WorldWideScience

Sample records for late cenozoic tectonic

  1. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2010-01-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  2. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I E.M. [Department of Geology, Auckland University, Auckland (New Zealand); Okada, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Itaya, T [Okayama University of Science, Hiruzen Research Institute, Okayama (Japan); Black, P M [Department of Geology, Auckland University, Auckland (New Zealand)

    1993-07-01

    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab.

  3. Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand

    International Nuclear Information System (INIS)

    Smith, I.E.M.; Okada, T.; Itaya, T.; Black, P.M.

    1993-01-01

    An episode of late Miocene-Recent essentially basaltic volcanism is the latest in a sequence of magmatic events recognised in the tectonically complex geological development of the Northland Peninsula. New K-Ar dates together with an extensive collection of new major and trace element chemical analyses prompt a reassessment of the significance of these late Cenozoic basalts. The main time/space groupings recognised are Tertiary volcanics in the Kaikohe-Bay of Islands, Puhipuhi, Ti Point, and Stony Batter areas and Quaternary basalts in the Kaikohe-Bay of Islands and Whangarei areas and at Tara. Basalts in the Kaikohe-Bay of Islands area are transitional to alkalic in character, while those in the south are transitional to tholeiitic, with the Ti Point and Stony Batter rocks being geochemically distinct. A consistent model for these observations is that the magmas originate from different levels of a layered mantle source in which the upper part carries a geochemical signature inherited from an earlier subduction event. (author). 27 refs., 7 figs., 1 tab

  4. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin

    Science.gov (United States)

    Suo, Yanhui; Li, Sanzhong; Yu, Shan; Somerville, Ian D.; Liu, Xin; Zhao, Shujuan; Dai, Liming

    2014-07-01

    Late Mesozoic extrusion tectonics, the Cenozoic NW-directed crustal extension, and the regional far-field eastward flow of the western asthenosphere due to the India-Eurasia plate collision, accompanied by eastward jumping and roll-back of subduction zones of the Pacific Plate.

  5. Cenozoic structures and the tectonic evolution of the eastern North Sea

    DEFF Research Database (Denmark)

    Clausen, O.R.; Nielsen, S.B.; Egholm, D.L.

    2011-01-01

    Abundant seismic sections and well data from the Cenozoic succession in the eastern North Sea area generally reveal normal faulting, salt tectonics and localized tectonic inversion. However, inferences on the Cenozoic dynamic evolution of the region require thorough analysis of interactions between...... or cover tectonism took place. Our objectives are thus 1) to analyze the interaction between basement and cover structures, and if possible 2) to relate the structures to the regional tectonic evolution. The Zechstein evaporites pinch out onto the Ringkøbing-Fyn High, which in the eastern North Sea...... influencede.g. Miocene deposition and controlled the generation of second order faults. The latter detached along the top Chalk Group due to the topography generated during faulting, i.e. they are second order detachment surfaces. We conclude that the regional tectonic significance of the Cenozoic structures...

  6. Late cenozoic tectonic and geomorphic evolution of the Patagonian Andes between 42oS and 52oS, southern Chile assessed using fission-track thermochronology

    International Nuclear Information System (INIS)

    Thomson, S.N; Herve, F; Stockhert, B.; Brix, M.R.; Adriasola, A

    2001-01-01

    Fission-track (FT) analysis has been applied in the Patagonian Andes of southern Chile to assess the late Cenozoic geomorphic and tectonic response of the overriding plate to subduction of the Chile rise active oceanic spreading centre (Thomson et al., 2001). The timing and nature of tectonic uplift and denudation along the southern parts of the major transpression intra-arc Liquine-Ofqui fault (LOF) system have also been investigated (Thomson, 2001, submitted). Results from 130 FT ages (72 zircon and 58 apatite ages) and 39 apatite track length measurements reveal initiation of rapid cooling and denudation at ca. 30 Ma at the western margin of southern continental South America. This was followed by a ca. 200km eastward migration of the locus of maximum denudation to the position of the present day topographic divide between ca. 30 Ma and ca. 12 to 10 Ma. East of the Andean divide less than 3 km of denudation has occurred since the Late Cretaceous. Enhanced denudation is interpreted to be the result of increased tectonic uplift driven by a large increase in convergence rates at ca. 28 to 26 Ma that triggered orographically enhanced precipitation on the west-side of the Patagonian Andes allowing increased erosion by fluvial incision and mass transport processes. The eastward migration of the locus of maximum denudation can be related to either coeval eastward migration of the retro-arc deformation front, the effects of subduction erosion in the overriding plate at the Peru-Chile trench or shallowing of the angle of subduction. Away from the influence of the LOF the process of spreading centre subduction and collision itself coincides with an overall slow-down in denudation rates in the overriding plate most likely caused by a major reduction in the main tectonic force driving tectonic uplift in the upper plate to subduction. In contrast to the Andes south of ca. 46 o S, increased cooling and denudation related to transpression induced rock uplift and erosion along

  7. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    Eocene times tectonic activity related to the final stage of opening of the North Atlantic was apparently controlling the sediment input in the North Sea as sediment pulses correlate well with tectonic events. Although there is no signs of Cenozoic tectonic activity onshore Scandinavia (igneous bodies......, faulting), tectonic disturbance related to ocean opening could be responsible for deposition of thick Paleocene wedges along the western coast of Norway. During subsequent Cenozoic periods domal structures in the Norwegian shelf are a proof for mild and protracted compression. However, depositional...... patterns from offshore Scandinavia have been interpreted as a result of significant tectonic movements. In the absence of proofs for active tectonic agents we attempt to explain these sediment input variations as a result of climate fluctuations. The Eocene-Oligocene greenhouse-icehouse climate transition...

  8. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  9. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    The scope of this work is the causality of sediment flux variations from western Scandinavia during the Cenozoic. Over the decades of exploration in the North Sea and in the Norwegian shelf most of these variations were given tectonic causes. During the final period of North Atlantic break......-up (Paleocene-Early Eocene) this link is quite striking, especially in the northern British Isles and in the Faeroe-Shetland Platform where sediment production pulses can be correlated with well documented periods of tectonic activity (e.g. magmatism). However, during the subsequent Cenozoic epochs this link...... is much less constrained. For this period we therefore search for an alternative explanation in terms of climate and climate change [1-3] Methods The extensive seismic and well data set allow investigation of inland erosion rates via the offshore distribution of sediments. However, varying marine...

  10. Segmentation of the eastern North Greenland oblique-shear margin – regional plate tectonic implications

    DEFF Research Database (Denmark)

    Andreasen, Arne Døssing; Stemmerik, Lars; Dahl-Jensen, T.

    2010-01-01

    a highly complex, Paleozoic–early Cenozoic pre-opening setting. However, due to extreme ice conditions, very little is known about the offshore areas seawards of – and between – the peninsulas. Consequently, prevailing structural-tectonic models of the margin tend to be significantly oversimplified...... anticipated. In particular, we interpret strong margin segmentation along N/NE-striking fault structures. The structures are likely to have formed by Late Mesozoic–early Cenozoic strike-slip tectonics and have continued to be active during the late Cenozoic. A more than 8 km deep sedimentary basin...

  11. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  12. Plate flexure and volcanism: Late Cenozoic tectonics of the Tabar-Lihir-Tanga-Feni alkalic province, New Ireland Basin, Papua New Guinea

    Science.gov (United States)

    Lindley, I. D.

    2016-05-01

    Late Cenozoic Tabar-Lihir-Tanga-Feni (TLTF) alkaline volcanism, New Ireland Basin, PNG, is associated with extensional cracks along the crests of flexed ridges developed on the New Ireland Microplate (New name). The tectonic alignment of the TLTF volcanic arc is essentially perpendicular to the flexed ridges, suggesting that fractures parallel to the direction of maximum horizontal compression facilitated the rapid ascent of alkaline magmas from the mantle region, perhaps 60-70 km depth. The mainly Pliocene to Pleistocene volcanoes were localized at the intersection of ridge-parallel Kabang structures and arc-parallel Niffin structures, suggesting that the Kabang-Niffin structural intersections underlying each of the TLTF island groups provided a well developed, clustered network of open conduits which tapped the mantle source region. Periodic post-Miocene locking and unlocking along the strike-slip Kilinailau Fault (New name) are thought to have functioned as a valve, turning on (Pliocene) and then turning off (Pleistocene) volcanic activity, respectively. Partial locking of the Kilinailau Fault during the Pliocene resulted in the accumulation of intraplate stresses within the New Ireland Microplate, and caused plate flexure and ridge development, plate-cracking along ridge crests and the development of arc-parallel regional fractures parallel to the direction of maximum compression. Unlocking of the Kilinailau Fault in the Pleistocene resulted in the release of intraplate stresses in the New Ireland Microplate and a cessation of volcanic activity across most of the TLTF arc. The style and scale of plate flexure and cracking, accompanied by within-plate alkaline volcanism from equally spaced ridge-top eruptive centers confined to a narrow, linear volcanic arc are unknown from any other tectonic province.

  13. Mesozoic-Cenozoic tectonic evolution and its relation to sandstone-type uranium mineralization in northern Tarim area--Evidence from apatite fission track

    International Nuclear Information System (INIS)

    Liu Hongxu; Dong Wenming; Liu Zhangyue; Chen Xiaolin

    2009-01-01

    The apatite fission track dating and inversion result of geological thermal history of four rock specimens from Sawafuqi area and Talike area in northern Tarim Basin show that two areas uplifted at different ages. The apatite fission track ages of Sawafuqi range from 3.5 to 3.9 Ma, while the ages of Talike range from 53 to 59 Ma. The thermal history recorded by rock samples reveals that there are at least three prominent cooling phases since Late Cretaceous epoch. Detailed study was made on the division of uplifting stages during Mesozoic and Cenozoic tectonic evolution with the existing data in northern Tarim area. And new ideas on tectonic evolution and sandstone-type uranium mineralization have been put forward by combining with the sandstone-type uranium mineralization ages in this area.(authors)

  14. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    Science.gov (United States)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous

  15. Meso-Cenozoic tectonic evolution and uranium potential evaluations of basins in Beishan-Gansu corridor region

    International Nuclear Information System (INIS)

    Guo Qingyin; Chen Zuyi; Liu Hongxu; Yu Jinshui

    2006-01-01

    Beishan-Gansu Corridor region is located at the intersection of the plates of Tarim, North China, Kazakhstan, Siberia and Qaidam. During the Meso-Cenozoic, the region experienced movements of Indo-sinian, Yanshanian, Sichuanian, North China, Himalayan and Neotectonic, and over 20 medium-small size superimposed continental basins were formed. On the basis of analyzing the tectonic stress field, sediment-filling and structure-deformation; the general trending of tectonic evolution in the Meso-Cenozoic is summarized as three-time compressional uplifting and two-time extensional down-faulting. The different evolution of basins under the above mentioned setting can be divided into six stages according to characteristics of filled sediment. The sand bodies developed in down-faulted basins are favorable for uranium ore-formation as they are formed under humid paleoclimates, and rich in reducing matter. Therefore, the Lower-Middle Jurassic is selected as the main target horizon for sandstone-hosted uranium deposit, and the Lower Cretaceous as the minor one. Although the tectonic reactivation of the target horizon after its deposition was generally strong, the slopes formed in some basins could be favorable for the infiltration of uranium-and oxygen-bearing groundwater into sand bodies and form uranium deposits. According to the favorable sand bodies and tectonic reactivation, the northern parts of Chaoshui and Bayingobi basins are regarded as potential regions which are worthy of further exploration. (authors)

  16. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  17. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    Science.gov (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  18. Tectonic and sedimentary evolution of the late Miocene-Pleistocene Dali Basin in the southeast margin of the Tibetan Plateau : Evidences from anisotropy of magnetic susceptibility and rock magnetic data

    NARCIS (Netherlands)

    Li, Shihu; Deng, Chenglong; Paterson, Greig A.; Yao, Haitao; Huang, Sheng; Liu, Chengying; He, Huaiyu; Pan, Yongxin; Zhu, Rixiang

    2014-01-01

    The Cenozoic Dali Basin, located at the northeast of Diancang Shan and south of the first bend of Yangtze River, is tectonically controlled by the Dali fault system in the southeast margin of the Tibetan Plateau. The basin is filled with late Miocene to Pleistocene fluviolacustrine sediments, which

  19. The ICE hypothesis stands: How the dogma of late Cenozoic tectonic uplift can no longer be sustained in the light of data and physical laws

    Science.gov (United States)

    Nielsen, S. B.; Clausen, O. R.; Jacobsen, B. H.; Thomsen, E.; Huuse, M.; Gallagher, K.; Balling, N.; Egholm, D.

    2010-08-01

    In this reply, we address the issues raised by the comment of Chalmers et al. (2010) regarding our ICE hypothesis for the evolution of western Scandinavia. We reject their conjectures as based, uncritically and without consideration of physical mechanisms, on the long-standing dogma of late Cenozoic tectonic uplift. Our hypothesis, in contrast, honours well-documented physical laws and the present wealth of actual data constraints (as opposed to dogma-biased inferences). After careful consideration of the points raised by Chalmers et al. (2010) we maintain our simple explanation for the evolution of Scandinavian topography, as it honours well-documented actual data constraints, such as crustal structure (including its spatio-temporal variability), thermal history in the eastern North Sea, global and regional climatic change (including eustacy) and sedimentation in the adjacent basins. The inevitable conclusion is that, although more data constraints are desirable, the current best fit hypothesis, is that the Scandinavian topography is of Caledonide origin, and has been shaped by fluvial and glacial buzzsaw and periglacial processes, and most recently (last few Myr) been re-invigorated by extensive glacial erosion in the fjords and on the shelf.

  20. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    Science.gov (United States)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina

    2017-10-01

    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  1. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Science.gov (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin

    2018-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  2. Late-Cenozoic relief evolution under evolving climate: A review

    OpenAIRE

    Champagnac Jean Daniel; Valla Pierre G.; Herman Frédéric

    2014-01-01

    The present review paper is an attempt to summarize quantitative evidence of Late Cenozoic changes in topographic relief. Different meanings of the word "relief" as it is commonly used and detail the metrics used to quantify it. We then specify methodological tools used to quantify relief change (primarily low temperature thermochronometry and terrestrial cosmogenic nuclides) and analyze published evidence for different regions.Our review first shows that relief changes and rates of changes a...

  3. Fires in the Cenozoic: a late flowering of flammable ecosystems

    Directory of Open Access Journals (Sweden)

    William John Bond

    2015-01-01

    Full Text Available Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analysed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma. Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+ for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However none of the potential global factors (oxygen, rainfall seasonality, CO2 , novel flammable growth forms provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  4. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    Science.gov (United States)

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  5. Late Cenozoic Paleoceanography of the Central Arctic Ocean

    International Nuclear Information System (INIS)

    O'Regan, Matt

    2011-01-01

    The Arctic Ocean is the smallest and perhaps least accessible of the worlds oceans. It occupies only 26% of the global ocean area, and less than 10% of its volume. However, it exerts a disproportionately large influence on the global climate system through a complex set of positive and negative feedback mechanisms directly or indirectly related to terrestrial ice and snow cover and sea ice. Increasingly, the northern high latitude cryosphere is seen as an exceptionally fragile part of the global climate system, a fact exemplified by observed reductions in sea ice extent during the past decades [2]. The paleoceanographic evolution of the Arctic Ocean can provide important insights into the physical forcing mechanisms that affect the form, intensity and permanence of ice in the high Arctic, and its sensitivity to these mechanisms in vastly different climate states of the past. However, marine records capturing the late Cenozoic paleoceanography of the Arctic are limited - most notably because only a single deep borehole exists from the central parts of this Ocean. This paper reviews the principal late Cenozoic (Neogene/Quaternary) results from the Arctic Coring Expedition to the Lomonosov Ridge and in light of recent data and observations on modern sea ice, outlines emerging questions related to three main themes: 1) the establishment of the 'modern' Arctic Ocean and the opening of the Fram Strait 2) the inception of perennial sea ice 3) The Quaternary intensification of Northern Hemisphere glaciations.

  6. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33° 36°S.L.)

    Science.gov (United States)

    Charrier, R.; Baeza, O.; Elgueta, S.; Flynn, J. J.; Gans, P.; Kay, S. M.; Muñoz, N.; Wyss, A. R.; Zurita, E.

    2002-04-01

    The mainly volcanic Cenozoic deposits that make up much of the western part of the Principal Cordillera in Central Chile are generally subdivided into two major units: an older Abanico or Coya-Machalí Formation and a younger Farellones Formation. Difficulty in differentiating these units has led to considerable debate. On the basis of the wide distribution, great thickness, and presence of sedimentary intercalations, it has been postulated that these arc volcanics were deposited in an intermontane basin; more recently, it has been proposed that this basin developed under extensional conditions and underwent subsequent tectonic inversion. We present field, geochronologic, geochemical, and thermal maturity data that support the latter interpretation. Collectively, this new information clarifies the stratigraphic, tectonic, and paleogeographic evolution of these deposits. The vast geographic extent of the Abanico Formation and lateral equivalents, which reach from at least 32°30' to 44°S along the Principal Cordillera, its great thickness, and the presence of repeated thick fluvial and lacustrine intercalations all indicate deposition in a large, strongly subsident, and probably north-south oriented basin, developed between middle to late Eocene and Oligocene. The unconformable contact with underlying Mesozoic units observed at several localities indicates that deposition followed a substantial erosional episode during late Cretaceous and/or early Cenozoic time. Basal deposits of the Abanico Formation near Termas del Flaco increase rapidly in thickness to the west. Still further to the west, a thick Abanico section contains, in its upper part, mammal fossils older than those found in the basal deposits near Termas. This evidence indicates a major space of deposition west of this locality, which had been filled before deposition took place at Termas. The east-vergent, high-angle El Fierro thrust fault on the east side of the westward-growing deposits is interpreted

  7. Late Cenozoic History of the Genus Micromys (Mammalia, Rodentia) in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Horáček, I.; Knitlová, M.; Wagner, Jan; Kordos, L.; Nadachowski, A.

    2013-01-01

    Roč. 8, č. 5 (2013), e62498 E-ISSN 1932-6203 R&D Projects: GA ČR GA205/09/0184 Institutional support: RVO:67985831 Keywords : Mammalia * Rodentia * Genus Micromys * Late Cenozoic Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.534, year: 2013

  8. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis

    Science.gov (United States)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.

    2007-11-01

    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  9. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate

    Science.gov (United States)

    Yang, Ting; Moresi, Louis; Zhao, Dapeng; Sandiford, Dan; Whittaker, Joanne

    2018-06-01

    Northeast Asia underwent widespread rifting and magmatic events during the Cenozoic. The geodynamic origins of these tectonic events are often linked to Pacific plate subduction beneath Northeast Asia. However, the Japan Sea did not open until the late Oligocene, tens of millions of years after Pacific Plate subduction initiation in the Paleocene. Moreover, it is still not clear why the Baikal Rift Zone extension rate increased significantly after the late Miocene, while the Japan Sea opening ceased at the same time. Geodynamic models suggest these enigmatic events are related to the rapidly-aging Pacific Plate at the trench after Izanagi-Pacific spreading ridge subduction. Subduction of the young Pacific Plate delayed the Japan Sea opening during the Eocene while advection of the old Pacific Plate towards the trench increases seafloor age rapidly, allowing the Japan Sea to open after the early Miocene. The Japan Sea opening promotes fast trench retreat and slab stagnation, with subduction-induced wedge zone convection gradually increasing its extent during this process. The active rifting center associated with wedge zone convection upwelling also shifts inland-ward during slab stagnation, preventing further Japan Sea spreading while promoting the Baikal Rift Zone extension. Our geodynamic model provides a good explanation for the temporal-spatial patterns of the Cenozoic tectonic and magmatic events in Northeast Asia.

  10. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  11. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  12. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  13. Late cenozoic magmatism in the South Patagonian batholith: SHRIMP U-Pb zircon age evidence

    International Nuclear Information System (INIS)

    Fanning, C.M; Herve, F; Pankhurst, R.J; Thomson, S; Faundez, V

    2001-01-01

    The North Patagonian Batholith (NPB) has a zonal age pattern which includes a well defined belt of Miocene and Mio-Pliocene plutons in its central portion (Pankhurst et al., 1999) which are spatially, and probably genetically related to the Liquine-Ofqui Fault Zone. Previous geochronological studies in the Southern Patagonian Batholith (SPB), as summarized by Bruce et al. (1991), have yielded 9 late Cenozoic K-Ar or Ar-Ar ages out of a total of 116 age determinations. None of these young ages correspond to U-Pb determinations on zircons, and some of the young ages correspond to satellite plutons east of the SPB proper, such as the Torres del Paine intrusion. In this paper we present the first late Cenozoic SHRIMP U-Pb zircon ages in the area of the SPB. The morphology of the analysed zircon crystals is described and leads to some inferences on the methodology and on the geological interpretation of the obtained ages (au)

  14. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    Science.gov (United States)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the

  15. Late Cenozoic structure and stratigraphy of south-central Washington

    International Nuclear Information System (INIS)

    Reidel, S.P.; Fecht, K.R.; Lindsey, K.A.

    1993-01-01

    The structural framework of the Columbia Basin began developing before Columbia River Basalt Group (CRBG) volcanism. Prior to 17.5 Ma, the eastern part of the basin was a relatively stable area, with a basement of Paleozoic and older crystalline rock. The western part was an area of subsidence in which large volumes of sediment and volcanic rocks accumulated. Concurrent with eruption of the CRBG, anticlinal ridges of the Yakima Fold Belt (YFB) were growing under north-south compression. Topographic expression of these features was later masked by the large volume of CRBG basalt flowing west from fissures in the eastern Columbia Basin. The folds continued to develop after cessation of volcanism, leading to as much as 1,000 m of structural relief in the past 10 million years. Post-CRBG evolution of the Columbia Basin is recorded principally in folding and faulting in the YFB and sediments deposited in the basins. The accompanying tectonism resulted in lateral migration of major depositional systems into subsiding structural lows. Although known late Cenozoic faults are on anticlinal ridges, earthquake focal mechanisms and contemporary strain measurements indicate most stress release is occurring in the synclinal areas under north-south compression. There is no obvious correlation between focal mechanisms for earthquakes whose foci are in the CRBG and the location of known faults. High in situ stress values help to explain the occurrence of microseismicity in the Columbia Basin but not the pattern. Microseismicity appears to occur in unaltered fresh basalt. Faulted basalt associated with the YFB is highly brecciated and commonly altered to clay. The high stress, abundance of ground water in confined aquifers of the CRBG, and altered basalt in fault zones suggest that the frontal faults on the anticlinal ridges probably have some aseismic deformation. 85 refs

  16. Cenozoic Tectonic Characteristics in the Adare Basin, West Ross Sea: Evidence From Seismic Profiles

    Science.gov (United States)

    Zhang, Q.; Gao, J.; Ding, W.

    2017-12-01

    Based on the geophysical data obtained from the Adare Basin and its adjacent areas, West Ross Sea, the authors employed the frequency wave-number filtering technique to recover the newly processed dataset with high signal noise ratio and complete seismic event which highly contributes to reveal more detailed deep-seated geological structures than previously thought. The structural features and magmatism of the study area in Cenozoic were classified and analyzed. Combined with glaciation, the associated sedimentary facies were summarized systematically. The authors' analysis revealed that, at 16 Ma, under the influence of the thermal effect caused by residual magmatism and asymmetric spreading of Adare Basin in the initial period, surrounding areas of two flanks of the Adare trough were characterized by uplift folds and tilted uplift zone, respectively. The small-scale uplift fold zone was characterized by nearly upright faults and folds and was located in the southern part of the eastern flank, whereas the tilted uplift zone dominated in the corresponding district of western flank that reached the continental margin. By utilizing the contact relationship between igneous rocks and surrounding rocks, igneous rocks can be divided into two periods: early-stage and late Cenozoic igneous rocks. The early-stage rocks are generally located dispersedly in the tilted uplift zone and the age is poorly known. It is suggested that they were related to the residual magmatism. On the other hand, the spatial distribution of Late Cenozoic igneous rocks, formed not earlier 5.5 Ma, was extensive and scattered, almost covering the whole study area, which indicates that they might be unrelated to the rifting in space and time, instead they were affected by decompression melting of the mantle because of the large-scale deglaciation since Pliocene.

  17. Tectonic regime and evolution of exogenous uranium ore formation in sedimentary rocks

    International Nuclear Information System (INIS)

    Danchev, V.I.; Shumlyanskij, V.A.; AN Ukrainskoj SSR, Kiev. Inst. Geokhimii i Fiziki Mineralov)

    1981-01-01

    Regularities of the formation and location of exogenous uranium deposits are studied depending on the tectonics regime. It is shown that the successive alternation of sedimentogenous deposits by diagenetic and, subsequently, catogene ones takes place from early Proterozoic to Cenozoic, i.e. exogenous ore formation in the history of the Earth proceeds from early to late stages of lithogenesis [ru

  18. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  19. Regionwide Geodynamic Analyses of the Cenozoic Carbonate Burial in Sri Lanka Related to Climate and Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Amila Sandaruwan Ratnayake

    2016-12-01

    Full Text Available Asian tectonism and exhumation are critical components to develop modern icehouse climate. In this study, stratigraphic sections of eight wells in the Mannar and Cauvery basins were considered. The author demonstrated that this local system records a wealth of information to understated regional and global paleoclimatic trends over the Cenozoic era. The lithostratigraphic framework has been generally characterized by deposition of carbonate-rich sediments since the Middle Cenozoic. Geological provenance of carbonate sediments had probably related to local sources from Sri Lankan and Indian land masses. The main controlling factor of carbonate burial is rather questionable. However, this carbonate burial has indicated the possible link to the Middle to Late Cenozoic global climatic transition. This major climatic shift was characterized by long-term reduction of atmospheric carbon dioxide concentration over the Cenozoic era. Consequently, this geological trend (carbonate burial has a straightforward teleconnection to the global cooling towards the glaciated earth followed by the development of polar ice sheets that persist today.

  20. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    Science.gov (United States)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  1. Stratigraphy of the late Cenozoic sediments beneath the 216-A Crib Facilities

    International Nuclear Information System (INIS)

    Fecht, K.R.; Last, G.V.; Marratt, M.C.

    1979-02-01

    The stratigraphy of the late Cenozoic sediments beneath the 216-A Crib Facilities is presented as lithofacies cross sections and is based on textural variations of the sedimentary sequence lying above the basalt bedrock. The primary source of data in this study is geologic information obtained from well drilling operations and geophysical logging. Stratigraphic interpretations are based primarily on textural analysis and visual examination of sediment samples and supplemented by drillers logs and geophysical logs

  2. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  3. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    Science.gov (United States)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western

  4. Stratigraphy and Mesozoic–Cenozoic tectonic history of northern Sierra Los Ajos and adjacent areas, Sonora, Mexico

    Science.gov (United States)

    Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.

