifting in Central Europe (United States)

    Meyer, Romain; Elkins-Tanton, Linda T.


    During the Cenozoic, extensive intraplate volcanic activity occurred throughout Central Europe. Volcanic eruptions extend over France (the Massif Central), central Germany (Eifel, Vogelsberg, Rhön; Heldburg), the Czech Republic (the Eger graben) and SW Poland (Lower Silesia), a region ~1,200 km wide. The origin of this predominantly alkaline intraplate magmatism is often genetically linked to one or several mantle plumes, but there is no convincing evidence for this. We have measured Pb isotope ratios, together with major and trace elements, in a representative set of mafic to felsic igneous rocks from the intra-plate Cenozoic Rhön Mts. and the Heldburg dike swarm in order to gain insight into the melting source and petrogenetic history of these melts. Three different mafic rock types (tholeiitic basalt, alkali basalt, basanite) were distinguished based on petrography and geochemistry within the investigated areas. Except for the lherzolite-bearing phonolite from the Veste Heldburg all other evolved magmas are trachytes. REE geochemistry and calculated partial melting modeling experiments for the three mafic magma types point to different degrees of partial melting in a garnet-bearing mantle source. In addition a new version of the ternary Th-Hf-Ta diagram is presented in this study as a useful petrological tool. This diagram is not only able to define potentially involved melting source end-members (e.g. asthenosphere, sub-continental lithospheric mantle and continental crust) but also interactions between these members are illustrated. An advantage of this diagram compared to partial melting degree sensitive multi-element diagrams is that a ternary diagram is a closed system. An earlier version of this diagram has been recently used to establish the nature and extent of crust mantle melt interaction of volcanic rifted margins magmas (Meyer et al. 2009). The Th-Hf-Ta geochemistry of the investigated magmas is similar to spinel and garnet xenoliths from different

  4. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate (United States)

    Yang, Ting; Moresi, Louis; Zhao, Dapeng; Sandiford, Dan; Whittaker, Joanne


    Northeast Asia underwent widespread rifting and magmatic events during the Cenozoic. The geodynamic origins of these tectonic events are often linked to Pacific plate subduction beneath Northeast Asia. However, the Japan Sea did not open until the late Oligocene, tens of millions of years after Pacific Plate subduction initiation in the Paleocene. Moreover, it is still not clear why the Baikal Rift Zone extension rate increased significantly after the late Miocene, while the Japan Sea opening ceased at the same time. Geodynamic models suggest these enigmatic events are related to the rapidly-aging Pacific Plate at the trench after Izanagi-Pacific spreading ridge subduction. Subduction of the young Pacific Plate delayed the Japan Sea opening during the Eocene while advection of the old Pacific Plate towards the trench increases seafloor age rapidly, allowing the Japan Sea to open after the early Miocene. The Japan Sea opening promotes fast trench retreat and slab stagnation, with subduction-induced wedge zone convection gradually increasing its extent during this process. The active rifting center associated with wedge zone convection upwelling also shifts inland-ward during slab stagnation, preventing further Japan Sea spreading while promoting the Baikal Rift Zone extension. Our geodynamic model provides a good explanation for the temporal-spatial patterns of the Cenozoic tectonic and magmatic events in Northeast Asia.

  5. Asthenospheric counterflows beneath the moving lithosphere of Central and East Asia in the past 90 Ma: volcanic and tomographic evidence (United States)

    Rasskazov, Sergei; Chuvashova, Irina; Kozhevnikov, Vladimir


    Asthenospheric counterflows, accompanied motions of the lithosphere in Central and East Asia, are defined on basis of spatial-temporal activity of mantle sources [Rasskazov et al., 2012; Rasskazov, Chuvashova, 2013; Chuvashova, Rasskazov, 2014] and the tomographic model of the Rayleigh wave group velocities [Kozhevnikov et al., 2014]. The opposite fluxes are defined relative to centers of convective instability (low-velocity anomalies), expressed by thinning of the mantle transition layer under Southwestern Gobi (44 °N, 95 °E) and Northern Baikal (52 °N, 108 °E). Cretaceous-Paleogene volcanic fields in Southern Gobi are shifted eastwards relative to the former anomaly over 600 km with the opposite sub-lithospheric flux at depths of 150-300 km. Likewise, the Late Tertiary Vitim volcanic field is shifted relative to the latter anomaly over 100-200 km. We suggest that the Gobi and Baikal asthenospheric counterflows contributed to the rollback mechanism of downgoing slab material from the Pacific under the eastern margin of Asia in the Cretaceous-Paleogene and Early-Middle Miocene. The east-west Gobi reverse flux, caused by differential block motions in front of the Indo-Asian convergence, resulted in the oblique Honshu-Korean flexure of the Pacific slab that propagated beneath the continental margin, while the Japan Sea was quickly opening at about 15 Ma. The Baikal N60°W reverse flux, originated due to oncoming traffic between Eurasia and the Pacific plate, entailed the formation of the Baikal Rift Zone and direct Hokkaido Amur slab flexure [Rasskazov et al., 2004]. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328). References Chuvashova I.S., Rasskazov S.V. Magmatic sources in the mantle of the evolving Earth. Irkutsk: Publishing House of the Irkutsk State University, 2014. 310 p. (in Russian) Kozhevnikov V.M., Seredkina A.I., Solovei O.A. 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion

  6. Refined permo-triassic paleomagnetic pole for the Siberian platform and geomagnetic secular variations at the Paleozoic-Mesozoic boundary as recorded in volcanic traps key sections of northern Siberia (United States)

    Pavlov, V. E.; Veselovskiy, R. V.; Khokhlov, A.; Latyshev, A. V.; fluteau, F.


    Two new volcanic key sections of the Siberian traps erupted ~ 250 million years ago have been studied in the Norilsk region (NW of the Siberian platform). Along with results obtained earlier from both this area (Heunemann et al., 2004) and Maymecha-Kotuy region (northern Siberian platform, Pavlov et al., 2011) these data constitute rather extensive database, including paleomagnetic information on about 200 volcanic flows. Using this information we can not only get refined permo-triassic paleomagnetic pole for the Siberian platform, based exceptionally on lava flows data, but also estimate amplitude of geomagnetic secular variation at the Paleozoic-Mesozoic boundary and check their compatibility with statistic models, suggested for description of recent (Late Cenozoic) Earth's magnetic field. Moreover, our results can be also used to obtain additional time constraints on duration of the trap emplacement and to isolate volcanic pulses within the traps sections. We present a report where we discuss all these topics. This work was supported by grants NSF # EAR 0807585 and RBRF #09-05-01180, 11-05-00601,10-05- 00557.

  7. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.


    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  8. Eocene volcanism and the origin of horizon A (United States)

    Gibson, T.G.; Towe, K.M.


    A series of closely time-equivalent deposits that correlate with seismic reflector horizon A exists along the coast of eastern North America. These sediments of Late-Early to Early-Middle Eocene age contain an authigenic mineral suite indicative of the alteration of volcanic glass. A volcanic origin for these siliceous deposits onshore is consistent with a volcanic origin for the cherts of horizon A offshore.

  9. Cenozoic deformation from the Yakutat-North American collision to the eastern margin of the Northern Canadian Cordillera (United States)

    Enkelmann, E.


    The western margin of the Northern Cordillera of North America is dominated by transform motion of the Yakutat microplate along the Fairweather fault system. In southeast Alaska the transform boundary changes to convergence and the oblique collision of the buoyant Yakutat microplate formed the St. Elias Mountains. One of the outstanding questions in understanding the St. Elias orogeny is how stress from the plate boundary has been transferred inboard and distributed strain in the North American plate. The timing, amount, and spatial pattern of deformation and rock exhumation have been studied using multiple thermochronology methods. Together the data reveal that Late Cenozoic deformation inboard of the Fairweather Fault and the colliding Yakutat plate corner at the St. Elias syntaxis was spatially very limited, resulting in rock exhumation within a cooling associated with Cordilleran deformation, and Paleocene-Eocene cooling due to spreading-ridge subduction. In contrast, the region west of the St. Elias syntaxis is dominated by convergence, which resulted in significant Cenozoic deformation in southeastern and southern Alaska. In the St. Elias orogen itself, most of the Late Cenozoic deformation and exhumation occurs within the Yakutat microplate and its Cenozoic sedimentary cover that composes the fold-thrust belt. The efficient interaction between tectonic uplift and glacial erosion resulted in rapid exhumation (>1 km/Myr) and extreme rates (4 km/Myr) that are localized at the syntaxis region and have shifted southward over the past 10 Myr. Far-field deformation reaches more than 500 km to the northwest of the convergent margin and caused mountain building in south-central Alaska. Deformation to the northeast is unclear. New thermochronology data from the eastern margin of the Northern Canadian Cordillera (Northwest Territory) reveal exhumation during the Oligocene to early Miocene. At this time, transform motion was already dominating the plate margin in the

  10. Cenozoic planktonic marine diatom diversity and correlation to climate change (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas


    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  11. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  12. The impacts of Cenozoic climate and habitat changes on small mammal diversity of North America (United States)

    Samuels, Joshua X.; Hopkins, Samantha S. B.


    Through the Cenozoic, paleoclimate records show general trends of global cooling and increased aridity, and environments in North America shifted from predominantly forests to more open habitats. Paleobotanical records indicate grasses were present on the continent in the Eocene; however, paleosol and phytolith studies indicate that open habitats did not arise until the late Eocene or even later in the Oligocene. Studies of large mammalian herbivores have documented changes in ecomorphology and community structure through time, revealing that shifts in mammalian morphology occurred millions of years after the environmental changes thought to have triggered them. Smaller mammals, like rodents and lagomorphs, should more closely track climate and habitat changes due to their shorter generation times and smaller ranges, but these animals have received much less study. To examine changes in smaller mammals through time, we have assembled and analyzed an ecomorphological database of all North American rodent and lagomorph species. Analyses of these data found that rodent and lagomorph community structure changed dramatically through the Cenozoic, and shifts in diversity and ecology correspond closely with the timing of habitat changes. Cenozoic rodent and lagomorph species diversity is strongly biased by sampling of localities, but sampling-corrected diversity reveals diversity dynamics that, after an initial density-dependent diversification in the Eocene, track habitat changes and the appearance of new ecological adaptations. As habitats became more open and arid through time, rodent and lagomorph crown heights increased while burrowing, jumping, and cursorial adaptations became more prevalent. Through time, open-habitat specialists were added during periods of diversification, while closed-habitat taxa were disproportionately lost in subsequent diversity declines. While shifts among rodents and lagomorphs parallel changes in ungulate communities, they started

  13. Can rain cause volcanic eruptions? (United States)

    Mastin, Larry G.


    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  14. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic? (United States)

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J


    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  15. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  16. Evidence in Variscan Corsica of a brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a high-temperature/low-pressure metamorphic peak in the lower crust

    International Nuclear Information System (INIS)

    Rossi, Philippe; Cocherie, Alain; Fanning, C. Mark


    The U2 group of plutonic rocks constituting the main exposed part of the Corsica-Sardinia batholith (CSB) was emplaced from 308 to 275 Ma (the early Visean U1 group of Mg-K intrusions is not considered here). Field evidence earlier established volcanic-plutonic relationships in the U2 group of calc-alkaline intrusions of the CSB, though detailed chronological data were still lacking. Large outcrops of U2 volcanic formations are restricted to the less eroded zone north-west of the Porto-Ponte Leccia line in Corsica, but volcanic and volcano-sedimentary formations were widely eroded elsewhere since Permian times. They probably covered most of the batholith before the Miocene, as testified by the volcanic nature of the pebbles that form much of the Early Miocene conglomerates of eastern Corsica. U-Pb zircon dating (SHRIMP) was used for deciphering the chronology and duration of different volcanic pulses and for better estimating the time overlap between plutonic and volcanic rock emplacement in the CSB. The obtained ages fit well with field data, showing that most of the U2 and U3 volcanic formations were emplaced within a brief time span of roughly 15 m.y., from 293 to 278 Ma, coeval with most U2 monzo-granodiorites and leuco-monzo-granites (295-280 Ma), alkaline U3 complexes (about 288 Ma), and mafic-ultramafic tholeiitic complexes (295-275 Ma). The same chronological link between deep-seated magma chambers and eruptions was identified in the Pyrenees. These results correlate with U-Pb zircon dating of HT-LP granulites from the Variscan deep crust exhumed along the 'European' margin of the thinned Tethys margin in Corsica and Calabria. Here, the peak of the low-pressure/high-temperature metamorphism was dated at about 285-280 Ma. Our results throw light on the condition of magma production during the orogenic collapse in the southern Variscan realm. While juvenile tholeiitic basaltic magma was produced by the melting of spinel mantle lithosphere, all

  17. Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current

    International Nuclear Information System (INIS)

    Ladant, J.B.; Donnadieu, Y.; Dumas, C.


    The timing of the onset of the Antarctic Circumpolar Current (ACC) is a crucial event of the Cenozoic because of its cooling and isolating effect over Antarctica. It is intimately related to the glaciations occurring throughout the Cenozoic from the Eocene - Oligocene (EO) transition (∼ 34 Ma) to the middle Miocene glaciations (∼ 13.9 Ma). However, the exact timing of the onset remains debated, with evidence for a late Eocene setup contradicting other data pointing to an occurrence closer to the Oligocene - Miocene (OM) boundary. In this study, we show the potential impact of the Antarctic ice sheet on the initiation of a strong proto- ACC at the EO boundary. Our results reveal that the regional cooling effect of the ice sheet increases sea ice formation, which disrupts the meridional density gradient in the Southern Ocean and leads to the onset of a circumpolar current and its progressive strengthening. We also suggest that subsequent variations in atmospheric CO 2 , ice sheet volumes and tectonic reorganizations may have affected the ACC intensity after the Eocene - Oligocene transition. This allows us to build a hypothesis for the Cenozoic evolution of the Antarctic Circumpolar Current that may provide an explanation for the second initiation of the ACC at the Oligocene - Miocene boundary while reconciling evidence supporting both early Oligocene and early Miocene onset of the ACC. (authors)

  18. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone (United States)

    Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R.


    Analysis of late Mesozoic and Cenozoic sedimentary basins, metamorphic rocks, and major faults in the eastern and central Alaska Range documents the progressive development of a suture zone that formed as a result of collision of an island-arc assemblage (the Wrangellia composite terrane) with the former North American continental margin. New basin-analysis, structural, and geochronologic data indicate the following stages in the development of the suture zone: (1) Deposition of 3-5 km of Upper Jurassic-Upper Cretaceous marine strata (the Kahiltna assemblage) recorded the initial collision of the island-arc assemblage with the continental margin. The Kahiltna assemblage exposed in the northern Talkeetna Mountains represents a Kimmeridgian-Valanginian backarc basin that was filled by northwestward-flowing submarine-fan systems that were transporting sediment derived from Mesozoic strata of the island-arc assemblage. The Kahiltna assemblage exposed in the southern Alaska Range represents a Valanginian-Cenomanian remnant ocean basin filled by west-southwestward-flowing submarine-fan systems that were transporting sediment derived from Paleozoic continental-margin strata uplifted in the along-strike suture zone. A belt of retrograde metamorphism and a regional anticlinorium developed along the continental margin from 115 to 106 Ma, roughly coeval with the end of widespread deposition in the Kahiltna sedimentary basins. (2) Metamorphism of submarine-fan deposits of the Kahiltna basin, located near the leading edge of the island-arc assemblage, occurred at ca. 74 Ma, as determined from a new U-Pb zircon age for a synkinematic sill. Coeval with metamorphism of deposits of the Kahiltna basin in the southern part of the suture zone was development of a thrust-top basin, the Cantwell basin, in the northern part of the suture zone. Geologic mapping and compositional data suggest that the 4 km of Upper Cretaceous nonmarine and marginal marine sedimentary strata in this basin

  19. Metallogenetic regularity exploration model and prospecting potential of the mesocenozoic volcanic type uranium deposit in the east of south China

    International Nuclear Information System (INIS)

    Wang Yusheng; Li Wenjun


    During the Meso-Cenozoic era, the crust in the east of South China experienced an evolutional process of compression-relaxed extension-local disintegration, correspondingly, three periods of volcanic activity were developed, forming initial volcanic cycle, principal volcanic cycle and caldera volcanic cycle. The caldera volcanic cycle was expressed as a 'bimodal type' rock suite, indicating the entering of the region into an evolutional stage of new embryonic refitting. The volcanic type uranium deposit is characterized by ore-formation during caldera volcanic cycle, ore control by the mobile belt of caldera volcanic cycle and double superposition and concentration, and it can be summarized as a new unconformity-related type uranium deposit of caldera volcanic series, which is divided into three morphological types: body type, layer type and vein type and relevant exploration models are proposed. The new unconformity-related type uranium deposits of the caldera volcanic series in the east of South China have a great prospecting potential. The tectonomagmatic complex area of the caldera volcanic cycle developed on the granite basement is the favourable target area in searching for large uranium deposits from now on

  20. Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation (United States)

    Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.


    Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.

  1. The gap in the Arctic Cenozoic Record: Expect the Unexpected (United States)

    Sangiorgi, F.; Brumsack, H.; Schouten, S.; Brinkhuis, H.; Kaminski, M. A.; Reichart, G.; Stickley, C. E.; Willard, D. A.; Sinninghe Damste', J. S.


    Integrated Ocean Drilling Program Expedition 302, a.k.a. the Arctic Coring Expedition (ACEX), drilled more than 400 meters below the seafloor at the central Lomonosov Ridge, ca 250 km from the modern North Pole in water depths of about 1300 m. The partially recovered sediments provide a unique record of the geological and paleoceanographical evolution of the Arctic Ocean during the Cenozoic. The record indicates a transition from a "greenhouse world", characterized by a relative shallow marine setting, with organic-rich sediment and frequent brackish or even fresh surface waters during the latest Palaeocene and the early Eocene, to an "icehouse world" of hemipelagic sedimentation affected by the occurrence of sea ice from the middle Miocene to present. Much to our surprise, these two states are separated by a major hiatus, not obvious from the seismic record and the lithology of the cores, spanning at least 25 Ma as derived from dinocyst and benthic foraminifer stratigraphies. These testify that deposits of probable late early Miocene age directly overlie early middle Eocene sediments. To unravel the nature of the hiatus, we performed a multiproxy micropaleontological and geochemical study on the surrounding record, i.e. lithological units 1/6, 1/5 and 1/4, where the sediment changes from homogeneous dark into a cm-scaled alternation ("zebra-like") black and grey bands to light grey, blue and reddish-brown. Paleoenvironmental reconstructions based on organic-walled dinoflagellate cysts, pollen and spores, benthic foraminifera, inorganic and organic geochemistry and siliceous remains reveal conspicuous changes, suggesting a transition from brackish-freshwater to shallow-lagoonal and to open marine environments. These environmental turnovers, coupled with the occurrence of such a large hiatus, cannot be due to climatic shifts alone, but suggest that major tectonic rearrangements likely changed the depositional setting. On-going organic geochemical analysis will be

  2. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    International Nuclear Information System (INIS)

    Cemen, I; Catlos, E J; Gogus, O; Diniz, E; Hancer, M


    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  3. Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau (United States)

    Craddock, William H.; Kirby, Eric; Zhang, Huiping; Clark, Marin K.; Champagnac, Jean-Daniel; Yuan, Daoyang


    The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ∼0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.

  4. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose


    the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western margin...... that Plio-Pleistocene erosion over-deepened a pre-existing topography....

  5. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China (United States)

    Wang, M.


    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  6. Volcanic stratigraphy: A review (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio


    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  7. Sedimentology and paleoenvironments of a new fossiliferous late Miocene-Pliocene sedimentary succession in the Rukwa Rift Basin, Tanzania (United States)

    Mtelela, Cassy; Roberts, Eric M.; Hilbert-Wolf, Hannah L.; Downie, Robert; Hendrix, Marc S.; O'Connor, Patrick M.; Stevens, Nancy J.