    2010-01-01

    Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US

  5. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region

    Science.gov (United States)

    Eyuboglu, Yener; Santosh, M.; Yi, Keewook; Bektaş, Osman; Kwon, Sanghoon

    2012-08-01

    The Cenozoic magmatic record within the ca. 500 km long eastern Pontides orogen, located within the Alpine metallogenic belt, is critical to evaluate the tectonic history and geodynamic evolution of the eastern Mediterranean region. In this paper we report for the first time late Miocene adakitic rocks from the southeastern part of the eastern Pontides belt and present results from geochemical and Sr-Nd isotopic studies as well as zircon U-Pb geochronology. The Tavdagi dacite that we investigate in this study is exposed as round or ellipsoidal shaped bodies, sills, and dikes in the southeastern part of the belt. Zircons in the dacite show euhedral crystal morphology with oscillatory zoning and high Th/U values (up to 1.69) typical of magmatic origin. Zircon LA-ICPMS analysis yielded a weighted mean 206Pb/238U age of 7.86 ± 0.15 Ma. SHRIMP analyses of zircons with typical magmatic zoning from another sample yielded a weighted mean 206Pb/238U age of 8.79 ± 0.19 Ma. Both ages are identical and constrain the timing of dacitic magmatism as late Miocene. The Miocene Tavdagi dacite shows adakitic affinity with high SiO2 (68.95-71.41 wt.%), Al2O3 (14.88-16.02 wt.%), Na2O (3.27-4.12 wt.%), Sr (331.4-462.1 ppm), Sr/Y (85-103.7), LaN/YbN (34.3-50.9) and low Y (3.2-5 ppm) values. Their initial 143Nd/144Nd (0.512723-0.512736) and 87Sr/86Sr (0.70484-0.70494) ratios are, respectively, lower and higher than those of normal oceanic crust. The geological, geochemical and isotopic data suggest that the adakitic magmatism was generated by partial melting of the mafic lower crust in the southeastern part of the eastern Pontide belt during the late Miocene. Based on the results presented in this study and a synthesis of the geological and tectonic information on the region, we propose that the entire northern edge of the eastern Pontides-Lesser Caucasus-Elbruz magmatic arc was an active continental margin during the Cenozoic. We identify a migration of the Cenozoic magmatism towards

  6. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    International Nuclear Information System (INIS)

    Cemen, I; Catlos, E J; Gogus, O; Diniz, E; Hancer, M

    2008-01-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  7. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  8. Role of pre-existing structures in controlling the Cenozoic tectonic evolution of the eastern Tibetan plateau: New insights from analogue experiments

    Science.gov (United States)

    Sun, Ming; Yin, An; Yan, Danping; Ren, Hongyu; Mu, Hongxu; Zhu, Lutao; Qiu, Liang

    2018-06-01

    Pre-existing weakness due to repeated tectonic, metamorphic, and magmatic events is a fundamental feature of the continental lithosphere on Earth. Because of this, continental deformation results from a combined effect of boundary conditions imposed by plate tectonic processes and heterogeneous and anisotropic mechanical strength inherited from protracted continental evolution. In this study, we assess how this interaction may have controlled the Cenozoic evolution of the eastern Tibetan plateau during the India-Asia collision. Specifically, we use analogue models to evaluate how the pre-Cenozoic structures may have controlled the location, orientation, and kinematics of the northwest-striking Xianshuihe and northeast-striking Longmen Shan fault zones, the two most dominant Cenozoic structures in eastern Tibet. Our best model indicates that the correct location, trend, and kinematics of the two fault systems can only be generated and maintained if the following conditions are met: (1) the northern part of the Songpan-Ganzi terrane in eastern Tibet has a strong basement whereas its southern part has a weak basement, (2) the northern strong basement consists of two pieces bounded by a crustal-scale weak zone that is expressed by the Triassic development of a northwest-trending antiform exposing middle and lower crustal rocks, and (3) the region was under persistent northeast-southwest compression since ∼35 Ma. Our model makes correct prediction on the sequence of deformation in eastern Tibet; the Longmen Shan right-slip transpressional zone was initiated first as an instantaneous response to the northeast-southwest compression, which is followed by the formation of the Xianshuihe fault about a half way after the exertion of northeast-southwest shortening in the model. The success of our model highlights the importance of pre-existing weakness, a key factor that has been largely neglected in the current geodynamic models of continental deformation.

  9. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  10. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes

    Science.gov (United States)

    Zhang, Chunfu; Wang, Yang; Li, Qiang; Wang, Xiaoming; Deng, Tao; Tseng, Zhijie J.; Takeuchi, Gary T.; Xie, Gangpu; Xu, Yingfeng

    2012-06-01

    The timing history and driving mechanisms of C4 expansion and Tibetan uplift are hotly debated issues. Paleoenvironmental evidence from within the Tibetan Plateau is essential to help resolve these issues. Here we report results of stable C and O isotope analyses of tooth enamel samples from a variety of late Cenozoic mammals, including deer, giraffe, horse, rhino, and elephant, from the Qaidam Basin in the northeastern Tibetan Plateau. The enamel-δ13C values are diets and only a few individuals (besides the exceptional rhino CD0722) may have consumed some C4 plants. Based on geological evidence, however, the Qaidam Basin was probably warmer and more humid during the late Miocene and early Pliocene than today. Thus, these δ13C values likely indicate that many individuals had significant dietary intakes of C4 plants, and the Qaidam Basin had more C4 plants in the late Miocene and early Pliocene than today. Moreover, the Qaidam Basin likely had much denser vegetation at those times in order to support such large mammals as rhinos and elephants. While the δ18O values did not increase monotonously with time, the range of variation seems to have increased considerably since the early Pliocene, indicating increased aridification in the basin. The mean δ18O values of large mammals and those reconstructed for local meteoric waters display a significant negative shift in the late Miocene, consistent with the marine δ18O record which shows a cooling trend in the same period. Taken together, the isotope data suggest a warmer, wetter, and perhaps lower Qaidam Basin during the late Miocene and early Pliocene. Increased aridification after the early Pliocene is likely due to a combined effect of regional tectonism, which resulted in a more effective barrier preventing moisture from the Indian Ocean or Bay of Bengal from reaching the basin, and global cooling.

  11. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    Science.gov (United States)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE "pure" extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  12. Feedbacks of lithosphere dynamics and environmental change of the Cenozoic West Antarctic Rift System.

    NARCIS (Netherlands)

    van der Wateren, F.M.; Cloetingh, S.A.P.L.

    1999-01-01

    This special issue of Global and Planetary Change contains 11 contributions dealing with various aspects of the Cenozoic West Antarctic Rift System. During the last two decades, investigations of the interplay of tectonics and climate greatly improved understanding of Cenozoic global change. Major

  13. Stratigraphy of the late Cenozoic sediments beneath the 216-B and C crib facilities

    International Nuclear Information System (INIS)

    Fecht, K.R.; Last, G.V.; Marratt, M.C.

    1979-02-01

    The stratigraphy of the late Cenozoic sediments beneath the 216-B and C Crib Facilities is presented as lithofacies cross sections and is based on textural variations of the sedimentary sequence lying above the basalt bedrock. The primary source of data in this study is geologic information obtained from well drilling operations and geophysical logging. Stratigraphic interpretations are based primarily on textural analysis and visual examination of sediment samples and supplemented by drillers logs and geophysical logs

  14. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic–sedimentary evolution of the western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    2012-03-01

    Full Text Available Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a the southern fault terrace zone, (b a central Yingxiongling orogenic belt, and (c the northern fold-thrust belt; divided by the XI fault (Youshi fault and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India–Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene–Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fm., 43.8–22 Ma, and peaked in the Early Oligocene (Upper Xia Ganchaigou Fm., 31.5 Ma. The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fm. and Qigequan Fm., 14.9–0 Ma, and was stronger than the first phase. The tectonic–sedimentary evolution and the orientation of surface structures in the western Qaidam Basin resulted from the Tibetan

  15. Late Cenozoic faulting and the stress state in the south-eastern segment of the Siberian platform

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2017-01-01

    Full Text Available We have studied the structural geology and geomorphology of the fault zones in the junction area of the Angara-Lena uplift and the Predbaikalsky trough. We have analyzed faults and folds and reconstructed paleostresses for this junction area named the Irkutsk amphitheatre. Our study shows that syn-fold (Middle Paleozoic faults include thrusts, reverse faults and strike-slip faults with reverse components, that occurred due to compression from the neighbouring folded region. Recently, contrary to compression, faulting took place under the conditions of extension of the sedimentary cover: most of these recent faults have been classified as normal faults. In the Late Cenozoic, the platform cover was subjected to brittle and partly plicative deformation due to the NW–SE-trending extension that is most clearly observed in the adjacent Baikal rift. Thus, the divergent boundary between the Siberian block of the North Eurasian plate and the Transbaikalia block of the Amur plate is a zone of dynamic influence, which occupies the area considerably exceeding the mountainous region on the Siberian platform. Important factors of faulting are differentiated vertical movements of the blocks comprising the platform. Such vertical movements might have been related to displacements of brine volumes. In the Late Cenozoic basins, movements along separate faults took place in the Late Pleistocene – Holocene.

  16. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology

    Science.gov (United States)

    Tan, Xi-Bin; Xu, Xi-Wei; Lee, Yuan-Hsi; Lu, Ren-Qi; Liu, Yiduo; Xu, Chong; Li, Kang; Yu, Gui-Hua; Kang, Wen-Jun

    2017-08-01

    The Cenozoic orogenic process of the Longmen Shan (LMS) and the kinematics of major faults along the LMS are crucial for understanding the growth history and mechanism of the eastern Tibetan Plateau. Three major faults, from west to east, are present in the central segment of the LMS: the Wenchuan-Maoxian Fault (WMF), the Beichuan-Yingxiu Fault (BYF), and the Jiangyou-Guanxian Fault (JGF). Previous researchers have placed great impetus on the Pengguan Massif, between the WMF and BYF. However, limited low-temperature thermochronology data coverage in other areas prevents us from fully delineating the tectonic history of the LMS. In this study, we collect 22 samples from vertical profiles in the Xuelongbao Massif and the range frontal area located at the hanging walls of the WMF and JGF respectively, and conduct apatite and zircon fission track analyses. New fission track data reveal that the Xuelongbao Massif has been undergoing rapid exhumation with an average rate of 0.7-0.9 mm/yr since 11 Ma, and the range frontal area began rapid exhumation at 7.5 Ma with total exhumation of 2.5-4.5 km. The exhumation histories indicate that the three major faults (WMF, BYF and JGF) in the central LMS are all reverse faults, and show a basinward in-sequence propagation from middle Miocene to present-day. Such a pattern further implies that upper crustal shortening is the primary driver for the LMS' uplift during the Late Cenozoic. Nevertheless, middle-lower crustal deformation is difficult to be constrained by the exhumation histories, and its contribution to LMS' uplift cannot be ruled out.

  17. Late Tharsis tectonic activity and implications for Early Mars

    Science.gov (United States)

    Bouley, S.; Baratoux, D.; Paulien, N.; Missenard, Y.; Saint-Bezar, B.

    2017-12-01

    Constraining the timing of Tharsis volcanism is critical to understanding the planet's evolution including its climate, surface environment and mantle dynamics. The tectonic history of the Tharsis bulge was previously documented from the distribution and ages of related tectonic features [1]. Here we revisit the ages of 7493 Tharsis-related tectonic features based on their relationship with stratigraphic units defined in the new geological map [2]. Conversely to previous tectonic mapping [1], which suggested that Tharsis growth was nearly achieved during the Noachian, we find a protracted growth of Tharsis during the Hesperian. Faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. Accumulated tectonic deformation was maximum in the Early Hesperian for compressional strain (Solis, Lunae and Ascuris Planum) and extended over time from Noachian to Amazonian for extensional strain (Noctis Labyrinthus and Fossae, Sinai Planum and Tractus, Ulysses and Fortuna fossae, Alba Patera). This new scenario is consistent with a protracted growth of Tharsis dome during the Hesperian and with the timing a large Tharsis-driven true polar wander post-dating the incision of Late Noachian/Hesperian valley networks[3]. References:[1] Anderson et al. JGR-Planets 106, E9, 20,563-20,585 (2001).[2] Tanaka, K.L. et al. Geologic map of Mars (2014). [3] Bouley et al. Nature doi:10.1038 (2016)

  18. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    Science.gov (United States)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  19. The Cenozoic geological evolution of the Central and Northern North Sea based on seismic sequence stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Jordt, Henrik

    1996-03-01

    This thesis represents scientific results from seismic sequence stratigraphic investigations. These investigations and results are integrated into an ongoing mineralogical study of the Cenozoic deposits. the main results from this mineralogical study are presented and discussed. The seismic investigations have provided boundary conditions for a forward modelling study of the Cenozoic depositional history. Results from the forward modelling are presented as they emphasise the influence of tectonics on sequence development. The tectonic motions described were important for the formation of the large oil and gas fields in the North Sea.

  20. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina

    Science.gov (United States)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.

    1984-01-01

    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  1. 3-D thermal effect of late Cenozoic erosion and deposition within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin

    Science.gov (United States)

    Maystrenko, Yuriy Petrovich; Gernigon, Laurent; Olesen, Odleiv; Ottesen, Dag; Rise, Leif

    2018-05-01

    A 3-D subsurface temperature distribution within the Lofoten-Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas has been studied to understand the thermal effect of late Cenozoic erosion of old sedimentary and crystalline rocks and subsequent deposition of glacial sediments during the Pleistocene. A lithosphere-scale 3-D structural model of the Lofoten-Vesterålen area has been used as a realistic approximation of the geometries of the sedimentary infill, underlying crystalline crust and lithospheric mantle during the 3-D thermal modelling. The influence of late Cenozoic erosion and sedimentation has been included during the 3-D thermal calculations. In addition, the 3-D thermal modelling has been carried out by taking also into account the influence of early Cenozoic continental breakup. The results of the 3-D thermal modelling demonstrate that the mainland is generally colder than the basin areas within the upper part of the 3-D model. The thermal influence of the early Cenozoic breakup is still clearly recognizable within the western and deep parts of the Lofoten-Vesterålen margin segment in terms of the increased temperatures. The thermal effects of the erosion and deposition within the study area also indicate that a positive thermal anomaly exists within the specific subareas where sedimentary and crystalline rocks were eroded. A negative thermal effect occurs in the subareas affected by subsidence and sedimentation. The erosion-related positive thermal anomaly reaches its maximum of more than +27 °C at depths of 17-22 km beneath the eastern part of the Vestfjorden Basin. The most pronounced deposition-related negative anomaly shows a minimum of around -70 °C at 17-20 km depth beneath the Lofoten Basin. The second negative anomaly is located within the northeastern part of the Vøring Basin and has minimal values of around -48 °C at 12-14 km depth. These prominent thermal anomalies are associated with the subareas where

  2. The initiation and tectonic regimes of the Cenozoic extension in the Bohai Bay Basin, North China revealed by numerical modelling

    Science.gov (United States)

    Li, Lu; Qiu, Nansheng

    2017-06-01

    In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.

  3. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria

    Science.gov (United States)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.

    2017-01-01

    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback

  4. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    Science.gov (United States)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  5. Gneiss Macuira: tectonic evolution of Paleozoic metamorphic rocks of the Alta Guajira, Colombia

    International Nuclear Information System (INIS)

    Lopez I; A Julian; Zuluaga C; A, Carlos

    2012-01-01

    The Macuira Gneiss is a Paleozoic metamorphic unit that outcrops in the Simarua, Jarara and Macuira ranges, Alta Guajira. It is composed by a lithologies metamorphosed under amphibolite facies P-T conditions and consist of amphibolitic and quartz feldspathic gneisses, amphibolites, schists, pegmatites, calc-silicated rocks and marbles, with migmatization evidences in gneisses and amphibolites. Five foliations (S1-5) and three folding events (F1-3) were identified and interpreted as product of two metamorphic events, developed in a progressive barrovian metamorphic gradient of intermediate pressure with intermediate P-T ratio, interpreted as product of continental collision tectonics. This unit is important in understanding of the tectonic evolution of the Alta Guajira and Caribbean because it records different deformational phases pre-, syn- and post-migmatitic, that could be related with different tectonic episodes: the first associated with the collision between Laurasia and Gondwana (Alleghanian Orogeny - Late Paleozoic), and the second related with the Caribbean Plate evolution (Andean Orogeny - Meso-Cenozoic).

  6. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    Science.gov (United States)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  7. Extensional vs contractional Cenozoic deformation in Ibiza (Balearic Promontory, Spain): Integration in the West Mediterranean back-arc setting

    Science.gov (United States)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Martos, Raquel; Roca, Eduard; Blanpied, Christian

    2016-07-01

    Based on field work and seismic reflection data, we investigate the Cenozoic tectono-sedimentary evolution offshore and onshore Ibiza allowing the proposal of a new tectonic agenda for the region and its integration in the geodynamic history of the West Mediterranean. The late Oligocene-early Miocene rifting event, which characterizes the Valencia Trough and the Algerian Basin, located north and south of the study area respectively, is also present in Ibiza and particularly well-expressed in the northern part of the island. Among these two rifted basins initiated in the frame of the European Cenozoic Rift System, the Valencia Trough failed rapidly while the Algerian Basin evolved after as a back-arc basin related to the subduction of the Alpine-Maghrebian Tethys. The subsequent middle Miocene compressional deformation was localized by the previous extensional faults, which were either inverted or passively translated depending on their initial orientation. Despite the lateral continuity between the External Betics and the Balearic Promontory, it appears from restored maps that this tectonic event cannot be directly related to the Betic orogen, but results from compressive stresses transmitted through the Algerian Basin. A still active back-arc asthenospheric rise likely explains the stiff behavior of this basin, which has remained poorly deformed up to recent time. During the late Miocene a new extensional episode reworked the southern part of the Balearic Promontory. It is suggested that this extensional deformation developed in a trans-tensional context related to the westward translation of the Alboran Domain and the coeval right-lateral strike-slip movement along the Emile Baudot Escarpment bounding the Algerian Basin to the north.

  8. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records

    Directory of Open Access Journals (Sweden)

    Y. F. Miao

    2013-08-01

    Full Text Available Cenozoic climate changes in inner Asia provide a basis for understanding linkages between global cooling, the Tibetan Plateau uplift, and possibly the development of the East Asian monsoon. Based on a compilation of palynological results from the western Qaidam Basin, this study reconstructed a 15-million-year (Ma record of changing vegetation and paleoclimates spanning the middle Miocene to present (comprising two series: ~ 18–5 Ma and ~ 3.1–0 Ma, respectively. The thermophilic percentages were highest between 18 and 14 Ma, and decreased after 14 Ma, closely corresponding to the Middle Miocene Climatic Optimum (MMCO between 18 and 14 Ma and the following global climatic cooling between 14 and 5 Ma. At the same time, decreases in the xerophytic and coniferous taxa percentages, and the increasing logarithmic ratio of non-arboreal pollen to arboreal pollen (ln (NAP/AP, reveal the continuous aridification across both the basin and surrounding mountains. Between ~ 3.1 and 0 Ma, the percentages of the thermophilic, xerophytic and coniferous pollen as well as the ln (NAP/AP imply further cooling and drying in this region since 3.1 Ma. We argue that these vegetation and climate patterns during the late Cenozoic western Qaidam Basin are primarily a result of the global cooling, with the Tibetan Plateau uplift and East Asian summer monsoon having contributions of lesser importance.

  9. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    Science.gov (United States)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the

  10. Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate

    Science.gov (United States)

    Gianni, G. M.; Echaurren, A.; Folguera, A.; Likerman, J.; Encinas, A.; García, H. P. A.; Dal Molin, C.; Valencia, V. A.

    2017-11-01

    Contraction in intraplate areas is still poorly understood relative to similar deformation at plate margins. In order to contribute to its comprehension, we study the Patagonian broken foreland (PBF) in South America whose evolution remains controversial. Time constraints of tectonic events and structural characterization of this belt are limited. Also, major causes of strain location in this orogen far from the plate margin are enigmatic. To unravel tectonic events, we studied the Cenozoic sedimentary record of the central sector of the Patagonian broken foreland (San Bernardo fold and thrust belt, 44°30‧S-46°S) and the Andes (Meseta de Chalia, 46°S) following an approach involving growth-strata detection, U-Pb geochronology and structural modeling. Additionally, we elaborate a high resolution analysis of the effective elastic thickness (Te) to examine the relation between intraplate contraction location and variations in lithospheric strength. The occurrence of Eocene growth-strata ( 44-40 Ma) suggests that contraction in the Andes and the Patagonian broken foreland was linked to the Incaic phase. Detection of synextensional deposits suggests that the broken foreland collapsed partially during Oligocene to early Miocene. During middle Miocene times, the Quechua contractional phase produced folding of Neogene volcanic rocks and olistostrome deposition at 17 Ma. Finally, the presented Te map shows that intraplate contraction related to Andean phases localized preferentially along weak lithospheric zones (Te < 15 km). Hence, the observed strain distribution in the PBF appears to be controlled by lateral variations in the lithospheric strength. Variations in this parameter could be related to thermo-mechanical weakening produced by intraplate rifting in Paleozoic-Mesozoic times.

  11. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae).

    Science.gov (United States)

    Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio

    2016-04-01

    Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was

  12. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    Science.gov (United States)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  13. Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current

    International Nuclear Information System (INIS)

    Ladant, J.B.; Donnadieu, Y.; Dumas, C.

    2014-01-01

    The timing of the onset of the Antarctic Circumpolar Current (ACC) is a crucial event of the Cenozoic because of its cooling and isolating effect over Antarctica. It is intimately related to the glaciations occurring throughout the Cenozoic from the Eocene - Oligocene (EO) transition (∼ 34 Ma) to the middle Miocene glaciations (∼ 13.9 Ma). However, the exact timing of the onset remains debated, with evidence for a late Eocene setup contradicting other data pointing to an occurrence closer to the Oligocene - Miocene (OM) boundary. In this study, we show the potential impact of the Antarctic ice sheet on the initiation of a strong proto- ACC at the EO boundary. Our results reveal that the regional cooling effect of the ice sheet increases sea ice formation, which disrupts the meridional density gradient in the Southern Ocean and leads to the onset of a circumpolar current and its progressive strengthening. We also suggest that subsequent variations in atmospheric CO 2 , ice sheet volumes and tectonic reorganizations may have affected the ACC intensity after the Eocene - Oligocene transition. This allows us to build a hypothesis for the Cenozoic evolution of the Antarctic Circumpolar Current that may provide an explanation for the second initiation of the ACC at the Oligocene - Miocene boundary while reconciling evidence supporting both early Oligocene and early Miocene onset of the ACC. (authors)

  14. Tectonic/climatic control on sediment provenance in the Cape Roberts Project core record (southern Victoria Land, Antarctica): A pulsing late Oligocene/early Miocene signal from south revealed by detrital thermochronology

    Science.gov (United States)

    Olivetti, V.; Balestrieri, M. L.; Rossetti, F.; Talarico, F. M.

    2012-04-01

    The Mesozoic-Cenozoic West Antarctic Rift System (WARS) is one of the largest intracontinental rift on Earth. The Transantarctic Mountains (TAM) form its western shoulder, marking the boundary between the East and West Antarctica. The rifting evolution is commonly considered polyphase and involves an Early Cretaceous phase linked to the Gondwana break-up followed by a major Cenozoic one, starting at c. 50-40 Ma. This Cenozoic episode corresponds to the major uplift/denudation phase of the TAM, which occurred concurrently with transition from orthogonal to oblique rifting. The Cenozoic rift reorganization occurred concurrently with a major change in the global climate system and a global reorganization of plate motions. This area thus provide an outstanding natural laboratory for studying a range of geological problems that involve feedback relationships between tectonics and climate. A key to address the tectonic/climate feedback relations is to look on apparent synchronicity in erosion signal between different segments, and to compare these with well-dated regional and global climatic events. However, due to the paucity of Cenozoic rock sequences exposed along the TAM front, a few information is available about the neotectonics of the rift and rift-flank uplift system. The direct physical record of the tectonic/climate history of the WARS recovered by core drillings along the western margin of the Ross sea (DSDP, CIROS, Cape Roberts and ANDRILL projects) provides an invaluable tool to address this issue. Twenty-three samples distributed throughout the entire composite drill-cored stratigraphic succession of Cape Roberts were analyzed. Age probability plots of eighteen detrital samples with depositional ages between 34 Ma and the Pliocene were decomposed into statistically significant age populations or peaks using binomial peak-fitting. Moreover, three granitic pebbles, one dolerite clast and one sample of Beacon sandstones have been dated. From detrital samples

  15. Cenozoic deformation from the Yakutat-North American collision to the eastern margin of the Northern Canadian Cordillera

    Science.gov (United States)

    Enkelmann, E.

    2017-12-01

    The western margin of the Northern Cordillera of North America is dominated by transform motion of the Yakutat microplate along the Fairweather fault system. In southeast Alaska the transform boundary changes to convergence and the oblique collision of the buoyant Yakutat microplate formed the St. Elias Mountains. One of the outstanding questions in understanding the St. Elias orogeny is how stress from the plate boundary has been transferred inboard and distributed strain in the North American plate. The timing, amount, and spatial pattern of deformation and rock exhumation have been studied using multiple thermochronology methods. Together the data reveal that Late Cenozoic deformation inboard of the Fairweather Fault and the colliding Yakutat plate corner at the St. Elias syntaxis was spatially very limited, resulting in rock exhumation within a cooling associated with Cordilleran deformation, and Paleocene-Eocene cooling due to spreading-ridge subduction. In contrast, the region west of the St. Elias syntaxis is dominated by convergence, which resulted in significant Cenozoic deformation in southeastern and southern Alaska. In the St. Elias orogen itself, most of the Late Cenozoic deformation and exhumation occurs within the Yakutat microplate and its Cenozoic sedimentary cover that composes the fold-thrust belt. The efficient interaction between tectonic uplift and glacial erosion resulted in rapid exhumation (>1 km/Myr) and extreme rates (4 km/Myr) that are localized at the syntaxis region and have shifted southward over the past 10 Myr. Far-field deformation reaches more than 500 km to the northwest of the convergent margin and caused mountain building in south-central Alaska. Deformation to the northeast is unclear. New thermochronology data from the eastern margin of the Northern Canadian Cordillera (Northwest Territory) reveal exhumation during the Oligocene to early Miocene. At this time, transform motion was already dominating the plate margin in the

  16. Changing provenance of late Cenozoic sediments in the Jianghan Basin

    Directory of Open Access Journals (Sweden)

    Lei Shao

    2015-07-01

    Full Text Available The Yangtze River is one of the most important components of the East Asia river system. In this study, sediments in the Jianghan Basin, middle Yangtze River, were selected for trace element and rare earth element (REE measurements, in order to decipher information on the change of sediment provenance and evolution of the Yangtze River. According to the elemental variations, the late Cenozoic sediments of the Jianghan Basin could be divided into four parts. During 2.68–2.28 Ma and 1.25–0 Ma, provenance of the sediments was consistent, whereas sediments were derived from variable sources during 2.28–1.25 Ma. Comparison of the elemental compositions between the Pliocene and Quaternary sediments revealed a change in sediment source from a more felsic source area to a more basic source area around the Pliocene–Quaternary boundary. Input from the Emeishan LIP should account for this provenance change. Based on the provenance analysis of sediments in the Jianghan Basin, we infer that the Yangtze River developed into a large river with its drainage basin extended to the Emeishan LIP no later than the Pliocene–Quaternary boundary.