    This paper presents a detailed sedimentologic investigation of a newly identified, fossiliferous Late Neogene sedimentary succession in the Rukwa Rift Basin, southwestern Tanzania. This synrift deposit is a rare and significant new example of a fossiliferous succession of this age in the Western Branch of East Africa Rift System. The unit, informally termed the lower Lake Beds succession, is late Miocene to Pliocene in age based on cross-cutting relationships, preliminary biostratigraphy, and U-Pb geochronology. An angular unconformity separates the lower Lake Beds from underlying Cretaceous and Oligocene strata. Deposition was controlled by rapid generation of accommodation space and increased sediment supply associated with late Cenozoic tectonic reactivation of the Rukwa Rift and synchronous initiation of the Rungwe Volcanic Centre. The lower Lake Beds, which have thus far only been identified in three localities throughout the Rukwa Rift Basin, are characterized by two discrete lithologic members (herein A and B). The lower Member A is a volcanic-rich succession composed mostly of devitrified volcanic tuffs, and volcaniclastic mudstones and sandstones with minor conglomerates. The upper Member B is a siliciclastic-dominated succession of conglomerates, sandstones, mudstones and minor volcanic tuffs. Detailed facies analysis of the lower Lake Beds reveals various distinctive depositional environments that can be grouped into three categories: 1) alluvial fan; 2) fluvial channel; and 3) flood basin environments, characterized by volcanoclastic-filled lakes and ponds, abandoned channel-fills and pedogenically modified floodplains. Member A represents a shallow lacustrine setting filled by tuffaceous sediments, which grade up into a system of alluvial fans and high-energy, proximal gravel-bed braided rivers. An unconformity marks the contact between the two members. Member B shows an upward transition from a high-energy, gravel-bed braided river system to a sandy

  8. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang


    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  9. Mesozoic to Cenozoic magmatic history of the Pamir (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo


    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  10. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq (United States)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.


    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  11. The III working days of the Cenozoic

    International Nuclear Information System (INIS)


    The third working days in geology were organized by the Uruguayan Society of geology and took place in DINAMIGE in June - 2012. The lectures were given by national and foreign professionals and included important topics such as mineral raw materials used in the archaeological artifacts in Guayacas - Dayman - Paysandu . The Holocene in the coastal zone of Uruguay. Aspect of the early human occupation in Uruguay. Change effects in the land use about the mineral clay (eucalyptus forestation, illite). Paleoclimatic and paleoenvironmental reconstruction for middle and late holocene (Rocha). Gas hydrate resource quantification in Uruguay. Application of the geophysical techniques in the environmental pollution in Montevideo - Piriapolis. Environmental evolution and builders of small hills in India Muerta zone. Human or natural forcing in the geomorphological processes in Pocitos and Ramirez beaches (80 years of aerophotographic records).Tipology and nomenclature proposal for technological soil. Quarries reconditioning methodology. Hydraulic conductivity in sugar cane cultivated in soils previous vinaza application. Paleosoils and pedogenic calcretes formations in Fray Bentos (Oligocene - early miocene) Raigon (late pliocene and Middle pleistocene) and Libertad (early - middle pleistocene). Tectonics and sedimentary process in the continental talud in Uruguay. Rio de la Plata as paleoenvironmental focus using diatomos as proxies. Oleistocene mammals in the late-early Holocene in Santa Lucia river basin (Uruguay southern). Anthropization in Montevideo Bay during the Holocene. Paleocene stratigraphic plays in Uruguay offshore. Continental Influence versus marine transition in Rio de la Plata zone - internal continental shelf of the South Atlantic - a multiproxy study. Macrofossils vegetable in Palmar formation (later pleistocene) in Entre Rios - Argentina. Phytolith analysis in quaternary fluvial sediment (plio-pleistocene) in San Salvador and Palmar formation - Uruguay

  12. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California (United States)

    Taylor, Emily M.; Sweetkind, Donald S.


    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  13. Stratigraphy and Folding in the Cenozoic Cover of a Fold-Thrust Belt in the Nallıhan Region (Ankara, Central Turkey) (United States)

    Karaaǧaç, Serdal; Koral, Hayrettin


    This study investigates stratigraphy and structural features in the Cenozoic sedimentary sequence of the fold-thrust belt of the Nallıhan-Ankara region, located to the north of the İzmir-Ankara-Erzincan Suture Zone. Permian-Triassic age marble intercalated with schist-phyllites, the upper Jurassic-lower Cretaceous age limestone and the upper Cretaceous age sandstone-shale alternation compose the basement in the study area. These rocks are unconformably overlain by the Cenozoic age terrestrial sedimentary and volcanic units. The Cenozoic stratigraphy begins with the Paleocene-Eocene age coal-bearing, at times, volcanic intercalated conglomerate-sandstone-mudstone alternation of alluvial-fluvial origins (Aksaklar Formation) and the tuff intercalated with lacustrine limestone, bituminous limestone (Kabalar Formation). These units are conformably overlain by the Eocene age basalt-andesite and pyroclastic rocks (Meyildere volcanics). The Paleocene-Eocene aged units are unconformably overlain by the conglomerate-sandstone-mudstone-marl of a lower-middle Miocene lacustrine environment (Hançili Formation). The terrestrial conglomerate-sandstone alternation (Örencik Formation) is the youngest unit in the Cenozoic stratigraphy, and is assumed to be of Pliocene age based its stratigraphic position on older units. Field study shows existence of both folds and faults in the sedimentary cover. Stereographic projections of bedding measured in the field shows N25W/45NW and N60W/4SE-oriented fold axes in the Paleocene-Eocene age units. There are also N76W/12SE and N88E/8NE-oriented folds. The difference in fold-axis orientations suggests that some folds may have been rotated in blocks bound by faults during the post-Paleocene/Eocene period. Whereas, the lower-middle Miocene units manifest N88W/13SE-oriented fold axes. It is thus proposed that the observed difference in the azimuth of fold axes represent two different folding phases, one with NE-SW and the other with N

  14. Volcanism on Io (United States)

    Davies, Ashley Gerard


    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  15. Warm water upwelling in the Cenozoic Era (United States)

    Zhang, Y.


    Modern observations show that the occurrence of wind-driven upwelling is often tied to cold sea surface temperatures (SSTs). However, SST reconstructions indicate that globally, the upwelling regions were much warmer in the Miocene and Pliocene. This questions the overall strength of deep-water upwelling in the geological past, with important implications for the associated atmospheric, climatic and biogeochemical processes, and the fate of upwelling regions in a high-CO2 world. We recently showed that the eastern equatorial Pacific (EEP) was characterized by strong air-sea disequilibrium of CO2 during the late Miocene - Pliocene. Combined with export productivity proxies, we interpreted these as signs of vigorous upwelling. The upwelled waters were nutrient- and CO2-rich, but warm. The cause of the "excess" warming in the upwelling regions is linked to the source waters which originated from the higher latitudes. In other words, the reduced east (upwelling) to west (non-upwelling) temperature gradients along the equator in major ocean basins are rooted in the reduced meridional temperature gradients. To further test this hypothesis, we examine the history of the EEP and temperature gradients during the even-warmer Eocene - middle Miocene.

  16. A synthesis of Cenozoic sedimentation in the North Sea

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Rasmussen, E.S.


    study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic...... characteristics of many unconformities indicate that they were generated by eustatic sea-level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer...

  17. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    International Nuclear Information System (INIS)

    Reheis, M.C.; Noller, J.S.


    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs

  18. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua


    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  19. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils (United States)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.


    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  20. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Ulrych, Jaromír; Řanda, Zdeněk; Erban, V.; Hegner, E.; Magna, T.; Balogh, K.; Frána, Jaroslav; Lang, Miloš; Novák, Jiří Karel

    224/225, May (2015), s. 256-271 ISSN 0024-4937 R&D Projects: GA AV ČR IAA3048201 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : phonolite * trachyte * Sr–Nd–Li isotopes * Cenozoic alkaline volcanism * Ohře (Eger) Rift * Bohemian Massif Subject RIV: DD - Geochemistry Impact factor: 3.723, year: 2015

  1. Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.


    New 40Ar/39Ar analyses constrain the formation of the volcanic succession of Sierra de Palaoco in the present back-arc of the Andean Southern Volcanic Zone (SVZ), near 36°S, to the Late Miocene and assigns them to the Huincán II Formation. The composition of major and trace elements, Sr, Nd and P...

  2. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  3. Cenozoic geology of the Yolomécatl-Tlaxiaco area, Northwestern Oaxaca, Southeastern Mexico: Stratigraphy, structure and regional significance (United States)

    Ferrusquía-Villafranca, Ismael; Ruiz-González, José E.; Torres-Hernández, José Ramón; Anderson, Thomas H.; Urrutia-Fucugauchi, Jaime; Martínez-Hernández, Enrique; García-Villegas, Felipe


    The Yolomécatl-Tlaxiaco Area, lies in the rugged Sierra Madre del Sur (SMS) of northwestern Oaxaca (YOTLA), southeastern Mexico. Within the area Cenozoic units unconformably overlie metamorphic, clastic and carbonate rock units of Late Paleozoic to Cretaceous ages as well as the Mixteco/Oaxaca Terrane boundary. The Cenozoic sequence, emphasized herein, includes from botton to top: (1) basal, calcilithitic Early Tertiary Tamazulapam Conglomerate, (2) andesitic lava flows of Nduayaco "Group," (3-4) Epiclastic/pyroclastic strata composing Yolomécatl Formation (∼40.3 ± 1.0 Ma), and Tayata Pyroepiclastics (5) Early Oligocene (∼32.9 Ma), felsic, pyroclastic Nundichi "Group," (6) Late Oligocene (∼27.7 ± 0.7 Ma) andesitic lava flows of Nicananduta "Group" containing intercalations of unit (7) ?Chilapa Formation (largely lacustrine). Quaternary deposits unconformably overlie the sequence. The structural record includes NNW-SSE folds in the Mesozoic units, and one in Tayata Pyroepiclastics, as well as numerous fractures/faults of diverse types, whose pattern seems to roughly define four geographic/structural domains, NW, SW, S, and E. The Tertiary sequence records four magmatic and six deformational events: Pre-Late Eocene Extension accommodated by the Tamazulapam fault, along which magma of the Nduayaco "Group" moved upward. The next episode is the earliest Late Eocene extension recorded by the Yucuxaco-Santa Cruz Tayata fault was followed by accumulation of Yolomécatl Formation, Tayata Pyroepiclastics, and synsedimentary emplacement of tuff sheets at ∼40.3 ± 1.0 Ma. After this date, left lateral transpression emplaced a Teposcolula Limestone block over Nduayaco "Group" and ?Yolomécatl Formation, whereas the Tayata Pyroepiclastics was folded into an open anticline. Movement along the Yucuxaco-Santa Cruz Tayayata fault suite influenced accumulation of the Nundichi "Group" strata ca. ∼32.9 Ma. Subsequent ENE-WSW extension affected the Nundichi "Group," partly

  4. Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone (United States)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta


    Mantle xenoliths in Neogene-Quaternary basaltic rocks related to the European Cenozoic Rift System serve to assess the evolution of the subcontinental lithospheric mantle beneath the Catalan Volcanic Zone in NE Spain. Crystallographic preferred orientations, major element composition of minerals, and temperature and pressure estimates have been used to this end. The mantle consists of spinel lherzolites, harzburgites and subordinate websterites. Protogranular microstructures are found in all peridotites and websterites, but lherzolites also display finer-grained porphyroclastic and equigranular microstructures. The dominant olivine deformation fabric is [010] fiber, but subordinate orthorhombic and [100]-fiber types are also present, especially in porphyroclastic and equigranular lherzolites. The fabric strength (J index = 10.12-1.91), equilibrium temperature and pressure are higher in xenoliths with [010]-fiber fabric and decrease in those with orthorhombic and [100]-fiber type. Incoherence between olivine and pyroxene deformation fabric is mostly found in porphyroclastic and equigranular lherzolites. Seismic anisotropy, estimated from the crystal preferred orientations, also decreases (AVp = 10.2-2.60%; AVs max = 7.95-2.19%) in porphyroclastic and equigranular lherzolites. The olivine [010]-fiber fabric points to deformation by simple shear or transpression which is likely to have occured during the development of late-Hercynian strike-slip shear zones, and to subsequent annealing during late Hercynian decompression, Permian and Cretaceous rifting. Also, it cannot be excluded that the percolation of mafic magmas during these extensional events provoked the refertilization of the lithospheric mantle. However, no clear relationship has been observed between fabric strength and mineral mode and composition. Later transtensional deformation during late Alpine orogenesis, at higher stress and decreasing temperature and pressure, transformed the earlier fabric into

  5. Volcanic Rocks and Features (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  6. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.


    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  7. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China: Evidence from apatite fission track analysis

    Directory of Open Access Journals (Sweden)

    Wenhao Tang


    Full Text Available Apatite fission track (AFT analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0–13.2 μm mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassic–early Cretaceous and the Oligocene–Miocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (>100 Ma, recording the earlier rapid uplift phase during the late Jurassic–Cretaceous, while the ages in the north piedmont of the Bogda Mountain (namely the northeast part are younger (<60 Ma, mainly reflecting the later rapid uplift phase in the Oligocene–Miocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.

  8. Volcanic ash in ancient Maya ceramics of the limestone lowlands: implications for prehistoric volcanic activity in the Guatemala highlands (United States)

    Ford, Anabel; Rose, William I.


    In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.

  9. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic. (United States)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice


    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO 2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO 2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  10. Uranium and thorium in Cenozoic basaltods of Kamchatka

    International Nuclear Information System (INIS)

    Puzankov, Yu.M.


    Regularities in distribution of radioactive elements (RAE) in basaltoids of Kamchatka have been analyzed. The RAE concentration in samples was determined by γ-spectrometric method. The results compared with the instrumental neutron-activation analysis data are found to be in agreement. Results of evaluating the average contents of U, Th and roch-forming elements in ce-- nozoic basaltoids are presented. The radiogeochemical data enable to associate the origin of the Kamchatka Cenozoic basaltoids with both fractional melting of the upper mantle depleted of radioactive elements and the development of magmatic chambers in submerged blocks of the Pre-Cretaceous melanocratic basement the composition of which is close to oceanic tholeiite

  11. Fossil Cenozoic crassatelline bivalves from Peru: New species and generic insights

    Directory of Open Access Journals (Sweden)

    Thomas J. DeVries


    Full Text Available Discoveries of new fossil Cenozoic crassatellines in Peru provide a new phylogenetic perspective on “large” Neogene genera, in which four lineages are considered to have arisen independently from different Paleogene Crassatella ancestors. Latest Oligocene and early Miocene species of the new genus Tilicrassatella gen. nov.―T. ponderosa, T. torrens sp. nov., and T. sanmartini sp. nov. from the East Pisco Basin―probably evolved from the late Eocene species, Crassatella rafaeli sp. nov., which itself differed in significant respects from slightly older species of the East Pisco Basin, C. neorhynchus and C. pedroi sp. nov. The paciphilic genus, Hybolophus, is raised to full generic status. Added to its ranks are the East Pisco Miocene species H. maleficae sp. nov., H. terrestris sp. nov., and the oldest species of the genus, the late Eocene or Oligocene H. disenum sp. nov. from the Talara Basin of northern Peru. Kalolophus gen. nov., encompassing circum-Caribbean fossil species, the extant species, K. speciosus, and the trans-isthmus species, K. antillarum, appears to have evolved from the early Oligocene Floridian species, Crassatella portelli sp. nov. The genus Marvacrassatella is a western Atlantic Miocene lineage most likely descended from Kalolophus. The genus Eucrassatella is restricted to Australian and New Zealand taxa. The Eocene New Zealand species, Spissatella media, is transferred to Eucrassatella and deemed a candidate for the most recent common ancestor of younger Eucrassatella and all Spissatella species. In the southern Pacific Ocean, the circum-Caribbean region, and tropical western America, crassatelline lineages developed one or more of the following characters: large resilifers, smooth ventral margins, and an extended left anterior cardinal tooth. Some of these late Paleogene convergent character changes might have countered increased shear forces exerted on the crassatelline valves while burrowing into finer-grained and

  12. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.


    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  13. Feedbacks of lithosphere dynamics and environmental change of the Cenozoic West Antarctic Rift System.

    NARCIS (Netherlands)

    van der Wateren, F.M.; Cloetingh, S.A.P.L.


    This special issue of Global and Planetary Change contains 11 contributions dealing with various aspects of the Cenozoic West Antarctic Rift System. During the last two decades, investigations of the interplay of tectonics and climate greatly improved understanding of Cenozoic global change. Major

  14. Holocene evolution of the Tabasco delta – Mexico : impact of climate, volcanism and humans

    NARCIS (Netherlands)

    Nooren, C.A.M.


    This research revealed the impact of climate, volcanism and humans on the late Holocene evolution of a tropical delta in southern Mexico. Palynological, tephrochronological, limnological, geomorphological and sedimentological techniques have been applied to reconstruct the evolution of the

  15. Volcanic hazards to airports (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.


    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  16. Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest? (United States)

    Thompson, G.A.; Parsons, T.


    Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.

  17. Late Cenozoic climate and the phylogenetic structure of regional conifer floras worldwide

    NARCIS (Netherlands)

    Eiserhardt, W.L.; Borchsenius, F.; Sandel, B.; Kissling, W.D.; Svenning, J.-C.


    Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate

  18. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extintion in South America


    Tonni, Eduardo Pedro; Cione, Alberto Luis; Soibelzon, Leopoldo Héctor


    During the latest Pleistocene-earliest Holocene, South American terrestrial vertebrate faunas suffered one of the largest (and probably the youngest) extinction in the world for this lapse. Megamammals, most of the large mammals and a giant terrestrial tortoise became extinct in the continent, and several complete ecological guilds and their predators disappeared. This mammal extinction had been attributed mainly to overkill, climatic change or a combination of both. We agree with the idea th...

  19. A coccolithophore concept for constraining the Cenozoic carbon cycle (United States)

    Henderiks, J.; Rickaby, R. E. M.


    An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO>sub>2). To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing a constraint on pCO2 over the Cenozoic based on the physiological plasticity of extant coccolithophores. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of evolution of certain morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  20. Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate (United States)

    Gianni, G. M.; Echaurren, A.; Folguera, A.; Likerman, J.; Encinas, A.; García, H. P. A.; Dal Molin, C.; Valencia, V. A.


    Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44°30‧S-46°S) and the Andes (Meseta de Chalia, 46°S) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and variations in lithospheric strength. The occurrence of Eocene growth-strata ( 44-40 Ma) suggests that contraction in the Andes and the Patagonian broken foreland was linked to the Incaic phase. Detection of synextensional deposits suggests that the broken foreland collapsed partially during Oligocene to early Miocene. During middle Miocene times, the Quechua contractional phase produced folding of Neogene volcanic rocks and olistostrome deposition at 17 Ma. Finally, the presented Te map shows that intraplate contraction related to Andean phases localized preferentially along weak lithospheric zones (Te < 15 km). Hence, the observed strain distribution in the PBF appears to be controlled by lateral variations in the lithospheric strength. Variations in this parameter could be related to thermo-mechanical weakening produced by intraplate rifting in Paleozoic-Mesozoic times.

  1. Petrography, mineral chemistry and geochemistry of post-ophiolitic volcanic rocks in the Ratouk area (south of Gazik, east of Iran

    Directory of Open Access Journals (Sweden)

    Zahra Vahedi Tabas


    . Mollashahi, N., Zarrinkoub, M.H., Mohammadi, S.S. and Khatib, M.M., 2011. Petrology of young volcanic in Hamun Lake area (East of Iran. Iranian Journal of Crystallography and Mineralogy, 19(3: 519-528. (in Persian with English abstract Pang, K.W., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Yang, H.M., Chu, C.H., Lee, H.Y. and Lo, C.H., 2012. Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chemical Geology, 306-307: 40-53. Tirrul, R ., Bell, L.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1: 134-150. Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschmidt, K., 2006. Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos, 89(3: 447-477. Walker , R.T., Gans, P., Allen, M., Jackson, J., Khatib, M.M. and Zarrinkoub, M.H., 2009. Late Cenozoic Volcanism and rates of active faulting in eastern Iran. Geophysical Journal International, 177: 783-805.

  2. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    Nelson, C.S.; Cooke, P.J.


    subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO. (author). 104 refs., 9 figs., 3 tabs

  3. Triassic volcanic units in coastal region of Antofagasta, northern Chile

    International Nuclear Information System (INIS)

    Basso, M.; Cortes, J.A.; Marinovic, N


    U-Pb geochronological evidence of a Middle to Late Triassic volcanic event was found in the coastal region of Antofagasta, northern Chile (23 o -23 o 30 ). Two new ages were obtained from rhyolitic tuffs and an associated dome, which have classically been attributed to the Jurassic La Negra Formation (au)

  4. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting (United States)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Martos, Raquel; Roca, Eduard; Blanpied, Christian


    Based on field work and seismic reflection data, we investigate the Cenozoic tectono-sedimentary evolution offshore and onshore Ibiza allowing the proposal of a new tectonic agenda for the region and its integration in the geodynamic history of the West Mediterranean. The late Oligocene-early Miocene rifting event, which characterizes the Valencia Trough and the Algerian Basin, located north and south of the study area respectively, is also present in Ibiza and particularly well-expressed in the northern part of the island. Among these two rifted basins initiated in the frame of the European Cenozoic Rift System, the Valencia Trough failed rapidly while the Algerian Basin evolved after as a back-arc basin related to the subduction of the Alpine-Maghrebian Tethys. The subsequent middle Miocene compressional deformation was localized by the previous extensional faults, which were either inverted or passively translated depending on their initial orientation. Despite the lateral continuity between the External Betics and the Balearic Promontory, it appears from restored maps that this tectonic event cannot be directly related to the Betic orogen, but results from compressive stresses transmitted through the Algerian Basin. A still active back-arc asthenospheric rise likely explains the stiff behavior of this basin, which has remained poorly deformed up to recent time. During the late Miocene a new extensional episode reworked the southern part of the Balearic Promontory. It is suggested that this extensional deformation developed in a trans-tensional context related to the westward translation of the Alboran Domain and the coeval right-lateral strike-slip movement along the Emile Baudot Escarpment bounding the Algerian Basin to the north.

  5. Cenozoic Uplift and Climate Change of the Northeast Tibetan Plateau: Evidence from Leaf Wax Stable Isotopic Records (United States)

    Hou, M.; Zhuang, G.; Wu, M.


    Topics about the deformation history and uplift mechanism of Tibetan Plateau have been largely debated in the past few decades. Different geodynamic models present different predictions on the mountain building processes and hence the surface uplift history. For example, one tectonic model suggests a rapid uplift (>1.0 to 2.0 km) of the Tibetan Plateau in the period of ca. 10 to 8 Ma as result of isostatic rebound due to the removal of over-thickened mental lithosphere beneath. Whilst the stepwise uplift model infers that the high topography was growing progressively from south to north with the Northeast Tibetan Plateau being built in the Pliocene to present. In this case, the timing of Cenozoic uplift of Northeast Tibetan Plateau would provide information for distinguishing competing geodynamic processes. The stable isotope based paleoaltimetry holds the key to answering when the high topography was built. Additionally, the evolution of Cenozoic Asian climate was argued to be closely related to the high topography built up on the Tibetan Plateau since the India-Asian collision and/or impacted by the global change. To understand when the high topography was built and how the growth of Tibetan Plateau impacted the climate, we reconstructed the long-term histories of paleohydrology from hinterland and foreland basins in the Northeast Tibetan Plateau. We applied the compound-specific isotope hydrogen analysis to leaf wax n-alkanes (δ2Hn-alk) that are preserved in well-dated stratigraphic series (ca. 24 Ma to the present) in the Northeast Tibetan Plateau. The newly reconstructed δ2Hn-alk supports the inference of high topography on the Northeast Tibetan Plateau was built during the middle to late Miocene. Our inference is consistent with sedimentary and basement rock studies that show fundamental changes in facies and provenance and exhumation history. The new δ2Hn-alk record also reveals that the regional climate became drier since the middle Miocene following the

  6. Formation and uranium explorating prospect of sub-volcanic granitic complex and rich uranium ore deposit in South China

    International Nuclear Information System (INIS)

    Wang Yusheng


    The rich uranium ore deposits are all closely related to tecto-magmatism of late-magmatic cycle whether volcanic types or granitic types in south China. Volcanic type rich uranium deposit has closely relationship with sub-volcanic activity, and granitic type rich uranium deposit is also closely related to mid-fine, unequal particle small massif in late main invasion stage. Based on characteristics of magmatism, we name the rock sub-volcanic granite complex, which is a unique style and closely related to the formation of rich uranium ore deposit

  7. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei


    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  8. Study on Sr-Nd isotopes of mesozoic-cenozoic granites in Qinghai-Tibetan plateau

    International Nuclear Information System (INIS)

    Qiu Ruizhao; Deng Jinfu; Zhou Su; Xiao Qinghui; Cai Zhiyong


    Mesozoic-Cenozoic magmatic activities were intensive in Qinghai-Tibetan plateau. Nd-Sr isotopic compositions of representative granitic plutons in western Qinghai-Tibetan plateau are reported in this paper. Combining with past isotopic data, which has reported in eastern Qinghai-Tibetan plateau, Sr-Nd isotopic compositions and material source and genesis of Mesozoic and Cenozoic granites in Qinghai-Tibetan plateau have been studied. The research result indicates there are three types of granite existing in Qinghai-Tibetan plateau, the granites of Late stage of Yanshan Period which distributing on north and south boundary of Gandes block (namely in north and south granitic belts of Dangdes) and cause of oceanic crust subduction, have ( 87 Sr/ 86 Sr)i of 0.7041-0.7064, ε (Nd) t of +2.5 - +5.7 and TDM age of 312-562 Ma, positive ε Nd, low ( 87 Sr/ 86 Sr)i ratio and young Nd model ages suggest relatively high contents of mantle-derived components in their sources, and this type granite might melt from subduction oceanic crust. The granites occurred intra-Gangdes block which were caused by collision of continent and post-collision, have ( 87 Sr/ 86 Sr)i of 0.706-0.719, ε (Nd) t of -5.3 - -8.3 and TDM age of 1323-1496 Ma, negative ε Nd, relative high ( 87 Sr/ 86 Sr)i ratio with an mid-Proterozoic Nd model ages, suggest granite has the mixing genesis of mantle-derived components and old crustal components in their sources. With relatively small variation range in ε (Nd) t and TDM age, it might imply granitic isotopic source in Gandes block to keep relative homogenization in long period. The granites in Himalayan block which there is not oceanic material to join in melting and to cause of intra-continental subduction, has most ( 87 Sr/ 86 Sr)i ratio more than 0.720, ε (Nd) t of -10.3 - -16.3 and TDM age of 1792-2206 Ma, high ( 87 Sr/ 86 Sr)i ratio, low negative ε (Nd)t with old Nd isotopic model ages and consistent with the Sr, Nd isotopic compositions of basement

  9. Origins of the Asian-Australian monsoons related to Cenozoic plate movement and Tibetan Plateau uplift - A modeling study (United States)

    Liu, X.; Dong, B.; Yin, Z. Y.; Smith, R. S.; Guo, Q.


    The origin of monsoon is a subject that has attracted much attention in the scientific community and even today it is still controversial. According to geological records, there is conflicting evidence regarding the timings of establishment of the monsoon climates in South Asia, East Asia, and northern Australia. Additionally, different explanations for the monsoon origins have been derived from various numerical simulations. To further investigate the origin and evolution of the Asian and Australian monsoons, we designed a series of numerical experiments using a coupled atmospheric-oceanic general circulation model. Since the Indian-Australian plate has shifted its position significantly during the Cenozoic, together with the large-scale uplift of the Tibetan Plateau (TP), in these experiments we considered the configurations of ocean-land masses and large topographic features based on geological evidence of plate motion and TP uplift in 5 typical Cenozoic geological periods: mid-Paleocene ( 60Ma), late-Eocene ( 40Ma), late-Oligocene ( 25Ma), late-Miocene ( 10Ma), and present day. These experiments allowed us to examine the combined effects of the changes in the land-ocean configuration due to plate movement and TP uplift, they also provided insight into the effects of the high CO2 levels during the Eocene. The simulations revealed that during the Paleocene, the Indian Subcontinent was still positioned in the Southern Hemisphere (SH) and, therefore, its climate behaved as the SH tropical monsoon. By the late Eocene, it moved into the tropical Northern Hemisphere, which allowed the establishment of the South Asian monsoon. In contrast, the East Asian and Australian monsoon did not exist in the late Oligocene. These monsoon systems were established in the Miocene and then enhanced thereafter. Establishments of the low-latitude monsoons in South Asia and Australia were entirely determined by the position of the Indian-Australian plate and not related to the TP uplift

  10. Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic. (United States)

    Toussaint, Emmanuel F A; Condamine, Fabien L; Hawlitschek, Oliver; Watts, Chris H; Porch, Nick; Hendrich, Lars; Balke, Michael


    During the Cenozoic, Australia experienced major climatic shifts that have had dramatic ecological consequences for the modern biota. Mesic tropical ecosystems were progressively restricted to the coasts and replaced by arid-adapted floral and faunal communities. Whilst the role of aridification has been investigated in a wide range of terrestrial lineages, the response of freshwater clades remains poorly investigated. To gain insights into the diversification processes underlying a freshwater radiation, we studied the evolutionary history of the Australasian predaceous diving beetles of the tribe Hydroporini (147 described species). We used an integrative approach including the latest methods in phylogenetics, divergence time estimation, ancestral character state reconstruction, and likelihood-based methods of diversification rate estimation. Phylogenies and dating analyses were reconstructed with molecular data from seven genes (mitochondrial and nuclear) for 117 species (plus 12 outgroups). Robust and well-resolved phylogenies indicate a late Oligocene origin of Australasian Hydroporini. Biogeographic analyses suggest an origin in the East Coast region of Australia, and a dynamic biogeographic scenario implying dispersal events. The group successfully colonized the tropical coastal regions carved by a rampant desertification, and also colonized groundwater ecosystems in Central Australia. Diversification rate analyses suggest that the ongoing aridification of Australia initiated in the Miocene contributed to a major wave of extinctions since the late Pliocene probably attributable to an increasing aridity, range contractions and seasonally disruptions resulting from Quaternary climatic changes. When comparing subterranean and epigean genera, our results show that contrasting mechanisms drove their diversification and therefore current diversity pattern. The Australasian Hydroporini radiation reflects a combination of processes that promoted both diversification

  11. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming


    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  12. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva


    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  13. Deuterium values from volcanic glass: A paleoelevation proxy for Oregon's Cascade Range (United States)

    Carlson, T. B.; Bershaw, J. T.


    Hydrated volcanic glass has been used as a proxy to constrain Cenozoic paleoclimate across many of the world's mountain ranges. However, there are concerns that volcanic glass may not preserve the isotopic composition of syndepositional meteoric water. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoenvironmental proxy for several reasons. Moisture is derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). In addition, past studies have inferred uplift of the Cascades and an increase in the rain shadow effect since the Eocene through independent methods such as changing fossil assemblages, and other isotopic proxies including carbonates and fossil teeth. In this study, δD values of two hydrated tuff samples are compared: one prior to ( 29 Ma) and one following ( 5 Ma) the onset of High Cascade volcanism. The isotopic composition of these samples are interpreted in the context of modern water across the range to understand the potential of volcanic glass as a proxy for paleoelevation in the Pacific Northwest.

  14. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development (United States)

    Morley, Chris K.


    At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.

  15. Backprojection of volcanic tremor (United States)

    Haney, Matthew M.


    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  16. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains (United States)

    Wing, S. L.


    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  17. Types of Cenozoic Mollusca from Java in the Martin Collection of Naturalis

    NARCIS (Netherlands)

    Leloux, J.; Wesselingh, F.P.


    An updated type catalogue of the Martin Collection (fossil Mollusca, predominantly from the Cenozoic of Java, Indonesia) is presented. Type specimen data, updated locality data, and illustrations are given.

  18. Volcanic eruptions on Io (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.


    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  19. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.


    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  20. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    KAUST Repository

    Tang, Zheng


    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  1. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic–sedimentary evolution of the western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Yadong Wang


    Full Text Available Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a the southern fault terrace zone, (b a central Yingxiongling orogenic belt, and (c the northern fold-thrust belt; divided by the XI fault (Youshi fault and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India–Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene–Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fm., 43.8–22 Ma, and peaked in the Early Oligocene (Upper Xia Ganchaigou Fm., 31.5 Ma. The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fm. and Qigequan Fm., 14.9–0 Ma, and was stronger than the first phase. The tectonic–sedimentary evolution and the orientation of surface structures in the western Qaidam Basin resulted from the Tibetan

  2. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.


    30 km trend that then arcs NE into the caldera. These anomalies reflect near surface rhyolite intrusions that underlie the caldera-fill sediments that have been altered to K-feldpar and clay minerals. K gamma ray anomalies also delineate this zone of alteration. The last phase of volcanism occurs in the central part of the caldera and is associated with a broad aeromagnetic high with individual high-amplitude aeromagnetic highs coincident with three large volcanic vents. No hydrothermal alteration is associated with this last phase of volcanism. On the SW side of the McDermitt volcanic field a 10 km wide, 60 km long, NNW-trending zone of late Miocene normal faults developed after cessation of volcanism and prior to Basin and Range faulting. We propose that this extensional fault zone is the eastern continuation of the NW trending Brothers Fault Zone, but changes to a NNW trend where it is deflected by the plutons that underlies the McDermitt volcanic field. Plutons that underlie all three of these Mid Miocene volcanic fields have minimized post-caldera extensional faulting. Thus only caldera ring fracture faults were available for the development of hydrothermal systems in areas where post caldera intrusive activity was localized.

  3. Petrology, Geochemistry and Tectonomagmatic Setting of Farmahin Volcanic Rocks (North of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh


    fractional crystallization (AFC were the dominant processes in the genesis of the studied volcanic rocks. As a conclusion and according to field evidence and geochemical characteristics presented in this article, the studied area is composed of lava flows and pyroclastic rocks such as andesite, dacite, rhyodacite, ignimbrite, tuff and tuffits that cross cut by younger dykes and belong to the middle to late Eocene age (middle to upper Lutetien. According to Sm/Yb vs. Sm diagram (Aldanmaz et al., 2000, all the studied samples in terms of composition are similar to enriched mantle-derived melts that are generated by varying degrees of partial melting (10% - 20% from a spinel lherzolite to spinel-garnet lherzolite source. Considering the evidences, all rocks in the studied area belong to the subduction zone and the parent magma originated from mantle and was contaminated with continental crust during eruption and rising. Acknowledgments The authors wish to thank the Journal Manager and reviewers who critically reviewed the manuscript and made valuable suggestions for its improvement. References Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2: 67–95. Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran. Journal of Asian Earth Sciences, 26 (6: 683–693. Hajian, J., 1970. Geological map of Farmahin, scale1:100000. Geological Survey of Iran. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5: 523–548. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology, 27 (3:745–750. Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.V., Ross, M., Seifert, F

  4. Cenozoic stratigraphy and structure of the Chesapeake Bay region (United States)

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen


    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace

  5. Precise U-Pb dating of Cenozoic tropical reef carbonates: Linking the evolution of Cenozoic Caribbean reef carbonates to climatic and environmental changes. (United States)

    Silva-Tamayo, J. C.; Ducea, M.; Cardona, A.; Montes, C.; Rincon, D.; Machado, A.; Flores, A.; Sial, A.; Pardo, A.; Niño, H.; Ramirez, V.; Jaramillo, C.; Zapata, P.; Barrios, L.; Rosero, S.; Bayona, G.; Zapata, V.


    rapid anthropogenic CO2 release to the atmosphere on reef areas. Here we report precise U-Pb ages of several Cenozoic Caribbean-tropical reef carbonate successions along the SE Circum-Caribbean Region from which major temporal variations in the reef carbonate factories, structure and ecology are related to major climate/environmental changes. Calcareous algae are the principal calcifying reef builders along the SE Circum-Caribbean during the Paleocene-middle Oligocene interval, a period of predominant high atmospheric pCO2 and OA. Calcareous algae persisted as the main calcifying reef builders until the late Oligocene when atmospheric pCO2 levels dropped, allowing the onset of global icehouse conditions and the appearance of corals as the main calcifying reef builders along the SE Circum-Caribbean. Coral reefs would have dominated until the middle Miocene, when a new period of calcareous algae reefs occurred along the Caribbean, coinciding with the Miocene thermal optimum in mid-latitude areas (i.e. the Mediterranean). Coral reef carbonates dominated since the Pliocene. From the data presented here we suggest that calcareous algae dominated were the main calcifying reef builders during periods of warm temperatures and pronounced environmental change in the tropical seas (i.e. OA). Corals would have conversely dominated as main calcifying reef builders during periods of optimal tropical climatic/environmental conditions. Comparisons between this geologic conditions and data for the period 1984-2006 in the Caribbean11 suggest that the transition from corals towards calcareous algae is repeating again. 1.Zachos et al., Science Mag. 292 (2001) 2.Zachos et al., Science Mag. 308 (2005) 3.Haug et al., Geology 29 (2001) 4.Jain and Collins, Marine Micropaleo. 62 (2007) 5.Merinco et al., Nature 452 (2008) 6.O'Dea et al., Proc. Nat. Acad. Sci. 104 (2007) 7.Jhonson et al., Palaios 24(2009) 8.Pagani et al., Nature 460 (2007) 9.Cohen et al., Journ. Geolog. Society 164 (2009) 10

  6. Cenozoic basin thermal history reconstruction and petroleum systems in the eastern Colombian Andes (United States)

    Parra, Mauricio; Mora, Andres; Ketcham, Richard A.; Stockli, Daniel F.; Almendral, Ariel


    Late Mesozoic-Cenozoic retro-arc foreland basins along the eastern margin of the Andes in South America host the world's best detrital record for the study of subduction orogenesis. There, the world's most prolific petroleum system occur in the northernmost of these foreland basin systems, in Ecuador, Colombia and Venezuela, yet over 90% of the discovered hydrocarbons there occur in one single province in norteastern Venezuela. A successful industry-academy collaboration applied a multidisciplinary approach to the study of the north Andes with the aim of investigating both, the driving mechanisms of orogenesis, and its impact on hydrocarbon accumulation in eastern Colombia. The Eastern Cordillera is an inversion orogen located at the leading edge of the northern Andes. Syn-rift subsidence favored the accumulation of km-thick organic matter rich shales in a back-arc basin in the early Cretaceous. Subsequent late Cretaceous thermal subsidence prompted the accumulation of shallow marine sandstones and shales, the latter including the Turonian-Cenomanian main hydrocarbon source-rock. Early Andean uplift since the Paleocene led to development of a flexural basin, filled with mainly non-marine strata. We have studied the Meso-Cenozoic thermal evolution of these basins through modeling of a large thermochronometric database including hundreds of apatite and zircon fission-track and (U-Th)/He data, as well as paleothermometric information based on vitrinite reflectance and present-day temperatures measured in boreholes. The detrital record of Andean construction was also investigated through detrital zircon U-Pb geochronometry in outcrop and borehole samples. A comprehensive burial/exhumation history has been accomplished through three main modeling strategies. First, one-dimensional subsidence was used to invert the pre-extensional lithospheric thicknesses, the magnitude of stretching, and the resulting heat flow associated to extension. The amount of eroded section and

  7. Late pliocene-pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning : Geology

    NARCIS (Netherlands)

    Zhou, B.; Shen, C.; Sun, W.; Bird, M.; Ma, W.; Taylor, D.; Liu, W.; Peterse, F.; Yi, W.; Zheng, H.


    Plants using the C4 photosynthetic pathway, commonly tropical and subtropical grasses, increased in abundance in East Asia during the late Cenozoic. Determining the exact timing and likely factors leading to this major vegetation change requires region-specific studies. Here variations in pyrogenic

  8. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...

  9. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian


    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  10. Cenozoic mountain building on the northeastern Tibetan Plateau (United States)

    Lease, Richard O.


    Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.

  11. Radiobarites from the Cenozoic volcanic region of the Bohemian Massif: radiochemical study, history, and lead isotopic composition

    Czech Academy of Sciences Publication Activity Database

    Řanda, Zdeněk; Ulrych, Jaromír; Turek, Karel; Mihaljevič, M.; Adamovič, Jiří; Mizera, Jiří


    Roč. 283, č. 1 (2010), s. 89-94 ISSN 0236-5731 R&D Projects: GA ČR GA205/07/0522 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z30130516 Keywords : Barite * Radiometry * Lead isotopes Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.777, year: 2010

  12. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia) (United States)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.


    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.

  13. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.


    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  14. Volcanic Eruptions and Climate (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.


    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  15. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.


    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  16. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye


    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  17. Did the Bering Sea Form as a Cenozoic Backarc Basin? (United States)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.


    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (oceanic crust.ectonic scenario for formation of Aleutian Arc and Bering Sea basins. Green = present land; yellow = shelf; AB = Aleutian Basin; KB = Komandorsky Basin; BB = Bowers Basin; SR = Shirshov Ridge, BR = Bowers Ridge; Red = active volcanism and spreading ; Blue = extinct volcanism and spreading

  18. Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand (United States)

    Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.


    Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record

  19. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula) (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel


    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  20. Miocene volcanism in the Oaş-Gutâi Volcanic Zone, Eastern Carpathians, Romania: Relationship to geodynamic processes in the Transcarpathian Basin (United States)

    Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria


    We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.

  1. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions (United States)


    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  2. Systematic change in global patterns of streamflow following volcanic eruptions. (United States)

    Iles, Carley E; Hegerl, Gabriele C


    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  3. Friction in volcanic environments (United States)

    Kendrick, Jackie E.; Lavallée, Yan


    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  4. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  5. Database for volcanic processes and geology of Augustine Volcano, Alaska (United States)

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.


    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. This geologic map at 1:25,000 scale depicts these deposits, these processes.

  6. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore (United States)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad


    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  7. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies. (United States)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.


    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  8. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault (United States)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad


    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  9. Cenozoic structures and the tectonic evolution of the eastern North Sea

    DEFF Research Database (Denmark)

    Clausen, O.R.; Nielsen, S.B.; Egholm, D.L.


    Abundant seismic sections and well data from the Cenozoic succession in the eastern North Sea area generally reveal normal faulting, salt tectonics and localized tectonic inversion. However, inferences on the Cenozoic dynamic evolution of the region require thorough analysis of interactions between...... or cover tectonism took place. Our objectives are thus 1) to analyze the interaction between basement and cover structures, and if possible 2) to relate the structures to the regional tectonic evolution. The Zechstein evaporites pinch out onto the Ringkøbing-Fyn High, which in the eastern North Sea...... influencede.g. Miocene deposition and controlled the generation of second order faults. The latter detached along the top Chalk Group due to the topography generated during faulting, i.e. they are second order detachment surfaces. We conclude that the regional tectonic significance of the Cenozoic structures...

  10. Cenozoic to Cretaceous paleomagnetic dataset from Egypt: New data, review and global analysis (United States)

    Perrin, Mireille; Saleh, Ahmed


    Different phases of igneous activity took place in Egypt during the Mesozoic and the Cenozoic and oriented samples were collected from three Cenozoic localities (Baharya oasis in the Western Desert, Abu Had in the Eastern Desert and Quseir along the Red Sea coast), and four Cretaceous localities (Toshki & Abu Simbel south of Aswan, and Shalaten & Abu Shihat along the Red Sea coast). Rock magnetic properties of the samples indicate magnetite and titanomagnetite as the main carrier of the remanent magnetization. Following stepwise demagnetization, characteristic remanent directions were identified only for 62% of the samples, a fairly low rate for that type of samples, and 8 new paleomagnetic poles were calculated. All our Cenozoic poles fall clearly off Master Polar Wander Paths proposed for South Africa. Therefore, all paleomagnetic results, previously published for Egypt, were compiled from Cretaceous to Quaternary. The published poles largely overlap, blurring the Egyptian Apparent Polar Wander Path. A new analysis at the site level was then carried out. Only poles having a kappa larger than 50 were selected, and new pole positions were calculated by area and by epoch, when at least 3 sites were available. Even though the selection drastically reduced the number of considered poles, it allows definition of a reliable Cenozoic apparent polar wander trend for Egypt that differs from the South African Master Polar Wander Path by about 10-15 °. If the Cretaceous igneous poles are in good agreement with the rest of the African data, the sedimentary poles plot close to the Cenozoic portion of the South African Master Polar Wander Path, a discrepancy that could be related either to inclination flattening and/or error on age and/or remagnetization in the Cenozoic.

  11. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.


    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  12. Shallow gas in Cenozoic sediments of the Southern North Sea (United States)

    Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar


    Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting

  13. The Cenozoic geological evolution of the Central and Northern North Sea based on seismic sequence stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Jordt, Henrik


    This thesis represents scientific results from seismic sequence stratigraphic investigations. These investigations and results are integrated into an ongoing mineralogical study of the Cenozoic deposits. the main results from this mineralogical study are presented and discussed. The seismic investigations have provided boundary conditions for a forward modelling study of the Cenozoic depositional history. Results from the forward modelling are presented as they emphasise the influence of tectonics on sequence development. The tectonic motions described were important for the formation of the large oil and gas fields in the North Sea.





    The Eocene from the Prealpine region records the first phase of the crustose coralline algae flourishing in the Cenozoic. These algae are very frequent in the Marne di Priabona Formation (Late Eocene). This palaeoecological research involves ourcrop at Barbarano Vicentino(Vicenza) in the Colli Berici which is well known for its Paleogene stratigraphy. The coralline unit consists of a floatstone bank 6 m thick with rhodoliths and laminar crusts; it lies between macroforaminifer dominated limes...

  15. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan


    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  16. Volcanology: Volcanic bipolar disorder explained (United States)

    Jellinek, Mark


    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  17. Lidar sounding of volcanic plumes (United States)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone


    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  18. Metallogenic characteristics of volcanic hydrothermal type U-Au-polymetallic deposits in Yanshan-Liaoning region

    International Nuclear Information System (INIS)

    Luo Yi; Zhou Dean; He Yiqiang; Tao Quan; Xia Yuliang; Cui Huanmin; Zhu Deling


    Yanshan-Liaoning area is located in the east part of the northern margin of North-China platform. It is a famous metallogenic region of Mesozoic volcanic hydrothermal type U-Au-polymetallic deposits in the country. The metallogenesis is controlled by a united Late Mesozoic continental taphrogenic volcano-magmatic activity. The metallogenic epochs are concentrated in Late Jurassic-Early Cretaceous periods. The metallogenic media are moderate and moderate-low temperature volcanic hydrothermal solutions originated from the mixing of volcano-magmatic water, metamorphic water and atmospheric water. The ore-forming materials are mainly derived from enrichment type upper mantle and lower crust. (8 refs., 5 figs.)

  19. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.


    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  20. Volcanic hazards and aviation safety (United States)

    Casadevall, Thomas J.; Thompson, Theodore B.; Ewert, John W.; ,


    An aeronautical chart was developed to determine the relative proximity of volcanoes or ash clouds to the airports and flight corridors that may be affected by volcanic debris. The map aims to inform and increase awareness about the close spatial relationship between volcanoes and aviation operations. It shows the locations of the active volcanoes together with selected aeronautical navigation aids and great-circle routes. The map mitigates the threat that volcanic hazards pose to aircraft and improves aviation safety.

  1. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez


    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  2. Deuterium Values from Hydrated Volcanic Glass: A Paleoelevation Proxy for Oregon's Cascade Range (United States)

    Carlson, T. B.; Bershaw, J. T.; Cassel, E. J.


    Deuterium ratios (δD) of hydrated volcanic glass have been used to reconstruct Cenozoic paleoenvironments. However, the reliability and proper sample preparation protocol have been debated. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoelevation proxy for several reasons. Moisture is largely derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). Additionally, past studies have inferred uplift of the Cascades since the Miocene based on changing fossil assemblages, tectonic models, and other isotopic proxies including soil carbonates and fossil teeth. In this study, hydrated volcanic ash samples from the lee of the Cascades were rinsed with hydrochloric acid and sonicated before glass shards were hand-selected and analyzed for δD and wt. % water. These preliminary results exhibited δD values becoming enriched with time, a trend opposite of other paleowater proxy studies in the area. A possible explanation for this trend is contamination due to inadequate removal of materials adhered to shard surfaces that can readily exchange with environmental water. Recent research asserts that hydrofluoric acid (HF) etching during sample preparation is necessary to accurately measure δD values of syndepositional water. Volcanic ash samples were reanalyzed after preparation using HF abrasion and heavy liquid separation. The data from these two subsets are interpreted in the context of modern water across the range, as well as other paleowater proxy and geologic studies to determine the implications of volcanic glass as a paleoelevation proxy in the Pacific Northwest.

  3. Late Raphael


    Henry, Tom F. K.; Joannides, Paul; González Mozo, Ana; Martín, Bruno


    Exhibition catalogue (co-authored with P. Joannides) in English, Spanish and French by the Museo del Prado and the Musée du Louvre, 2012. English edition, publisher: Museo Nacional del Prado (ISBN 978-84-8480-237-2). 382 pages, of which 300 were co-authored with P. Joannides. This publication was the catalogue of the major exhibtion of Raphael's late work which was at the Prado and the Louvre in 2012-13. The exhibition was seen by more than 650,000 visitors, and was widely reviewed in the int...

  4. Mesozoic-Cenozoic tectonic evolution and its relation to sandstone-type uranium mineralization in northern Tarim area--Evidence from apatite fission track

    International Nuclear Information System (INIS)

    Liu Hongxu; Dong Wenming; Liu Zhangyue; Chen Xiaolin


    The apatite fission track dating and inversion result of geological thermal history of four rock specimens from Sawafuqi area and Talike area in northern Tarim Basin show that two areas uplifted at different ages. The apatite fission track ages of Sawafuqi range from 3.5 to 3.9 Ma, while the ages of Talike range from 53 to 59 Ma. The thermal history recorded by rock samples reveals that there are at least three prominent cooling phases since Late Cretaceous epoch. Detailed study was made on the division of uplifting stages during Mesozoic and Cenozoic tectonic evolution with the existing data in northern Tarim area. And new ideas on tectonic evolution and sandstone-type uranium mineralization have been put forward by combining with the sandstone-type uranium mineralization ages in this area.(authors)

  5. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism (United States)

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.


    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  6. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia)

    NARCIS (Netherlands)

    Hoorn, C.; Roddaz, M.; Dino, R.; Soares, E.; Uba, C.; Ochoa-Lozano, D.; Mapes, R.; Hoorn, C.; Wesselingh, F.P.


    The Amazonian Craton is an old geological feature of Archaean/Proterozoic age that has determined the character of fluvial systems in Amazonia throughout most of its past. This situation radically changed during the Cenozoic, when uplift of the Andes reshaped the relief and drainage patterns of

  7. Constraints on early Cenozoic underplating-driven uplift and denudation of western Scotland from low temperature thermochronometry (United States)

    Persano, Cristina; Barfod, Dan N.; Stuart, Finlay M.; Bishop, Paul


    Apatite (U-Th)/He and fission track data from profiles in western Scotland constrain the timing and magnitude of denudation during the early Cenozoic when the north Atlantic region was the site of intense magmatic activity related to the proto-Icelandic plume. Apatite helium ages vary from 77 ± 8 to 265 ± 27 Ma (± 2 σ) at Sgorr Dhonuill, Ballachulish, and from 104 ± 10 Ma to 166 ± 17 Ma at Clisham, Outer Hebrides. At both locations apatite fission track (AFT) ages are older than the corresponding He ages; at Clisham they vary from 189 ± 28 Ma to 242 ± 26 Ma, and from 186 ± 6 Ma to 257 ± 12 Ma at Sgorr Dhonuill. Apatite He ages increase linearly with elevation suggesting that the cooling rate remained constant in the late Mesozoic. However, the apatite He age profile requires a period of rapid cooling after ˜ 100 Ma. Apatite He ages predicted from the AFT-derived thermal histories are indistinguishable from measured He ages for a rapid cooling event of 1 to 10 Myr duration between 61 and 47 Ma at Sgorr Dhonuill and 65 to 49 Ma at Clisham. The combined apatite FT- and He-derived thermal histories constrain the early Cenozoic geothermal gradient at 39 ± 9 °C/km at Sgorr Dhonuill and 19 ± 6 °C/km at Clisham. Amounts of denudation related to the rapid cooling event vary from 1330 ± 230 m at Sgorr Dhonuill to 2250 ± 750 m at Clisham, in agreement with models that predict greater amounts of denudation where magmatic underplating is thicker. However, the direct correlation between underplating-driven surface uplift and denudation may only be apparent and a more complex link between spatial variation of surface uplift and denudation is suggested. The integration of results from multiple low-temperature thermochronometers, combined with inverse and forward modelling, provides a convincing and quantitative method to deduce onshore erosional histories, and provides critical information about the spatial distribution of erosion that cannot be derived from the

  8. Stratigraphy and Mesozoic–Cenozoic tectonic history of northern Sierra Los Ajos and adjacent areas, Sonora, Mexico (United States)

    Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.


    Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US

  9. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.


    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  10. Climatic impact of volcanic eruptions (United States)

    Rampino, Michael R.


    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  11. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.


    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  12. Late Jurassic – early Cretaceous inversion of rift structures, and linkage of petroleum system elements across post-rift unconformity, U.S. Chukchi Shelf, arctic Alaska (United States)

    Houseknecht, David W.; Connors, Christopher D.


    Basin evolution of the U.S. Chukchi shelf involved multiple phases, including Late Devonian–Permian rifting, Permian–Early Jurassic sagging, Late Jurassic–Neocomian inversion, and Cretaceous–Cenozoic foreland-basin development. The focus of ongoing exploration is a petroleum system that includes sag-phase source rocks; inversion-phase reservoir rocks; structure spanning the rift, sag, and inversion phases; and hydrocarbon generation during the foreland-basin phase.

  13. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.


    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  14. Volcanic Eruptions in Kamchatka (United States)


    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  15. Mesozoic and Cenozoic structural evolution of North Oman: New insights from high-quality 3D seismic from the Lekhwair area (United States)

    Bazalgette, Loïc; Salem, Hisham


    This paper highlights the role of Triassic-Jurassic extension and late Cretaceous compression in the Mesozoic-Cenozoic (Alpine) structuring of North Oman. The syn/post-Mesozoic regional structural evolution is usually documented as a succession of two stages of deformation. The Alpine 1 phase, late Cretaceous in age, occurred in association with two ophiolite obduction stages (Semail and Masirah ophiolites). It was characterised by strike slip to extensional deformation in the North Oman foreland basin sub-surface. The Alpine 2 phase, Miocene in age, was related to the continental collision responsible for both the Zagros orogen and the uplift of the Oman Mountains. The Alpine 2 deformation was transpressional to compressional. Observation and interpretation of good quality 3D seismic in the Lekhwair High area enabled the distinction of two earlier phases. Early Mesozoic extension occurred concomitantly with the regional Triassic to Jurassic rifting, developing Jurassic-age normal faults. Late Cretaceous compression occurred prior to the main Alpine 1 phase and triggered the inversion of Jurassic-seated normal faults as well as the initiation of compressional folds in the Cretaceous overburden. These early phases have been ignored or overlooked as part of the North Oman history although they are at the origin of structures hosting major local and regional hydrocarbon accumulations.

  16. The pre-Cenozoic evolution of the Apuseni Mountains (Romania) in the light of new (thermo)geochronological data (United States)

    Reiser, Martin; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard


    , although a possible minor influence of later normal faulting on the age distribution cannot be fully excluded and needs further evaluation. In contrast, fission track data show only minor differences between these two units (see Kounov and Schmid, 2012) and point to their mutual evolution since the late Upper Cretaceous. The known and exclusively brittle Cenozoic tectonic evolution did not substantially modify the pre-Cenozoic age (and thermal) pattern of the Tisza and Dacia units. References: Dallmeyer, R.D., Paná, D.I., Neubauer, F., & Erdmer, P. (1999): Tectonothermal Evolution of the Apuseni Mountains, Romania: Resolution of Variscan versus Alpine Events with 40Ar/39Ar Ages. Journal of Geology, 107: 329-352. Kounov, A and Schmid, S.M. (2012): Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). International Journal of Earth Sciences, DOI: 10.1007/s00531-012-0800-5. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008): The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139-18.

  17. Volcanic eruptions and solar activity (United States)

    Stothers, Richard B.


    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  18. Isotopic feature and uranium dating of the volcanic rocks in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)


    Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

  19. New Data on the Composition of Cretaceous Volcanic Rocks of the Alazeya Plateau, Northeastern Yakutia (United States)

    Tsukanov, N. V.; Skolotnev, S. G.


    This work presents new data on the composition of volcanics, developed within the Alazeya Plateau of the Kolyma-Indigirka fold area (Northeast Russia), which indicate essential differences in their composition and, accordingly, different geodynamic settings of the formation of rocks. The studied igneous rocks are subdivided into two groups. Volcanics of the first group of the Late Cretaceous age, which are represented by differentiated volcanic rock series (from andesitobasalts to dacites and rhyolites), were formed under island arc conditions in the continent-ocean transition zone. Volcanics of the second group are ascribed to the tholeiitic series and were formed under the other geodynamic setting, which is associated with the regime of extension and riftogenesis, manifested in the studied area probably at the later stage.

  20. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions (United States)

    Edmonds, M.; Liu, E.


    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from importance in supplying sulfur and metals to the atmosphere during eruption.

  1. Recent progress in volcanism studies: Site characterization activities for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Crowe, B.M.; Valentine, G.; Morley, R.; Perry, F.V.


    Significant progress has been made on volcanism studies over the past calendar year. There are a number of major highlights from this work. Geochronology data have been obtained for the Lathrop Wells center using a range of isotopic, radiogenic, and age-calibrated methods. Initial work is encouraging but still insufficient to resolve the age of the center with confidence. Geologic mapping of the Sleeping Butte volcanic centers was completed and a report issued on the geology and chronology data. Twenty shallow trenches have been constructed in volcanic units of the Lathrop Wells volcanic center. Results of detailed studies of the trenches support a polycyclic eruptive history. New soil data from the trenches continue to support a late Pleistocene or Holocene age for many of the volcanic units at the center. Geochemical data (trace element and isotopic analysis) show that the volcanic units of the Lathrop Wells center cannot be related to one another by fractional crystallization of a single magma batch, supporting a polycyclic model of volcanism. Structural models using existing data are used to evaluate the probability of magmatic disruption of a potential repository. Several permissive models have been developed but none lead to significant differences in calculating the disruption ratio. Work was initiated on the eruptive and subsurface effects of magmatic activity on a repository. (author)

  2. Recurrence models of volcanic events: Applications to volcanic risk assessment

    International Nuclear Information System (INIS)

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.


    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km 2 area of Yucca Mountain by ascending basalt magma was bounded by the range of 10 -8 to 10 -10 yr -1 2 . The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site

  3. Magmatic activity stages of the El'brus volcanic center (Great Caucasus): isotope geochronological data

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Lebedev, V.A.; Bubnov, S.N.; Arakelyants, M.M.; Gol'tsman, Yu.V.


    The age of volcanites in the Elbrus volcanic center was determined by the methods of K-Ar- and Rb-Sr-dating to ascertain stages of magmatic activity in the area. The data obtained suggest existence of at least two stages of magmatic activity: Middle Neopleistocene (225-180 thous. years) and Late Neopleistocene-Holocene ( [ru

  4. The Volcanism Ontology (VO): a model of the volcanic system (United States)

    Myer, J.; Babaie, H. A.


    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  5. Candidate constructional volcanic edifices on Mercury


    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.


    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  6. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.


    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  7. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    Eocene times tectonic activity related to the final stage of opening of the North Atlantic was apparently controlling the sediment input in the North Sea as sediment pulses correlate well with tectonic events. Although there is no signs of Cenozoic tectonic activity onshore Scandinavia (igneous bodies......, faulting), tectonic disturbance related to ocean opening could be responsible for deposition of thick Paleocene wedges along the western coast of Norway. During subsequent Cenozoic periods domal structures in the Norwegian shelf are a proof for mild and protracted compression. However, depositional...... patterns from offshore Scandinavia have been interpreted as a result of significant tectonic movements. In the absence of proofs for active tectonic agents we attempt to explain these sediment input variations as a result of climate fluctuations. The Eocene-Oligocene greenhouse-icehouse climate transition...

  8. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    The scope of this work is the causality of sediment flux variations from western Scandinavia during the Cenozoic. Over the decades of exploration in the North Sea and in the Norwegian shelf most of these variations were given tectonic causes. During the final period of North Atlantic break......-up (Paleocene-Early Eocene) this link is quite striking, especially in the northern British Isles and in the Faeroe-Shetland Platform where sediment production pulses can be correlated with well documented periods of tectonic activity (e.g. magmatism). However, during the subsequent Cenozoic epochs this link...... is much less constrained. For this period we therefore search for an alternative explanation in terms of climate and climate change [1-3] Methods The extensive seismic and well data set allow investigation of inland erosion rates via the offshore distribution of sediments. However, varying marine...

  9. Global Volcanism on Mercury at About 3.8 Ga (United States)

    Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.


    Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our

  10. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic

    NARCIS (Netherlands)

    Sun, Xilin; Li, Chang'an; Kuiper, K.F.; Wang, Jietao; Tian, Y; Vermeesch, Pieter; Zhang, Zengjie; Zhao, Juxing; Wijbrans, J.R.