  17. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  18. Thermochronological Evidence for Cenozoic Segmentation of Transantarctic Mountains

    Science.gov (United States)

    Zattin, M.; Pace, D.; Andreucci, B.; Rossetti, F.; Talarico, F.

    2013-12-01

    The Transantarctic Mountains (TAM) represent the boundary between the cratonic East Antarctica and the West Antarctica and are thus related to formation of the Western Antarctic Rift system (WARS). However, temporal relationships between timing of TAM uplift and evolution of the WARS are not clear. The large amount of existing thermochronological data indicate that exhumation of the TAM occurred at different times and extents, with main cooling events in the Early Cretaceous, Late Cretaceous, and early Cenozoic. Uplift of the different segments of the TAM was not recorded according to regular trends along the mountain chain, but instead appears diachronous and without a recognizable spatial pattern. Here we present apatite fission-track (AFT) data from 20 samples, collected from metamorphic and intrusive rocks from the region comprised between the Blue Glacier and the Byrd Glacier. AFT data show a large variety of ages, ranging from 28.0 to 88.8 Ma and without a clear correlation between age and elevation. As a whole, spatial variations suggest a decrease of ages from S to the region of the Koettlitz Glacier, where ages suddenly raise up to Cretaceous values. A marked increase of ages has been detected also south of Darwin Glacier, that is in correspondence of the Britannia Range. Thermal modelling shows that cooling paths are usually composite, with a main cooling event followed by slower cooling to present day temperatures. Time of main cooling event is late Cretaceous for samples from the Britannia Range whereas it is Eocene-Oligocene for samples from Koettlitz and Mulock areas. In any case, cooling rates are always quite low also during periods of enhanced uplift, with values not exceeding 5°C/Ma. These data support the idea of tectonic block segmentation of the TAM during the last phases of exhumation. Most of vertical displacements occurred during the Oligocene across transverse fault zones such as the Discovery Accommodation Zone to the north and the

  19. Colorado Late Cenozoic Fault and Fold Database and Internet Map Server: User-friendly technology for complex information

    Science.gov (United States)

    Morgan, K.S.; Pattyn, G.J.; Morgan, M.L.

    2005-01-01

    Internet mapping applications for geologic data allow simultaneous data delivery and collection, enabling quick data modification while efficiently supplying the end user with information. Utilizing Web-based technologies, the Colorado Geological Survey's Colorado Late Cenozoic Fault and Fold Database was transformed from a monothematic, nonspatial Microsoft Access database into a complex information set incorporating multiple data sources. The resulting user-friendly format supports easy analysis and browsing. The core of the application is the Microsoft Access database, which contains information compiled from available literature about faults and folds that are known or suspected to have moved during the late Cenozoic. The database contains nonspatial fields such as structure type, age, and rate of movement. Geographic locations of the fault and fold traces were compiled from previous studies at 1:250,000 scale to form a spatial database containing information such as length and strike. Integration of the two databases allowed both spatial and nonspatial information to be presented on the Internet as a single dataset (http://geosurvey.state.co.us/pubs/ceno/). The user-friendly interface enables users to view and query the data in an integrated manner, thus providing multiple ways to locate desired information. Retaining the digital data format also allows continuous data updating and quick delivery of newly acquired information. This dataset is a valuable resource to anyone interested in earthquake hazards and the activity of faults and folds in Colorado. Additional geologic hazard layers and imagery may aid in decision support and hazard evaluation. The up-to-date and customizable maps are invaluable tools for researchers or the public.

  20. Detrital Zircon Provenance Record of Pre-Andean to Modern Tectonics in the Northern Andes: Examples from Peru, Ecuador, and Colombia

    Science.gov (United States)

    George, S. W. M.; Jackson, L. J.; Horton, B. K.

    2015-12-01

    Detrital zircon U-Pb age distributions from modern rivers and Mesozoic-Cenozoic basin fill in the northern Andes provide insights into pre-Andean, Andean, and active uplift and exhumation of distinctive sediment source regions. Diagnostic age signatures enable straightforward discrimination of competing sediment sources within the Andean magmatic arc (Western Cordillera-Central Cordillera), retroarc fold-thrust belt (Eastern Cordillera-Subandean Zone), and Amazonian craton (composed of several basement provinces). More complex, however, are the mid/late Cenozoic provenance records generated by recycling of basin fill originally deposited during early/mid Mesozoic extension, late Mesozoic thermal subsidence, and early Cenozoic shortening. Although subject to time-transgressive trends, regionally significant provenance patterns in Peru, Ecuador, and Colombia reveal: (1) Triassic-Jurassic growth of extensional subbasins fed by local block uplifts (with commonly unimodal 300­-150 Ma age peaks); (2) Cretaceous deposition in an extensive postrift setting fed by principally cratonic sources (with common 1800-900 Ma ages); and (3) Cenozoic growth of a broad flexural basin fed initially fed by magmatic-arc rocks (100-0 Ma), then later dominance by thrust-belt sedimentary rocks with progressively greater degrees of basin recycling (yielding diverse and variable age populations from the aforementioned source regions). U-Pb results from modern rivers and smaller subbasins prove useful in evaluating source-to-sink relationships, downstream mixing relationships, hinterland-foreland basin connectivity, paleodrainage integration, and tectonic/paleotopographic reconstructions. Most but not all of the elevated intermontane basins in the modern hinterland of the northern Andes contain provenance records consistent with genesis in a broader foreland basin developed at low elevation. Downstream variations within modern axial rivers and Cenozoic axial basins inform predictive models of

  1. New allocyclic dimensions in a prograding carbonate bank: Evidence for eustatic, tectonic, and paleoceanographic control (late Neogene, Bahamas)

    Science.gov (United States)

    Lidz, B.H.; McNeill, D.F.

    1997-01-01

    The deep-sea record, examined recently for the first time in a shallow-depocenter setting, has unveiled remarkable evidence for new sedimentary components and allocyclic complexity in a large, well-studied carbonate bank, the western Great Bahama Bank. The evidence is a composite foraminiferal signature - Paleocene to early Miocene (allogenic or reworked) and late Miocene to late Pliocene (host) planktic taxa, and redeposited middle Miocene shallow benthic faunas. Ages of the oldest and youngest planktic groups range from ??? 66 to ??? 2 Ma. The reworked and redeposited taxa are a proxy for significant sediment components that otherwise have no lithofacies or seismic resolution. The composite signature, reinforced by a distinctive distribution of the reworked and redeposited faunas, documents a much more complex late Neogene depositional system than previously known. The system is more than progradational. The source sequences that supplied the constituent bank-margin grains formed at different water depths and over hundreds of kilometers and tens of millions of years apart. New evidence from the literature and from data obtained during Ocean Drilling Program (OOP) Leg 166 in the Santaren Channel (Bahamas) support early interpretations based on the composite fossil record and provide valuable new dimensions to regional allocyclicity. The middle Miocene taxa were confined to the lower part of the section by the latest Miocene-earliest Pliocene(?) lowstand of sea level. An orderly occurrence of the allogenic taxa is unique to the global reworked geologic record and appears to have been controlled by a combination of Paleogene-early Neogene tectonics at the source, eustatic changes, and late Neogene current activity at the source and across the bank. The allogenic taxa expand the spatial and temporal range of information in the northern Bahamas by nearly an order of magnitude. In essence, some of the major processes active in the region during ??? 64 m.y. of the

  2. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    Science.gov (United States)

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian

  3. Study on the relationships between the structural evolution and sandstone-type uranium mineralization in mesozoic era and cenozoic era in the northern of Chaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Zhe; Song Xiansheng; Feng Wei

    2008-01-01

    By detailed expounding the characteristics of the Mesozoic and Cenozoic structural evolution in northern of Chaidam basin, the author inquires into its relationships with the sandstone-type uranium mineralization, analyzes the prospect of forming uranium deposit, and thinks that the Mesozoic and Cenozoic strata are mainly controlled by the tectonic role of the later Yanshan movement and the later Cenozoic era. The north-west palaeo-structural slope belt is formed in the later Cretacous Epoch that is favorable for developing palaeo-interlayer oxidized zone. After the slightly extensional role of the oldest Tertiary and the early Plioeene, the middle and lower Jurassic were buried, and the block-imbricated slope belts are formed in the tectonic movement of the later Cenozoic, which are favorable for developing recent interlayer oxidized zone. According to drilling, it has the conditions for forming palaeo-recent interlayer oxidized zone sandstone-type uranium deposit at the northern of Chaidam basin. Finally, the author lays his finger on the prospecting of uranium. (authors)

  4. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    Directory of Open Access Journals (Sweden)

    N. P. Butterworth

    2014-08-01

    Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific

  5. Cenozoic exhumation and tectonic evolution of the Qimen Tagh Range, northern Tibetan Plateau: Insights from the heavy mineral compositions, detrital zircon U-Pb ages and seismic interpretations

    Science.gov (United States)

    Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Zhang, C.; Li, J.

    2017-12-01

    The Qaidam Basin is the largest intermountain basin within the Tibetan Plateau. The Cenozoic sedimentary flling characteristics of the basin was significantly influenced by the surrounding tectonic belt, such as the Altyn Tagh Range to the north-west and Qimen Tagh Range to the south. The tectonic evolution of the Qimen Tagh Range and the structural relationship between the Qaidam Basin and Qimen Tagh Range remain controversial. To address these issues, we analyzed thousands of heavy mineral data, 720 detrital zircon ages and seismic data of the Qaidam Basin. Based on the regional geological framework and our kinematic analyses, the Cenozoic tectonic evolution of the Qimen Tagh Range can be divided into two stages. From the Early Eocene to the Middle Miocene, the Devonian (400-360 Ma) and Permian to Triassic (300-200 Ma) zircons which were sourced from the Qimen Tagh Range and the heavy mineral assemblage of zircon-leucoxene-garnet-sphene on the north flank of the Qimen Tagh Range indicated that the Qimen Tagh Range has been exhumed before the Eocene and acted as the primary provenance of the Qaidam Basin. The Kunbei fault system (i.e. the Kunbei, Arlar and Hongliuquan faults) in the southwest of the Qaidam Basin, which can be seen as a natural study window of the Qimen Tagh Range, was characterized by left-lateral strike-slip faults and weak south-dipping thrust faults based on the seismic sections. This strike-slip motion was generated by the uplift of the Tibetan Plateau caused by the onset of the Indian-Eurasian collision. Since the Middle Miocene, the primary mineral assemblages along the northern flank of the Qimen Tagh Range changed from the zircon-leucoxene-garnet-sphene assemblage to the epidote-hornblende-garnet-leucoxene assemblage. Simultaneously, the Kunbei fault system underwent intense south-dipping thrusting, and a nearly 2.2-km uplift can be observed in the hanging wall of the Arlar fault. We attributed these variations to the rapid uplift event of

  6. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  7. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  8. New interpretations based on seismic and modelled well data and their implications for the tectonic evolution of the west Greenland continental margin

    DEFF Research Database (Denmark)

    Mcgregor, E.D.; Nielsen, S.B.; Stephenson, R.A.

    Davis Strait is situated between Baffin Island and Greenland and forms part of a sedimentary basin system, linking Labrador Sea and Baffin Bay, developed during Cretaceous and Palaeocene rifting that culminated in a brief period of sea-floor spreading in the late Palaeocene and Eocene. Seismic...... reflection profiles and exploration wells along the Greenland margin of Davis Strait have been analysed in order to elucidate uplift events affecting sedimentary basin development during the Cenozoic with a focus on postulated Neogene (tectonic) uplift affecting the west Greenland continental margin...... tectonic event. An interpretation in which the inferred onshore cooling is related to erosion of pre-existing topography is more consistent with our new results from the offshore region. These results will have important implications for other continental margins developed throughout the Atlantic...

  9. A synthesis of Cenozoic sedimentation in the North Sea

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Rasmussen, E.S.

    2012-01-01

    study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic...... characteristics of many unconformities indicate that they were generated by eustatic sea-level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer...

  10. Patterns of Cenozoic sediment flux from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    2012-01-01

    deposits in the North Sea, the post-mid-Miocene Molo and Kai Formations of the Norwegian Shelf, the southern North Sea delta system and large volumes of the Late Pliocene-Holocene Naust Formation. The sediment flux from Scandinavia during the Cenozoic is in general agreement with the detrital flux...

  11. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System

    Science.gov (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.

    2016-12-01

    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  12. Quaternary tectonics of recent basins in northwestern Armenia

    Science.gov (United States)

    Trifonov, V. G.; Shalaeva, E. A.; Saakyan, L. Kh.; Bachmanov, D. M.; Lebedev, V. A.; Trikhunkov, Ya. I.; Simakova, A. N.; Avagyan, A. V.; Tesakov, A. S.; Frolov, P. D.; Lyubin, V. P.; Belyaeva, E. V.; Latyshev, A. V.; Ozherelyev, D. V.; Kolesnichenko, A. A.

    2017-09-01

    New data on the stratigraphy, faults, and formation history of lower to middle Pleistocene rocks in Late Cenozoic basins of northwestern Armenia are presented. It has been established that the low-mountain topography created by tectonic movements and volcanic activity existed in the region by the onset of the Pleistocene. The manifestations of two geodynamic structure-forming factors became clear in Pleistocene: (i) collisional interaction of plates due to near-meridional compression and (ii) deep tectogenesis and magma formation expressed in the distribution of vertical movements and volcanism. The general uplift of the territory, which was also related to deep processes, reached 350-500 m in basins and 600-800 m in mountain ranges over the last 0.5 Ma. The early Pleistocene ( 1.8 Ma) low- and medium-mountain topography has been reconstructed by subtraction of the latest deformations and uplift of the territory. Ancient human ancestry appeared at that time.

  13. Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea)

    International Nuclear Information System (INIS)

    Evelpidou, N.; Karkani, A.; Pirazzoli, P.

    2017-01-01

    In this paper the tectonic behavior of Leukas and Meganisi islands (Ionian Sea) is examined through underwater research carried out in both islands. A possible Late Holocene correlation between coseismic subsidences is attempted and evidenced by submerged tidal notches in both islands. These subsidence events probably occurred after the uplift that affected the northernmost part of Leukas around 4 to 5ka BP. In conclusion, although the whole area was affected by a similar tectonic strain, certain coseismic events were only recorded in one of the two islands and in some cases they affected only part of the study area.

  14. Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Evelpidou, N.; Karkani, A.; Pirazzoli, P.

    2017-11-01

    In this paper the tectonic behavior of Leukas and Meganisi islands (Ionian Sea) is examined through underwater research carried out in both islands. A possible Late Holocene correlation between coseismic subsidences is attempted and evidenced by submerged tidal notches in both islands. These subsidence events probably occurred after the uplift that affected the northernmost part of Leukas around 4 to 5ka BP. In conclusion, although the whole area was affected by a similar tectonic strain, certain coseismic events were only recorded in one of the two islands and in some cases they affected only part of the study area.

  15. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    Directory of Open Access Journals (Sweden)

    Steffen Kiel

    Full Text Available We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema. In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large

  16. Fires in the Cenozoic: a late flowering of flammable ecosystems

    OpenAIRE

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine...

  17. Late Pliocene Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology

    Science.gov (United States)

    Necea, Diana; Fielitz, W.; Matenco, L.

    2005-12-01

    The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; ˜11 Ma) subduction/underthrusting and continental collision between the East European/Scythian/Moesian foreland and the inner Carpathians Tisza-Dacia unit. In particular, the SE corner of the arcuate orogenic belt represents the place of still active large-scale differential vertical movements between the uplifting mountain chain and the subsiding Focşani foredeep basin. In this key area, we have analysed the configuration of the present day landforms and the drainage patterns in order to quantify the amplitude, timing and kinematics of these post-collisional late Pliocene-Quaternary vertical movements. A river network is incising in the upstream a high topography consisting of the external Carpathians nappes and the Pliocene-Lower Pleistocene sediments of the foreland. Further eastwards in the downstream, this network is cross-cutting a low topography consisting of the Middle Pleistocene-Holocene sediments of the foreland. Geological observations and well-preserved geomorphic features demonstrate a complex succession of geological structures. The late Pliocene-Holocene tectonic evolution is generally characterised by coeval uplift in the mountain chain and subsidence in the foreland. At a more detailed scale, these vertical movements took place in pulses of accelerated motion, with laterally variable amplitude both in space and in time. After a first late Pliocene uplifting period, subsidence took place during the Earliest Pleistocene resulting in a basal Quaternary unconformity. This was followed by two, quantifiable periods of increased uplift, which affected the studied area at the transition between the Carpathians orogen and the Focşani foreland basin in the late Early Pleistocene and the

  18. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    Science.gov (United States)

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  19. Extensional tectonics on continents and the transport of heat and matter

    Science.gov (United States)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  20. Late Cenozoic Samtskhe-Javakheti Volcanic Highland, Georgia:The Result of Mantle Plumes Activity

    Science.gov (United States)

    Okrostsvaridze, Avtandil

    2017-04-01

    Late Cenozoic Samtskhe-Javakheti continental volcanic highland (1500-2500 m a.s.l) is located in the SW part of the Lesser Caucasus. In Georgia the highland occupies more than 4500 km2, however its large part spreads towards the South over the territories of Turkey and Armenia. One can point out three stages of magmatic activity in this volcanic highland: 1. Early Pliocene activity (5.2-2.8 Ma; zircons U-Pb age) - when a large part of the highland was built up. It is formed from volcanic lava-breccias of andesite-dacitic composition, pyroclastic rocks and andesite-basalt lava flow. The evidences of this structure are: a large volume of volcanic material (>1500 km3); big thickness (700-1100 m in average), large-scale of lava flows (length 35 km, width 2.5-3.5 km, thickness 30-80 m), big thickness of volcanic ash horizons (300 cm at some places) and big size of volcanic breccias (diameter >1 m). Based on this data we assume that a source of this structure was a supervolcano (Okrostsvaridze et al., 2016); 2. Early Pleistocene activity (2.4 -1.6 Ma; zircons U-Pb age) - when continental flood basalts of 100-300 m thickness were formed. The flow is fully crystalline, coarse-grained, which mainly consist of olivine and basic labradorite. There 143Nd/144Nd parameter varies in the range of +0.41703 - +0.52304, and 87Sr/88Sr - from 0.7034 to 0.7039; 3. Late Pleistocene activity (0.35-0.021 Ma; zircons U-Pb age) - when intraplate Abul-Samsari linear volcanic ridge of andesite composition was formed stretching to the S-N direction for 40 km with the 8-12 km width and contains more than 20 volcanic edifices. To the South of the Abul-Samsari ridge the oldest (0.35-0.30 Ma; zircons U-Pb age) volcano Didi Abuli (3305 m a.s.l.) is located. To the North ages of volcano edifices gradually increase. Farther North the youngest volcano Tavkvetili (0.021-0. 030 Ma) is located (2583 m a.s.l.). One can see from this description that the Abul-Samsari ridge has all signs characterizing

  1. The significance of Gosau-type basins for the Late Cretaceous tectonic history of the Alpine-Carpathian Belt.

    NARCIS (Netherlands)

    Willingshofer, E.; Neubauer, F.; Cloetingh, S.A.P.L.

    1999-01-01

    A key feature of Late Creataceous tectonics throughout the Alpine-Carpathian-Pannonian (ALCAPA) region is the synchronous formation of sedimentary basins (Gosau basins) and exhumation of metamorphic domes. Initial subsidence, spatially varying in time (Cenomanian-Santonian), within Gosau-type basins

  2. The Nysa-Morava Zone: an active tectonic domain with Late Cenozoic sedimentary grabens in the Western Carpathians' foreland (NE Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Špaček, P.; Bábek, O.; Štěpančíková, Petra; Švancara, J.; Pazdírková, J.; Sedláček, J.

    2015-01-01

    Roč. 104, č. 4 (2015), s. 963-990 ISSN 1437-3254 R&D Projects: GA ČR GAP210/12/0573; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * Upper Morava Basin * tectonic evolution * seismicity * sedimentary grabens Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.133, year: 2015

  3. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    Koepnick, R.B.; Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Nelson, H.F.; Otto, J.B.; Waite, L.E.

    1985-01-01

    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87 Sr/ 86 Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87 Sr/ 86 Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87 Sr/ 86 Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87 Sr/ 86 Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  4. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    Science.gov (United States)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and

  5. Cenozoic Uplift and Climate Change of the Northeast Tibetan Plateau: Evidence from Leaf Wax Stable Isotopic Records

    Science.gov (United States)

    Hou, M.; Zhuang, G.; Wu, M.

    2017-12-01

    Topics about the deformation history and uplift mechanism of Tibetan Plateau have been largely debated in the past few decades. Different geodynamic models present different predictions on the mountain building processes and hence the surface uplift history. For example, one tectonic model suggests a rapid uplift (>1.0 to 2.0 km) of the Tibetan Plateau in the period of ca. 10 to 8 Ma as result of isostatic rebound due to the removal of over-thickened mental lithosphere beneath. Whilst the stepwise uplift model infers that the high topography was growing progressively from south to north with the Northeast Tibetan Plateau being built in the Pliocene to present. In this case, the timing of Cenozoic uplift of Northeast Tibetan Plateau would provide information for distinguishing competing geodynamic processes. The stable isotope based paleoaltimetry holds the key to answering when the high topography was built. Additionally, the evolution of Cenozoic Asian climate was argued to be closely related to the high topography built up on the Tibetan Plateau since the India-Asian collision and/or impacted by the global change. To understand when the high topography was built and how the growth of Tibetan Plateau impacted the climate, we reconstructed the long-term histories of paleohydrology from hinterland and foreland basins in the Northeast Tibetan Plateau. We applied the compound-specific isotope hydrogen analysis to leaf wax n-alkanes (δ2Hn-alk) that are preserved in well-dated stratigraphic series (ca. 24 Ma to the present) in the Northeast Tibetan Plateau. The newly reconstructed δ2Hn-alk supports the inference of high topography on the Northeast Tibetan Plateau was built during the middle to late Miocene. Our inference is consistent with sedimentary and basement rock studies that show fundamental changes in facies and provenance and exhumation history. The new δ2Hn-alk record also reveals that the regional climate became drier since the middle Miocene following the

  6. The revised tectonic history of Tharsis

    Science.gov (United States)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  7. Interaction of tectonic and depositional processes that control the evolution of the Iberian Gulf of Cadiz margin

    Science.gov (United States)

    Maldonado, A.; Nelson, C.H.

    1999-01-01

    This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and

  8. Cenozoic plant diversity of Yunnan: A review

    Directory of Open Access Journals (Sweden)

    Yongjiang Huang

    2016-12-01

    Full Text Available Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to

  9. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    Science.gov (United States)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  10. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  11. Dynamic topography and the Cenozoic carbonate compensation depth

    Science.gov (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  12. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    Science.gov (United States)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  13. The oldest record of Alligator sinensis from the Late Pliocene of Western Japan, and its biogeographic implication

    Science.gov (United States)

    Iijima, Masaya; Takahashi, Keiichi; Kobayashi, Yoshitsugu

    2016-07-01

    The late Cenozoic fossil record of alligators in East Asia is crucial in understanding the origin and past distribution of Asian alligators that are now represented by a single species, Alligator sinensis. This study reports a partial skeleton of A. sinensis from the Late Pliocene (approximately 3.0 Ma) of western Japan. This Japanese A. sinensis is large in size (>200 cm total length), comparable to the maximum size of extant individuals. It demonstrates the oldest record of A. sinensis and wider distribution of this species in the past. Tectonic and geographic history of East Asia suggests that alligators presumably dispersed into Japan before 25 Ma or after 10 Ma, yet finally were wiped out from Japan due to the semi-isolated condition of the Japanese island arc and the deteriorated climate during the Plio-Pleistocene.

  14. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  15. The pre-Cenozoic evolution of the Apuseni Mountains (Romania) in the light of new (thermo)geochronological data

    Science.gov (United States)

    Reiser, Martin; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2013-04-01

    , although a possible minor influence of later normal faulting on the age distribution cannot be fully excluded and needs further evaluation. In contrast, fission track data show only minor differences between these two units (see Kounov and Schmid, 2012) and point to their mutual evolution since the late Upper Cretaceous. The known and exclusively brittle Cenozoic tectonic evolution did not substantially modify the pre-Cenozoic age (and thermal) pattern of the Tisza and Dacia units. References: Dallmeyer, R.D., Paná, D.I., Neubauer, F., & Erdmer, P. (1999): Tectonothermal Evolution of the Apuseni Mountains, Romania: Resolution of Variscan versus Alpine Events with 40Ar/39Ar Ages. Journal of Geology, 107: 329-352. Kounov, A and Schmid, S.M. (2012): Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania). International Journal of Earth Sciences, DOI: 10.1007/s00531-012-0800-5. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008): The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139-18.

  16. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  17. Preliminary geologic map of the late Cenozoic sediments of the western half of the Pasco Basin

    International Nuclear Information System (INIS)

    Lillie, J.T.; Tallman, A.M.; Caggiano, J.A.

    1978-09-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within the Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in Columbia River Basalt. This report represents a portion of the geological work conducted during fiscal year 1978 to assess the geological conditions in the Pasco Basin. The surficial geology of the western half of the Pasco Basin was studied and mapped in a reconnaissance fashion at a scale of 1:62,500. The map was produced through a compilation of existing geologic mapping publications and additional field data collected during the spring of 1978. The map was produced primarily to: (1) complement other mapping work currently being conducted in the Pasco Basin and in the region by Rockwell Hanford Operations and its subcontractors; and, (2) to provide a framework for more detailed late Cenozoic studies within the Pasco Basin. A description of procedures used to produce the surficial geologic map and geologic map units is summarized in this report

  18. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation

    Directory of Open Access Journals (Sweden)

    Haiquan Yin

    2016-09-01

    Full Text Available The late Paleozoic evolution of the Wulijishanhen (WSH-Shangdan (SD area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferous–early Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobi–Tianshan rift of southern Mongolia.

  19. Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A

    International Nuclear Information System (INIS)

    Norman, M.D.; Leeman, W.P.

    1989-01-01

    Magmatism in the western United States spanned a change in tectonic setting from Mesozoic and early Tertiary plate convergence to middle and late Tertiary crustal extension. This paper presents new major element, trace element, and isotopic (Sr, Nd, Pb) data on a diverse suite of Cretaceous to Neogene igneous rocks from the Owyhee area of southwestern Idaho to evaluate possible relationships between the evolving tectonic regime and temporal changes in igneous activity. The oldest studied rocks are Cretaceous granitic intrusives that probably formed by large-scale mixing of Precambrian crust with subduction-related magmas. Silicic Eocene tuffs are also rich in crustal components, but have isotopic compositions unlike the Cretaceous intrusives. These data require at least two crustal sources that may correspond to domains of significantly different age (Archean vs. Proterozoic). The oldest mafic lavas in the study area are Oligocene andesites and basalts compositionally similar to subduction-related magmas derived from asthenospheric mantle and erupted through thick continental crust. Direct crustal involvement during oligocene time was limited to minor interaction with the mafic magmas. Miocene activity produced bimodal basalt-rhyolite suites and minor volumes of hybrid lavas. Compositions of Miocene basalts demonstrate the decline of subduction-related processes, and increased involvement of subcontinental lithospheric mantle as a magma source. Crustally-derived Miocene rhyolites have isotopic compositions similar to those of the Cretaceous granitic rocks but trace element abundances more typical of within-plate magmas. (orig./WB)

  20. Distinct phases of eustatic and tectonic forcing for late Quaternary landscape evolution in southwest Crete, Greece

    Directory of Open Access Journals (Sweden)

    V. Mouslopoulou

    2017-09-01

    Full Text Available The extent to which climate, eustasy and tectonics interact to shape the late Quaternary landscape is poorly known. Alluvial fans often provide useful indexes that allow the decoding of information recorded on complex coastal landscapes, such as those of the eastern Mediterranean. In this paper we analyse and date (using infrared stimulated luminescence (IRSL dating a double alluvial fan system on southwest Crete, an island straddling the forearc of the Hellenic subduction margin, in order to constrain the timing and magnitude of its vertical deformation and discuss the factors contributing to its landscape evolution. The studied alluvial system is exceptional because each of its two juxtaposed fans records individual phases of alluvial and marine incision, thus providing unprecedented resolution in the formation and evolution of its landscape. Specifically, our analysis shows that the fan sequence at Domata developed during Marine Isotope Stage (MIS 3 due to five distinct stages of marine transgressions and regressions and associated river incision, in response to sea-level fluctuations and tectonic uplift at averaged rates of  ∼ 2.2 mm yr−1. Interestingly, comparison of our results with published tectonic uplift rates from western Crete shows that uplift during 20–50 kyr BP was minimal (or even negative. Thus, most of the uplift recorded at Domata must have occurred in the last 20 kyr. This implies that eustasy and tectonism impacted the landscape at Domata over mainly distinct time intervals (e.g. sequentially and not synchronously, with eustasy forming and tectonism preserving the coastal landforms.

  1. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    Science.gov (United States)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    alteration state of the crust), the variable thermo-baric conditions of magma formation, coupled with variable molar concentrations of CO 2 and H 2O in the fluid phase released by the subducting plates are the most important. Compared to classic collisional settings (e.g., Himalayas), the central-western Mediterranean area shows a range of unusual geological and magmatological features. These include: a) the rapid formation of extensional basins in an overall compressional setting related to Africa-Europe convergence; b) centrifugal wave of both compressive and extensional tectonics starting from a 'pivotal' region around the Gulf of Lyon; c) the development of concomitant Cenozoic subduction zones with different subduction and tectonic transport directions; d) subduction 'inversion' events (e.g., currently along the Maghrebian coast and in northern Sicily, previously at the southern paleo-European margin); e) a repeated temporal pattern whereby subduction-related magmatic activity gives way to magmas of intraplate geochemical type; f) the late-stage appearance of magmas with collision-related 'exotic' (potassic to ultrapotassic) compositions, generally absent from simple subduction settings; g) the relative scarcity of typical calcalkaline magmas along the Italian peninsula; h) the absence of igneous activity where it might well be expected (e.g., above the hanging-wall of the Late Cretaceous-Eocene Adria-Europe subduction system in the Alps); i) voluminous production of subduction-related magmas coeval with extensional tectonic régimes (e.g., during Oligo-Miocene Sardinian Trough formation). To summarize, these salient central-western Mediterranean features, characterizing a late-stage of the classic 'Wilson Cycle' offer a 'template' for interpreting magmatic compositions in analogous settings elsewhere.

  2. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    Science.gov (United States)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide

  3. Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus

    Science.gov (United States)

    Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.

    2012-04-01

    The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed

  4. Kinematics and 40Ar/ 39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia

    Science.gov (United States)

    Wang, Yuejun; Fan, Weiming; Zhang, Yanhua; Peng, Touping; Chen, Xinyue; Xu, Yigang

    2006-06-01

    The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan-Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/ 39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/ 39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at ˜ 32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at ˜ 27-29 Ma by the biotite 40Ar/ 39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but ˜ 10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28-36 Ma). During 28-17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.

  5. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault

    Science.gov (United States)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad

    2017-10-01

    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  6. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    Science.gov (United States)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  7. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    Science.gov (United States)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  8. The interaction of prehistoric human settlement, sea level change and tectonic uplift of the Coastal Range, eastern Taiwan

    Science.gov (United States)

    Yang, H.; Chen, W. S.

    2017-12-01

    The late Cenozoic mountain belt of Taiwan, resulting from the collision between the Eurasian and Philippine Sea plates, is known for its rapid tectonic uplift. As postglacial sea level rose ca. 15,000 yr ago, the eastern coast of Taiwan, due to the rapid tectonic uplift rate, displayed a totally different scenario comparing with most of the coastal plains around the world. At the beginning of postglacial era, the sea level rising rate was greater than the tectonic uplift rate which induced the original piedmont alluvial fan or coastal plain to be overwhelmed by sea water rapidly. Around 13.5 ka, the tectonic uplift rate caught up with the sea level rising and broad wave-cut platform formed. The approximation of tectonic uplift and sea level rising rates was lasting from 13.5 to 5ka, but shoreline progradation may have been enhanced by increased slope erosion which resulted in the alluvial fan forming at the later time of this period. As soon as the eustasy stabilized, the landmass continued to uplift which might have enhanced the river incising and wave erosion rapidly. Therefore the topographic expression along the eastern fringing of Coastal Range forms extended alluvial-fan, stream, and marine terraces and are covered by late Holocene colluvium and marine deposits. 88 archaeological sites were chosen in this study based on surface survey where the archaeological chronology of cultural stage is established primarily through examining pottery series and associated manual excavation. It is interesting that most of the archaeological sites were located on the alluvial fan although the Holocene marine terraces have formed after 5ka. There are no clear evidences to support a shore-oriented settlement, but the abundant alluvial depositional structures observed from the overlaying formation reveals the stream depositional system was still active at this time. If the Neolithic people wanted to come to the "new born" coastal region for the abundant ocean resources, they

  9. Late-Miocene thrust fault-related folding in the northern Tibetan Plateau: Insight from paleomagnetic and structural analyses of the Kumkol basin

    Science.gov (United States)

    Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing

    2018-05-01

    Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.

  10. Analysis of late Jurassic-recent paleomagnetic data from active plate margins of South America

    Science.gov (United States)

    Beck, Myrl E.

    Paleomagnetic results for rocks of late Mesozoic and Cenozoic age from South America are analyzed and interpreted. Emphasis is placed on the active margins of the continent. Some important conclusions are reached, with varying degrees of certainty: (1) The reference APW path for stable South America is fairly well defined for the Late Jurassic and Cretaceous, and is not much different from the present rotation axis. (2) The so-called "Bolivian orocline" involved counterclockwise rotations in Peru and northernmost Chile and clockwise rotations in Chile south of about latitude 18.5S. These rotations probably are a result of in situ small-block rotations in response to shear, not actual oroclinal bending. (3) The Bonaire block of northern Venezuela and Colombia has been rotated clockwise relative to the stable interior of South America by about 90°. It also seems to have drifted northward relative to the craton by as much as 1600 km. It probably represents a true accreted terrane, one of very few recognized in South America so far. (4) The "Magellanes orocline" at the southern tip of South America apparently involves some counterclockwise rotation of paleomagnetic vectors, but this too is probably the result of distributed shear. (5) Tectonic processes have very thoroughly "rearranged" the rocks making up the active margins of South America. "Rearrange" here denotes displacement of crustal blocks relative to their surroundings, without significant internal deformation By analogy with North America "rearrangement" might entail in situ block rotation, translation of crustal blocks along the continental margin, and accretion of exotic "tectonostratigraphic terranes". However, in western South America "rearrangement" seems to have consisted dominantly of block rotations that were essentially in situ. For the parts of the Andes investigated so far, late Mesozoic and Cenozoic accretion of exotic terranes and large-scale translation of crustal slivers, as found in western

  11. Magmatism and cenozoic tectonism in the Cabo Frio region, RJ, Brazil

    International Nuclear Information System (INIS)

    Mohriak, W.U.; Barros, A.Z.N. de; Fujita, A.

    1990-01-01

    The western portion of the Campos Basin is limited by a hinge line that bounds the deposition of pre-Aptian sediments in the offshore region. The Cabo Frio arch corresponds to a platform with smaller relative subsidence, where Tertiary sediments are deposited directly on shallow basement rocks. Towards the continental slope of the Cabo Frio region, tectonic activity is also observed in the post-Aptian sequence, particularly in the region between the Santos and Campos basins, where a very large graben trends parallel to the pre-Aptian limit of the basin, and is controlled by faults that-affect Upper Miocene rocks. Eastwards of this region, an array of antithetic faults trends in a NE direction. These faults, apparently detaching an the Aptian salt, show unique geometric patterns. The rupturing of Pangea in the Lower Cretaceous is marked by widespread outpouring of mafic magmas in Campos and Santos basins. Radiometric age determinations for this volcanism show a mean of about 139 M.a. After the rift phase, another volcanic episode is observed in the Cabo Frio region, with K/Ar radiometric dating of about 50 M.a. Volcanic mounds are observed within the Eocene sedimentary sequence. An Eocene volcanic episode is characterized by the presence of volcaniclassic rocks, including autoclastic, hydroclastic, epiclastic and pyroclastic sediments. This tectonic episode is also identified within other stratigraphic intervals in the sedimentary column. (author)

  12. Improving global paleogeography since the late Paleozoic using paleobiology

    Directory of Open Access Journals (Sweden)

    W. Cao

    2017-12-01

    Full Text Available Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %. The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time

  13. Faulting in eastern New Mexico: Revision 1

    International Nuclear Information System (INIS)

    Murphy, P.J.

    1987-08-01

    This area in eastern New Mexico is being studied because of its proximity to a proposed high-level nuclear waste repository site in Deaf Smith County, Texas. Regional and local tectonics must be thoroughly understood in order to be able to predict future tectonic activities in the site region. Hydrogeologic studies indicate that ground-water recharge, for regional deep and shallow aquifer systems, occurs primarily within the study area. Regional, easterly ground-water flow may be significantly affected by the spacing, orientation, and character of faults identified in this report. The tectonic history of eastern New Mexico is developed from information from 660 exploratory wells. A history of recurrent tectonic movements is evident, beginning possibly in the late Precambrian and extending into the late Cenozoic. The nature of the evidence includes the lateral and vertical distribution and the lithology of these deposits. The results are presented mainly as isopach and structure contour maps and as structural cross sections. The Paleozoic tectonic history of eastern New Mexico is similar and related to the history of the Texas Panhandle. Differences occur primarily in the Mesozoic and Cenozoic histories; tectonic uplift persisted for longer periods and faults show evidence of repeated movements in eastern New Mexico. This is probably a result of the proximity of the area to the Laramide and Basin and Range deformational events. 442 refs., 35 figs

  14. Early cenozoic differentiation of polar marine faunas.

    Directory of Open Access Journals (Sweden)

    J Alistair Crame

    Full Text Available The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  15. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain)

    Energy Technology Data Exchange (ETDEWEB)

    Nebot, M.; Guimera, J.

    2016-07-01

    The Maestrat Basin experienced two main rifting events: Late Permian-Late Triassic and Late Jurassic-Early Cretaceous, and was inverted during the Cenozoic Alpine orogeny. During the inversion, an E-W-trending, N-verging fold-and-thrust belt developed along its northern margin, detached in the Triassic evaporites, while southwards it also involved the Variscan basement. A structural study of the transition between these two areas is presented, using 2D seismic profiles, exploration wells and field data, to characterize its evolution during the Mesozoic extension and the Cenozoic contraction. The S-dipping Maestrat basement thrust traverses the Maestrat Basin from E to W; it is the result of the Cenozoic inversion of the lower segment–within the acoustic basement–of the Mesozoic extensional fault system that generated the Salzedella sub-basin. The syn-rift Lower Cretaceous rocks filling the Salzedella sub-basin thicken progressively northwards, from 350m to 1100m. During the inversion, a wide uplifted area –40km wide in the N-S direction– developed in the hanging wall of the Maestrat basement thrust. This uplifted area is limited to the North by the E-W-trending Calders monocline, whose limb is about 13km wide in its central part, dips about 5ºN, and generates a vertical tectonic step of 800-1200m. We interpreted the Calders monocline as a fault-bend fold; therefore, a flat-ramp-flat geometry is assumed in depth for the Maestrat basement thrust. The northern synformal hinge of the Calders monocline coincides with the transition from thick-skinned to thin-skinned areas. The vast uplifted area and the low-dip of the monocline suggest a very low-dip for the basement ramp, rooted in the upper crust. The Calders monocline narrows and disappears laterally, in coincidence with the outcrop of the Maestrat basement thrust. The evaporitic Middle Muschelkalk detachment conditioned the structural style. Salt structures are also related to it; they developed during the

  16. Investigating the ancient landscape and Cenozoic drainage development of southern Yukon (Canada), through restoration modeling of the Cordilleran-scale Tintina Fault.

    Science.gov (United States)

    Hayward, N.; Jackson, L. E.; Ryan, J. J.

    2017-12-01

    This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold

  17. Changes in Eocene-Miocene shallow marine carbonate factories along the tropical SE Circum-Caribbean responded to major regional and global environmental and tectonic events

    Science.gov (United States)

    Silva-Tamayo, Juan Carlos

    2015-04-01

    Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from

  18. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along

  19. A review of the paleomagnetic data from Cretaceous to lower Tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas

    Science.gov (United States)

    Cung, Thu'ọ'ng Chí; Geissman, John W.

    2013-09-01

    Available paleomagnetic data from rock formations of Cretaceous age from Vietnam, Indochina and South China are compiled and reviewed in the context of their tectonic importance in a common reference frame with respect to Eurasia's coeval paleopoles. Key factors that play an important role in determining the reliability of a paleomagnetic result for utilization in tectonic studies have been taken into consideration and include the absence of evidence of remagnetization, which is a feature common to many rocks in this region. Overall, the Cretaceous paleomagnetic data from the South China Block show that the present geographic position of the South China Block has been relatively stable with respect to Eurasia since the mid-Cretaceous and that the paleomagnetically detected motion of a coherent lithospheric block must be based on the representative data obtained from different specific localities across the block in order to separate more localized, smaller scale deformation from true lithosphere scale motion (translation and/or rotation) of a tectonic block. Cretaceous to early Tertiary paleomagnetic data from the Indochina-Shan Thai Block reveal complex patterns of intra-plate deformation in response to the India-Eurasia collision. Paleomagnetically detected motions from the margins of tectonic blocks are interpreted to mainly reflect displacement of upper crustal blocks due to folding and faulting processes. Rigid, lithosphere scale block rotation is not necessarily supported by the paleomagnetic data. The paleomagnetic results from areas east and south of the Red River fault system suggest that this major transcurrent fault system has had a complicated slip history through much of the Cenozoic and that it does not demarcate completely non-rotated and significantly rotated parts of the crust in this area. However, most paleomagnetic results from areas east and south of the Red River fault system at the latitude of Yunnan Province are consistent with a very modest

  20. Impacts and tectonism in Earth and moon history of the past 3800 million years

    Science.gov (United States)

    Stothers, Richard B.

    1992-01-01

    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  1. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  2. On the origin and distribution of magnolias: Tectonics, DNA and climate change

    Science.gov (United States)

    Hebda, R. J.; Irving, E.

    Extant magnolias have a classic disjunct distribution in southeast Asia and in the Americas between Canada and Brazil, and nowhere in between. Of the 17 sections (about 210 species) in two subgenera, only two, Tulipastrum and Rhytidospermum, are truly disjunct. Molecular analyses reveal that several North American species are basal forms suggesting that magnolias originated in North America, as indicated by their fossil record. We recognize four elements in their evolution. (1) Ancestral magnolias originated in the Late Cretaceous of North America in high mid-latitudes (45°-60°N) at low altitudes in a greenhouse climate. (2) During the exceptionally warm climate of the Eocene, magnolias spread eastwards, via the Disko Island and Thulean isthmuses, first to Europe, and then across Asia, still at low altitudes and high mid-latitudes. (3) With mid-Cenozoic global cooling, they shifted to lower mid-latitudes (30°-45°N), becoming extinct in Europe and southern Siberia, dividing a once continuous distribution into two, centred in eastern Asia and in North America. (4) In the late Cenozoic, as ice-house conditions developed, magnolias migrated southward from both centres into moist warm temperate upland sites in the newly uplifted mountains ranges of South and Central America, southeast Asia, and the High Archipelago, where they diversified. Thus the late Cenozoic evolution of magnolias is characterized by impoverishment of northern and diversification of southern species, the latter being driven by a combination of high relief and climate oscillations, and neither of the present centers of diversity is the center of origin. Disjunction at the generic level and within section Tulipastrum likely occurred as part of the general mid-Cenozoic southward displacement assisted by the development of north-south water barriers, especially the Turgai Strait across western Siberia. Disjunction in section Rhytidospermum could be Neogene.

  3. Cenozoic basin thermal history reconstruction and petroleum systems in the eastern Colombian Andes

    Science.gov (United States)

    Parra, Mauricio; Mora, Andres; Ketcham, Richard A.; Stockli, Daniel F.; Almendral, Ariel

    2017-04-01

    Late Mesozoic-Cenozoic retro-arc foreland basins along the eastern margin of the Andes in South America host the world's best detrital record for the study of subduction orogenesis. There, the world's most prolific petroleum system occur in the northernmost of these foreland basin systems, in Ecuador, Colombia and Venezuela, yet over 90% of the discovered hydrocarbons there occur in one single province in norteastern Venezuela. A successful industry-academy collaboration applied a multidisciplinary approach to the study of the north Andes with the aim of investigating both, the driving mechanisms of orogenesis, and its impact on hydrocarbon accumulation in eastern Colombia. The Eastern Cordillera is an inversion orogen located at the leading edge of the northern Andes. Syn-rift subsidence favored the accumulation of km-thick organic matter rich shales in a back-arc basin in the early Cretaceous. Subsequent late Cretaceous thermal subsidence prompted the accumulation of shallow marine sandstones and shales, the latter including the Turonian-Cenomanian main hydrocarbon source-rock. Early Andean uplift since the Paleocene led to development of a flexural basin, filled with mainly non-marine strata. We have studied the Meso-Cenozoic thermal evolution of these basins through modeling of a large thermochronometric database including hundreds of apatite and zircon fission-track and (U-Th)/He data, as well as paleothermometric information based on vitrinite reflectance and present-day temperatures measured in boreholes. The detrital record of Andean construction was also investigated through detrital zircon U-Pb geochronometry in outcrop and borehole samples. A comprehensive burial/exhumation history has been accomplished through three main modeling strategies. First, one-dimensional subsidence was used to invert the pre-extensional lithospheric thicknesses, the magnitude of stretching, and the resulting heat flow associated to extension. The amount of eroded section and

  4. Late Cambrian - Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources, deposition settings, and tectonic implications

    Science.gov (United States)

    Kruk, Nikolai N.; Kuibida, Yana V.; Shokalsky, Sergey P.; Kiselev, Vladimir I.; Gusev, Nikolay I.

    2018-06-01

    The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39-73) and ICV (0.63-1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8-0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510-490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from

  5. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  6. Cenozoic stratigraphy and structure of the Chesapeake Bay region

    Science.gov (United States)

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen

    2015-01-01

    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace

  7. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    Nelson, C.S.; Cooke, P.J.

    2001-01-01

    subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO. (author). 104 refs., 9 figs., 3 tabs

  8. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone

    Science.gov (United States)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence

  9. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective

    Science.gov (United States)

    Stockli, D. F.

    2017-12-01

    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in

  10. A Cenozoic record of the equatorial Pacific carbonate compensation depth.

    Science.gov (United States)

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E

    2012-08-30

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

  11. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume.

    Science.gov (United States)

    Maslin, Mark A; Christensen, Beth

    2007-11-01

    The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa

  12. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    Science.gov (United States)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  13. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    Science.gov (United States)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  14. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    ))), obtained for the Late Oligocene (∼23 Ma) to Late Miocene (∼9 Ma) magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (∼6 Ma) volcanic rocks present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter part of the Cenozoic.

  15. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics

    Science.gov (United States)

    Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio

    2011-03-01

    Detailed field mapping of a Middle Triassic carbonate buildup, the Latemar in the western Dolomites, northern Italy, has been carried out. The Latemar is an isolated carbonate buildup that nucleates on a fault-bounded structural high (horst) cut into the underlying late Anisian carbonate bank of the Contrin Fm. This study demonstrates that extensional synsedimentary tectonics is the main factor controlling its geometry and provides an age for this tectonic phase. In an early phase, slopes were mostly composed of well bedded, clinostratified grainstones and rudstones. In a later stage, the deposition of grainstones was accompanied by the emplacement of clinostratified megabreccias. The upper portion of slopes is a microbial boundstone with abundant Tubiphytes and patches or lenses of grainstone. Boundstones may occasionally expand into the platform interior and downward to the base of the slope. The depositional profile was that of a mounded platform. The buildup is dissected by a dense framework of high angle fractures and faults, and by magmatic and sedimentary dikes, exhibiting two principal directions trending NNW-SSE and ENE-WSW. Faults trending WNW-ESE were also observed. Magmatic dikes are related to the emplacement of the nearby Predazzo intrusion and are thus upper Ladinian. Kinematic indicators of strike-slip activity were observed on fault planes trending NNE-SSW and NNW-SSE, that can be attributed to Cenozoic Alpine tectonics. Faults, magmatic dikes and sedimentary dikes show systematic cross-cutting relationships, with strike-slip faults cutting magmatic dikes, and magmatic dikes cutting sedimentary (neptunian) dikes. ENE-WSW and WNW-ESE faults are cut by all other structures, and record the oldest tectonic activity in the region. Structural analysis attributes this tectonic phase to an extensional stress field, with a direction of maximum extension oriented ca. N-S. Several lines of evidence, including sealed faults and growth wedge geometries allow us

  16. Mesozoic to Cenozoic magmatic history of the Pamir

    Science.gov (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  17. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    Science.gov (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  18. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    NARCIS (Netherlands)

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.|info:eu-repo/dai/nl/304848018; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai–Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we

  19. River history and tectonics.

    Science.gov (United States)

    Vita-Finzi, C

    2012-05-13

    The analysis of crustal deformation by tectonic processes has gained much from the clues offered by drainage geometry and river behaviour, while the interpretation of channel patterns and sequences benefits from information on Earth movements before or during their development. The interplay between the two strands operates at many scales: themes which have already benefited from it include the possible role of mantle plumes in the breakup of Gondwana, the Cenozoic development of drainage systems in Africa and Australia, Himalayan uplift in response to erosion, alternating episodes of uplift and subsidence in the Mississippi delta, buckling of the Indian lithospheric plate, and changes in stream pattern and sinuosity along individual alluvial channels subject to localized deformation. Developments in remote sensing, isotopic dating and numerical modelling are starting to yield quantitative analyses of such effects, to the benefit of geodymamics as well as fluvial hydrology. This journal is © 2012 The Royal Society

  20. Vertical displacement during late-collisional escape tectonics (Brasiliano Orogeny) in the Ribeira Belt, São Paulo State, Brazil

    Science.gov (United States)

    Hackspacher, P. C.; Godoy, A. M.

    1999-07-01

    During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the São Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics ( ca 600 Ma). In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and São Roque Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The São Roque Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels.

  1. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints

    Science.gov (United States)

    Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua

    2018-01-01

    The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."

  2. Cenozoic pulsed compression of Da'an-Dedu Fault Zone in Songliao Basin (NE China) and its implications for earthquake potential: Evidence from seismic data

    Science.gov (United States)

    Yu, Zhongyuan; Zhang, Peizhen; Min, Wei; Wei, Qinghai; Zhao, Bin

    2018-01-01

    The Da'an-Dedu Fault Zone (DDFZ) is a major tectonic feature cutting through the Songliao Basin from south to north in NE China. Pulsed compression deformation of DDFZ during the Cenozoic implies a complex geodynamic process, and the latest stage of which occurred in the Quaternary directly influences the present seismicity of the interior basin. Although most of the evidence for Quaternary deformation about the Songliao Basin in the past decades was concentrated in marginal faults, all five earthquake swarms with magnitudes over 5.0 along the buried DDFZ with no surface expression during the past 30 years suggest it is a main seismogenic structure with seismic potential, which should deserve more attention of geologists. However, limited by the coverage of the Quaternary sedimentary and absence of strong historic and instrumental earthquakes records (M > 7), the geometric pattern, Quaternary activity and seismic potential of the DDFZ remain poorly understood. Thus, unlike previous geophysical studies focused on crust/mantle velocity structure across the fault and the aim of exploring possible mineral resources in the basin, in this study we have integrated a variety of the latest seismic data and drilling holes from petroleum explorations and shallow-depth seismic reflection profiles, to recognize the Cenozoic pulsed compression deformation of the DDFZ, and to discuss its implication for earthquake potential. The results show that at least four stages of compression deformation have occurred along the DDFZ in the Cenozoic: 65 Ma, 23 Ma, 5.3 Ma, and 1.8 Ma, respectively, although the geodynamic process behind which still in dispute. The results also imply that the tectonic style of the DDFZ fits well with the occurrence of modern seismic swarms. Moderate earthquake potential (M ≤ 7.0) is suggested along the DDFZ.

  3. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean

    Science.gov (United States)

    Silva-Tamayo, J. C.; Lara, M. E.; Nana Yobo, L.; Erdal, Y. D.; Sanchez, J.; Zapata-Ramirez, P. A.

    2017-10-01

    The evolution of the Cenozoic Circum-Caribbean shallow marine carbonate factories and ecosystems has been for long attributed to major global climatic and environmental changes. Although temporal variations in the Cenozoic shallow marine carbonate factories in this region seem to follow global trends, the potential effects of regional processes, such tectonic activity and local environmental change, on the evolution of the shallow marine carbonate factories are not well established. Here we present detailed sedimentologic and stratigraphic information from Middle Oligocene - Middle Miocene (Chattian-Burdigalian) shallow marine carbonate successions of the Siamana Formation in the Cocinetas sub-basin, Alta Guajira Basin, Guajira Peninsula, northern Colombia. We document the potential effects of regional tectonics and local environmental deterioration on the evolution of the Oligocene-Miocene tropical shallow marine carbonate factories along the SE Circum-Caribbean. Our results show that mixed heterozoan-photozoan biotic associations dominated the shallow marine carbonate factories during the Chattian, while purely photozoan biotic associations constituted the primary carbonate factory during the Aquitanian-Burdigalian transition. The Chattian mixed heterozoan/photozoan biotic association is associated with the development of mixed carbonate/siliciclastic shelves along which detached patchy reef areas occur. The onset of the Aquitanian-Burdigalian purely photozoan biotic associations parallels the increase in coral diversity as well as the occurence of rimmed/detached carbonate platforms in the northern part of the basin. The development of the rimmed/detached platforms coincides with a time of increased basin subsidence and increased silicilcastic input along the southernmost part of the basin. A significant change in the carbonate factory occurs in the Late Burdigalian, when purely heterozoan (rodalgal) biotic associations constituted the main shallow marine

  4. Seafloor Tectonic Fault Fabric and the Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot Twins in the South Atlantic

    Science.gov (United States)

    Sager, W. W.; Engfer, D.; Thoram, S.; Koppers, A. A. P.; Class, C.