    The geometry and evolution of rivers originating from the Tibetan plateau are influenced by topography and climate change during the India-Asia collision. The Yangtze River is the longest among these rivers and formed due to capturing many rivers on the eastern Tibetan Plateau by the middle Yangtze.

  11. Intense uplift of the Qinghai-Tibetan Plateau triggered rapid diversification of Phyllolobium (Leguminosae) in the Late Cenozoic (United States)

    Ming-Li Zhang; Yun Kang; Yang Zhong; Stewart C. Sanderson


    Phyllolobium, a recently established genus from subgenus Pogonophace of Astragalus, contains about 20 species and four sections, mostly endemic to the Qinghai-Tibetan Plateau (QTP). The uplift of the QTP undoubtedly affected organismic evolution in the region, but further molecular dating in a phylogenetic context is required to test whether diversification is linked...

  12. Relationships between rare plants of the White Mountains and the late Cenozoic geology of the Colorado Plateau (United States)

    Jonathan W. Long


    A complex geologic history has shaped the distribution of Arizona willow (Salix arizonica Dorn) and the Mogollon paintbrush (Castilleja mogollonica Pennell). These subalpine plants do not appear to be strict substrate specialists, but they do seem to favor coarse-textured and well-watered soils. Most of their occupied habitats were...

  13. Late Cretaceous and Cenozoic dynamics of the Bohemian Massif inferred from the paleostress history of the Lusatian Fault Belt

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Málek, Jiří; Adamovič, Jiří; Štěpančíková, Petra


    Roč. 87, July 1 (2015), s. 26-49 ISSN 0264-3707 R&D Projects: GA ČR GAP210/12/0573 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : paleostress * fault kinematics * Lusatian Fault Belt * Elbe fault system * Bohemian Massif * Alpine foreland Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.926, year: 2015

  14. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa


    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  15. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)


    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  16. Identifying trends in climate: an application to the cenozoic (United States)

    Richards, Gordon R.


    The recent literature on trending in climate has raised several issues, whether trends should be modeled as deterministic or stochastic, whether trends are nonlinear, and the relative merits of statistical models versus models based on physics. This article models trending since the late Cretaceous. This 68 million-year interval is selected because the reliability of tests for trending is critically dependent on the length of time spanned by the data. Two main hypotheses are tested, that the trend has been caused primarily by CO2 forcing, and that it reflects a variety of forcing factors which can be approximated by statistical methods. The CO2 data is obtained from model simulations. Several widely-used statistical models are found to be inadequate. ARIMA methods parameterize too much of the short-term variation, and do not identify low frequency movements. Further, the unit root in the ARIMA process does not predict the long-term path of temperature. Spectral methods also have little ability to predict temperature at long horizons. Instead, the statistical trend is estimated using a nonlinear smoothing filter. Both of these paradigms make it possible to model climate as a cointegrated process, in which temperature can wander quite far from the trend path in the intermediate term, but converges back over longer horizons. Comparing the forecasting properties of the two trend models demonstrates that the optimal forecasting model includes CO2 forcing and a parametric representation of the nonlinear variability in climate.

  17. Cenozoic deposits exposed along Rio de la Plata coast in the Canelones Department (Uruguay)

    International Nuclear Information System (INIS)

    Goso Aguilar, C.; Spoturno, J.


    This paper allows to know some sedimentological and stratigraphical features of the Cenozoic deposits exposed along Rio de la Plata coast in the Canelones department, Uruguay. The results, mainly collected from metric thickness of local stratigraphical sections and coastal outcrops of that region are presented. Both Tertiary and Quaternary sediments are present, however transitional Pleistocenic deposits of Chuy Formation and continental sediments of Libertad Formation are more dominant [es

  18. Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Špaček, Petr; Medaris Jr., G.; Hegner, E.; Svojtka, Martin; Ulrych, Jaromír


    Roč. 57, č. 4 (2012), s. 199-219 ISSN 1802-6222 R&D Projects: GA ČR(CZ) GA205/09/1170 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z30120515 Institutional support: RVO:67985831 ; RVO:67985530 Keywords : pyroxenite * xenolith * Cenozoic * basalt * Sr-Nd isotopes * geothermobarometry Subject RIV: DD - Geochemistry Impact factor: 0.804, year: 2012

  19. Active Volcanism on Io as Seen by Galileo SSI (United States)

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.


    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  20. Distribution of Cenozoic plant relicts in China explained by drought in dry season. (United States)

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun


    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  1. Tectonic and sedimentary evolution of the late Miocene-Pleistocene Dali Basin in the southeast margin of the Tibetan Plateau : Evidences from anisotropy of magnetic susceptibility and rock magnetic data

    NARCIS (Netherlands)

    Li, Shihu; Deng, Chenglong; Paterson, Greig A.; Yao, Haitao; Huang, Sheng; Liu, Chengying; He, Huaiyu; Pan, Yongxin; Zhu, Rixiang


    The Cenozoic Dali Basin, located at the northeast of Diancang Shan and south of the first bend of Yangtze River, is tectonically controlled by the Dali fault system in the southeast margin of the Tibetan Plateau. The basin is filled with late Miocene to Pleistocene fluviolacustrine sediments, which

  2. Unusual ruby-sapphire transition in alluvial megacrysts, Cenozoic basaltic gem field, New England, New South Wales, Australia (United States)

    Sutherland, Frederick L.; Graham, Ian T.; Harris, Stephen J.; Coldham, Terry; Powell, William; Belousova, Elena A.; Martin, Laure


    Rare ruby crystals appear among prevailing sapphire crystals mined from placers within basaltic areas in the New England gem-field, New South Wales, Australia. New England ruby (NER) has distinctive trace element features compared to those from ruby elsewhere in Australia and indeed most ruby from across the world. The NER suite includes ruby (up to 3370 ppm Cr), pink sapphire (up to 1520 ppm Cr), white sapphire (up to 910 ppm) and violet, mauve, purple, or bluish sapphire (up to 1410 ppm Cr). Some crystals show outward growth banding in this respective colour sequence. All four colour zones are notably high in Ga (up to 310 ppm) and Si (up to 1820 ppm). High Ga and Ga/Mg values are unusual in ruby and its trace element plots (laser ablation-inductively coupled plasma-mass spectrometry) and suggests that magmatic-metasomatic inputs were involved in the NER suite genesis. In situ oxygen isotope analyses (secondary ion mass spectrometry) across the NER suite colour range showed little variation (n = 22; δ18O = 4.4 ± 0.4, 2σ error), and are values typical for corundum associated with ultramafic/mafic rocks. The isolated NER xenocryst suite, corroded by basalt transport and with few internal inclusions, presents a challenge in deciphering its exact origin. Detailed consideration of its high Ga chemistry in relation to the known geology of the surrounding region was used to narrow down potential sources. These include Late Palaeozoic-Triassic fractionated I-type granitoid magmas or Mesozoic-Cenozoic felsic fractionates from basaltic magmas that interacted with early Palaeozoic Cr-bearing ophiolite bodies in the New England Orogen. Other potential sources may lie deeper within lower crust-mantle metamorphic assemblages, but need to match the anomalous high-Ga geochemistry of the New England ruby suite.

  3. Exploring Late Globalization

    DEFF Research Database (Denmark)

    Turcan, Romeo V.


    literature on late globalization from sociocultural and economic perspectives. It illustrates in a vignette the character and features of late globalization observable in the withdrawal from foreign locations or deinternationalization of universities, as late globalizing entitis. The paper discusses...

  4. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China (United States)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.


    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  5. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi


    volcanic breccia reservoir more easily leached by fresh water or groundwater, leading to secondary erosion pores. Volcanic rock weathering obviously has control on reservoir properties, and while the thickness of the weathering crust is 200–300 m, the properties of volcanic rock reservoir are the best. This is attributed mainly to the period during and after the volcano eruption, in which tectonism made the brittle volcanic rock develop a large number of fractures and micro cracks. This has led to the increased permeability of volcanic rock reservoir, the weathering and leaching effect of volcanic rock diagenetic late phase (which also formed lots of secondary pores, and greatly improved reservoir conditions. The overlying Permian Wutonggou formation mudstone provided high-quality cap rock for oil and gas accumulation.

  6. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.


    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  7. Source mechanisms of volcanic tsunamis. (United States)

    Paris, Raphaël


    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  8. Volcanic hazards in Central America (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.


    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  9. Volcanic deformation in the Andes (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.


    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  10. Volcanic mercury in Pinus canariensis (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis


    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  11. Source mechanism of volcanic tremor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrick, M.G.; Qamar, A.; St. Lawrence, W.F.


    Low-frequency (<10 Hz) volcanic earthquakes originate at a wide range of depths and occur before, during, and after magmatic eruptions. The characteristics of these earthquakes suggest that they are not typical tectonic events. Physically analogous processes occur in hydraulic fracturing of rock formations, low-frequency icequakes in temperate glaciers, and autoresonance in hydroelectric power stations. We propose that unsteady fluid flow in volcanic conduits is the common source mechanism of low-frequency volcanic earthquakes (tremor). The fluid dynamic source mechanism explains low-frequency earthquakes of arbitrary duration, magnitude, and depth of origin, as unsteady flow is independent of physical properties of the fluid and conduit. Fluid transients occur in both low-viscosity gases and high-viscosity liquids. A fluid transient analysis can be formulated as generally as is warranted by knowledge of the composition and physical properties of the fluid, material properties, geometry and roughness of the conduit, and boundary conditions. To demonstrate the analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250/sup 0/C, in which significant pressure and velocity variations occur only in the longitudinal direction. Further simplification of the conservation of mass and momentum equations presents an eigenvalue problem that is solved to determine the natural frequencies and associated damping of flow and pressure oscillations.

  12. Volcanic mercury in Pinus canariensis. (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis


    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  13. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.


    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  14. Prehnite-pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33°50'S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state


    Muñoz,Marcia; Aguirre,Luis; Vergara,Mario; Demant,Alain; Fuentes,Francisco; Fock,Andrés


    In the El Volcan and Rodeo de los Bueyes areas, Andean Principal Cordillera (east of Santiago; 33°50'S), an Upper Oligocene-Lower Miocene volcanic series belonging to the Abanico Formation (Late Eocene-Early Miocene) is exposed. The rock successions outcropping in both areas, ca. 3,300 m total thickness, have been affected by very low-grade, non-deformative metamorphism in the prehnite-pumpellyite facies. This is represented by the widespread development of secondary mineral assemblages compo...

  15. Acidic volcanic rock and its potential as an objective for uranium prospecting

    International Nuclear Information System (INIS)

    Rodriguez Torres, R.; Yza Dominguez, R.; Chavez Aguirre, R.; Constantino, H.E.S.E.


    The geographical distribution of recent Mexican volcanic rocks is continuous; the older formations are dispersed in isolated outcrops. Continental volcanic events, acidic and basal, took place in the Caenozoic, Mesozoic and Palaeozoic; basic submarine volcanism predominated in the Mesozoic, Palaeozoic and late Precambrian. Access to the Sierra Madre Occidental, a circum-Pacific mountain range covered by rhyolitic rocks, is limited, which restricts the sections studied. Calderas, sources of volcanic emission and preliminary litho-stratigraphic sections have been delimited on the eastern edge of the range. Subduction by the ocean magmatized the continent from the Permian onwards, extravasating and depositing cyclically various magmata through inverted and normal cortical throws. The Sierra Pena Blanca (Chihuahua) section consists of epiclastic and pyroclastic rocks. A calcareous conglomerate is overburdened by alternate basal tuffs and imbricates, forming five units. In the uraniferous district of the Sierra Pena Blanca the hydrothermal alteration argillitized both components of the ''Nopal'' formation. Primary minerals (pitchblende) are found together with silicification. Leaching favours secondary mineralization (uranium silicates) associated with opals. After extrapolation of the features, the following are considered worth-while objectives: the faces, offsets and prolongations of the Sierra Madre Occidental and the southern volcanic mesetas south of the Mexican Transcontinental Rift. Similar objectives of Mesozoic or Palaeozoic age exist in central and southern Mexico. Possible objectives for uranium are: the acidic volcanic rock of the southern and south-western United States of America, the circum-Pacific acidic volcanic rocks of North America and the acidic volcanic mesetas of Central America and in the Andes. (author)

  16. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks (United States)

    Sun, Yang; Teng, Fang-Zhen; Ying, Ji-Feng; Su, Ben-Xun; Hu, Yan; Fan, Qi-Cheng; Zhou, Xin-Hua


    To evaluate the role of subducted oceanic crust in the genesis of potassium-rich magmas, we report high-precision Mg isotopic data for a set of Cenozoic volcanic rocks from Northeast China. These rocks overall are lighter in Mg isotopic composition than the normal mantle and display considerable Mg isotopic variations, with δ26Mg ranging from -0.61 to -0.23. The covariation of δ26Mg with TiO2 in these rocks suggests that their light Mg isotopic compositions were derived from recycled oceanic crust in the form of carbonated eclogite in the source region. The strong correlations between δ26Mg and (Gd/Yb)N ratio as well as Sr-Pb isotopes further indicate a multicomponent and multistage origin of these rocks. Magnesium isotopes may thus be used as a novel tracer of recycled oceanic crust in the source region of mantle-derived magmas.

  17. Biomarkers and their stable isotopes in Cenozoic sediments above the Chicxulub impact crater (United States)

    Grice, K.; Schaefer, B.; Coolen, M.; Greenwood, P. F.; Scarlett, A. G.; Freeman, K.; Lyons, S. L.


    The most widely accepted hypothesis for the cause of the End-Cretaceous mass extinction (K/Pg event) 66 Ma ago is the impact of an extra-terrestrial body, which produced the 200 km wide Chicxulub impact structure. This event led to an extinction of 75% of all species on Earth. The massive extinction in the terrestrial realm is partly attributed to the intense heat pulse, the widespread wild fires caused by the impact and the ensuing darkness, as dust and sulfate aerosols blocked out the sun leading to photosynthesis shut off and productivity collapse in both the terrestrial and marine realms. The marine realm may additionally have experienced ocean acidification resulting in mass extinction of plankton (foraminifera and coccolithophorids) and marine reptiles. Samples from the Cenozoic marine sediments including the Paleocene-Eocene Thermal Maximum (PETM) have been extracted for hydrocarbons and analysed to investigate the molecular and isotopic organic record of biotic and environmental change after the K/Pg boundary event. Specific biomarker-precursor relationship has been established by the direct correlation of sedimentary biomarkers with the biochemicals (e.g. lipids) of extant biological systems. The structural characterisation of biomarkers as well as their stable isotopic compositions (C, H and N) are used to evaluate the source(s) of organic matter (OM) and to reconstruct paleoenvironmental depositional conditions. Throughout the Cenozoic sediments (including the PETM) the biomarker distribution suggests a variation in the source of organic matter from terrestrial to marine. Furthermore, the presence of sulfurised biomarkers indicates euxinic environmental conditions at the time of deposition. Biomarker distributions indicative of green sulfur bacteria reveal persistent photic zone euxinic conditions at several intervals in the Cenozoic. Further compound specific isotope analyses will provide insights into the long-term biogeochemical cycling of C, H and S

  18. Review of the upper Cenozoic stratigraphy overlying the Columbia River Basalt Group in western Idaho

    International Nuclear Information System (INIS)

    Strowd, W.B.


    This report is a synthesis of information currently available on the rocks that stratigraphically overlie the Columbia River Basalt Group in Idaho. The primary objective is to furnish a brief but comprehensive review of the literature available on upper Cenozoic rocks in western Idaho and to discuss their general stratigraphic relationships. This study also reviews the derivation of the present stratigraphy and notes weaknesses in our present understanding of the geology and the stratigraphy. This report was prepared in support of a study to evaluate the feasibility of nuclear waste storage in the Columbia River Basalt Group of the Pasco Basin, Washington

  19. Discussion on geological characteristics and types of uranium deposit of Mesozoic-cenozoic basin in Guangdong

    International Nuclear Information System (INIS)

    Wang Kesheng; Deng Shihua


    Systematic summary is briefly made of the distribution, classification, formation, regional geological setting, uranium deposit type, ore-controlling geological conditions of the Mesozoic-Cenozoic basin in Guangdong area, and on this basis it is proposed that there exist different ore-controlling conditions in different types of basin and different types of deposit can be formed in them, thus indicating the direction for exploration of the basin type uranium deposit from now on and expanding the prospect of ore-finding in the basins in Guangdong area

  20. New Eocene damselflies and first Cenozoic damsel-dragonfly of the isophlebiopteran lineage (Insecta: Odonata). (United States)

    Garrouste, Romain; Nel, André


    The study of a new specimen of Petrolestes hendersoni from the Eocene Green Formation allows a more precise description of the enigmatic damselfly and the diagnosis of the Petrolestini. Petrolestes messelensis sp. nov. is described from the Eocene Messel Formation in Germany, extending the distribution of the Petrolestini to the European Eocene. The new damsel-dragonfly family Pseudostenolestidae is described for the new genus and species Pseudostenolestes bechlyi, from the Eocene Messel Formation. It is the first Cenozoic representative of the Mesozoic clade Isophlebioptera.

  1. U-series component dating for late pleistocene basalt Longgang, Jilin province

    International Nuclear Information System (INIS)

    Yu Fusheng; Yuan Wanming; Han Song


    Longgang volcanic swarm belongs to one of volcanic areas which have been active since modern times. In view of multiple eruptions during histories, it is very important to determine age of every eruption for evaluating volcanic hazards. The alkaline basalt samples taken from Dayizishan and diaoshuihu are analyzed by U-series component method, after magnetic separation. The ages of the two samples are (71 ± 9) ka, (106 ± 13) ka before presence, respectively. These data indicate that there exist intensively eruptive activities during late Pleistocene

  2. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo


    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  3. Volcanic hazards and public response (United States)

    Peterson, Donald W.


    Although scientific understanding of volcanoes is advancing, eruptions continue to take a substantial toll of life and property. Some of these losses could be reduced by better advance preparation, more effective flow of information between scientists and public officials, and better understanding of volcanic behavior by all segments of the public. The greatest losses generally occur at volcanoes that erupt infrequently where people are not accustomed to dealing with them. Scientists sometimes tend to feel that the blame for poor decisions in emergency management lies chiefly with officials or journalists because of their failure to understand the threat. However, the underlying problem embraces a set of more complex issues comprising three pervasive factors. The first factor is the volcano: signals given by restless volcanoes are often ambiguous and difficult to interpret, especially at long-quiescent volcanoes. The second factor is people: people confront hazardous volcanoes in widely divergent ways, and many have difficulty in dealing with the uncertainties inherent in volcanic unrest. The third factor is the scientists: volcanologists correctly place their highest priority on monitoring and hazard assessment, but they sometimes fail to explain clearly their conclusions to responsible officials and the public, which may lead to inadequate public response. Of all groups in society, volcanologists have the clearest understanding of the hazards and vagaries of volcanic activity; they thereby assume an ethical obligation to convey effectively their knowledge to benefit all of society. If society resists, their obligation nevertheless remains. They must use the same ingenuity and creativity in dealing with information for the public that they use in solving scientific problems. When this falls short, even excellent scientific results may be nullified.

  4. Thermal vesiculation during volcanic eruptions. (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo


    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  5. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco) (United States)

    Soulaimani, A.; Michard, A.; Ouanaimi, H.; Baidder, L.; Raddi, Y.; Saddiqi, O.; Rjimati, E. C.


    The post-Pan-African evolution of the northern border of the West African Craton is largely controlled by the remobilisation of Late Neoproterozoic basement faults. The Upper Ediacaran volcanic and volcano-sedimentary sequences of the Ouarzazate Group show dramatic and rapid thickness changes, consistent with active extensional faulting associated with post-orogenic collapse and incipient continental rifting. The geometry and kinematics of these faults differ from west to east in the Anti-Atlas. N- to NE-trending faults dominate in western Anti-Atlas in response to E-W to NW-SE pure extension, while a transtensive opening regime characterize the central (Bou Azzer) and eastern (Saghro-Ougnate) Anti-Atlas. The marine incursion in the west-central Anti-Atlas during the late Ediacaran-Early Cambrian occurred without major geodynamical break between the continental Ouarzazate Group and marine sediments of the Adoudou Fm. Extensional tectonics went on during the Early Cambrian, being concentrated in the western and central parts of the belt. From Middle Cambrian to Lower Devonian and mainly due to thermal subsidence, the Anti-Atlas basement was buried under marine sediments with dominant south-derived detrital input. Basement faults control the distribution of subsiding versus shallow areas. During the Middle-Late Devonian, the dislocation of the Saharan platform occurred, mainly in the eastern Anti-Atlas where Precambrian faults were also remobilized during the Early Carboniferous. During the Variscan orogeny, the Paleozoic series of the Anti-Atlas basin were involved in folding tectonics, concomitant with the uplift of Proterozoic basement blocks bounded by inherited basement faults. The pre-existing rift-related faults were variably inverted across the Anti-Atlas. In the westernmost part of the belt, Variscan shortening induced positive inversions along the remobilized basement faults, but in some cases, some faults preserved an apparently normal throw. Some hidden

  6. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.