    2015-12-01

    Walvis Ridge (WR) and Rio Grande Rise (RGR) are Cretaceous-Cenozoic large igneous provinces (LIPs) formed by the Tristan-Gough hot spot interacting with the Mid-Atlantic Ridge (MAR). Although hot spot-ridge interaction has long been considered a primary factor controlling WR-RGR morphology, details are fuzzy owing to sparse geophysical data. We examined tectonic fabric revealed in satellite altimetry-derived gravity data to infer details about RGR-WR evolution. Plate tectonic reconstructions indicate that the main RGR plateau and large N-S plateau in the eastern WR erupted at the same point at ~90 Ma. Over the next ~8 Myr, these conjunct LIPs formed a "V" shape with a basin in between. Curved fracture zones within the basin imply the two LIPs formed around a microplate. The prominent rift in the middle of RGR formed nearly perpendicular to the RGR-WR intersection, suggesting an extensional microplate boundary. Hot spot eruptions continued at the MAR, emplacing the eastern WR and two main RGR plateaus until ~60 Ma. During this period, the N-S trending Eastern Rio Grande Rise (ERGR) was erupted along the MAR. Both the ERGR and WR formed bathymetric lineaments parallel to seafloor fault fabric and were likely connected. This resulted in WR seamounts with a "tadpole" shape, the head being small to medium seamounts on the WR track and the tails being low, spreading-fabric-parallel ridges extending up to ~150 km northward. Similar, small seamounts are found in the contemporaneous ERGR. Another critical observation is that the WR-RGR formed at a large crustal discontinuity (~700 km at anomaly C33, ~84 Ma) at one or more fracture zone offsets. By late Cenozoic time (anomaly C5, ~10 Ma), the offset was reduced by half while several new fracture zones formed at the junction between RGR and WR. This implies a connection between ridge reorganization and RGR-WR volcanism that may have resulted from the fracture zones becoming oblique to the spreading direction as Euler poles

  5. The Opening of the Arctic-Atlantic Gateway: Tectonic, Oceanographic and Climatic Dynamics - an IODP Initiative

    Science.gov (United States)

    Geissler, Wolfram; Knies, Jochen

    2016-04-01

    The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth's past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG's consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG's complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N in the Boreas Basin and along the East Greenland continental margin are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: (1) the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and (2) the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic. Getting a continuous record of the

  6. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    Directory of Open Access Journals (Sweden)

    David F Wright

    Full Text Available Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  7. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    Science.gov (United States)

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  8. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan

    2018-01-01

    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  9. Reconstructing the tectonic history of Fennoscandia from its margins: The past 100 million years

    International Nuclear Information System (INIS)

    Muir Wood, R.

    1995-12-01

    In the absence of onland late Mesozoic and Cenozoic geological formations the tectonic history of the Baltic Shield over the past 100 million years can most readily be reconstructed from the thick sedimentary basins that surround Fennoscandia on three sides. Tectonic activity around Fennoscandia through this period has been diverse but can be divided into four main periods: a. pre North Atlantic spreading ridge (100-60 Ma) when transpressional deformation on the southern margins of Fennoscandia and transtensional activity to the west was associated with a NNE-SSW maximum compressive stress direction; b. the creation of the spreading ridge (60-45 Ma) when there was rifting along the western margin; c. the re-arrangement of spreading axes (45-25 Ma) when there was a radial compression around Fennoscandia, and d. the re-emergence of the Iceland hot-spot (25-0 Ma) when the stress-field has come to accord with ridge or plume 'push'. Since 60 Ma the Alpine plate boundary has had little influence on Fennoscandia. The highest levels of deformation on the margins of Fennoscandia were achieved around 85 Ma, 60-55 Ma, with strain-rates around 10 -9 /year. Within the Baltic Shield long term strain rates have been around 10 -1 1/year, with little evidence for evidence for significant deformations passing into the shield from the margins. Fennoscandian Border Zone activity, which was prominent from 90-60 Ma, was largely abandoned following the creation of the Norwegian Sea spreading ridge, and with the exception of the Lofoten margin, there is subsequently very little evidence for deformation passing into Fennoscandia. Renewal of modest compressional deformation in the Voering Basin suggest that the 'Current Tectonic Regime' is of Quaternary age although the orientation of the major stress axis has remained approximately consistent since around 10 Ma. The past pattern of changes suggest that in the geological near-future variations are to be anticipated in the magnitude rather

  10. Reconstructing the tectonic history of Fennoscandia from its margins: The past 100 million years

    Energy Technology Data Exchange (ETDEWEB)

    Muir Wood, R [EQE International Ltd (United Kingdom)

    1995-12-01

    In the absence of onland late Mesozoic and Cenozoic geological formations the tectonic history of the Baltic Shield over the past 100 million years can be reconstructed from the thick sedimentary basins that surround Fennoscandia on three sides. Tectonic activity around Fennoscandia through this period has been diverse but can be divided into four main periods: a. pre North Atlantic spreading ridge (100-60 Ma) when transpressional deformation on the southern margins of Fennoscandia and transtensional activity to the west was associated with a NNE-SSW maximum compressive stress direction; b. the creation of the spreading ridge (60-45 Ma) when there was rifting along the western margin; c. the re-arrangement of spreading axes (45-25 Ma) when there was a radial compression around Fennoscandia, and d. the re-emergence of the Iceland hot-spot (25-0 Ma) when the stress-field has come to accord with ridge or plume `push`. Since 60 Ma the Alpine plate boundary has had little influence on Fennoscandia. The highest levels of deformation on the margins of Fennoscandia were achieved around 85 Ma, 60-55 Ma, with strain-rates around 10{sup -9}/year. Within the Baltic Shield long term strain rates have been around 10{sup -1}1/year, with little evidence for significant deformations passing into the shield from the margins. Fennoscandian Border Zone activity, which was prominent from 90-60 Ma, was largely abandoned following the creation of the Norwegian Sea spreading ridge, and with the exception of the Lofoten margin, there is subsequently little evidence for deformation passing into Fennoscandia. Renewal of modest compressional deformation in the Voering Basin suggest that the `Current Tectonic Regime` is of Quaternary age although the orientation of the major stress axis has remained consistent since around 10 Ma. The past pattern of changes suggest that in the geological near-future variations are to be anticipated in the magnitude rather than the orientation of stresses.

  11. Cenozoic mountain building on the northeastern Tibetan Plateau

    Science.gov (United States)

    Lease, Richard O.

    2014-01-01

    Northeastern Tibetan Plateau growth illuminates the kinematics, geodynamics, and climatic consequences of large-scale orogenesis, yet only recently have data become available to outline the spatiotemporal pattern and rates of this growth. I review the tectonic history of range growth across the plateau margin north of the Kunlun fault (35°–40°N) and east of the Qaidam basin (98°–107°E), synthesizing records from fault-bounded mountain ranges and adjacent sedimentary basins. Deformation began in Eocene time shortly after India-Asia collision, but the northeastern orogen boundary has largely remained stationary since this time. Widespread middle Miocene–Holocene range growth is portrayed by accelerated deformation, uplift, erosion, and deposition across northeastern Tibet. The extent of deformation, however, only expanded ~150 km outward to the north and east and ~150 km laterally to the west. A middle Miocene reorganization of deformation characterized by shortening at various orientations heralds the onset of the modern kinematic regime where shortening is coupled to strike slip. This regime is responsible for the majority of Cenozoic crustal shortening and thickening and the development of the northeastern Tibetan Plateau.

  12. Geomorfologické projevy mladě kenozoické tektoniky v severozápadní části Milešovského středohoří

    Czech Academy of Sciences Publication Activity Database

    Dužár, J.; Raška, P.; Cajz, Vladimír

    2012-01-01

    Roč. 2011, podzim (2012), s. 75-81 ISSN 0514-8057 R&D Projects: GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30130516 Keywords : České středohoří volcanic range * faults * Late Cenozoic tectonic activity * geomorphometry Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2011/zpravy_2011-17.pdf

  13. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    Science.gov (United States)

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural

  14. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    Science.gov (United States)

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  15. Toward a new tectonic model for the Late Proterozoic Araçuaí (SE Brazil)-West Congolian (SW Africa) Belt

    Science.gov (United States)

    Pedrosa-Soares, A. C.; Noce, C. M.; Vidal, Ph; Monteiro, R. L. B. P.; Leonardos, O. H.

    1992-08-01

    The Araçuaí Belt is a Late Proterozoic (Brasiliano Cycle) geotectonic unit which was developed along the southeastern margin of the São Francisco Craton (SE Brazil) and was formerly considered as being an ensialic orogen. It is correlated with the Pan-African West Congolian Belt (SW Africa) in many reports. In the western domain of the belt, the Macaúbas Group—the most important supracrustal sequence related to the evolution of the Araçuaí Belt —comprises the Terra Branca and Carbonita Formations, which consist of littoral glacial sediments to shelf turbidites. These formations grade upward and eastward to the Salinas Formation, consisting of distal turbidites related to submarine fans, pelagic sediments, and a rock association (the Ribeirão da Folha Facies) typical of an ocean-floor environment. Banded iron formations, metacherts, diopsidites, massive sulfides, graphite schists, hyperaluminous schists, and ortho-amphibolites, intercalated with quartz-mica schists and impure quartzites, characterize the most distinctive and restricted volcano-sedimentary facies yet found within the Salinas Formation. Ultramafic slabs were tectonically emplaced within the Ribeirão da Folha Facies. Eight whole rock samples of meta-ultramafic rocks and ortho-amphibolites yielded a SmNd isochronic age of 793 ± 90 Ma ( ɛNd(T) = +4.1 ± 0.6. MSWD = 1.76 ). The structures of the northern Araçuaí Belt are marked by a doen-dip stretching lineation (western domain) related to frontal thrusts which controlled tectonic transport from east to west; stretching lineation rakes decrease in the eastern tectonic domain, indicating dominant oblique to transcurrent motion; the northern arch of the belt is characterized by major high-dip transcurrent shear zones. Our tectonic model starts with marked fracturing, followed by rifting that took place in the São Francisco-Congo Craton around 1000 ± 100 Ma (ages of basic intrusions and alkaline anorogenic granites). A sinistral transfer

  16. Lithospheric controls on crustal reactivation and intraplate mountain building in the Gobi Corridor, Central Asia

    Science.gov (United States)

    Cunningham, D.

    2017-12-01

    This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic

  17. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  18. Discovery of Latest Cretaceous OIB-type alkaline gabbros in the Eastern Pontides Orogenic Belt, NE Turkey: Evidence for tectonic emplacement of seamounts

    Science.gov (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Chatterjee, Nilanjan; Liu, Ze; Yılmaz-Değerli, Sedanur

    2018-06-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, a mountain chain extending parallel to the southeastern margin of the Black Sea, has been controversial for the last forty years. Here we present data for a newly discovered alkaline gabbro body and its surrounding basaltic rocks in the northern part of the Eastern Pontides Orogenic Belt. We also provide a comprehensive assessment of the Late Mesozoic-Cenozoic geodynamic evolution of the Eastern Mediterranean region. The gabbroic body is bounded by reverse faults along its northern and southern borders and is surrounded by vesicular, pillow-fragment breccias and pillow basalts. Mineral compositions suggest that crystallization of the gabbros began at about 1170 °C, and the lowest preserved crystallization T is near 1000 °C. Estimated pressure at the beginning of crystallization is 5.7-7.4 kb. The 40Ar/39Ar dating of kaersutite and plagioclase and Usbnd Pb dating of titanite indicated that the Hayrat gabbro crystallized at 67 Ma (Late Maastrichtian). Whole rock major-trace-rare earth element and Sr-Nd-Pb isotope data indicate that the gabbros and basalts have different origins. The gabbros are alkaline and exhibit the geochemical features of OIB, whereas the basalts are tholeiitic and reveal depletions of HFSE that are similar to those of arc rocks. The gabbros are strongly fractionated, and derive from an enriched, lithospheric mantle source, with partial melting occurring in a garnet-stable environment. The basalts are less fractionated, and probably derive from a shallower source in which spinel peridotite was the predominant lithology. Considering all new and old geological, geochemical, geochronological and geophysical data from the Black Sea Basin and the Eastern Pontides-Lesser Caucasus-Alborz Orogenic Belt, we suggest that the alkaline Hayrat gabbro formed in an oceanic intraplate setting, and was accreted to the forearc region of the Eastern Pontides Orogenic Belt during

  19. Guidebook to Rio Grande rift in New Mexico

    Science.gov (United States)

    Hawley, J.W.

    1978-01-01

    Discusses the details of geologic features along the rift zone. Included are short papers on topics relative to the overall region. These papers and the road logs are of special interest to any one pursuing further study of the rift. This book is a comprehensive guide to the middle and late Cenozoic geology of the Rio Grande region of Colorado and New Mexico. Though initially used on field trips for the International Symposium on Tectonics and Magmatism of the Rio Grande rift, the guidebook will be useful to anyone interested in the Cenozoic history of the 600-mi-long area extending from central Colorado to El Paso, Texas.

  20. Balanced Cross Section for Restoration of Tectonic Evolution in the Southwest Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    Wu Shiguo; Ni Xianglong; Guo Junhua

    2007-01-01

    On the basis of the multi-channel seismic data and the other data, using 2DMove software,the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-arc spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.

  1. How We Got to the Northern Hemisphere Ice Ages: Late Miocene Global Cooling and Plate Tectonic CO2 Forcing

    Science.gov (United States)

    Herbert, T.; Dalton, C. A.; Carchedi, C.

    2017-12-01

    The evolution of Earth's climate between "refrigeration" of East Antarctica and the onset of cyclic Northern Hemisphere glaciation spanned more than 11 Myr. In the latest Miocene (Messinian) time, approximately half way on this journey, changes on land, ranging from the expansion of arid zones to major floral and faunal ecosystem shifts, accelerated. Recent compilations of marine surface temperatures reveal that global cooling from the Miocene Optimum (14-16Ma) also accelerated in late Miocene (7-5.35 Ma) time to reach temperatures not much above Holocene conditions. Both hemispheres cooled in parallel, with the changes amplified at higher latitudes in comparison to the tropics. Despite the strong circumstantial case for CO2 decline as the dominant cause of late Miocene climatic and evolutionary change, proxy indicators of CO2concentrations paint an equivocal picture of greenhouse forcing. Here we provide evidence that global sea floor spreading (SFS) rates decelerated at exactly the times of major climatic cooling, linking a decline in tectonic degassing (at both subduction zones and mid-ocean ridges) to fundamental shifts in the global carbon cycle. Our work utilizes newly available global compilations of seafloor fabric and marine magnetic anomalies provided by the NSF-funded Global Seafloor Fabric and Magnetic Lineation Data Base Project. Previous global compilations of SFS typically binned estimates over 10 Myr increments, losing critical resolution on the timescale of late Neogene climate changes. We further improve the signal:noise of SFS estimates by incorporating recent advances in the astronomical calibration of the Miocene geomagnetic polarity timescale. We use two approaches to compile spreading rate estimates over the past 20 Myr at each spreading system: optimized finite rotation calculations, and averages of sea floor-spreading derived from the distances of magnetic lineations along flow lines on the sea floor. Weighted by ridge length, we find an 25

  2. The Mid-Hungarian line: a zone of repeated tectonic inversions

    Science.gov (United States)

    Csontos, László; Nagymarosy, András

    1998-11-01

    The Mid-Hungarian line is a major tectonic feature of the Intra-Carpathian area separating two terranes of different origin and tectonic structure. Although this tectonic line was known from borehole records, it has not been described in seismic sections. The study presents interpreted seismic lines crossing the supposed trace of the Mid-Hungarian line. These seismic sections show north-dipping normal faults and thrust faults as well as cross-cutting young strike-slip faults. A complex tectonic history is deduced, including intra-Oligocene-Early Miocene thrusting, Middle Miocene extension, local Late Miocene inversion and Late Miocene-Pliocene normal faulting and left-lateral wrenching. In the light of our seismic study we think that the best candidate for the Mid-Hungarian line is a north-dipping detachment fault beneath large masses of Neogene volcanics. The auxiliary structures to the north seen on seismic sections suggest that it moved as a south-vergent thrust fault during the Palaeogene-Early Miocene which later was reactivated as a set of normal faults. The northern Alcapa unit overrode the southern Tisza-Dacia unit along this fault zone. The same relative positions are observed in the northern termination of the line. Other structures along the supposed trace of the line are north-dipping normal- or strike-slip faults which frequently were reactivated as smaller thrust faults during the late Neogene. Palaeogene-Early Miocene thrusting along the line might be the result of the opposite Tertiary rotations of the two major units, as suggested by palaeomagnetic measurements and earlier models.

  3. Late holocene tectonic damming up in eastern Sierras Pampeanas, Cordoba, Argentina

    International Nuclear Information System (INIS)

    Massabie, A.C.; Limarino, C.O; Panarello, H.O.; Cordero, R.R; Bertels, A

    2001-01-01

    Neogene deformation due to Andean Orogeny has caused block faulting in the Sierras Pampeanas area, fracturing a Precambrian Paleozoic crystalline basement. These dislocations produced Late Tertiary to Quaternary landscape changes which are mainly expressed in clear and good preserved fluvial path modifications in sedimentary cover. The study of alterations of fluvial channel pattern associated with Quaternary tectonics has special neotectonic value in this central area of Argentina as a basic method to gain more precise temporal restrain of recent movements. Attention to this specific neotectonic field parallels general geologic knowledge evolution in Sierras Pampeanas. But in spite that nowadays better stratigraphic controls are available based on morphostructural, sedimentologic and paleontologic constraints (Massabie, 1999), still remain temporal uncertainties. Major difficulties for a more precise dating of neotectonic in the area of Sierras Pampeanas is a direct consequence of the random distribution of Neogene continental sediments located in different isolated basins which are mainly lacking of good bioestratigraphic control for comprehensive correlation. First steps in the study of Quaternary faulting dating in Sierras Pampeanas starts with the pioneer paper of Schlagintweit (1954) which reported a Quaternary faulting backed by stratigraphic and morphostructural considerations. Afterthen other papers about Quaternary faulting were presented based on similar geologic constraints (Lencinas y Timonieri, 1968; Massabie, 1976, 1987; Massabie and Szlafsztein, 1991; Kraemer et al., 1993; Massabie et al.,1998). In the way up to manage better adjust of Quaternary faulting dating in Sierras Pampeanas, there is a first work for Eastern Sierras Pampeanas presenting 14 C dating (Costa and Vita-Finzi, 1996). The authors postulated a late step of faulting younger than 1,300 for Comechingones fault with radiocarbon analysis based on organic matter in footwall colluvium

  4. Petrology of the Porriño late-Variscan pluton from NW Iberia. A model for post-tectonic plutons in collisional settings

    Energy Technology Data Exchange (ETDEWEB)

    González Menéndez, L.; Gallastegui, G.; Cuesta, A.; Montero, P.; Rubio-Ordoñez, A.; Molina, J.F.; Bea, F.

    2017-07-01

    The Variscan orogen of NW Iberia contains abundant syn- and post-tectonic granitoids. The post-tectonic granitoids are metaluminous to slightly peraluminous, I-type granites, monzogranites ± granodiorites ± tonalites. The Porriño pluton studied here is a representative example. It consists of two units: i) a pink-red, peraluminous, biotite granite and ii) a gray, metaluminous to peraluminous, biotite (± amphibole ± titanite) monzogranite, including maficintermediate enclaves. SHRIMP U-Pb dating yielded 290-295Ma ages for all the units. The mineralogy and geochemistry show that the pink-red granite has features of I- and A-type granites, whereas the gray monzogranite and enclaves are I-types. Sr isotopes show scattered values for the pink-red granite (87Sr/86Sr295Ma ≈ 0.702-0.710) and uniform values for the gray monzogranite and enclaves (87Sr/86Sr295Ma≈ 0.705-0.706). Geochemical results indicate a peritectic entrainment of clinopyroxene + orthopyroxene ± Ca-plagioclase ± ilmenite ± garnet, and minor accessory phases (± zircon ± titanite ± apatite) into a melt similar to the leucocratic gray monzogranite. A mafic-intermediate source is proposed for the gray monzogranite and its enclaves. Restitic protoliths generated granitic melts with A-type features such as the pink-red granite. The I-type nature of many post-tectonic granitoids could be explained by the previous extraction of S-type syn-tectonic granites that left restites and less fertile rocks. Late orogenic new melting affected the previously unmelted and more mafic lithologies of the lower-middle crust, and gave rise to I-type granitoids. Repeated melting events affecting such lithologies and previous restites could have generated granitic melts with A-type features.

  5. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania)

    Science.gov (United States)

    Kounov, Alexandre; Schmid, Stefan M.

    2013-01-01

    New zircon and apatite fission-track (FT) data, including apatite thermal modelling, are combined with an extensive literature survey and reconnaissance-type structural fieldwork in the Eastern Apuseni Mountains. This leads to a better understanding of the complex structural and thermal history of a key area at the boundary between two megatectonic units in the Balkan peninsula, namely the Tisza and Dacia Mega-Units. Following Late Jurassic obduction of the Transylvanian ophiolites onto a part of the Dacia Mega-Unit, that is, the Biharia nappe system, both units were buried to a minimum of 8 km during late Early Cretaceous times when these units were underthrust below the Tisza Mega-Unit consisting of the present-day Codru and Bihor nappe systems. Tisza formed the upper plate during Early Cretaceous (`Austrian') east-facing orogeny. Turonian to Campanian zircon FT cooling ages (95-71 Ma) from the Bihor and Codru nappe systems and the Biharia and Baia de Arieş nappes (at present the structurally lowest part of the Dacia Mega-Unit) record exhumation that immediately followed a second Cretaceous-age (i.e. Turonian) orogenic event. Thrusting during this overprinting event was NW-facing and led to the overall geometry of the present-day nappe stack in the Apuseni Mountains. Zircon FT ages, combined with thermal modelling of the apatite FT data, show relatively rapid post-tectonic cooling induced by a third shortening pulse during the latest Cretaceous (`Laramian' phase), followed by slower cooling across the 120°-60 °C temperature interval during latest Cretaceous to earliest Paleogene times (75-60 Ma). Cenozoic-age slow cooling (60-40 Ma) was probably related to erosional denudation postdating `Laramian' large-scale updoming.

  6. The gap in the Arctic Cenozoic Record: Expect the Unexpected

    Science.gov (United States)

    Sangiorgi, F.; Brumsack, H.; Schouten, S.; Brinkhuis, H.; Kaminski, M. A.; Reichart, G.; Stickley, C. E.; Willard, D. A.; Sinninghe Damste', J. S.

    2006-12-01

    Integrated Ocean Drilling Program Expedition 302, a.k.a. the Arctic Coring Expedition (ACEX), drilled more than 400 meters below the seafloor at the central Lomonosov Ridge, ca 250 km from the modern North Pole in water depths of about 1300 m. The partially recovered sediments provide a unique record of the geological and paleoceanographical evolution of the Arctic Ocean during the Cenozoic. The record indicates a transition from a "greenhouse world", characterized by a relative shallow marine setting, with organic-rich sediment and frequent brackish or even fresh surface waters during the latest Palaeocene and the early Eocene, to an "icehouse world" of hemipelagic sedimentation affected by the occurrence of sea ice from the middle Miocene to present. Much to our surprise, these two states are separated by a major hiatus, not obvious from the seismic record and the lithology of the cores, spanning at least 25 Ma as derived from dinocyst and benthic foraminifer stratigraphies. These testify that deposits of probable late early Miocene age directly overlie early middle Eocene sediments. To unravel the nature of the hiatus, we performed a multiproxy micropaleontological and geochemical study on the surrounding record, i.e. lithological units 1/6, 1/5 and 1/4, where the sediment changes from homogeneous dark into a cm-scaled alternation ("zebra-like") black and grey bands to light grey, blue and reddish-brown. Paleoenvironmental reconstructions based on organic-walled dinoflagellate cysts, pollen and spores, benthic foraminifera, inorganic and organic geochemistry and siliceous remains reveal conspicuous changes, suggesting a transition from brackish-freshwater to shallow-lagoonal and to open marine environments. These environmental turnovers, coupled with the occurrence of such a large hiatus, cannot be due to climatic shifts alone, but suggest that major tectonic rearrangements likely changed the depositional setting. On-going organic geochemical analysis will be

  7. Tectonic evolution of the continental crust of South America and its importance in the characterization of uraniferous provinces

    International Nuclear Information System (INIS)

    Cordani, U.G.

    1981-01-01

    The tectonic evolution of the South American Continent and its relationship with uranium mineralization is discussed. During the Phanerozoic at least three phases are identified as related to the Andean chain, namely, in the lower Palaeozoic, in the upper Palaeozoic and in the Meso-Cenozoic. Recent systematic age dating of the Precambrian indicates the period of 450-700 million years (m.y.) (Brazilian Cycle) as one of the most important tectonic events in South America. Another age-dating cluster corresponds to the 1700-2100 m.y. interval (Transamazonic Cycle). An even older event within the Archean is identified with datings older than 2600 m.y. in Venezuela (Estado Bolivar), Surinam and Brazil (Bahia, Santa Catarina, Goias). All the Brazilian uranium deposits related to the Brazilian platform, such as Amorinopolis, are located on the eastern border of the platform where the Brazilian tectonic cycle is dominant. The uranium source rocks are of alkaline granitic nature. Other deposits (Itataia, Campos Belos) are associated with polycyclic rocks belonging to the basement of the Brazilian Cycle but were affected by the 450-700 m.y. tectonic event; these amphibolitic facies rocks show alkaline metamorphism and magmatization processes which indicate large geochemical mobility during which important uranium mobilization has taken place. Finally, the Pocos de Caldas deposit is excellent evidence of the important relationship of tectonic reactivations and uranium enrichments within the Brazilian platform. (author)

  8. Tectonic framework of the Hanoe Bay area, southern Baltic Sea

    International Nuclear Information System (INIS)

    Wannaes, K.O.; Floden, T.