    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  7. Volcanism and associated hazards: the Andean perspective (United States)

    Tilling, R. I.


    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  8. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)


    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  9. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh


    Full Text Available Introduction The study area is located in NW Gonabad, Razavi Khorasan Province, northern Lut block and eastern Iran north of the Lut Block. Magmatism in NW Gonabad produced plutonic and volcanic rock associations with varying geochemical compositions. These rocks are related to the Cenozoic magmatic rocks in Iran and belong to the Lut Block volcanic–plutonic belt. In this study, petrogenesis of volcanic units in northwest Gonabad was investigated. The volcanic rocks are andesites/trachyandesites, rhyolites, dacites/ rhyodacites and pyroclastics.These rocks show porphyritic, trachytic and embayed textures in phenocrysts with plagioclase, sanidine and quartz (most notably in dacite and rhyolite, hornblende and rare biotite. The most important alteration zones are propylitic, silicification and argillic.Four kaolinite- bearing clay deposits have been located in areas affectedby hydrothermal alteration of Eocene rhyolite, dacite and rhyodacite. Analytical techniques Five samples were analyzed for major elements by wavelength dispersive X-ray fluorescence (XRF and six samples were analyzed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Laboratories, Vancouver (Canada.Sr and Nd isotopic compositions were determined for four whole-rock samples at the Laboratório de GeologiaIsotópica da Universidade de Aveiro, Portugal. Results Petrography. The rocks in this area are consist of trachyte, andesite/ trachyandesite, dacite/ rhyodacite, principally as ignimbrites and soft tuff. The textures of phenocrysts are mainly porphyritic, glomerophyric, trachytic and embayed textures in plagioclase, hornblende and biotite. The groundmasses consist of plagioclase and fine-grainedcrystals of hornblende. Plagioclase phenocrysts and microlitesare by far the most abundant textures in andesite - trachyandesites (>25% and in size from 0.01 to 0.1mm. Euhedral to subhedral hornblende phenocrysts areabundant (3-5%and 0.1 to 0

  10. Pre-Cenozoic basement rocks of the Proto-Philippine Sea Plate: Constraints for the birthplace of the Izu-Bonin-Mariana Arc (United States)

    Tani, K.; Ishizuka, O.; Horie, K.; Barth, A. P.; Harigane, Y.; Ueda, H.


    The Izu-Bonin-Mariana Arc is widely regarded to be a typical intra-oceanic arc, with the oceanic Pacific Plate subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. However, little is known about the origin of the proto-Philippine Sea Plate, which existed along with the Pacific Plate at the time of subduction initiation in the Eocene. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible and dredge surveys in the Daito Ridges and the Kyushu-Palau Ridge. The Daito Ridges comprise the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that the Daito Ridges expose deep crustal sections of gabbroic, granitic, metamorphic, and ultra-mafic rocks, along with volcanic rocks ranging from basalt to andesite. Mesozoic magmatic zircon U-Pb ages have been obtained from the plutonic rocks, and whole-rock geochemistry of the igneous rocks indicates arc origins. Furthermore, mafic schist collected from the Daito Ridge has experienced amphibolite facies metamorphism, with phase assemblages suggesting that the crust was thicker than 20 km at the time. Similar amphibolite-facies metamorphic rocks with Proterozoic zircons have been recovered in the southern Kyushu-Palau Ridge, indicating that such distinctively older basement rocks exist as isolated tectonic blocks within the present Philippine Sea Plate. These finds show that the parts of the Daito Ridges and Kyushu-Palau Ridge represent developed crustal sections of the Pre-Cenozoic arc that comprises part of the proto-Philippine Sea Plate, and, together with the tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR), they suggest that subduction of the Izu-Bonin-Mariana Arc initiated at the continental margin of the Southeast Asia.

  11. Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31-32°S), southern central Andes, Argentina (United States)

    Levina, Mariya; Horton, Brian K.; Fuentes, Facundo; Stockli, Daniel F.


    Andean retroarc compression associated with subduction and shallowing of the oceanic Nazca plate resulted in thin-skinned thrusting that partitioned and uplifted Cenozoic foreland basin fill in the Precordillera of west-central Argentina. Evolution of the central segment of the Precordillera fold-thrust belt is informed by new analyses of clastic nonmarine deposits now preserved in three intermontane regions between major east directed thrust faults. We focus on uppermost Oligocene-Miocene basin fill in the axial to frontal Precordillera at 31-32°S along the Río San Juan (Albarracín and Pachaco sections) and the flank of one of the leading thrust structures (Talacasto section). The three successions record hinterland construction of the Frontal Cordillera, regional arc volcanism, and initial exhumation of Precordillera thrust sheets. Provenance changes recorded by detrital zircon U-Pb age populations suggest that initial shortening in the Frontal Cordillera coincided with an early Miocene shift from eolian to fluvial accumulation in the adjacent foreland basin. Upward coarsening of fluvial deposits and increased proportions of Paleozoic clasts reflect cratonward (eastward) advance of deformation into the Precordillera and resultant structural fragmentation of the foreland basin into isolated intermontane segments. Apatite (U-Th)/He thermochronometry of basin fill constrains to 12-9 Ma the most probable age of uplift-induced exhumation and cooling of Precordillera thrust sheets. This apparent pulse of exhumation is evident in each succession, suggestive of rapid, large-scale exhumation by synchronous thrusting above a single décollement linking major structures of the Precordillera.

  12. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history (United States)

    Fielding, C.R.; Whittaker, J.; Henrys, S.A.; Wilson, T.J.; Nash, T.R.


    A new stratigraphic model is presented for the evolution of the Cenozoic Victoria Land Basin of the West Antarctic Rift, based on integration of seismic reflection and drilling data. The Early Rift phase (?latest Eocene to Early Oligocene) comprises wedges of strata confined by early extensional faults, and which contain seismic facies consistent with drainage via coarse-grained fans and deltas into discrete, actively subsiding grabens and half-grabens. The Main Rift phase (Early Oligocene to Early Miocene) comprises a lens of strata that thickens symmetrically from the basin margins into a central depocenter, and in which stratal events pass continuously over the top of the Early Rift extensional topography. Internal seismic facies and lithofacies indicate a more organized, cyclical shallow marine succession, influenced increasingly upward by cycles of glacial advance and retreat into the basin. The Passive Thermal Subsidence phase (Early Miocene to ?) comprises an evenly distributed sheet of strata that does not thicken appreciably into the depocentre, with more evidence for clinoform sets and large channels. These patterns are interpreted to record accumulation under similar environmental conditions but in a regime of slower subsidence. The Renewed Rifting phase (? to Recent, largely unsampled by coring thus far) has been further divided into 1, a lower interval, in which the section thickens passively towards a central depocentre, and 2. an upper interval, in which more dramatic thickening patterns are complicated by magmatic activity. The youngest part of the stratigraphy was accumulated under the influence of flexural loading imposed by the construction of large volcanic edifices, and involved minimal sediment supply from the western basin margin, suggesting a change in environmental (glacial) conditions at possibly c. 2 Ma.

  13. A remarkable new genus of Protosmylinae (Neuroptera: Osmylidae) from late Eocene Florissant, Colorado. (United States)

    Makarkin, Vladimir N


    Pseudosmylidia relicta gen. et sp. nov. (Neuroptera: Osmylidae) is described from the late Eocene of Florissant (U.S.A., Colorado). It is assigned to the subfamily Protosmylinae based on the presence of two venational features characteristic of the subfamily: most crossveins in the radial to intramedial spaces of the forewing are arranged in four gradate series, and CuP is short and simple or forked only once in the hind wing. This genus is remarkable by CuP in the forewing bearing few pectinate branches. This is the only genus of extant and Cenozoic fossil Osmylidae in which this plesiomorphic condition is retained.

  14. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    primitive basalts and trachybasalts but also more evolved samples from the retroarc region and the larger volcanoes Payún Matrú and Payún Liso are presented. The samples cover a broad range of compositions from intraplate lavas similar to ocean island basalts to arc andesites. A common feature found...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...... the lithosphere is thinnest and possibly in areas of elevated mantle temperatures. The pyroxenite melts formed at deeper levels react with the surrounding peridotite and thereby changes composition leading to eruption of melts which experienced variable degrees of melt-peridotite interaction. This can presumably...

  15. The K-Ar ages and their stratigraphic interpretation of the Cheju Island volcanics, Korea

    International Nuclear Information System (INIS)

    Tamanyu, Shiroh


    K-Ar datings were performed on the 5 volcanic rock samples of the Cheju Island Korea. The results of these datings are as follows. Hallasan trachyte; 0.07±0.01 Ma, Paeknoktam Hawaiite; 0.47±0.07 Ma, Hallasan Hawaiite; 0.52±0.03 Ma, Sogwip'o Hawaiite; 0.55±0.04 Ma, P'yosonri Alkali Basalt; 0.31±0.04 Ma. Among them, only Paeknoktam Hawaiite seems to be grown older by the excess Argon. But, all other ages can be interpreted respectively as the essential ages of their eruptions. Based on these newly obtained age data and previously reported age data, the volcanism of this island can be roughly divided into three stages as follows. I stage; early Pleistocene basic-intermediate volcanism. II stage; middle Pleistocene basic volcanism. III stage; late Pleistocene-Holocene basic-intermediate volcanism. And also, the age of Sogwip'o Formation which is famous of bearing the index molluscan fossil; Turritella saishuensis Yokoyama, must be correlated to early Pleistocene. (author)

  16. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores (United States)

    Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G.


    The continuous sulfate analysis of two Antarctic ice cores, one from the Antarctic Peninsula region and one from West Antarctica, provides an annually resolved proxy history of southern semisphere volcanism since early in the 15th century. The dating is accurate within ±3 years due to the high rate of snow accumulation at both core sites and the small sample sizes used for analysis. The two sulfate records are consistent with each other. A systematic and objective method of separating outstanding sulfate events from the background sulfate flux is proposed and used to identify all volcanic signals. The resulting volcanic chronology covering 1417-1989 A.D. resolves temporal ambiguities about several recently discovered events. A number of previously unknown, moderate eruptions during late 1600s are uncovered in this chronology. The eruption of Tambora (1815) and the recently discovered eruption of Kuwae (1453) in the tropical South Pacific injected the greatest amount of sulfur dioxide into the southern hemisphere stratosphere during the last half millennium. A technique for comparing the magnitude of volcanic events preserved within different ice cores is developed using normalized sulfate flux. For the same eruptions the variability of the volcanic sulfate flux between the cores is within ±20% of the sulfate flux from the Tambora eruption.

  17. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa


    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  18. Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China (United States)

    Peng, F.; Huang, S.; Xiong, Y.


    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are

  19. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling (United States)

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.


    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and

  20. Large Volcanic Rises on Venus (United States)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.


    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  1. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin (United States)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen


    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  2. DSCOVR/EPIC observations of SO2 reveal dynamics of young volcanic eruption clouds (United States)

    Carn, S. A.; Krotkov, N. A.; Taylor, S.; Fisher, B. L.; Li, C.; Bhartia, P. K.; Prata, F. J.


    Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet (UV) and infrared (IR) sensors on US and European polar-orbiting satellites since the late 1970s. Although successful, the main limitation of these observations from low Earth orbit (LEO) is poor temporal resolution (once per day at low latitudes). Furthermore, most currently operational geostationary satellites cannot detect SO2, a key tracer of volcanic plumes, limiting our ability to elucidate processes in fresh, rapidly evolving volcanic eruption clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided the first opportunity to observe volcanic clouds from the L1 Lagrange point. EPIC is a 10-band spectroradiometer spanning UV to near-IR wavelengths with two UV channels sensitive to SO2, and a ground resolution of 25 km. The unique L1 vantage point provides continuous observations of the sunlit Earth disk, from sunrise to sunset, offering multiple daily observations of volcanic SO2 and ash clouds in the EPIC field of view. When coupled with complementary retrievals from polar-orbiting UV and IR sensors such as the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), and the Atmospheric Infrared Sounder (AIRS), we demonstrate how the increased observation frequency afforded by DSCOVR/EPIC permits more timely volcanic eruption detection and novel analyses of the temporal evolution of volcanic clouds. Although EPIC has detected several mid- to high-latitude volcanic eruptions since launch, we focus on recent eruptions of Bogoslof volcano (Aleutian Islands, AK, USA). A series of EPIC exposures from May 28-29, 2017, uniquely captures the evolution of SO2 mass in a young Bogoslof eruption cloud, showing separation of SO2- and ice-rich regions of the cloud. We show how analyses of these sequences of EPIC SO2 data can elucidate poorly understood processes in transient eruption

  3. Dinasour extinction and volcanic activity (United States)

    Gledhill, J. A.

    There is at present some controversy about the reason for the mass extinction of dinosaurs and other forms of life at the end of the Cretaceous. A suggestion by Alvarez et al. [1980] that this was due to the collision of the earth with a meteorite 10 km or so in diameter has excited considerable interest [Silver and Schultz, 1982] and also some criticism [Stanley, 1984]. A recent publication [Wood, 1984] describing the catastrophic effects of a relatively minor lava flow in Iceland suggests that intense volcanic activity could have played a large part in the extinctions. In this letter it is pointed out that the Deccan lava flows in India took place in the appropriate time and may well have been of sufficient magnitude to be a major factor in the Cretaceous-Tertiary (C-T) boundary catastrophe.

  4. Preliminary geologic map of the Sleeping Butte volcanic centers

    International Nuclear Information System (INIS)

    Crowe, B.M.; Perry, F.V.


    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume ( 3 ) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs

  5. /sup 40/Ar//sup 39/Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P. N. G

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A. (Australian National Univ., Canberra. Dept. of Geology); McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)


    K-Ar and /sup 40/Ar//sup 39/Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. /sup 40/Ar//sup 39/Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic /sup 40/Ar(/sup 40/Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain /sup 39/Ar during or subsequent to irradiation, but in some cases may contain /sup 40/Ar*. The results are discussed.

  6. 40Ar/39Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P.N.G

    International Nuclear Information System (INIS)

    Walker, D.A.; McDougall, I.


    K-Ar and 40 Ar/ 39 Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40 Ar/ 39 Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic 40 Ar( 40 Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39 Ar during or subsequent to irradiation, but in some cases may contain 40 Ar*. The results are discussed. (author)

  7. Geochronology of Cenozoic rocks in the Bodie Hills, California and Nevada (United States)

    Fleck, Robert J.; du Bray, Edward A.; John, David A.; Vikre, Peter G.; Cosca, Michael A.; Snee, Lawrence W.; Box, Stephen E.


    The purpose of this report is to present geochronologic data for unaltered volcanic rocks, hydrothermally altered volcanic rocks, and mineral deposits of the Miocene Bodie Hills and Pliocene to Pleistocene Aurora volcanic fields of east-central California and west-central Nevada. Most of the data presented here were derived from samples collected between 2000–13, but some of the geochronologic data, compiled from a variety of sources, pertain to samples collected during prior investigations. New data presented here (tables 1 and 2; Appendixes 1–3) were acquired in three U.S. Geological Survey (USGS) 40Ar/39Ar labs by three different geochronologists: Robert J. Fleck (Menlo Park, CA), Lawrence W. Snee (Denver, CO), and Michael A. Cosca (Denver, CO). Analytical methods and data derived from each of these labs are presented separately.

  8. Geology, geochronology and geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia

    International Nuclear Information System (INIS)

    Berhe, S.M.; Desta, B.; Teferra, M.; Nicoletti, M.


    New K-Ar dates are presented for areas in W and SE Ethiopia. In the west, the dates distinguish the Geba Basalts of 40 to 32 Ma from the Welega Shield Volcanics which are shown to range from 11.2 + -2.2 to 7.8 + - 1.6 Ma. In SE Ethiopia, the Lower Stratoid flood basalts range from 30 + - 4.5 to 23.5 + - 4.5 Ma and are unconformably overlain by the Reira-Sanete shield volcanics which range from c. 15 to c. 2 Ma. The unconformity is marked by a palaeosol as are several of the intervals between the major volcanic stages of Ethiopia

  9. Geology, geochronology and geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Berhe, S.M.; Desta, B.; Teferra, M.; Nicoletti, M.


    New K-Ar dates are presented for areas in W and SE Ethiopia. In the west, the dates distinguish the Geba Basalts of 40 to 32 Ma from the Welega Shield Volcanics which are shown to range from 11.2 + -2.2 to 7.8 + - 1.6 Ma. In SE Ethiopia, the Lower Stratoid flood basalts range from 30 + - 4.5 to 23.5 + - 4.5 Ma and are unconformably overlain by the Reira-Sanete shield volcanics which range from c. 15 to c. 2 Ma. The unconformity is marked by a palaeosol as are several of the intervals between the major volcanic stages of Ethiopia.

  10. Investigating the ancient landscape and Cenozoic drainage development of southern Yukon (Canada), through restoration modeling of the Cordilleran-scale Tintina Fault. (United States)

    Hayward, N.; Jackson, L. E.; Ryan, J. J.


    This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold

  11. Ecological impacts of the late Quaternary megaherbivore extinctions. (United States)

    Gill, Jacquelyn L


    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species.

  12. The impact of fire on the Late Paleozoic Earth System

    Directory of Open Access Journals (Sweden)

    Ian J. Glasspool


    Full Text Available Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2 that mass balance models predict prevailed. At higher levels of p(O2, increased fire activity would have rendered vegetation with high moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2 rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can therefore be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2 played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  13. The impact of fire on the Late Paleozoic Earth system. (United States)

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi


    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  14. Volcanic tremor associated with eruptive activity at Bromo volcano

    Directory of Open Access Journals (Sweden)

    E. Gottschämmer


    Full Text Available Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The analysis of the seismograms shows that the signals produced by the volcanic sources cover the frequency range from at least 25 Hz down to periods of several minutes and underlines, therefore, the importance of broadband recordings. Frequency analysis reveals that the signal can be divided into four domains. In the traditional frequency range of volcanic tremor (1-10 Hz sharp transitions between two distinct values of the tremor amplitude can be observed. Additional tremor signal including frequencies from 10 to 20 Hz could be found during late November and early December. Throughout the whole experiment signals with periods of some hundred seconds were observed which are interpreted as ground tilts. For these long-period signals a particle motion analysis was performed in order to estimate the source location. Depth and radius can be estimated when the source is modeled as a sudden pressure change in a sphere. The fourth frequency range lies between 0.1 and 1 Hz and is dominated by two spectral peaks which are due to marine microseism. The phase velocity and the direction of wave propagation of these signals could be determined using the tripartite-method.

  15. Volcanic Plume Measurements with UAV (Invited) (United States)

    Shinohara, H.; Kaneko, T.; Ohminato, T.


    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  16. NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt (United States)

    García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier


    The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.

  17. Radioactive occurrence in sediments of Cenozoic age near Bandha village, Jaisalmer district, Rajasthan

    International Nuclear Information System (INIS)

    Gupta, Sumangal; Barik, Maninee P.; Ariketi, Ravinder; Jain, D.; Biswal, Samir


    The radioactivity is dependent on the isotope and their concentration in the mineral such as potassium (K), uranium (U) and thorium (Th). In this paper the presence of a 3 to 5 m thick uranium and thorium bearing sediment of Cenozoic age is reported above Goru Formation of Jaisalmer basin. Gamma ray log response of Well-1 which falls under the study area has marked with very high GR (gamma ray) readings ranging from 350-1488 API coupled with high uranium and thorium content from spectral gamma ray log ranging from 92-178 ppm and 60-80 ppm respectively at the depth of 50 m from ground surface (-110m above MSL). Further studies are required to delineate the lateral thickness variation for mining purpose which may be a radioactive source. (author)

  18. Modes, tempo and spatial variability of Cenozoic cratonic denudation: morphoclimatic constraints from West Africa (United States)

    Beauvais, Anicet; Chardon, Dominique


    After the onset of Gondwana break-up in the Early Mesozoic, the emerged part of the African plate underwent long Greenhouse effect climatic periods and epeirogeny. The last Greenhouse effect period in the Early Cenozoic and the alternation of wet and dry climatic periods since the Eocene enhanced episodes of rock chemical weathering and laterite production, forming bauxites and ferricretes, interrupted by drier periods of dominantly mechanical denudation, shaping glacis [1]. In Sub-Saharan West Africa, this evolution resulted in pulsate and essentially climatically-forced denudation that has shaped an ubiquitous sequence of five stepped lateritic paleosurfaces that synchronously developed over Cenozoic times. The modes, timing and spatial variability of continental denudation of the region are investigated by combining geomorphologic and geochronological data sets. The geomorphologic data set comprises the altitudinal distribution of the lateritic paleosurfaces relicts and their differential elevation from 42 locations in Sub-Saharan West Africa where the sequence (or part of it) has been documented. The geochronological data set consists in the age ranges of each paleosurface tackled by radiometric 39Ar-40Ar dating of the neoformed oxy-hydroxides (i.e., cryptomelane, K1-2Mn8O16, nH2O, [4]) carried by their laterites at the Tambao reference site, Burkina Faso [1, 3]. Five groups of 39Ar-40Ar ages, ~ 59 - 45 Ma, ~ 29 - 24 Ma, ~ 18 - 11.5 Ma, ~ 7.2 - 5.8 Ma, and ~ 3.4 - 2.9 Ma, characterize periods of chemical weathering whereas the time laps between these groups of ages correspond to episodes of mechanical denudation that reflect physical shaping of the paleosurfaces. For the last 45 Ma, the denudation rate estimates (3 to 8 m Ma-1) are comparable with those derived on shorter time scale (103 to 106 y.) in the same region by the cosmogenic radionuclide method [2]. Combined with the geomorphologic data set, these age ranges allow the visualization of the regional

  19. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai


    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  20. Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes

    Directory of Open Access Journals (Sweden)

    Laura Gonzalez


    Full Text Available Based on the structural style and physiographic criteria, the Central Andes of Peru can be divided into segments running parallel to the Pacific coast. The westernmost segment, the Coastal Belt, consists of a Late Jurassic–Cretaceous volcanic arc sequence that was accreted to the South American craton in Cretaceous times. The Mesozoic strata of the adjacent Western Cordillera represent an ENE-vergent fold-and-thrust belt that formed in Eocene times. Tight upright folds developed above a shallow detachment horizon in the West, while more open folds formed above a deeper detachment horizon towards the East and in the neighboring Central Highlands. A completely different style with steeply dipping reverse faults and open folds affecting the Neoproterozoic crystalline basement is typical for the Eastern Cordillera. The Subandean Zone is characterized by mainly NE-vergent imbricate thrusting which occurred in Neogene times. A quantitative estimate of the shortening of the orogen obtained from balanced cross-sections indicates a total shortening of 120–150 km (24%–27%. This shortening was coevel with the Neogene westward drift of South America, occurred at rates between 3 and 4.7 mm/year and was responsible for the high elevation of the Peruvian Andes.

  1. Cenozoic volcanism in the Bohemian Massif in the context of P- and S-velocity high-resolution teleseismic tomography of the upper mantle

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Munzarová, Helena; Vecsey, Luděk; Kissling, E.; Achauer, U.; Babuška, Vladislav


    Roč. 17, č. 8 (2016), s. 3326-3349 ISSN 1525-2027 R&D Projects: GA ČR GAP210/12/2381; GA ČR GA205/01/1154; GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : seismic tomography * upper mantle * body waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.201, year: 2016

  2. Seismic anisotropy of the French Massif Central and predisposition of Cenozoic rifting and volcanism by Variscan suture hidden in the mantle lithosphere

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava; Vecsey, Luděk; Granet, M.; Achauer, U.


    Roč. 21, č. 4 (2002), s. U407-U429 ISSN 0278-7407 R&D Projects: GA ČR GV205/98/K004; GA ČR GA205/01/1154; GA AV ČR IAA3012908 Institutional research plan: CEZ:AV0Z3012916 Keywords : seismic anisotropy * Massif Central * mantle lithosphere Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.697, year: 2002

  3. Preliminary results on the search for new Late Glacial rock shelter-sites in the Federal State of Hesse

    DEFF Research Database (Denmark)

    Sauer, Florian Rudolf

    The multidisciplinary project “Apocalypse Then? The Laacher See volcanic eruption, Deep Environmental History and Europe’s Geo-cultural Heritage” at Aarhus University aims to investigate the influence of the catastrophic Late Glacial volcanic eruption on the lifeways of foragers 13.000 years ago....... One of the major work packages is the discovery of new sites which can provide Late Palaeolithic strata in the context of volcanic ash deposits. Previous tephrochronological research has demonstrated that neither open-air nor deep cave sites harbour great potential for discovering in situ volcanic ash...... of Bettenroder Berg in Lower Saxony which provide rich ABP (Arch-backed point-technocomplex) finds covered by Laacher-See Tephra (see Grote 1994). For the state of Hesse in Central Germany a database of ca. 800 potential rock shelters is forming the basis for the search for new sites in the medial zone...

  4. Origin and Development of El Bajío Basin in the Central Sector of Trans-Mexican Volcanic Belt (United States)

    Botero, P. A.; Alaniz Álvarez, S. A.; Nieto Samaniego, Á. F.; Lopez-Martinez, M.; Levresse, G.; Xu, S.; Ortega Obregón, C.


    Volcanism of the Trans-Mexican Volcanic Belt has been placed on pre-existing tectonic basins; one of them is El Bajío Basin. We present the origin and evolution of this basin through the study of its deformation events occurring mainly on the El Bajío fault, at the boundary between the Trans-Mexican Volcanic Belt and the Mesa Central. Detailed stratigraphy, and structural analysis suggest 4 deformation events in the northwest of the Sierra de Guanajuato. The first event (D1) with E-W shortening is characterized by the development of axial plane foliation (S1) with N-S direction, this event occurred between the Tithonian and Aptian age. In the second event (D2), occurred between the Albian and the early Eocene, foliations NW-SE (S2) were generated with a NE-SW shortening trend dated between the Albian and early Eocene, this deformation is related to the Laramide Orogeny. The Granito Comanja was emplaced during the third event (D3) and generated foliation (S3) in sediments of the complejo vulcanosedimentario Sierra de Guanajuato that circumscribes the Granito Comanja in response to its intrusion. After its emplacement, NW-SE normal faults were generated along the S-SE contact of the Granito Comanja, at that time El Bajío fault began. The fourth event (D4) has three phases that affected the sedimentary and volcanic Cenozoic rocks. D4F1 is marked by continental conglomerates deposition with variable thickness along of the main trace of the El Bajío fault. D4F2 affected the Oligocene volcanic rocks showing an important fault activity at that time, as evidenced the tilting above 45o in the Oligocene rocks, temporarily coincides with the triaxial extension to the Mesa Central. The direction of elongation of D4F3 is ESE-WNW, El Bajío fault had little movement. Since the Miocene the deformation was concentrated along the southern central sector of the Trans-mexican Volcanic Belt and there were few deformation in the Mesa central. During the three phases of deformation

  5. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons (United States)

    Pavlis, T. L.; Miller, M.; Serpa, L.


    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  6. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni


    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  7. Volcanic Ash Advisory Database, 1983-2003 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  8. Age of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Lindsay, J.; Leonard, G.S.


    In 2008 a multi-disciplinary research programme was launched, a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland (DEVORA). A major aspiration of DEVORA is development of a probabilistic hazard model for the Auckland Volcanic Field (AVF). This will be achieved by investigating past eruption magnitude-frequency relationships and comparing these with similar data from analogous volcanic fields. A key data set underpinning this is an age database for the AVF. To this end a comprehensive dating campaign is planned as part of DEVORA. This report, Age of the Auckland Volcanic Field, is a synthesis of all currently available age data for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from all previous work is collated and summarised, so that gaps in current knowledge can be identified and addressed. (author). 60 refs., 7 figs., 31 tabs.

  9. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern


    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  10. Stochastic Modeling of Past Volcanic Crises (United States)

    Woo, Gordon


    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  11. Mineral chemistry and petrogenesis of the Gurgur Mount volcanic rocks (Northeast Takab

    Directory of Open Access Journals (Sweden)

    Dariush Esmaeily


    Full Text Available Andesitic and andesitic-basaltic lavas are widespread over most of the ground surface of the Gurgur area altered mostly by the hydrothermal solutions. The main rock forming minerals in these rocks are plagioclase, pyroxene and olivine affected by the hydrothermal solutions. The altered rocks do contain minerals including calcite, sericite and chlorite. Given the results obtained and the mineral chemistry studies, the clinopyroxenes formed in the area are, chemically, calkalkaline and of diopside-augite type formed in subvolcanic to near surface levels contemporaneous with magma ascending. Plagioclase minerals show zoning textures and lie within the two andesine and albite-oligoclase fields. These units, in terms of total rock chemistry, are classified as the calk-alkaline volcanic rocks formed in the continental arcs. On the other hand, on the trace elements chondrite-normalized diagrams and enriched mantle-normalized multi- element diagrams, the LREE enrichment relative to the HREE is observed. The LILE (i.e. Rb, K and Th and the LREE (e.g. La, Ce and Nd show an enrichment in comparison to the HFSE (Zr, Hf, Nb, Yb, Y and Sm. Given the Nd/Th (1.42-1.15, Zr/Nb (12.27-21.22, Ba/La (18.64-29.77 as well as LILE enrichment associated with depletion in Nb, Ta and Ti, an environment related to the subduction zones can be proposed for the area under study. Moreover, the similarity between the REE distribution pattern and the incompatible elements point to the genetic relationship between these rocks. Finally, on the base of the obtained data, it can be concluded that the volcanic rocks in the Gurgur Mountain were likely formed during the extended magmatism of the Urumieh-Dokhtar in the Cenozoic.

  12. Imaging volcanic CO2 and SO2 (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.


    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  13. Magmatism and cenozoic tectonism in the Cabo Frio region, RJ, Brazil

    International Nuclear Information System (INIS)

    Mohriak, W.U.; Barros, A.Z.N. de; Fujita, A.


    The western portion of the Campos Basin is limited by a hinge line that bounds the deposition of pre-Aptian sediments in the offshore region. The Cabo Frio arch corresponds to a platform with smaller relative subsidence, where Tertiary sediments are deposited directly on shallow basement rocks. Towards the continental slope of the Cabo Frio region, tectonic activity is also observed in the post-Aptian sequence, particularly in the region between the Santos and Campos basins, where a very large graben trends parallel to the pre-Aptian limit of the basin, and is controlled by faults that-affect Upper Miocene rocks. Eastwards of this region, an array of antithetic faults trends in a NE direction. These faults, apparently detaching an the Aptian salt, show unique geometric patterns. The rupturing of Pangea in the Lower Cretaceous is marked by widespread outpouring of mafic magmas in Campos and Santos basins. Radiometric age determinations for this volcanism show a mean of about 139 M.a. After the rift phase, another volcanic episode is observed in the Cabo Frio region, with K/Ar radiometric dating of about 50 M.a. Volcanic mounds are observed within the Eocene sedimentary sequence. An Eocene volcanic episode is characterized by the presence of volcaniclassic rocks, including autoclastic, hydroclastic, epiclastic and pyroclastic sediments. This tectonic episode is also identified within other stratigraphic intervals in the sedimentary column. (author)

  14. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica (United States)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.


    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  15. Local and remote infrasound from explosive volcanism (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.


    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  16. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Black, P M [Department of Geology, Auckland University, Auckland (New Zealand); Briggs, R M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Itaya, T [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Dewes, E R [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Dunbar, H M [Department of Earth Sciences, Waikato University, Hamilton (New Zealand); Kawasaki, K [Hiruzen Research Institute, Okayama University of Science, Okayama (Japan); Kuschel, E [Department of Geology, Auckland University, Auckland (New Zealand); Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand)


    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  17. K-Ar age data and geochemistry of the Kiwitahi Volcanics, western Hauraki Rift, North Island, New Zealand

    International Nuclear Information System (INIS)

    Black, P.M.; Briggs, R.M.; Itaya, T.; Dewes, E.R.; Dunbar, H.M.; Kawasaki, K.; Kuschel, E.; Smith, I.E.M.


    The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine basaltic andesites which should be assigned to the geochemically and temporally similar Ti Point Volcanics; (3) a group including the andesitic breccias at Ness Valley and the volcanic centres of Miranda (pyroxene basaltic andesite, pyroxene and hornblende andesite, hornblende dacite) and Pukekamaka (hornblende andesites), all within the age range 10.22-12.96 Ma; (4) a separate group at Tahuna (6.36-6.80 Ma) consisting of pyroxene basaltic andesites and pyroxene andesites; and (5) a southern group of Maungatapu, Ruru, Maungakawa, and Te Tapui (5.52-6.23 Ma), forming eroded cones of olivine basaltic andesites, pyroxene basaltic andesites, and pyroxene andesites. The Kiwitahi Volcanics of late Miocene age crop out in a number of localities situated along the western side of the Hauraki Rift in northern North Island, New Zealand. They extend from Waiheke Island in the north to Te Tapui in the south. From 19 new K-Ar ages presented here and geochemical data from volcanics at each locality, it is suggested that the Kiwitahi Volcanics should be informally subdivided into five groups: (1) an oldest group of agglomerates and volcanic breccias at northeastern Waiheke, containing pyroxene and hornblende andesites with an age range of 14.4-16.02 Ma; (2) a volcanic centre at Stony Batter (6.85-8.34 Ma) comprised of olivine

  18. The Origin of Widespread Long-lived Volcanism Across the Galapagos Volcanic Province (United States)

    O'Connor, J. M.; Stoffers, P.; Wijbrans, J. R.; Worthington, T. J.


    40Ar/39Ar ages for rocks dredged (SO144 PAGANINI expedition) and drilled (DSDP) from the Galapagos Volcanic Province (Cocos, Carnegie, Coiba and Malpelo aseismic ridges and associated seamounts) show evidence of 1) increasing age with distance from the Galapagos Archipelago, 2) long-lived episodic volcanism at many locations, and 3) broad overlapping regions of coeval volcanism. The widespread nature of synchronous volcanism across the Galapagos Volcanic Province (GVP) suggests a correspondingly large Galapagos hotspot melting anomaly (O'Connor et al., 2004). Development of the GVP via Cocos and Nazca plate migration and divergence over this broad melting anomaly would explain continued multiple phases of volcanism over millions of years following the initial onset of hotspot volcanism. The question arising from these observations is whether long-lived GVP episodic volcanism is equivalent to `rejuvenescent' or a `post-erosional' phase of volcanism that occurs hundreds of thousands or million years after the main shield-building phase documented on many mid-plate seamount chains, most notably along the Hawaiian-Emperor Seamount Chain? Thus, investigating the process responsible for long-lived episodic GVP volcanism provides the opportunity to evaluate this little understood process of rejuvenation in a physical setting very different to the Hawaiian-Emperor Chain (i.e. on/near spreading axis versus mid-plate). We consider here timing and geochemical information to test the various geodynamic models proposed to explain the origin of GVP hotspot volcanism, especially the possibility of rejuvenated phases that erupt long after initial shield-building.

  19. Personality in Late Midlife

    DEFF Research Database (Denmark)

    Mortensen, Erik Lykke; Flensborg-Madsen, Trine; Molbo, Drude


    To analyze associations in late midlife between sex, age, education and social class, and the Big Five personality traits; to analyze associations between personality traits and cognitive ability in late midlife; and to evaluate how these associations are influenced by demographic factors....

  20. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin (United States)

    Haraguchi, S.; Ishii, T.


    Arc volcanism in the Izu-Ogasawara arc is separated into first and latter term at the separate of Shikoku Basin. Middle to late Eocene early arc volcanism formed a vast terrane of boninites and island arc tholeiites that is unlike active arc systems. A following modern-style arc volcanism was active during the Oligocene, along which intense tholeiitic and calc-alkaline volcanism continued until 29Ma, before spreading of the back- arc basin. The recent arc volcanism in the Izu-Ogasawara arc have started in the middle Miocene, and it is assumed that arc volcanism were decline during spreading of back-arc basin. In the northern Kyushu-Palau Ridge, submarine bottom materials were dredged during the KT95-9 and KT97-8 cruise by the R/V Tansei-maru, Ocean Research Institute, university of Tokyo, and basaltic to andesitic volcanic rocks were recovered during both cruise except for Komahashi-Daini Seamount where recovered acidic plutonic rocks. Komahashi-Daini Seamount tonalite show 37.5Ma of K-Ar dating, and this age indicates early stage of normal arc volcanism. These volcanic rocks are mainly cpx basalt to andesite. Two pyroxene basalt and andesite are only found from Miyazaki Seamount, northern end of the Kyushu-Palau Ridge. Volcanic rocks show different characteristics from first term volcanism in the Izu-Ogasawara forearc rise and recent arc volcanism. The most characteristic is high content of incompatible elements, that is, these volcanics show two to three times content of incompatible elements to Komahashi-Daini Seamount tonalite and former normal arc volcanism in the Izu outer arc (ODP Leg126), and higher content than recent Izu arc volcanism. This characteristic is similar to some volcanics at the ODP Leg59 Site448 in the central Kyushu- Palau Ridge. Site448 volcanic rocks show 32-33Ma of Ar-Ar ages, which considered beginning of activity of Parece Vela Basin. It is considered that the dredged volcanic rocks are uppermost part of volcanism before spreading of

  1. Cu-Ag Besshi type volcanogenic massive sulfide mineralization in the Late Cretaceous volcano- sedimentary sequence: the case of Garmabe Paein deposit, southeast of Shahrood

    Directory of Open Access Journals (Sweden)

    Majid Tashi


    Full Text Available Introduction Iran hosts numerous types of Volcanogenic massive sulfide (VMS deposits that occur within different tectonic assemblages and have formed at discrete time periods (Mousivand et al. 2008. The Sabzevar zone hosts several VMS deposits including the Nudeh Cu-Ag deposit (Maghfouri, 2012 and some deposits in the Kharturan area (Tashi et al., 2014, and the Kharturan area locates in the Sabzevar subzone of the Central East Iranian Microcontinent. The Sabzevar subzone mainly involves Mesozoic and Cenozoic rock unites. The Late Cretaceous ophiolite mellanges and volcano-sedimentary sequences have high extension in the Subzone. Based on Rossetti (Rossetti et al. 2010, the Cretaceous rock units were formed in a back-arc setting due to subduction of the Neo-Tethyan oceanic crust beneath the Iranian plate. The exposed rock units of the Kharturan area from bottom to top are dominated by Early Cretaceous, orbitolina-bearing massive limestone, dacitic-andesitic volcanics and related volcaniclastic rocks٫ chert and radiolarite and Late Cretaceous globotrunkana- bearing limestone, paleocene polygenic conglomerate consisting of the Cretaceous volcanics and limestone pebbles (equal to the Kerman conglomerate, and Pliocene weakly-cemented polygenic conglomerate horizon. The Garmabe Paein copper-silver deposit and the Asbkeshan deposit and a few occurrences, are located at 290 km southeast of Shahrood and they have occurred within the Upper Cretaceous volcano-sedimentary sequence in the Sabzevar subzone. The aim of this study is to discuss the genesis of the Garmabe Paein deposit based on geological, textural and structural, mineralogical and geochemical evidence. Materials and methods A field study and sampling was performed during the year 2013. During the field observations, 94 rock samples were collected from the study area, and 45 thin sections were prepared and studied using a polarizing microscope. Also, 5 samples for the XRD method, 21 samples for

  2. Volcanism on differentiated asteroids (Invited) (United States)

    Wilson, L.


    after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.

  3. Late Eocene rings around the earth (United States)

    King, E. A.


    The suggestion of O'Keefe (1980) that the terminal Eocene event was caused by rings of tektite material encircling the earth is discussed. It is argued that the assumption that the tektites are of lunar volcanic origin is unwarranted and contrary to existing data, including the lack of lunar rocks of suitable composition, the lack of lunar rocks of the correct age, the lack of evidence that the North American tektites fell throughout a sedimentary rock column of a few million years, and the nondetection of a tektite with a measurable cosmic ray exposure age. Alternatively, it is suggested that the terminal Eocene event may be associated with volcanic ash, air-fall tuff and bentonite in the late Eocene. O'Keefe replies that the hypothesis of the terrestrial origin of the tektites conflicts with the laws of physics, for example in the glass structure and shaping of the tektites. Furthermore, evidence is cited for lunar rocks of the proper major-element composition and ages, and it is noted that the proposed solar Poynting-Robertson effect would account for the particle fall distributions and cosmic ray ages.