    1994-06-01

    The tectonic framework and the general geologic development of the Hanoe Bay, from the Scanian coast in the west to south of Oeland in the east, has been investigated by means of reflection seismic methods. The Hanoe Bay is in this paper subdivided into four areas of different geologic settings. These are: 1) The Hanoe Bay slope, which forms a southward dipping continuation of the rigid Blekinge coastal plain. 2) The eastward dipping Kalmarsund Slope, which southwards from Oeland forms the western part of the Paleozoic Baltic Syneclise. 3) The Mesozoic Hanoe Bay Halfgraben, which forms the central and southern parts of the Hanoe Bay. The ongoing subsidence of the Halfgraben is estimated to be in the order of 20-60 m during the Quaternary. 4) The Yoldia Structural Element, which forms a deformed, tilted and possibly rotated block of Paleozoic bedrock located east of the Hanoe Bay Halfgraben. Two tectonic phases dominate the post-Paleozoic development of the Hanoe Bay, these are: 1) The Early Kimmerian phase, which initiated subsidence and reactivated older faults. 2) The Late Cretaceous phase, which is the main subsidence phase of the Hanoe Bay Halfgraben. The tectonic fault pattern of the Hanoe Bay is dominated by three directions, i.e. NW-SE, NE-SW and WNW-ESE. The two main tectonic elements of the area are the Kullen-Christiansoe Ridge System (NW-SE) and the Bornholm Gat Tectonic Zone (NE-SW). Sinistral strike-slip movements in order of 2-3 km are interpreted to have occurred along the Bornholm Gat Tectonic Zone during the late Cretaceous. 20 refs, 19 figs

  9. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    Science.gov (United States)

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (changes on mid-ocean ridges. Although our results are consistent with the general number and timing of Paleocene to middle Miocene sequences published by workers at Exxon Production Research Company, our estimates of sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and

  10. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R. [Purdue University, W. Lafayette, IN (United States). Dept. of Earth & Atmospheric Science

    2002-07-01

    Analysis of late Mesozoic and Cenozoic sedimentary basins, metamorphic rocks, and major faults in the eastern and central Alaska Range documents the progressive development of a suture zone that formed as a result of collision of an island-arc assemblage (the Wrangellia composite terrane) with the former North American continental margin. New basin-analysis, structural, and geochronologic data indicate the following stages in the development of the suture zone: (1) Deposition of 3-5 km of Upper Jurassic-Upper Cretaceous marine strata (the Kahiltna assemblage) recorded the initial collision of the island-arc assemblage with the continental margin. (2) Metamorphism of submarine-fan deposits of the Kahiltna basin, located near the leading edge of the island-arc assemblage, occurred at ca. 74 Ma, as determined from a new U-Pb zircon age for a synkinematic sill. (3) Shortening and exhumation of the suture zone peaked from 65 to 60 Ma on the basis of metamorphic and geochronologic data. (4) From 60 to 54 Ma, about 3 km of volcanic strata were deposited over deformed sedimentary strata of the Cantwell basin, and several granitic plutons (the McKinley sequence) were emplaced along the suture zone. (5) Following igneous activity, strike-slip displacement occurred from ca. 54 to 24 Ma along the Denali fault system, which had developed in the existing suture zone. (6) Regional transpressive shortening characterized the suture zone from ca. 24 Ma to the present. Regional subsidence resulted in Miocene coal seams up to 20 m thick and well-developed lacustrine deposits. Overlying the Miocene deposits are about 1.2 km of Pliocene and Holocene conglomeratic deposits. These mapping relationships provide evidence that regional shortening continues to the present in the eastern and central Alaska Range.

  11. Tectonics, topography, and river system transition in East Tibet: Insights from the sedimentary record in Taiwan

    Science.gov (United States)

    Lan, Qing; Yan, Yi; Huang, Chi-Yue; Clift, Peter D.; Li, Xuejie; Chen, Wenhuang; Zhang, Xingchang; Yu, Mengming

    2014-09-01

    The Cenozoic in East Asia is marked by major changes in tectonics, landscapes, and river systems, although the timing and nature of such changes remains disputed. We investigate the geochemistry and neodymium isotope character of Cenozoic mudstones spanning the breakup unconformity in the Western Foothills of Taiwan in order to constrain erosion and drainage development in southern China during the opening of the South China Sea. The La/Lu, Eu/Eu*, Th/Sc, Th/La, Cr/Th, and ɛNd values in these rocks show an abrupt change between ˜31 and 25 Ma. Generally the higher ɛNd values in sediments deposited prior to 31 Ma indicate erosion from Phanerozoic granitic sources exposed in coastal South China, whereas the lower ɛNd values suggest that the main sources had evolved to inland southern China by ˜25 Ma. The SHRIMP U-Pb ages of zircons from a tuff, together with biostratigraphy data constrain the breakup unconformity to be between ˜39 and 33 Ma, suggesting that the seafloor spreading in the South China Sea commenced before ˜33 Ma. This is significantly older than most of the oceanic crust preserved in the deeper part of the basin. Diachronous westward younging of the breakup unconformities and provenance changes of basins are consistent with seafloor spreading propagating from east to west. Initial spreading of the South China Sea prior to ˜33 Ma corresponds to tectonic adjustment in East Asia, including extrusion of the Indochina block and the rotation and eastward retreat of the subducting Pacific Plate.

  12. Mantle structure and tectonic history of SE Asia

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2015-09-01

    that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.

  13. Relief Evolution in Tectonically Active Mountain Ranges

    Science.gov (United States)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  14. Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications

    International Nuclear Information System (INIS)

    Bucher, G.J.

    1980-01-01

    In conjunction with the Dry Valley Drilling Project, the University of Wyoming conducted heat flow and basement radioactivity studies in the Ross Island-dry valley area of southern Victoria Land, Antarctica. This part of Antarctica is characterized by late Cenozoic alkaline basaltic volcanism and uplift. Six heat flow (q) values for the area range from 1.4 to 2.0 HFU, with a mean value of 1.7 HFU. Radioactive heat production (A) values for basement rocks from the dry valleys range from 2.2 to 4.1 HGU, with a mean value of 3.0 HGU. The combined q-A data imply that this area is a zone of high reduced heat flow, similar to the Basin and Range province in the western United States and other zones of late Cenozoic tectonof Antarctica is probably in the range of 1.2 to 1.6 HFU, which is about 50 to 100% higher than the reduced flux which characterizes stable continental areas. The results of the transient conductive models presented herein imply that the high flux in this part of Antarctica cannot be explained by the residual thermal effects of a major episode of lithospheric thinning associated with the generation of the Ferrar Dolerites. The correlation between steady conductive thermal models and the late Cenozoic, silica-undersaturated, alkaline basalts of the region is similarly obscure. For example, purely conductive steady-state temperature-depth models predict partial melting at depths of only 45 to 50 km in the mantle, whereas geochemical data for the volcanic units are consistent with the basalts being generated at depths of at least 60 to 80 km

  15. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  16. Stratigraphy, geochronology and regional tectonic setting of the Late Cretaceous (ca. 82-70 Ma) Cabullona basin, Sonora, Mexico

    Science.gov (United States)

    González-León, Carlos M.; Solari, Luigi A.; Madhavaraju, Jayagopal

    2017-12-01

    The Cabullona basin in northeastern Sonora is a continental depocenter whose origin is related to the adjacent Sierra Anibacachi uplift that bounds its tectonic eastern flank. Its exposed, mostly fluvial and lacustrine sedimentary fill, the Cabullona Group, was deposited between 81.9 ± 0.7 and 69.8 ± 0.7 Ma and its outcrops extends for 70 km from north to south. The oldest measured stratigraphic column of the Cabullona Group is the Los Atolillos column of the southern part of the basin, but its base is not exposed. A basal conglomerate in the younger El Malacate (ca. 80 Ma), Cuauhtémoc (ca. 75 Ma) and San Joaquín (ca. 70 Ma) columns onlaps deformed basement rocks. The type section in which the Cabullona Group was previously named is herein referred as the Naco section and is dated ∼73-72 Ma. The younger strata of the Cabullona Group correspond to the fluvial San Joaquín column that onlaps the eastern tectonic boundary of the basin and to the lacustrine Esqueda column. These columns are dated at ca. 70 Ma and may represent the late evolution of the Cabullona basin. Sandstone petrography and detrital zircon geochronology are used to infer provenance of sediments of the Cabullona Group. Sandstones consist of lithic arkose to feldespathic litharenite, indicating provenance from dissected to transitional volcanic arc, but samples of the El Malacate column classify as arkose and lithic arkose with possible provenance from basement uplift of Sierra Los Ajos; litharenite from the Esqueda column indicate arc provenance. Detrital zircons yielded mostly Proterozoic and Mesozoic ages with age peaks at ca. 1568, 167, 100, 80 and 73 Ma indicating possible provenance from the Precambrian basement rocks and the Jurassic continental magmatic arc that underlie the region, the Alisitos arc and La Posta plutons in Baja California, and from the Laramide magmatic arc of Sonora. The Cabullona basin developed nearly contemporaneous to the early, eastwards migrating Laramide

  17. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    Science.gov (United States)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  18. Contraints on the cenozoic position of Sundaland

    Science.gov (United States)

    Powell, C. McA.; Johnson, B. D.

    1980-03-01

    The Cenozoic ocean-floor path of the continental fragment, Greater India, is overlapped by the present western part of Malaysia and Sumatra which are now part of a coherent continental block, Sundaland. This part of Southeast Asia must consequently have lain further east during the Cenozoic. The past positions of Greater India, combined with published paleomagnetic data indicating that Sundaland has lain near the Equator since the Permian and rotated anticlockwise since the mid-Cretaceous, are used to reconstruct constraints on the relative motions of Sundaland and the Indian—Australian plate in 10 m.y. intervals. We show that the northern part of Sundaland has rotated a minimum of 550 km westward with respect to India in the last 50 m.y. (since Early Eocene) with most of the rotation occurring in the latter half of the Cenozoic. Accepting geological evidence for an even larger Cenozoic sinistral shear between Sundaland and Australia, we construct a model consistent with ocean-floor and paleomagnetic constraints in which Australia and Sundaland made their closest approach between 10 and 20 m.y. ago (Miocene). The S-shape of the Banda Arcs may have formed since mid-Miocene from an initially linear, E-W trending pair of arcs by the interaction of the large sinistral shear between Sundaland and Australia and the collision of the leading edge of Australia with these paired arcs commencing approximately 15 m.y. ago.

  19. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    Science.gov (United States)

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  20. Mid Cenozoic freshwater wetlands of the Sunda region

    Directory of Open Access Journals (Sweden)

    Robert J. Morley

    2013-08-01

    Full Text Available The Sunda region was the scene of widespread rifting during the mid-Cenozoic, resulting in the development of numerous large lake-filled rifts, analogous in scale to the rift valley system of East Africa. The Tonle Sap in Cambodia forms the closest modern analogue for these lakes in the Southeast Asian region. Many of the palaeolakes were long lived, continuing uninterrupted as open lakes for several millions of years during the Oligocene. Smaller rift systems infilled with fluvial sediments, but the larger ones remained as lakes, and with Late Oligocene subsidence, were transformed by brackish, and in the earliest Miocene, by marine incursion, into large inland seas. These seas reached their greatest extent at the time of the mid Miocene thermal maximum. This paper describes the development and eventual demise of these lakes following marine transgression, and, based on their rich content of pollen and spores, illustrates the variety of fresh and brackish water swamp communities which developed around their margins. The marginal swamps can be divided into: i seasonally inundated swamps, mainly during the Oligocene, characterised by Barringtonia, Lagerstroemia and grasses/sedges; ii fern swamps and iii from the Late Oligocene onward alluvial swamps, often characterised by Pandanus; and iv peat swamps. The latter can be differentiated into kerapah peat swamps, first occurring during the Oligocene, and basinal peat swamps, becoming widespread from the Early Miocene onward.

  1. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov

    2015-07-01

    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  2. How Vulnerable is Perennial Sea Ice? Insights from Earth's Late Cenozoic Natural Experiments (Invited)

    Science.gov (United States)

    Brigham-Grette, J.; Polyak, L. V.; Caissie, B.; Sharko, C. J.; Petsch, S.

    2010-12-01

    Sea ice is an important component of the climate system. Yet, reconstructions of Arctic sea ice conditions reflecting glacial and interglacial change over the past 3 million years are almost nonexistent. Our work to evaluate the sea ice and sea surface temperature record of the Bering Strait region builds on a review of the sea ice history of the pan-Arctic. The best estimates of sea ice make use of indirect proxies based on reconstructions of treeline, sea surface temperatures, depositional systems, and the ecological preferences of extant marine microfossil species. The development of new proxies of past sea ice extent including microfossil assemblages (diatoms, ostracodes) and biomarker proxies (IP25) show promise for quantifying seasonal concentrations of sea ice cover on centennial to millennial timescales. Using both marine and terrestrial information, periods of restricted sea ice and ice-free Arctic conditions can be inferred for parts of the late Cenozoic. The Arctic Ocean borderlands contain clear stratigraphic evidence for forested conditions at intervals over the past 50 million years, recording the migration of treeline from High Arctic coastal locations within the Canadian Archipelago. Metasequoia forests of the peak Eocene gave way to a variety of biomass-rich circumarctic redwood forests by 46 Ma. Between 23 and 16 Ma, cool-temperate metasequoia forests dominated NE Alaska and the Yukon while mixed conifer-hardwood forests (similar to those of modern southern maritime Canada and New England) dominated the central Canadian Archipelago. By 16 Ma, these forests gave way to larch and spruce. From 5 to 3 Ma the braid plains of the Beaufort Fm were dominated by over 100 vascular plants including pine and birch, while other locations remained dominated by spruce and larch. Boreal conditions across northern Greenland and arctic Alaska are consistent with the presence of bivalve Arctica islandica in marine sediments capping the Beaufort Formation on Meighen

  3. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    Science.gov (United States)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study

  4. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the

  5. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  6. Geochemical Signatures of Potassic to Sodic Adang Volcanics, Western Sulawesi: Implications for Their Tectonic Setting and Origin

    Directory of Open Access Journals (Sweden)

    Godang Shaban

    2016-11-01

    Full Text Available DOI:10.17014/ijog.3.3.195-214The Adang Volcanics represent a series of (ultra potassic to sodic lavas and tuffaceous rocks of predominantly trachytic composition, which forms the part of a sequence of Late Cenozoic high-K volcanic and associated intrusive rocks occurring extensively throughout Western Sulawesi. The tectonic setting and origin of these high-K rocks have been the subject of considerable debates. The Adang Volcanics have mafic to mafitic-intermediate characteristics (SiO2: 46 - 56 wt% and a wide range of high alkaline contents (K2O: 0.80 - 9.08 %; Na2O: 0.90 - 7.21 % with the Total Alkali of 6.67 - 12.60 %. Al2O3 values are relatively low (10.63 - 13.21 % and TiO2 values relatively high (1.27 - 1.91 %. Zr and REE concentrations are also relatively high (Zr: 1154 - 2340 ppm; Total REE (TREY = TRE: 899.20 - 1256.50 ppm; TRExOy: 1079.76 - 1507.97 ppm, with an average Zr/TRE ratio of ~ 1.39. The major rock forming minerals are leucite/pseudoleucite, diopside/aegirine, and high temperature phlogopite. Geochemical plots (major oxides and trace elements using various diagrams suggest the Adang Volcanics formed in a postsubduction, within-plate continental extension/initial rift tectonic setting. It is further suggested magma was generated by minor (< 0.1 % partial melting of depleted MORB mantle material (garnet-lherzolite with the silicate melt having undergone strong metasomatism. Melt enrichment is reflected in the alkaline nature of the rocks and geochemical signatures such as Nb/Zr > 0.0627 and (Hf/SmPM > 1.23. A comparison with the Vulsini ultrapotassic volcanics from the Roman Province in Italy shows both similarities (spidergram pattern indicating affinity with Group III ultrapotassics volcanics and differences (nature of mantle metasomatism.

  7. Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau

    Science.gov (United States)

    Craddock, William H.; Kirby, Eric; Zhang, Huiping; Clark, Marin K.; Champagnac, Jean-Daniel; Yuan, Daoyang

    2014-01-01

    The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ∼0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.

  8. Exhumation history of the western Kyrgyz Tien Shan: Implications for intramontane basin formation

    Science.gov (United States)

    Bande, Alejandro; Sobel, Edward R.; Mikolaichuk, Alexander; Schmidt, Alexander; Stockli, Daniel F.

    2017-01-01

    The dextral Talas-Fergana Fault separates the western from the central Tien Shan. Recent work has shed light on the Cenozoic evolution of the eastern and central Tien Shan; much less attention has been paid to the western Tien Shan. In this contribution we present new thermochronological ages for the Fergana and Alai ranges that, combined with the available data set, constrain the Cenozoic exhumation history of the western Tien Shan. Following a tectonically quiet early Cenozoic period, we suggest an onset of exhumation at 25 Ma. This early onset was followed by a period of slower exhumation and in some areas minor reheating. A final, strong late Miocene rapid cooling event is well represented in the western Tien Shan as in other sectors of the range. The early onset of uplift of the western Tien Shan dissected the previously continuous westernmost Parathethyan Sea, progressively isolating basins (e.g., Fergana, Tarim, and Alai basins) in the central Asian hinterland. Moreover, the coeval timing of late Miocene uplift along the length of entire Tien Shan implies that neither the Pamir nor Tarim can be the sole driver for exhumation of the entire range.

  9. Understanding the uplift pattern in Mesozoic and Cenozoic,, eastern Dabie area, China using fission track dating of apatite

    International Nuclear Information System (INIS)

    Wu Qianhong; Liu Shunsheng

    2002-01-01

    By using the fission track dating technique, a preliminary study was carried out on the fission track ages (FTA) of apatite, their distribution patterns and hints over the tectonics activities during Mesozoic and Cenozoic in the east Dabie area. Attempts were also made to improve the conventional statistical method for the tracks. Ranging from 59.4 +- 3.4 Ma to 105.6 +- 9.8 Ma, the FTA results of apatite spread in the wide range and increased rapidly from the east to the west area. Sine 95 Ma, the uplift rate has been quite slow and asymmetry. The FTA value in the middle area of Xiaotian-Mozitan Fault may imply its uplift in Cretaceous. The faulting should be the main control factor for the uplift of this area

  10. Cenozoic geology of the Yolomécatl-Tlaxiaco area, Northwestern Oaxaca, Southeastern Mexico: Stratigraphy, structure and regional significance

    Science.gov (United States)

    Ferrusquía-Villafranca, Ismael; Ruiz-González, José E.; Torres-Hernández, José Ramón; Anderson, Thomas H.; Urrutia-Fucugauchi, Jaime; Martínez-Hernández, Enrique; García-Villegas, Felipe

    2016-12-01

    The Yolomécatl-Tlaxiaco Area, lies in the rugged Sierra Madre del Sur (SMS) of northwestern Oaxaca (YOTLA), southeastern Mexico. Within the area Cenozoic units unconformably overlie metamorphic, clastic and carbonate rock units of Late Paleozoic to Cretaceous ages as well as the Mixteco/Oaxaca Terrane boundary. The Cenozoic sequence, emphasized herein, includes from botton to top: (1) basal, calcilithitic Early Tertiary Tamazulapam Conglomerate, (2) andesitic lava flows of Nduayaco "Group," (3-4) Epiclastic/pyroclastic strata composing Yolomécatl Formation (∼40.3 ± 1.0 Ma), and Tayata Pyroepiclastics (5) Early Oligocene (∼32.9 Ma), felsic, pyroclastic Nundichi "Group," (6) Late Oligocene (∼27.7 ± 0.7 Ma) andesitic lava flows of Nicananduta "Group" containing intercalations of unit (7) ?Chilapa Formation (largely lacustrine). Quaternary deposits unconformably overlie the sequence. The structural record includes NNW-SSE folds in the Mesozoic units, and one in Tayata Pyroepiclastics, as well as numerous fractures/faults of diverse types, whose pattern seems to roughly define four geographic/structural domains, NW, SW, S, and E. The Tertiary sequence records four magmatic and six deformational events: Pre-Late Eocene Extension accommodated by the Tamazulapam fault, along which magma of the Nduayaco "Group" moved upward. The next episode is the earliest Late Eocene extension recorded by the Yucuxaco-Santa Cruz Tayata fault was followed by accumulation of Yolomécatl Formation, Tayata Pyroepiclastics, and synsedimentary emplacement of tuff sheets at ∼40.3 ± 1.0 Ma. After this date, left lateral transpression emplaced a Teposcolula Limestone block over Nduayaco "Group" and ?Yolomécatl Formation, whereas the Tayata Pyroepiclastics was folded into an open anticline. Movement along the Yucuxaco-Santa Cruz Tayayata fault suite influenced accumulation of the Nundichi "Group" strata ca. ∼32.9 Ma. Subsequent ENE-WSW extension affected the Nundichi "Group," partly

  11. Theatrical Tectonics: The Mediating Agent for a Contesting Practice

    Directory of Open Access Journals (Sweden)

    Gevork Hartoonian

    2014-07-01

    Full Text Available This paper posits the idea that the theme of agency in architecture is parallactic. It discusses the tectonic as an agent through which architecture turns into a state of constant flux. The intention is to promote a discourse of criticality, the thematic of which is drawn from the symptoms that galvanise architecture’s rapport with the image-laden culture of late capitalism. In an attempt to log the thematic of a contested practice, this essay will re-map the recent history of contemporary architecture.Exploring New Brutalism’s criticism of the established ethos of International Style architecture, the first part of this paper will highlight the movement’s tendency towards replacing the painterly with the sculptural, and this in reference to the contemporary interest in monolithic architecture. Having established the import of tectonics for the architecture of Brutalism, the paper then argues that in the present situation, when architecture – like other cultural products – is infatuated with the spectacle of late capitalism, a re-thinking of the Semperian notion of theatricality is useful. Of interest in the tectonic of theatricality is the work’s capacity to bring forth the division between intellectual and physical labours, and this in reference to architecture’s reserved acceptance of technification for which the aforementioned division is vital.Particular attention will be given to two projects, Zaha Hadid’s Phaeno Center and OMA’s Casa da Musica, where architectonic aspects of New Brutalism are revisited in the light of the tectonic of theatricality.

  12. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    Science.gov (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  13. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.

    1987-10-01

    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  14. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy

    Science.gov (United States)

    Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano

    1999-12-01

    Stratigraphic studies and facies analysis integrated with a new geological and structural survey of the Meso-Cenozoic units outcropping in the Campania-Lucania Apennines, southern Italy, allowed us to restore the palaeogeographic pattern and the tectonic evolution of the chain during Oligo-Miocene times. The southern Apennines are a N150°-striking and NE-verging fold-and-thrust belt mainly derived from the deformation of the African-Apulian passive margin. Four wide belts with different features have been recognized in the chain area. From east to west the following units outcrop: (a) successions characterized by basinal to marginal facies, ranging in age from Cretaceous to Miocene, tectonically lying on Plio-Pleistocene foredeep deposits; (b) successions characterized by shallow-water, basinal and shelf-margin facies, ranging in age from middle Triassic to Miocene ('Lagonegro units'), overthrust on the previous ones; (c) Triassic to Miocene carbonate platform successions ('Apenninic platform units'), overthrust on the Lagonegro units; (d) Jurassic-Cretaceous to Miocene deep-water successions (ophiolite-bearing or 'internal' units and associated siliciclastic wedges), outcropping along the Tyrrhenian belt and the Calabria-Lucania boundary, overthrust on the Apenninic platform units. All these units tectonically lie on the buried Apulian platform which is covered, at least in the eastern sector of the chain, by Pliocene to Pleistocene foredeep deposits. Stratigraphic patterns of the Cretaceous to lower Miocene Lagonegro successions are coherent with the platform margin ones. Calcareous clastics of the Lagonegro basin are in fact supplied by an adjacent western platform, as inferred by several sedimentological evidences (slump and palaeocurrent directions and decreasing grain size towards the depocentre of the basin). Tectonic relationships among the different units of the chain — with particular emphasis on the Lagonegro and Apenninic platform units of the

  15. Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand

    Science.gov (United States)

    Qian, Xin; Wang, Yuejun; Feng, Qinglai; Zi, Jian-Wei; Zhang, Yuzhi; Chonglakmani, Chongpan

    2016-04-01

    The volcanic rocks exposed within the Chiang Khong-Lampang-Tak igneous zone in NW Thailand provide important constraints on the tectonic evolution of the eastern Paleotethys ocean. An andesite sample from the Chiang Khong area yields a zircon U-Pb age of 229 ± 4 Ma, significantly younger than the continental-arc and syn-collisional volcanic rocks (ca. 238-241 Ma). The Chiang Khong volcanic rocks are characterized by low MgO (1.71-6.72 wt.%) and high Al2O3 (15.03-17.76 wt.%). They are enriched in LILEs and LREEs and depleted in HFSEs, and have 87Sr/86Sr (i) ratios of 0.7050-0.7065, εNd (t) of - 0.32 to - 1.92, zircon εHf (t) and δ18O values of 3.5 to - 11.7 and 4.30-9.80 ‰, respectively. The geochemical data for the volcanic rocks are consistent with an origin from the enriched lithospheric mantle that had been modified by slab-derived fluid and recycled sediments. Based on available geochronological and geochemical evidences, we propose that the Late Triassic Chiang Khong volcanic rocks are equivalent to the contemporaneous volcanic rocks in the Lancangjiang igneous zone in SW China. The formation of these volcanic rocks was possibly related to the upwelling of the asthenospheric mantle during the Late Triassic, shortly after slab detachment, which induced the melting of the metasomatized mantle wedge.

  16. Tectonic blocks and suture zones of eastern Thailand: evidence from enhanced airborne geophysical analysis

    Directory of Open Access Journals (Sweden)

    Arak Sangsomphong

    2013-04-01

    Full Text Available Airborne geophysical data were used to analyze the complex structures of eastern Thailand. For visual interpretation, the magnetic data were enhanced by the analytical signal, and we used reduction to the pole (RTP and vertical derivative (VD grid methods, while the radiometric data were enhanced by false-colored composites and rectification. The main regional structure of this area trends roughly in northwest-southeast direction, with sinistral faulting movements. These are the result of compression tectonics (sigma_1 in an east-west direction that generated strike-slip movement during the pre Indian-Asian collision. These faults are cross-cut by the northeast-southwest-running sinistral fault and the northwest-southeast dextral fault, which occurred following the Indian-Asian collision, from the transpession sinistral shear in the northwest-southeast direction. Three distinct geophysical domains are discernible; the Northern, Central and Southern Domains. These three domains correspond very well with the established geotectonic units, as the Northern Domain with the Indochina block, the Central Domain with the Nakhonthai block, the Upper Southern Sub-domain with the Lampang-Chaing Rai block, and the Lower Southern Sub-domain with the Shan Thai block. The Indochina block is a single unit with moderate radiometric intensities and a high magnetic signature. The direction of the east-west lineament pattern is underlain by Mesozoic non-marine sedimentary rock, with mafic igneous bodies beneath this. The Nakhonthai block has a strong magnetic signature and a very weak radiometric intensity, with Late Paleozoic-Early Mesozoic volcanic rock and mélange zones that are largely covered by Cenozoic sediments. The boundaries of this block are the southern extension of the Mae Ping Faults and are oriented in the northwest-southeast direction. The Lampang-Chaing Rai and Shan Thai blocks, with very weak to moderate magnetic signatures and moderate to very

  17. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  18. Long-term evolution of the Campine area in Northern Belgium: past and expected future evolution of tectonics and climate

    International Nuclear Information System (INIS)

    De Craen, M.; Beerten, K.; Brassinnes, S.; Wouters, L.

    2012-01-01

    Document available in extended abstract form only. Disposal of radioactive waste in a geological repository involves the reliance, now and in the long-term future, on the geological and hydrogeological environment. In preparation of the safety and feasibility case 1 (SFC1), the long-term geodynamic evolution of Boom Clay and its geological environment in the Campine area in northern Belgium is studied. Time frames considered are the geological past and the future 1 million year. The idea is that the past long-term evolution can be extended to predict what might happen in the future. In this paper, we first focusses on the past long-term tectonic evolution of the Campine area, and make an extrapolation for the future 1 Ma. We then focus on past climate evolution, and similarly, an assessment of possible future climate conditions is made for the Campine area within the next 1 Ma. Another paper focusses on the combined effect of tectonics and climate on the evolution of the surface environment in the Campine area for the next 1 Ma, with respect to geomorphological, pedological and hydrological processes. During the Palaeozoic, the geodynamic evolution of the Campine area was mainly determined by tectonics. A large intermittently subsiding sedimentary basin existed in which large amounts of sediments were deposited, and which was protected by the Brabant Massif from major oro-genetic compressive processes. Palaeozoic sediments in the Campine Basin reach a maximum thickness of 4000 m. During Mesozoic and Cenozoic, its geodynamic evolution was the interactive result of plate tectonics, sea level changes and climate evolution. Further subsidence resulted in a thick sequence of sedimentary deposits. Mesozoic sediments are found throughout the Campine area while remains of Jurassic-Triassic sediments are found only in the central Roer Valley Graben in the east. The Cenozoic is characterised by a succession of sub-horizontal layers of Tertiary clays and sands and covered by

  19. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China: Evidence from apatite fission track analysis

    Directory of Open Access Journals (Sweden)

    Wenhao Tang

    2015-07-01

    Full Text Available Apatite fission track (AFT analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0–13.2 μm mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassic–early Cretaceous and the Oligocene–Miocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (>100 Ma, recording the earlier rapid uplift phase during the late Jurassic–Cretaceous, while the ages in the north piedmont of the Bogda Mountain (namely the northeast part are younger (<60 Ma, mainly reflecting the later rapid uplift phase in the Oligocene–Miocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.

  20. Tectonic and metallogenic model for northeast Asia

    Science.gov (United States)

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major

  1. Origins of the Asian-Australian monsoons related to Cenozoic plate movement and Tibetan Plateau uplift - A modeling study

    Science.gov (United States)

    Liu, X.; Dong, B.; Yin, Z. Y.; Smith, R. S.; Guo, Q.

    2017-12-01

    The origin of monsoon is a subject that has attracted much attention in the scientific community and even today it is still controversial. According to geological records, there is conflicting evidence regarding the timings of establishment of the monsoon climates in South Asia, East Asia, and northern Australia. Additionally, different explanations for the monsoon origins have been derived from various numerical simulations. To further investigate the origin and evolution of the Asian and Australian monsoons, we designed a series of numerical experiments using a coupled atmospheric-oceanic general circulation model. Since the Indian-Australian plate has shifted its position significantly during the Cenozoic, together with the large-scale uplift of the Tibetan Plateau (TP), in these experiments we considered the configurations of ocean-land masses and large topographic features based on geological evidence of plate motion and TP uplift in 5 typical Cenozoic geological periods: mid-Paleocene ( 60Ma), late-Eocene ( 40Ma), late-Oligocene ( 25Ma), late-Miocene ( 10Ma), and present day. These experiments allowed us to examine the combined effects of the changes in the land-ocean configuration due to plate movement and TP uplift, they also provided insight into the effects of the high CO2 levels during the Eocene. The simulations revealed that during the Paleocene, the Indian Subcontinent was still positioned in the Southern Hemisphere (SH) and, therefore, its climate behaved as the SH tropical monsoon. By the late Eocene, it moved into the tropical Northern Hemisphere, which allowed the establishment of the South Asian monsoon. In contrast, the East Asian and Australian monsoon did not exist in the late Oligocene. These monsoon systems were established in the Miocene and then enhanced thereafter. Establishments of the low-latitude monsoons in South Asia and Australia were entirely determined by the position of the Indian-Australian plate and not related to the TP uplift

  2. Geologic map of the Basque-Cantabrian Basin and a new tectonic interpretation of the Basque Arc

    Science.gov (United States)

    Ábalos, B.

    2016-11-01

    A new printable 1/200.000 bedrock geological map of the onshore Basque-Cantabrian Basin is presented, aimed to contribute to future geologic developments in the central segment of the Pyrenean-Cantabrian Alpine orogenic system. It is accompanied in separate appendixes by a historic report on the precedent geological maps and by a compilation above 350 bibliographic citations of maps and academic reports (usually overlooked or ignored) that are central to this contribution. Structural scrutiny of the map permits to propose a new tectonic interpretation of the Basque Arc, implementing previously published partial reconstructions. It is presented as a printable 1/400.000 tectonic map. The Basque Arc consists of various thrust slices that can expose at the surface basement rocks (Palaeozoic to Lower Triassic) and their sedimentary cover (uppermost Triassic to Tertiary), from which they are detached by intervening (Upper Triassic) evaporites and associated rocks. The slice-bounding thrusts are in most cases reactivated normal faults active during Meso-Cenozoic sedimentation that can be readily related to basement discontinuities generated during the Hercynian orogeny.

  3. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  4. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin

    Science.gov (United States)

    Guo, Benhong; Liu, Shanpin; Peng, Tingjiang; Ma, Zhenhua; Feng, Zhantao; Li, Meng; Li, Xiaomiao; Li, Jijun; Song, Chunhui; Zhao, Zhijun; Pan, Baotian; Stockli, Daniel F.; Nie, Junsheng

    2018-02-01

    The fluvial archives in the upper-reach Yellow River basins provide important information about drainage history of the northeastern Tibetan Plateau (TP) associated with geomorphologic evolution and climate change. However, the Pliocene fluvial strata within this region have not been studied in detail, hence limiting the understanding of the late Cenozoic development of regional fluvial systems. In this paper, we present the results of a study of the geochronology, sedimentology, and provenance of the fluvial sequence of the Wuquan Formation in the Lanzhou Basin in the northeastern TP. Magnetostratigraphic and cosmogenic nuclide burial ages indicate that the Wuquan Formation was deposited during 3.6-2.2 Ma. Furthermore, sedimentary facies, gravel composition, paleocurrent data, and detrital zircon Usbnd Pb age spectra reveal that the fluvial sequence resembles the terraces of the Yellow River in terms of source area, flow direction, and depositional environment. Our results indicate that a paleo-drainage system flowing out of the northeastern TP was established by ca. 3.6 Ma and that the upstream parts of the Yellow River must have developed subsequently from this paleo-drainage system. The late Pliocene drainage system fits well with the dramatic uplift of the northeastern TP, an intensified Asian summer monsoon, and global increase in erosion rates, which may reflect interactions between geomorphic evolution, tectonic deformation, and climate change.

  5. Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea

    Science.gov (United States)

    Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.

    2017-12-01

    As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).

  6. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes

    Science.gov (United States)

    Biasatti, Dana; Wang, Yang; Gao, Feng; Xu, Yingfeng; Flynn, Lawrence

    2012-01-01

    increased significantly after ˜3.5 Ma. The oxygen isotope results from Yuanmou (Xiaohe Formation) show a positive shift after ˜8.5 Ma, which is similar in timing and magnitude to δ 18O shifts observed in horses and rhinos from the Linxia Basin and in fossils and paleosols from Pakistan and Nepal, suggesting a shift toward a drier climate at the northeast, southeast, and southern borders of the Tibetan Plateau during the late Miocene. Taken together, the carbon and oxygen isotope data indicate a general drying of the local climate over time and a change from a largely dense-forest environment at ˜8 Ma to a more open environment with a mosaic of forests and grasslands after 3-4 Ma in the Yuanmou region. Intra-tooth δ 13C and δ 18O variations within individual fossil teeth from Yuanmou suggest a stronger seasonality of rainfall at ˜1.7 Ma than in the late Miocene. The spatial and temporal δ 13C and δ 18O variations observed in mammalian teeth from Yunnan likely reflect changes in regional climate and/or tectonics, but more data are needed to fully explore the significance of the regional patterns in the δ 18O and δ 13C data in relation to climate and tectonic evolution of the region.

  7. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    Science.gov (United States)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  8. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    Science.gov (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  9. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  10. Late pliocene-pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning : Geology

    NARCIS (Netherlands)

    Zhou, B.; Shen, C.; Sun, W.; Bird, M.; Ma, W.; Taylor, D.; Liu, W.; Peterse, F.; Yi, W.; Zheng, H.

    2014-01-01

    Plants using the C4 photosynthetic pathway, commonly tropical and subtropical grasses, increased in abundance in East Asia during the late Cenozoic. Determining the exact timing and likely factors leading to this major vegetation change requires region-specific studies. Here variations in pyrogenic

  11. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    Science.gov (United States)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  12. Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary

    Directory of Open Access Journals (Sweden)

    Petrik Attila

    2016-02-01

    Full Text Available Extensive structural field observations and seismic interpretation allowed us to delineate 7 deformation phases in the study area for the Cenozoic period. Phase D1 indicates NW–SE compression and perpendicular extension in the Late Oligocene–early Eggenburgian and it was responsible for the development of a wedge-shaped Paleogene sequence in front of north-westward propagating blind reverse faults. D2 is represented by E–W compression and perpendicular extension in the middle Eggenburgian–early Ottnangian. The D1 and D2 phases resulted in the erosion of Paleogene suites on elevated highs. Phase D2 was followed by a counterclockwise rotation, described in earlier publications. When considering the age of sediments deformed by the syn-sedimentary D3 deformation and preliminary geochronological ages of deformed volcanites the time of the first CCW rotation can be shifted slightly younger (~17–16.5 Ma than previously thought (18.5–17.5 Ma. Another consequence of our new timing is that the extrusional tectonics of the ALCAPA unit, the D2 local phase, could also terminate somewhat later by 1 Myr. D4 shows NE–SW extension in the late Karpatian–Early Badenian creating NW–SE trending normal faults which connected the major NNE–SSW trending sinistral faults. The D5 and D6 phases are late syn-rift deformations indicating E–W extension and NW–SE extension, respectively. D5 indicates syn-sedimentary deformation in the Middle Badenian–early Sarmatian and caused the synsedimentary thickening of mid-Miocene suites along NNE–SSW trending transtensional faults. D5 postdates the second CCW rotation which can be bracketed between ~16–15 Ma. This timing is somewhat older than previously considered and is based on new geochronological dates of pyroclastite rocks which were not deformed by this phase. D6 was responsible for further deepening of half-grabens during the Sarmatian. D7 is post-tilt NNW–SSE extension and induced the

  13. Plate tectonic reconstruction of the Carpathian-Pannonian region

    Science.gov (United States)

    Csontos, L.; Vörös, A.

    2003-04-01

    Plate tectonics of the Carpathian area is controlled by microcontinents between the European and African margins and the relative movements of these margins. Beside the generally accepted Apulian (Austroalpine, West Carpathian, Dinaric) microcontinents two others: the Bihor-Getic (Tisza) and Drina-Ivanjica are introduced. The first was attached to the European margin, the second to the Apulian microcontinent. During Permian a major ocean was obliquely subducted south of the Apulian microcontinents. Drina-Ivanjica rifted off the Apulian microcontinent in the Late Permian-Middle Triassic, as a consequence of back-arc rifting. Short-lived oceans subducted by the end of Jurassic, causing Drina-Ivanjica to collide with the internal Dinaric-West Carpathian and Bihor-Getic margins. An external Penninic-Váhic ocean tract began opening in the Early Jurassic, separating the East Alpine-West Carpathian microcontinent (and its fauna) from the European shelf. Further south, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic (and its fauna) from the European shelf did not take place until the Middle-Late Jurassic. Two oroclinal bends: the Alcapa on the Dinaric margin and the Tisza-Dacia on the South Carpathian-Getic margin are essential elements of these reconstructions. Their bending (Aptian and Albian-Maastrichtian, respectively) are suggested by paleomagnetic and tectonic transport data. The two oroclinal bends are finally opposed and pushed into the Carpathian embayment by the Paleogene. In Miocene a back-arc basin develops on older tectonic elements. Differential rotations affect the wealded microcontinents.

  14. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia

    Science.gov (United States)

    Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu

    2013-12-01

    Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.

  15. Late Ediacaran-Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco)

    Science.gov (United States)

    Soulaimani, A.; Michard, A.; Ouanaimi, H.; Baidder, L.; Raddi, Y.; Saddiqi, O.; Rjimati, E. C.

    2014-10-01

    The post-Pan-African evolution of the northern border of the West African Craton is largely controlled by the remobilisation of Late Neoproterozoic basement faults. The Upper Ediacaran volcanic and volcano-sedimentary sequences of the Ouarzazate Group show dramatic and rapid thickness changes, consistent with active extensional faulting associated with post-orogenic collapse and incipient continental rifting. The geometry and kinematics of these faults differ from west to east in the Anti-Atlas. N- to NE-trending faults dominate in western Anti-Atlas in response to E-W to NW-SE pure extension, while a transtensive opening regime characterize the central (Bou Azzer) and eastern (Saghro-Ougnate) Anti-Atlas. The marine incursion in the west-central Anti-Atlas during the late Ediacaran-Early Cambrian occurred without major geodynamical break between the continental Ouarzazate Group and marine sediments of the Adoudou Fm. Extensional tectonics went on during the Early Cambrian, being concentrated in the western and central parts of the belt. From Middle Cambrian to Lower Devonian and mainly due to thermal subsidence, the Anti-Atlas basement was buried under marine sediments with dominant south-derived detrital input. Basement faults control the distribution of subsiding versus shallow areas. During the Middle-Late Devonian, the dislocation of the Saharan platform occurred, mainly in the eastern Anti-Atlas where Precambrian faults were also remobilized during the Early Carboniferous. During the Variscan orogeny, the Paleozoic series of the Anti-Atlas basin were involved in folding tectonics, concomitant with the uplift of Proterozoic basement blocks bounded by inherited basement faults. The pre-existing rift-related faults were variably inverted across the Anti-Atlas. In the westernmost part of the belt, Variscan shortening induced positive inversions along the remobilized basement faults, but in some cases, some faults preserved an apparently normal throw. Some hidden

  16. Tectonic geomorphology of the Andes with SIR-A and SIR-B

    Science.gov (United States)

    Bloom, Arthur L.; Fielding, Eric J.

    1986-01-01

    Data takes from SIR-A and SIR-B (Shuttle Imaging Radar) crossed all of the principal geomorphic provinces of the central Andes between 17 and 34 S latitude. In conjunction with Thematic Mapping images and photographs from hand-held cameras as well as from the Large Format Camera that was flown with SIR-B, the radar images give an excellent sampling of Andean geomorphology. In particular, the radar images show new details of volcanic rocks and landforms of late Cenozoic age in the Puna, and the exhumed surfaces of tilted blocks of Precambrian crystalline basement in the Sierras Pampeanas.

  17. The relationship between tectonic-thermal evolution and sandstone-type uranium ore-formation in Ordos basin

    International Nuclear Information System (INIS)

    Zhao Honggang

    2005-01-01

    The comprehensive study of the volcanic activities, the geothermal field, the thermal flow field, the paleogeo-thermal activity and the tectonic evolution of the Ordos basin indicates that the tectonic-thermal evolution of the Ordos basin has offered the basis for the fluid-fluid and fluid-rock mutual reactions, and has created favourable conditions for the formation of organic mineral resources and sandstone-type uranium deposits. Especially, the tectonic-thermal event during middle-Late Jurassic to Cretaceous played an important role in providing uranium source material, and assisting the migration, the concentration and precipitation of uranium and uranium ore-formation. (authors)

  18. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development

    Science.gov (United States)

    Morley, Chris K.

    2009-10-01

    At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.

  19. Prospect analysis for sandstone-type uranium mineralization in the northern margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei; Song Zhe; Li Wei

    2010-01-01

    Affected by the regional geological structural evolution, a set of sedimentary structure, i.e. the construction of coal-bearing classic rocks which is in favor of the sandstone-type uranium mineralization has deposited in the northern margin of Qaidam Basin since Meso-Cenozoic. A NWW thrust nappe tectonic belt, i.e. the ancient tectonic belt which is the basis for the development of ancient interlayer oxidation zone formed by the tectonic reverse in late Jurassic and Cretaceous. The Mid and late Jurassic layer was buried by the weak extension in Paleogene and the depression in early Neogene. The extrusion reversal from late Neogene to Quaternary made the basin into the development era of the modern interlayer oxidation zone. It can be concluded that the layer of the northern margin of Qaidam Basin has the premise for the formation of sandstone-type uranium ore. Based on the analysis of the characteristics of the thrust belt, the structure of the purpose layer, the sand body, the hydrogeology, the interlayer oxidation zone and uranium mineralization, the results indicated that the ancient interlayer oxidation zone is the prospecting type of sandstone-type uranium ore. Beidatan and the east of Yuqia are the favorable prospective area of sandstone-type uranium mineralization. (authors)

  20. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    Science.gov (United States)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  1. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa

    Science.gov (United States)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter

    2013-01-01

    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  2. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history

    Science.gov (United States)

    Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, Jiawen

    2003-01-01

    The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ~1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ~0.7 Ga. Subsequent intra-oceanic arc formation at ~470-490 Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ~400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at ~230-235 Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia-Sino-Korean and Lhasa-West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ~60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW-ESE extension

  3. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  4. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  5. Initial discussion on ore-forming conditions and prospecting direction of volcanic type uranium deposits in the gangdise tectonic belt

    International Nuclear Information System (INIS)

    Zhao Baoguang; Wang Sili; Wang Qin; Sun Yue; Du Xiaolin; Chen Yuliang

    2010-01-01

    The most active volcanic activity in the Gangdise tectonic belt happened in early Cretaceous, Paleocene and Eocene, and Eocene is the most active period. The distribution of volcanic rock is controlled by latitudinal deep fault and deuteric longitudinal fault. Paleo-volcano was located at these structural compounds frequently. The volcanics which appeared near the merdional large scale pull-apart construction in Neogene is considered as land facies medium-acidic volcanics which brought by various kinds of volcanic basin. A large stream sediment anomaly (>6.8 x 10 -6 ) has been found at Cenozoic volcanics in south of CuoQin basin, and its areas amount to hundreds square kilometers. The uranium content of volcanics in Wuyu basin amounts to 20.0 x 10 -6 at most. It has favorable Ore-forming conditions for forming volcanic type uranium deposit due to the volcanic geologic environment, accompanying mineral, region feature of geochemistry and geophysical, volcanic-tectonic depression and so on. The major prospecting targets are the south of CuoQin basin and the Nanmulin district. (authors)

  6. NW Africa post-rift tectonics: fieldwork constraints from an "unfitting" anticline in west Morocco

    Science.gov (United States)

    Fernández-Blanco, David; Gouiza, Mohamed

    2015-04-01

    The evolution of the Moroccan Atlantic rifted margin is marked by a period of abnormal and excessive early post-rift subsidence during the Late Jurassic-Early Cretaceous affecting the proximal coastal basins, the continental shelf and the distal deep basins, which acted coevally to km-scale uplift and erosion of large domains to the east. The tectonics of the uplift event are still unclear, as it took place 30 to 50 Myr after lithospheric breakup between Morocco and Nova Scotia and prior to the Atlas/Alpine contraction, which gave rise to the Atlas and the Rif mountain belts. The Essaouira-Haha basin, located on the coastal plain of the Atlantic rifted margin of Morocco, and bounded by two uplifted Paleozoic basement highs (i.e. the Massif Ancien of Marrakech, to the east, and the Jebilet, to the northeast), is an ideal location to investigate the tectonic processes that might have triggered these vertical movements. Although most of the deformation observed in the basin is classically attributed to Upper Cretaceous halokinesis and Neogene Atlas contraction, recent works have shown the existence of contractional structures. We carry out a structural analysis of the Jbel Amsittene Anticline, located in the middle of the Essaouira-Haha basin to investigate the tectonics of its formation and its relationship with the above-mentioned exhumation. We show structural field data along several cross-sections transecting the anticline, and characterize a salt-cored fault propagation fold verging north, with a Triassic salt acting as a detachment plane. Regional kinematic indicators and structures show overall NNW-SSE to NNE-SSW shortening and active tectonics during the postrift phase, as indicated by syn-tectonic wedges seen for the Late Jurassic to Early Cretaceous period. These facts discard the "salt-drives-tectonics" theory to let "tectonic-drives-salt" one to rise, and point to factors other than small-cell mantle convection acting during the evolution of the Moroccan

  7. Basement tectonics and flexural subsidence along western continental margin of India

    Directory of Open Access Journals (Sweden)

    D.K. Pandey

    2017-09-01

    Full Text Available The Paleocene-recent post-rift subsidence history recorded in the Mumbai Offshore Basin off western continental margin of India is examined. Results obtained through 2-D flexural backstripping modelling of new seismic data reveal considerable thermo-tectonic subsidence over last ca. 56 Myr. Reverse post-rift subsidence modelling with variable β stretching factor predicts residual topography of ca. 2000 m to the west of Shelf Margin Basin and fails to restore late Paleocene horizon and the underlying igneous basement to the sea level. This potentially implies that: (1 either the igneous basement formed during the late Cretaceous was emplaced under open marine environs; or (2 a laterally varying cumulative subsidence occurred within Mumbai Offshore Basin (MOB during ca. 68 to ca. 56 Ma. Pre-depositional topographic variations at ca. 56 Ma across the basin could be attributed to the extensional processes such as varied lower crustal underplating along Western Continental Margin of India (WCMI. Investigations about basement tectonics after unroofing of sediments since late Paleocene from this region support a transitional and heavily stretched nature of crust with high to very high β factors. Computations of past sediment accumulation rates show that the basin sedimentation peaked during late Miocene concurrently with uplift of Himalayan–Tibetan Plateau and intensification of Indian monsoon system. Results from basin subsidence modelling presented here may have significant implications for further studies attempting to explore tectono–climatic interactions in Asia.

  8. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    Science.gov (United States)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  9. Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone

    Science.gov (United States)

    Ridgway, K.D.; Trop, J.M.; Nokleberg, W.J.; Davidson, C.M.; Eastham, K.R.

    2002-01-01

    Analysis of late Mesozoic and Cenozoic sedimentary basins, metamorphic rocks, and major faults in the eastern and central Alaska Range documents the progressive development of a suture zone that formed as a result of collision of an island-arc assemblage (the Wrangellia composite terrane) with the former North American continental margin. New basin-analysis, structural, and geochronologic data indicate the following stages in the development of the suture zone: (1) Deposition of 3-5 km of Upper Jurassic-Upper Cretaceous marine strata (the Kahiltna assemblage) recorded the initial collision of the island-arc assemblage with the continental margin. The Kahiltna assemblage exposed in the northern Talkeetna Mountains represents a Kimmeridgian-Valanginian backarc basin that was filled by northwestward-flowing submarine-fan systems that were transporting sediment derived from Mesozoic strata of the island-arc assemblage. The Kahiltna assemblage exposed in the southern Alaska Range represents a Valanginian-Cenomanian remnant ocean basin filled by west-southwestward-flowing submarine-fan systems that were transporting sediment derived from Paleozoic continental-margin strata uplifted in the along-strike suture zone. A belt of retrograde metamorphism and a regional anticlinorium developed along the continental margin from 115 to 106 Ma, roughly coeval with the end of widespread deposition in the Kahiltna sedimentary basins. (2) Metamorphism of submarine-fan deposits of the Kahiltna basin, located near the leading edge of the island-arc assemblage, occurred at ca. 74 Ma, as determined from a new U-Pb zircon age for a synkinematic sill. Coeval with metamorphism of deposits of the Kahiltna basin in the southern part of the suture zone was development of a thrust-top basin, the Cantwell basin, in the northern part of the suture zone. Geologic mapping and compositional data suggest that the 4 km of Upper Cretaceous nonmarine and marginal marine sedimentary strata in this basin

  10. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  11. Tectonic model for the Late Paleozoic of southeastern New England

    Energy Technology Data Exchange (ETDEWEB)

    Wintsch, R.P.; Sutter, J.F.

    1986-07-01

    Hornblende and biotite /sup 40/Ar//sup 39/Ar age spectra from rocks in south-central Connecticut help define a Permian-Triassic cooling curve for the area. Together with petrologic and structural information, a time-temperature-pressure-strain path is established. Similar data for the Narragansett basin in Rhode Island and Massachusetts allow correlation of the late Paleozoic histories of the two areas. Together, these data suggest that in the late Paleozoic, south-central New England was part of a fold-thrust belt, and the Narragansett basin was a retroarc foreland basin. NW-SE compression during the final assembly of Pangaea resulted in SE directed thrusting, causing the development of clastic wedges in adjacent Rhode Island and Massachusetts in the Late Carboniferous-Early Permian. A clockwise rotation of this deformation from NW to NNE led to northward underthrusting and concomitant uplift of both eastern Connecticut and Rhode Island in the Permian and Triassic.

  12. Cenozoic to Cretaceous paleomagnetic dataset from Egypt: New data, review and global analysis

    Science.gov (United States)

    Perrin, Mireille; Saleh, Ahmed

    2018-04-01

    Different phases of igneous activity took place in Egypt during the Mesozoic and the Cenozoic and oriented samples were collected from three Cenozoic localities (Baharya oasis in the Western Desert, Abu Had in the Eastern Desert and Quseir along the Red Sea coast), and four Cretaceous localities (Toshki & Abu Simbel south of Aswan, and Shalaten & Abu Shihat along the Red Sea coast). Rock magnetic properties of the samples indicate magnetite and titanomagnetite as the main carrier of the remanent magnetization. Following stepwise demagnetization, characteristic remanent directions were identified only for 62% of the samples, a fairly low rate for that type of samples, and 8 new paleomagnetic poles were calculated. All our Cenozoic poles fall clearly off Master Polar Wander Paths proposed for South Africa. Therefore, all paleomagnetic results, previously published for Egypt, were compiled from Cretaceous to Quaternary. The published poles largely overlap, blurring the Egyptian Apparent Polar Wander Path. A new analysis at the site level was then carried out. Only poles having a kappa larger than 50 were selected, and new pole positions were calculated by area and by epoch, when at least 3 sites were available. Even though the selection drastically reduced the number of considered poles, it allows definition of a reliable Cenozoic apparent polar wander trend for Egypt that differs from the South African Master Polar Wander Path by about 10-15 °. If the Cretaceous igneous poles are in good agreement with the rest of the African data, the sedimentary poles plot close to the Cenozoic portion of the South African Master Polar Wander Path, a discrepancy that could be related either to inclination flattening and/or error on age and/or remagnetization in the Cenozoic.

  13. The impacts of Cenozoic climate and habitat changes on small mammal diversity of North America

    Science.gov (United States)

    Samuels, Joshua X.; Hopkins, Samantha S. B.

    2017-02-01

    Through the Cenozoic, paleoclimate records show general trends of global cooling and increased aridity, and environments in North America shifted from predominantly forests to more open habitats. Paleobotanical records indicate grasses were present on the continent in the Eocene; however, paleosol and phytolith studies indicate that open habitats did not arise until the late Eocene or even later in the Oligocene. Studies of large mammalian herbivores have documented changes in ecomorphology and community structure through time, revealing that shifts in mammalian morphology occurred millions of years after the environmental changes thought to have triggered them. Smaller mammals, like rodents and lagomorphs, should more closely track climate and habitat changes due to their shorter generation times and smaller ranges, but these animals have received much less study. To examine changes in smaller mammals through time, we have assembled and analyzed an ecomorphological database of all North American rodent and lagomorph species. Analyses of these data found that rodent and lagomorph community structure changed dramatically through the Cenozoic, and shifts in diversity and ecology correspond closely with the timing of habitat changes. Cenozoic rodent and lagomorph species diversity is strongly biased by sampling of localities, but sampling-corrected diversity reveals diversity dynamics that, after an initial density-dependent diversification in the Eocene, track habitat changes and the appearance of new ecological adaptations. As habitats became more open and arid through time, rodent and lagomorph crown heights increased while burrowing, jumping, and cursorial adaptations became more prevalent. Through time, open-habitat specialists were added during periods of diversification, while closed-habitat taxa were disproportionately lost in subsequent diversity declines. While shifts among rodents and lagomorphs parallel changes in ungulate communities, they started

  14. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

    Science.gov (United States)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-18

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO 2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO 2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  15. Review of and contribution to the Stratigraphy of the Cenozoic Igneous Rocks in the Republic of Yemen

    International Nuclear Information System (INIS)

    El-Nakhal, H.A.