  4. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.


    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  5. Volcanic Supersites as cross-disciplinary laboratories (United States)

    Provenzale, Antonello; Beierkuhnlein, Carl; Giamberini, Mariasilvia; Pennisi, Maddalena; Puglisi, Giuseppe


    Volcanic Supersites, defined in the frame of the GEO-GSNL Initiative, are usually considered mainly for their geohazard and geological characteristics. However, volcanoes are extremely challenging areas from many other points of view, including environmental and climatic properties, ecosystems, hydrology, soil properties and biogeochemical cycling. Possibly, volcanoes are closer to early Earth conditions than most other types of environment. During FP7, EC effectively fostered the implementation of the European volcano Supersites (Mt. Etna, Campi Flegrei/Vesuvius and Iceland) through the MED-SUV and FUTUREVOLC projects. Currently, the large H2020 project ECOPOTENTIAL (2015-2019, 47 partners, contributes to GEO/GEOSS and to the GEO ECO Initiative, and it is devoted to making best use of remote sensing and in situ data to improve future ecosystem benefits, focusing on a network of Protected Areas of international relevance. In ECOPOTENTIAL, remote sensing and in situ data are collected, processed and used for a better understanding of the ecosystem dynamics, analysing and modelling the effects of global changes on ecosystem functions and services, over an array of different ecosystem types, including mountain, marine, coastal, arid and semi-arid ecosystems, and also areas of volcanic origin such as the Canary and La Reunion Islands. Here, we propose to extend the network of the ECOPOTENTIAL project to include active Volcanic Supersites, such as Mount Etna and other volcanic Protected Areas, and we discuss how they can be included in the framework of the ECOPOTENTIAL workflow. A coordinated and cross-disciplinary set of studies at these sites should include geological, biological, ecological, biogeochemical, climatic and biogeographical aspects, as well as their relationship with the antropogenic impact on the environment, and aim at the global analysis of the volcanic Earth Critical Zone - namely, the upper layer of the Earth

  6. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia


    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  7. Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary

    Directory of Open Access Journals (Sweden)

    Petrik Attila


    Full Text Available Extensive structural field observations and seismic interpretation allowed us to delineate 7 deformation phases in the study area for the Cenozoic period. Phase D1 indicates NW–SE compression and perpendicular extension in the Late Oligocene–early Eggenburgian and it was responsible for the development of a wedge-shaped Paleogene sequence in front of north-westward propagating blind reverse faults. D2 is represented by E–W compression and perpendicular extension in the middle Eggenburgian–early Ottnangian. The D1 and D2 phases resulted in the erosion of Paleogene suites on elevated highs. Phase D2 was followed by a counterclockwise rotation, described in earlier publications. When considering the age of sediments deformed by the syn-sedimentary D3 deformation and preliminary geochronological ages of deformed volcanites the time of the first CCW rotation can be shifted slightly younger (~17–16.5 Ma than previously thought (18.5–17.5 Ma. Another consequence of our new timing is that the extrusional tectonics of the ALCAPA unit, the D2 local phase, could also terminate somewhat later by 1 Myr. D4 shows NE–SW extension in the late Karpatian–Early Badenian creating NW–SE trending normal faults which connected the major NNE–SSW trending sinistral faults. The D5 and D6 phases are late syn-rift deformations indicating E–W extension and NW–SE extension, respectively. D5 indicates syn-sedimentary deformation in the Middle Badenian–early Sarmatian and caused the synsedimentary thickening of mid-Miocene suites along NNE–SSW trending transtensional faults. D5 postdates the second CCW rotation which can be bracketed between ~16–15 Ma. This timing is somewhat older than previously considered and is based on new geochronological dates of pyroclastite rocks which were not deformed by this phase. D6 was responsible for further deepening of half-grabens during the Sarmatian. D7 is post-tilt NNW–SSE extension and induced the

  8. The palaeogeography of Sundaland and Wallacea since the Late Jurassic

    Directory of Open Access Journals (Sweden)

    Robert Hall


    Full Text Available The continental core of Southeast (SE Asia, Sundaland, was assembled from Gondwana fragments by the Early Mesozoic. Continental blocks rifted from Australia in the Jurassic [South West (SW Borneo, East Java-West Sulawesi-Sumba], and the Woyla intraoceanic arc of Sumatra, were added to Sundaland in the Cretaceous. These fragments probably included emergent areas and could have carried a terrestrial flora and fauna. Sarawak, the offshore Luconia-Dangerous Grounds areas, and Palawan include Asian continental material. These probably represent a wide accretionary zone at the Asia-Pacific boundary, which was an active continental margin until the mid Cretaceous. Subduction ceased around Sundaland in the Late Cretaceous, and from about 80 Ma most of Sundaland was emergent, physically connected to Asia, but separated by deep oceans from India and Australia. India moved rapidly north during the Late Cretaceous and Early Cenozoic but there is no evidence that it made contact with SE Asia prior to collision with Asia. One or more arc-India collisions during the Eocene may have preceded India-Asia collision. The arcs could have provided dispersal pathways from India into SE Asia before final suturing of the two continents. During the Late Cretaceous and Early Cenozoic there was no significant subduction beneath Sumatra, Java and Borneo. At about 45 Ma Australia began to move north, subduction resumed and there was widespread rifting within Sundaland. During the Paleogene east and north Borneo were largely submerged, the Makassar Straits became a wide marine barrier within Sundaland, and West Sulawesi was separated from Sundaland but included land. By the Early Miocene the proto-South China Sea had been eliminated by subduction leading to emergence of land in central Borneo, Sabah and Palawan. Australia-SE Asia collision began, eliminating the former deep ocean separating the two continents, and forming the region now known as Wallacea. The microplate or

  9. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Rajchl, M.; Uličný, David; Grygar, R.; Mach, K.


    Roč. 21, č. 3 (2009), s. 269-294 ISSN 0950-091X R&D Projects: GA AV ČR IAA3012705; GA ČR GA205/01/0629; GA ČR(CZ) GA205/06/1823 Institutional research plan: CEZ:AV0Z30120515 Keywords : Cenozoic Most Basin * continental rift * Eger Graben Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.161, year: 2009

  10. Indirect Climatic Effects of Major Volcanic Eruptions (United States)

    Hofmann, D. J.


    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  11. Ages of plains volcanism on Mars (United States)

    Hauber, Ernst; Jagert, Felix; Broz, Petr


    Plain-style volcanism [1] is widespread in the Tharsis and Elysium volcanic provinces on Mars, [2,3]. Detailed images and topographic data reveal the morphology and topography of clusters of low shields and associated lava flows. The landforms of plains volcanism on Mars have all well-known terrestrial analogues in basaltic volcanic regions, such as Hawaii, Iceland, and in particular the Snake River Plains [4]. The very gentle flank slopes (J. (1981) Icarus, 45, 586-601. [3] Hodges C.A. and Moore H.J. (1994) Atlas of volcanic features on Mars: USGS Prof. Paper 1534, 194 p. [4] Hauber E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 69-95. [5] Wilson L. et al. (2009) J. Volcanol. Geotherm. Res. 185, 28-46. [6] Vaucher, J. et al. (2009) Icarus 204, 418-442. [7] Baratoux D. et al. (2009) J. Volcanol. Geotherm. Res. 185, 47-68. [8] Bleacher J.E. et al. (2009) J. Volcanol. Geotherm. Res. 185, 96-102. [9] Ivanov B.A. (2001) Space Sci. Rev. 96, 87-104. [10] Hartmann W.H. and Neukum G. (2001) Space Sci. Rev. 96, 165-194 [11] Kneissl T. et al. (2010) LPS XVI, submitted. [12] Michael, G.G. and Neukum G. (2010) Earth Planet. Sci. Lett., in press. . [13] Malin M.C. et al. (2007) JGR 112, E05S04, doi: 10.1029/2006JE002808.

  12. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission (United States)

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,


    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  13. Active Volcanic Eruptions on Io (United States)


    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL Background information and educational context for the images can

  14. Multiple states in the late Eocene ocean circulation (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.


    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  15. Gravity and magnetic survey of the Oaxaca city region: Cenozoic horst-and-graben structure superimposed on the Oaxaca-Juarez terrane boundary, southern Mexico (United States)

    Campos-Enríquez, J. O.; Belmonte-Jiménez, S. I.; Keppie, J. D.; Ortega-Gutiérrez, F.; Arzate, J. A.; Martínez-Silva, J.; Martínez-Serrano, R. G.


    A geophysical survey of the Oaxaca Fault along the north-trending Etla and Zaachila valleys area, southern Mexico, shows a series of NNW-SSE Bouguer and magnetic anomalies with steeper gradients towards the east. The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone that constitutes the boundary between the Oaxaca and Juárez terranes. Cooperative interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. The Etla sub-basin is bounded by the moderately E-dipping, Etla Fault and the more steeply W-dipping Oaxaca Fault, which together constitute a graben that continues southwards into the Atzompa graben. The deeper Zaachila sub-basin, south of Oaxaca city, is a wide V-shaped graben with a horst in the middle. The new geophysical data suggest that the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. On the other hand, the Oaxaca Fault may either continue unbroken southwards along the western margin of the horst in the Zaachila sub-basin or be offset along with the terrane boundary. The sinistral movement may have taken place either during the Late Mesozoic-Early Cenozoic, Laramide Orogeny as a lateral ramp in the thrust plane or under Miocene-Pliocene, NE-SW extension. The former suggests that the Donají Fault is a transcurrent fault, whereas the latter implies that it is a transfer fault. The models imply that originally the suture was continuous south of the Donaji Fault and provide a constraint for the accretion of the Oaxaca and Juarez terranes.

  16. Late-Stage Caregiving (United States)

    ... Caregiving Middle-Stage Caregiving Late-Stage Caregiving Behaviors Aggression & Anger Anxiety & Agitation Depression Hallucinations Memory Loss & Confusion Repetition Sleep Issues & Sundowning Suspicion & Delusions Wandering Abuse Start Here What You Need to Know Online ...

  17. Quantification of the CO2 emitted from volcanic lakes in Pico Island (Azores) (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael


    This study shows the results of the diffuse CO2 degassing surveys performed in lakes from Pico volcanic Island (Azores archipelago, Portugal). Detailed flux measurements using the accumulation chamber method were made at six lakes (Capitão, Caiado, Paul, Rosada, Peixinho and Negra) during two field campaigns, respectively, in winter (February 2016) and late summer (September 2016). Pico is the second largest island of the Azores archipelago with an area of 444.8 km2; the oldest volcanic unit is dated from about 300,000 years ago. The edification of Pico was mainly due to Hawaiian and Strombolian type volcanic activity, resulting in pahoehoe and aa lava flows of basaltic nature, as well as scoria and spatter cones. Three main volcanic complexes are identified in the island, namely (1) the so-called Montanha Volcanic Complex, corresponding to a central volcano located in the western side of the island that reaches a maximum altitude of 2351 m, (2) the São Roque-Piedade Volcanic Complex, and (3) the Topo-Lajes Volcanic Complex, this last one corresponding to the remnants of a shield volcano located in the south coast. The studied lakes are spread along the São Roque-Piedade Volcanic Complex at altitudes between 785 m and 898 m. Three are associated with depressions of undifferentiated origin (Caiado, Peixinho, Negra), two with depressions of tectonic origin (Capitão, Paul), while Rosada lake is located inside a scoria cone crater. The lakes surface areas vary between 1.25x10-2 and 5.38x10-2 km2, and the water column maximum depth is 7.9 m (3.5-7.9 m). The water storage ranges between 3.6x104 to 9.1x104 m3, and the estimated residence time does not exceed 1.8x10-1 years. A total of 1579 CO2 flux measurements were made during both surveys (868 in summer and 711 in the winter campaign), namely 518 in Caiado lake (293; 225), 358 in Paul (195; 163), 279 in Capitão (150, 129), 200 in Rosada (106, 94), 171 in Peixinho (71, 100) and 53 measurements in Negra lake. Negra

  18. National volcanic ash operations plan for aviation (United States)

    ,; ,


    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  19. Venus - Volcanic features in Atla Region (United States)


    This Magellan image from the Atla region of Venus shows several types of volcanic features and superimposed surface fractures. The area in the image is approximately 350 kilometers (217 miles) across, centered at 9 degrees south latitude, 199 degrees east longitude. Lava flows emanating from circular pits or linear fissures form flower-shaped patterns in several areas. A collapse depression approximately 20 kilometers by 10 kilometers (12 by 6 miles) near the center of the image is drained by a lava channel approximately 40 kilometers (25 miles) long. Numerous surface fractures and graben (linear valleys) criss-cross the volcanic deposits in north to northeast trends. The fractures are not buried by the lavas, indicating that the tectonic activity post-dates most of the volcanic activity.

  20. Ozone depletion following future volcanic eruptions (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.


    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  1. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.


    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  2. Isotopic dating of the post-Alpine Neogene volcanism in the Betic Cordilleras, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, F A; Rondeel, H E [Amsterdam Univ. (Netherlands). Geologisch Inst.; Andriessen, P A.M.; Hebeda, E H; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands)


    The post-Alpine lamproitic volcanism in the Prebetic of the External Zone of the Betic Cordilleras of southern Spain is dated at 7.6-7.2 Ma by the K-Ar data from two richterites, two sanidines, a phlogopite and a whole-rock, and the fission-track analysis of an apatite. Biotite from a lava of the rhyolitic-dacitic suite in the post-orogenic Vera basin of the Internal Zone produces the same age. Phlogopite from a lamproitic (veritic) subvolcanic body in the Vera basin yields an age of about 8.6 Ma; as lavas belonging to the veritic suite reportedly overlie Late Messinian sediments, pointing to an age of less than about 5 Ma, this type of volcanism in the Vera basin must have been active over several million years.

  3. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence (United States)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili


    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  4. Biogeography of speciation in Cenozoic marine ostracoda: the role of climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, T.M.


    Evolutionary theory holds that geographic isolation of populations with its resultant reproductive isolation is an important factor in the origin of new species. Climatic change alters species' biogeography by creating and eliminating barriers that affect gene flow between populations. For benthic organisms such as shallow marine ostracodes, thermal gradients at biogeographic province boundaries and the area of continental shelf are factors affected by climatic and associated sea level changes. Studies of Cenozoic marine ostracodes show that allopatric speciation does not account for paleobiogeographic patterns of species subjected to climatic change. Studies of 127 endemic species from middle latitudes of the western Atlantic show that most speciation events in temperature and subtropical taxa are, in the zoogeographic sense, sympatric or parapatric-clinal and are induced by oceanographic changes related to climatic events rather than geographic isolation of populations. Most ostracode species in middle latitudes are adapted to frequent, cyclical climatic changes typical of these regions and originated during rare periods of major climatic transition. High-latitude arctic-subarctic genera such as Finmarchinella have circumpolar distributions. A parapatric-clinal model accounts for speciation patterns observed in some high-latitude and tropical taxa. However the dynamic nature of thermal gradients and species' biogeography during climatic change renders questionable the controversial distinction between parapatric and allopatric-peripatric speciation models.

  5. Geobiological constraints on Earth system sensitivity to CO₂ during the Cretaceous and Cenozoic. (United States)

    Royer, D L; Pagani, M; Beerling, D J


    Earth system climate sensitivity (ESS) is the long-term (>10³ year) response of global surface temperature to doubled CO₂ that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 10³ year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo-reconstructions of CO₂ and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs. © 2012 Blackwell Publishing Ltd.

  6. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)



    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  7. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    International Nuclear Information System (INIS)

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.


    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma)

  8. Tellurium in active volcanic environments: Preliminary results (United States)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco


    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  9. Volcanic air pollution hazards in Hawaii (United States)

    Elias, Tamar; Sutton, A. Jeff


    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  10. Volcanic Eruptions and Climate: Outstanding Research Issues (United States)

    Robock, Alan


    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  11. Winter warming from large volcanic eruptions (United States)

    Robock, Alan; Mao, Jianping


    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  12. Central San Juan caldera cluster: Regional volcanic framework (United States)

    Lipman, Peter W.


    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  13. Mercury enrichment indicates volcanic triggering of the Valanginian environmental change (United States)

    Charbonnier, Guillaume; Morales, Chloé; Duchamp-Alphonse, Stéphanie; Westermann, Stéphane; Adatte, Thierry; Föllmi, Karl


    The Valanginian stage (Early Cretaceous, ˜137-132 Ma) recorded an episode of pronounced palaeoenvironmental change, which is marked by a globally recorded positive δ13C excursion of 1.5 to 2‰ amplitude, also known as the "Weissert event or episode". Its onset near the early/late Valanginian boundary (B. campylotoxus-S. verrucosum ammonite Zones) coincides with a phase of warmer climate conditions associated with enhanced humidity, major changes in the evolution of marine plankton, and the drowning of tropical and subtropical marine shallow-water carbonate ecosystems. The globally recorded excursion indicates important transformations in the carbon cycle, which have tentatively been associated with Paraná-Etendeka large igneous province (LIP) volcanic activity. Incertainties in existing age models preclude, however, its positive identification as a trigger of Valanginian environmental change. Since very recently, mercury (Hg) chemostratigraphy offers the possibly to evaluate the role of LIP activity during major palaeoenvironmental perturbations. In this study we investigate the distribution of Hg contents in four Valanginian reference sections located in pelagic and hemipelagic environments in the Central Tethyan Realm (Lombardian Basin, Breggia section), the northern Tethyan margin (Vocontian Basin, Orpierre and Angles sections), and the narrow seaway connecting the Tethyan and Boreal Oceans (Polish Basin, Wawal core). All records show an enrichment in Hg concentrations at or near the onset of the Weissert Episode, with maximal values of 70.5 ppb at Angles, 59.5 ppb at Orpierre, 69.9 ppb at Wawal, and 17.0 ppb at Breggia. The persistence of the Hg anomaly in Hg/TOC and Hg/phyllosilicate ratios shows that organic-matter scavenging and/or adsorbtion onto clay minerals only played a limited role.We propose that volcanic outgassing was the primary source of the Hg enrichment and conclude that an important magmatic pulse triggered the Valanginian environmental

  14. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans (United States)

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.


    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans

  15. Facies analysis of tuffaceous volcaniclastics and felsic volcanics of Tadpatri Formation, Cuddapah basin, Andhra Pradesh, India (United States)

    Goswami, Sukanta; Dey, Sukanta


    The felsic volcanics, tuff and volcaniclastic rocks within the Tadpatri Formation of Proterozoic Cuddapah basin are not extensively studied so far. It is necessary to evaluate the extrusive environment of felsic lavas with associated ash fall tuffs and define the resedimented volcaniclastic components. The spatial and temporal bimodal association were addressed, but geochemical and petrographic studies of mafic volcanics are paid more attention so far. The limited exposures of eroded felsic volcanics and tuffaceous volcaniclastic components in this terrain are highly altered and that is the challenge of the present facies analysis. Based on field observation and mapping of different lithounits a number of facies are categorized. Unbiased lithogeochemical sampling have provided major and selective trace element data to characterize facies types. Thin-section studies are also carried out to interpret different syn- and post- volcanic features. The facies analysis are used to prepare a representative facies model to visualize the entire phenomenon with reference to the basin evolution. Different devitrification features and other textural as well as structural attributes typical of flow, surge and ash fall deposits are manifested in the middle, lower and upper stratigraphic levels. Spatial and temporal correlation of lithologs are also supportive of bimodal volcanism. Felsic and mafic lavas are interpreted to have erupted through the N-S trending rift-associated fissures due to lithospheric stretching during late Palaeoproterozoic. It is also established from the facies model that the volcaniclastics were deposited in the deeper part of the basin in the east. The rifting and associated pressure release must have provided suitable condition of decompression melting at shallow depth with high geothermal gradient and this partial melting of mantle derived material at lower crust must have produced mafic magmas. Such upwelling into cold crust also caused partial heat

  16. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Based on various lines of evidence such as the widespread occurrence of basalts, pumice, volcanic glass shards and their transformational products (zeolites, palagonites, and smectite-rich sediments), we suggest the presence of a volcanic province...

  17. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska (United States)

    Miller, Thomas P.


    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  18. Petrography and petrology of Quaternary