    2002-01-01

    In Yemen the Cenozoic igneous rocks consists of intrusive and extrusive rocks with interlayered sediments, all of which are included within the Manakha Group (latest Cretaceous-Holocene). This group is subdivided into the Haraz Formation which includes the latest Cretaceous-Tertiary volcanics and the interlayered sediments, the Aden Formation which includes the Late Tertiary-Holocene volcanics, and the Bura Formations are introduced here as new units. The Haraz Formation replaces the informal names: Trap Series, Yemen Volcanics and Aden Trap Series, Yemen Volcanics and Adan Trap Series.The Adan Formation are a readaptation of the term Aden Vocanic Series. A startotype for the Aden Formation is designated in the Shuqra-Ahwar area. (author)

  16. The ``Problem of the quaternary'' and the taxonomic rank of the late cenozoic in the international stratigraphic scale

    Science.gov (United States)

    Zubakov, V. A.

    2011-02-01

    An international scientific conflict has arisen around the International Stratigraphic Scale, the main document that regulates the rules of reading of geological records and, hence, concerns all Earth sciences. The matter of debate is the geological time scale of 2004, developed by the International Commission on Stratigraphy, where the Quaternary system was abandoned. This ICS decision triggered a protest among Quaternary geologists, members of INQUA, and became the subject of much controversy. This article provides a comprehensive analysis of the Quaternary problem and proposes a reasonable scientific solution that may be appropriate for both parties. The subject of Late Cenozoic geology is discussed: glaciations, human evolution, and recent deposits. In contrast to Charles Lyell's definition of the Plio-Pleistocene according to the percentage of modern mollusk species, it is defined here as a blanket formation, which is correlative to the topography and consists of mapped stratogens hosting fossils of modern biogeocenoses. Features of the description of the Plio-Pleistocene in terms of gravitational orbital tuning are considered. Four paleogeographic phases of modern environment evolution are recognized and ranked as stages: (1) The Messinian evolutionary explosion involved the appearance of many biogeocenoses and the bipedal walking of our extinct ancestors armed with sticks. It was a consequence of the Early Greenland (7.6 Ma BP) and Patagonian (6.7 Ma BP) hyperglaciations. (2) The Zanclean age is marked by climatic and hydrological but not evolutionary boundaries. (3) The appearance of the Villafranchian animal assemblage and Australopithecus, who used stones as weapon: 4.0-3.6 Ma BP. Orogeny and isolation of the Arctic Ocean changed the global climate dramatically. (4) The sexual revolution became the third evolutionary jump: the appearance of the first woman, "Eve", and the genus Homo with her: 1.9 Ma BP. According to the current view, the Plio

  17. Late Cenozoic basin evolution and fold-thrust deformation in the southern Central Andes: Initial constraints from synorogenic deposits of the Precordillera, Argentina

    Science.gov (United States)

    Levina, M.; Horton, B. K.; Fuentes, F.; Stockli, D. F.

    2012-12-01

    In the Precordillera region of the Argentine Andes, Cenozoic shortening associated with flattening of the Pampean segment of the subducting Nazca plate has resulted in a series of thin skinned fold-thrust systems that partitioned and uplifted Cenozoic foreland basin deposits. The kinematic and temporal evolution of the Andean Precordillera can be approached through detailed analyses of the sedimentary fill now preserved in intermontane regions and the bedrock low-temperature thermochronology of the fold-thrust belt. In this project, we focus on Neogene foreland basin fill exposed in the central and eastern Precordillera along the San Juan River (Quebrada Albarracín and Pachaco regions), on the western flank of the Sierra Talacasto, and in the Loma de las Tapias area near the Ullum dam. The sedimentary successions exposed in these regions record the hinterland development of the Frontal Cordillera (detrital zircon provenance and composition of sandstone and conglomeratic units), regional volcanism (pyroclastic flows and tuffaceous sandstone units), and initial construction of the Precordillera (fault cutoff relationships, growth strata, and paleocurrent changes). We investigate the development and subsequent partitioning and deformation of these synorogenic sections using sediment provenance (detrital zircon U-Pb geochronology, conglomerate clast counts, sandstone petrography, and paleocurrent measurements), facies analysis of measured stratigraphic successions, and initial apatite (U-Th)/He cooling histories to constrain the age of uplift-induced exhumation of successive thrust sheets in the Andean Precordillera.

  18. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu

    2013-07-01

    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  19. Eocene tectonic compression in Northern Zealandia: Magneto-biostratigraphic constraints from the sedimentary records of New Caledonia (Southwest Pacific Ocean)

    Science.gov (United States)

    Dallanave, E.; Agnini, C.; Pascher, K. M.; Maurizot, P.; Bachtadse, V.; Hollis, C. J.; Dickens, G. R.; Collot, J.; Sevin, B.; Strogen, D.; Monesi, E.

    2017-12-01

    Published seismic profiles acquired from the Tasman Sea and northern Zealandia area (southwest Pacific) point to a widespread Eocene convergent deformation of oceanic and continental crust, with reverse faults and uplift (Tectonic Event of the Cenozoic in the Tasman Area; TECTA). The TECTA is interpreted as the precursor of the Tonga-Kermadec subduction initiation. Grande Terre is the main island of the New Caledonia archipelago and the largest emergent portion of northern Norfolk Ridge (part of northern Zealandia). Eocene sedimentary records exposed in Grande Terre contain a transition from pelagic micrite to terrigenous-rich calciturbidites, marking a shift from passive margin to convergent tectonic regime. This could represent the local expression of the convergence inception observed on a regional scale. We conducted an integrated magneto-biostratigraphic study, based on calcareous nannofossil and radiolaria, of two early-middle Eocene records cropping out near Noumea (southwest Grande Terre) and Koumac (northwest Grande Terre). The natural remanent magnetization of the sediments is complicated by multiple vector components, likely related to the late Eocene obduction, but a characteristic remanent magnetization has been successfully isolated. Overall the record spans from magnetic polarity Chron C23n to C18n, i.e. from 51 to 39 Ma. In this robust magnetic polarity-based chronological frame, the pelagic micrite to terrigenous-rich calciturbidites occurred near the top of Chron C21n and is dated 46 Ma. Furthermore, the magnetic mineral assemblage within part of the calciturbidites consists of hematite associated with maghemite. This association indicates emergent land as source of the terrigenous, suggesting a considerable uplift. Because 94% of the Zealandia continent is submerged, ocean drilling is needed to gauge the full extent and timing of Eocene compressive deformation revealed by the seismic profiles acquired in the Tasman area. This is a primary aim of

  20. Isotopic composition of late neogene K-Na alkaline basalts of eastern Kamchatka: indicators of the heterogeneity of the Mantle magma sources

    International Nuclear Information System (INIS)

    Volynets, O.N.; Karpenko, S.F.; Kehj, R.U.; Gorring, M.

    1997-01-01

    Isotopic composition of Sr, O, Nd, and Pb was determined in K-Na alkaline gabbroids and basaltoids that formed in eastern Kamchatka during Middle Miocene (gabbroids of the sub volcanic complex) and Late Miocene (basaltoids of the volcanic complex) time, before the origin of the Eastern Kamchatka Volcanic Belt. Isotopic data provide further evidence that the sources of the late Cenozoic volcanics of the within-plate and island-arc geochemical types were different

  1. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    Science.gov (United States)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of

  2. STRATIGRAPHY, SEDIMENTOLOGY AND SYNDEPOSITIONAL TECTONICS OF THE JURASSIC-CRETACEOUS SUCCESSION AT THE TRANSITION BETWEEN PROVENÇAL AND DAUPHINOIS DOMAINS (MARITIME ALPS, NW ITALY

    Directory of Open Access Journals (Sweden)

    LUCA BARALE

    2017-08-01

    Full Text Available The Provençal and Dauphinois Mesozoic successions cropping out at the southeastern margin of the Argentera Massif (Maritime Alps, NW Italy were deposited at the transition between the Provençal platform and the Dauphinois basin, marked in the study area by a partly preserved Mesozoic palaeoescarpment. These successions show important lateral variations occurring over relatively short distances, probably related to syndepositional tectonics. Different stratigraphic intervals of the pelagic-hemipelagic Dauphinois succession contain resedimented deposits, made up of both intra- and extrabasinal material, which provide a twofold evidence of syndepositional tectonics indicating both tectonically-triggered gravitational processes and a tectonically-driven evolution of the source areas. Two stages of syndepositional tectonics have been recognized: the first in the earliest Cretaceous, which is related to the deposition of carbonate breccias in the Dauphinois succession and to hydrothermal dolomitization of the Middle Triassic-Jurassic Provençal carbonates, and the second in the Late Cretaceous, which triggered the deposition of different detrital lithozones in the Upper Cretaceous Puriac Limestone. The cited evidence indicates that syndepositional tectonics continued to influence the evolution of the Alpine Tethys European passive margin long after the Late Triassic-Early Jurassic syn-rift stage, which caused the differentiation between the Dauphinois basin and the Provençal platform.

  3. Late Eocene Inversion and Exhumation of the Sivas Basin (Central Anatolia) Based On Low-Temperature Thermochronometry: Implications for Diachronous Initiation of Arabia-Eurasia Collision

    Science.gov (United States)

    Darin, M. H.; Umhoefer, P. J.; Thomson, S. N.; Schleiffarth, W. K.

    2017-12-01

    The timing of initial Arabia-Eurasia collision along the Bitlis-Zagros suture is controversial, with widely varying estimates from middle Eocene to late Miocene ( 45-10 Ma). The Cenozoic Sivas Basin (central Anatolia) preserves a detailed record of the initial stages of Arabia collision directly north of the suture in the Eurasian foreland. New apatite fission track and (U-Th)/He thermochronology data from Late Cretaceous to Paleogene units indicate rapid basin inversion and initiation of the north-vergent Southern Sivas Fold and Thrust Belt (SSFTB) during the late Eocene to early Oligocene ( 40-30 Ma), consistent with the age of a basin-wide unconformity and switch from marine to nonmarine sedimentation. We interpret late Eocene exhumation and the predominantly north-vergent kinematics of the SSFTB to reflect northward propagation of contraction into the Sivas retro-foreland basin due to initial collision of the Arabian passive margin with the Anatolide-Tauride block along the southern Eurasian margin during the late middle Eocene. We test this hypothesis by comparing our new results with regional-scale compilations of both published thermochronology and geochronology data from the entire Arabia-Eurasia collision zone. Low-temperature thermochronology data from eastern Anatolia, the Caucasus, Zagros, and Alborz demonstrate that rapid cooling and intraplate deformation occurred across much of the Eurasian foreland during the middle Eocene to early Oligocene ( 45-30 Ma). Our regional compilation of published geochronology data from central and eastern Anatolia reveals a distinct magmatic lull during the latest Eocene, Oligocene, and earliest Miocene (ca. 38-20 Ma), slightly earlier than a diachronous magmatic lull initiating at 25-5 Ma from northwest to southeast in Iran (Chiu et al., 2013). These results support a tectonic model for diachronous collision in which initial collision of the Arabia promontory occurred in central-eastern Anatolia during the middle-late

  4. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2009-12-01

    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  5. Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    Science.gov (United States)

    Poisson, André; Vrielynck, Bruno; Wernli, Roland; Negri, Alessandra; Bassetti, Maria-Angela; Büyükmeriç, Yesim; Özer, Sacit; Guillou, Hervé; Kavak, Kaan S.; Temiz, Haluk; Orszag-Sperber, Fabienne

    2016-01-01

    We present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene-Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments

  6. Late Jurassic – early Cretaceous inversion of rift structures, and linkage of petroleum system elements across post-rift unconformity, U.S. Chukchi Shelf, arctic Alaska

    Science.gov (United States)

    Houseknecht, David W.; Connors, Christopher D.

    2015-01-01

    Basin evolution of the U.S. Chukchi shelf involved multiple phases, including Late Devonian–Permian rifting, Permian–Early Jurassic sagging, Late Jurassic–Neocomian inversion, and Cretaceous–Cenozoic foreland-basin development. The focus of ongoing exploration is a petroleum system that includes sag-phase source rocks; inversion-phase reservoir rocks; structure spanning the rift, sag, and inversion phases; and hydrocarbon generation during the foreland-basin phase.

  7. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Directory of Open Access Journals (Sweden)

    Yuqing Wang

    Full Text Available The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  8. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    Science.gov (United States)

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  9. The Crustal Magnetization Mapping in the Ocean Basin of the South China Sea and its Tectonic Implications

    Science.gov (United States)

    Guo, L.; Meng, X.

    2015-12-01

    The South China Sea (SCS), surrounded by the Eurasia, Pacific and India-Australia plates, was formed by the interaction of the three plates and the Cenozoic seafloor spreading. Magnetic data is the crucial data for understanding tectonic evolution and seafloor spreading model in the SCS. Magnetization intensity is related closely to rock type and tectonics. Through magnetization mapping, the distribution of apparent magnetization in the subsurface will be obtained, benefiting in lithologic classification and geological mapping. Due to strong remanence presented in the oceanic crust, magma and seamounts in the SCS, the magnetization directions are complex and heterogeneous, quite different from the modern geomagnetic field directions. However, the routine techniques for magnetization mapping are based on negligence of remanence. The normalized source strength (NSS), one quantity transformed from the magnetic anomalies, is insensitive to remanence and responds well to the true locations of magnetic sources. The magnetization mapping based on the NSS will effectively reduce effects of remanence, benefitting in better geological interpretation. Here, we assembled high-resolution total magnetic intensity (TMI) data around the ocean basin of the SCS, and then transformed them into the NSS. Then we did magnetization mapping based on the NSS to obtain the crustal magnetization distribution in the studied area. The results show that the magnetization distribution inside of each subbasin is relatively homogeneous, but that of eastern subbasin is mostly strong with amplitude of 0.2A/m~4.2A/m, while that of southwestern subbasin is weak with amplitude of 0.2A/m~1.1A/m. It implies that magnetic structure and tectonic features in the crust are discriminative between both subbasins, and the tectonic boundary between both subbasins is roughly ranges from the northeastern edge of the Zhongsha Islands running in the southeast direction to the northeastern edge of the Reed Bank.

  10. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the northeastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.

    2017-03-01

    The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.

  11. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...

  12. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic

    Science.gov (United States)

    Viveen, Willem; Schlunegger, Fritz

    2018-04-01

    Ocean-continental subduction zones are commonly associated with compressional stress fields, which ultimately result in regional uplift of the overriding plate. This has particularly been inferred by most studies for the western margin of the Peruvian Andes. However, local geological observations have contested this idea. Here, we present a review of existing local and international literature supplemented by new structural and geomorphic observations that suggest that nearly the entire central (15° to 11° S latitude) and northern Peruvian forearc (11° to 6° S latitude) are under extension with a slight tendency to transtension instead of compression, and that this region has experienced a prolonged period of subsidence since the middle-late Eocene, interrupted by short pulses of uplift. In contrast, the southern Peruvian forearc (15° to 18° S latitude) has experienced (trans)tension from the middle-late Eocene until recent in combination with uplift. The central and southern Peruvian forearc that was influenced by the passage of the Nazca ridge experienced transtension and subsidence until the middle-late Miocene and alternating phases of compressional and transtensional tectonics afterwards. These new findings on the geodynamic development of the Peruvian forearc need to be considered in future reconstructions of the mechanisms at work within this subduction zone.

  13. Fossil Cenozoic crassatelline bivalves from Peru: New species and generic insights

    Directory of Open Access Journals (Sweden)

    Thomas J. DeVries

    2016-08-01

    Full Text Available Discoveries of new fossil Cenozoic crassatellines in Peru provide a new phylogenetic perspective on “large” Neogene genera, in which four lineages are considered to have arisen independently from different Paleogene Crassatella ancestors. Latest Oligocene and early Miocene species of the new genus Tilicrassatella gen. nov.―T. ponderosa, T. torrens sp. nov., and T. sanmartini sp. nov. from the East Pisco Basin―probably evolved from the late Eocene species, Crassatella rafaeli sp. nov., which itself differed in significant respects from slightly older species of the East Pisco Basin, C. neorhynchus and C. pedroi sp. nov. The paciphilic genus, Hybolophus, is raised to full generic status. Added to its ranks are the East Pisco Miocene species H. maleficae sp. nov., H. terrestris sp. nov., and the oldest species of the genus, the late Eocene or Oligocene H. disenum sp. nov. from the Talara Basin of northern Peru. Kalolophus gen. nov., encompassing circum-Caribbean fossil species, the extant species, K. speciosus, and the trans-isthmus species, K. antillarum, appears to have evolved from the early Oligocene Floridian species, Crassatella portelli sp. nov. The genus Marvacrassatella is a western Atlantic Miocene lineage most likely descended from Kalolophus. The genus Eucrassatella is restricted to Australian and New Zealand taxa. The Eocene New Zealand species, Spissatella media, is transferred to Eucrassatella and deemed a candidate for the most recent common ancestor of younger Eucrassatella and all Spissatella species. In the southern Pacific Ocean, the circum-Caribbean region, and tropical western America, crassatelline lineages developed one or more of the following characters: large resilifers, smooth ventral margins, and an extended left anterior cardinal tooth. Some of these late Paleogene convergent character changes might have countered increased shear forces exerted on the crassatelline valves while burrowing into finer-grained and

  14. CRUSTOSE CORALLINE ALGAL PAVEMENTS FROM LATE EOCENE COLLI BERICI OF NORTHERN ITALY

    OpenAIRE

    BASSI, DAVIDE

    2017-01-01

    The Eocene from the Prealpine region records the first phase of the crustose coralline algae flourishing in the Cenozoic. These algae are very frequent in the Marne di Priabona Formation (Late Eocene). This palaeoecological research involves ourcrop at Barbarano Vicentino(Vicenza) in the Colli Berici which is well known for its Paleogene stratigraphy. The coralline unit consists of a floatstone bank 6 m thick with rhodoliths and laminar crusts; it lies between macroforaminifer dominated limes...

  15. Late Pliocene-Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology.

    NARCIS (Netherlands)

    Necea, D.; Fielitz, W.; Matenco, L.C.

    2005-01-01

    The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; ∼11 Ma)

  16. Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2005-01-01

    Tectonics has been an inherent part of the architectural field since the Greek temples while the digital media is new to the field. This paper is built on the assumption that in the intermediate zone between the two there is a lot to be learned about architecture in general and the digital media...... in particular. A model of the aspects in the term tectonics – epresentation, ontology and culture – will be presented and used to discuss the current digital tools’ ability in tectonics. Furthermore it will be discussed what a digital tectonic tool is and could be and how a connection between the digital...... and tectonic could become a part of the architectural education....

  17. Nagra technical report 14-02, geological basics - Dossier II - Sediments and tectonic considerations; SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage -- Geologische Grundlagen -- Dossier II -- Sedimentologische und tektonische Verhältnisse

    Energy Technology Data Exchange (ETDEWEB)

    Madritsch, H.; Deplazes, G.

    2014-12-15

    This dossier is the second of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It considers the sediments that can be used and discusses tectonic considerations. As an introduction, the geological framework is discussed with the various sediments from the Paleozoic, Mesozoic and Cenozoic periods. The various methods used to investigate the rock, such as drilling and reflection-seismic methods along with the investigation of surface formations are discussed. A detailed discussion of the stratigraphic and sedimentological characteristics of the various formations follows. Geological structures and the tectonics in the proposed areas are discussed, as are the depth and thickness of the structures.

  18. Plate tectonics hiati as the cause of global glaciations: 2. The late Proterozoic 'Snowball Earth'

    Science.gov (United States)

    Osmaston, M. F.

    2003-04-01

    A fundamental reappraisal of the mechanisms that drive plate tectonics has yielded the remarkable conclusion that, for at least the past 130 Ma, the principal agent has not been ridge-push or slab-pull but a CW-directed torque (probably of electromagnetic origin at the CMB) reaching the deep (>600 km, e.g.[1]) tectospheric keel of the Antarctica craton. Major changes in spreading direction marked both ends of the 122--85 Ma Cretaceous Superchron and started by forming the Ontong Java Plateau. Action of MORs as gearlike linkages has driven Africa and India CCW since Gondwana breakup and continues to drive the Pacific plate CCW. In the Arctic there is now no cratonic keel to pick up any corresponding polar torque, so northern hemisphere plate tectonics is far less active. The thesis of this contribution is that in the Neoproterozoic the lack of cratons at high latitudes would have deprived plate tectonics of this motivation, causing MORs to die (see below) and a major fall in sea-level, leading to global glaciation as outlined in Part 1 for the Huronian events. Like that seen during that first hiatus, dyke-swarm volcanism could have arisen from thermal shrinkage of the global lithosphere, providing CO2 and ash-covering that interrrupted glacial episodes. In oceanic settings this volcanism would have lowered pH and supplied Fe2+ for shallow bio-oxygenic action to deposit as BIF. My multifacet studies of the subduction process convince me that the rapid development of "flat-slab" interface profiles involves the physical removal of hanging-wall material in front of the downbend by basal subduction tectonic erosion (STE). Historically this, and its inferred ubiquity in the Archaean as the precursor to PSM (Part 1), suggests that the required subducting-plate buoyancy is thermal. Accordingly, a redesign [2] of the MOR process has incorporated the heat-containing LVZ as an integral part of the plate and luckily provides a lot more ridge-push to ensure the subduction of

  19. Study on the estimation method of uplift during the late Quaternary by using river terraces (3). Tectonic movement described by last 100,000 years uplift distribution in an inland area

    International Nuclear Information System (INIS)

    Hataya, Ryuta

    2006-01-01

    Uplift for the last 100,000 years, which is estimated in both side of the Ayashi fault in Miyagi prefecture and the Sekiya fault in Tochigi Prefecture by using the relative height of river terraces is almost equal to vertical displacements of these faults for the last 100,000 years. Hence, the method using fluvial terraces is available for estimating the uplift for the last 100,000 years in an inland area quantatively. Furthermore, significance of the uplift obtained by the proposed methodology in this study is emphasized. It is possible to find the geotectonic feature that were so far overlooked as deformed zones along active fault, tectonic style of uplift and subsidence by obtaining the 3-dimensional distribution of uplift in last 100,000 years. Methodology and concept proposed in this study give practical survey method of late Quaternary 3-dimensional uplift characteristics for the long-term safety of geological disposal of high-level radioactive waste. By applying this method to Quaternary research, new insights on the Quaternary tectonic movement may be given. (author)

  20. THE BAIKAL RIFT: PLIOCENE (MIOCENE – QUATERNARY EPISODE OR PRODUCT OF EXTENDED DEVELOPMENT SINCE THE LATE CRETACEOUS UNDER VARIOUS TECTONIC FACTORS. A REVIEW

    Directory of Open Access Journals (Sweden)

    V. D. Mats

    2015-01-01

    Full Text Available The article reviews three typical concepts concerning the age of the Baikal rift (BR which development is still underway: 5 Ma (the BR development start in the Late Pliocene, 30 Ma (Miocene or Oligocene, and 60–70 Ma (the Late Cretaceous. Under the concept of the young BR age (Pliocene–Quaternary [Artyushkov, 1993; Nikolaev et al., 1985; Buslov, 2012], according to E.V. Artyushkov, BR is not a rift, but a graben due to the fact that the pre‐Pliocene structure of BR does not contain any elements that would be indicative of tensile stresses. However, field studies reported in [Lamakin, 1968; Ufimtsev, 1993; Zonenshain et al., 1995; Mats, 1993, 2012; Mats et al., 2001] have revealed that extension structures, such as tilted blocks and listric faults, are abundant in the Baikal basin (BB, and thus do not supportE.V. Artyushkov’s argumentation. The opinion that BR is young is shared by M.M. Buslov [2012]; he refers to studies of  Central Asia and states that only the Pliocene‐Quaternary structure of BB is a rift, while the oldest Cenozoic structures (Upper Cretaceous – Miocene are just fragments of the large Cenozoic Predbaikalsky submontane trough (PBT which are not related to the rift. However, the coeval Cenozoic lithological compositions, thicknesses of sediment layers and types of tectonic structures in PBT and BB have nothing in common. Across the area separating PBT and BB, there are no sediments or structures to justify a concept that BR and PBT may be viewed as composing a single region with uniform structures and formations. The idea of the Pliocene‐Quaternary age of BR should be rejected as it contradicts with the latest geological and geophysical data. Seismic profiling in BB has revealed the syn‐rift sedimentary bed which thickness exceeds 7.5 km. Results of drilling through the 600‐metre sedimentary sequence of Lake Baikal suggest the age of 8.4 Ma [Horiuchi et al., 2004], but M.M. Buslov believes

  1. Analysis of the seismicity of Southeastern Sicily: a proposed tectonic interpretation

    Directory of Open Access Journals (Sweden)

    M. S. Barbano

    2000-06-01

    Full Text Available Southeastern Sicily is one of the Italian regions with high seismic risk and is characterised by the occurrence in the past of large destructive events (MS = 6.4-7.3 over a territory which is densely urbanised today. The main earthquakes were analysed and some minor damaging shocks reviewed to investigate the main seismogenic features of the region. The comparison between the pattern of seismicity and evidence of Quaternary tectonics allowed us to propose a first tentative, tectonic interpretation of the earthquakes. On the whole, the seismicity of SE Sicily seems distributed along regional fault systems which have had a role in the recent geodynamic evolution of the area. The Malta escarpment, the only structure whose late Quaternary-recent activity is currently known, appears the most probable source for earthquakes with about 7 magnitude. Although no evidence of tectonics subsequent to the middle Pleistocene is available for them, the Scicli line and the NE-SW fault system delimiting the northern sector of the Hyblean plateau seem seismically active with events with maximum magnitude of 5.2 and 6.4, respectively.

  2. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  3. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  4. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    Science.gov (United States)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of

  5. The influence of late Miocene exhumation on the petroleum systems of the greater Caucasus foreland basins

    International Nuclear Information System (INIS)

    Andy, A.; Colin, D.; Sally, H.; Simon, O.

    2002-01-01

    Full text: Northwards impingement of Arabia during the Cenozoic led to the inversion of the Mesozoic Greater Caucasus Basin and the associated development of areas of enhanced subsidence. However, there is great debate regarding the timing of initiation of thrusting and uplift in the Caucasus region.Traditionally, ages ranging from Middle Eocene through to Middle Miocene have been proposed.More recently. It has become clear that although deformation and flexural subsidence may have initiated during the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift and exhumation did not begin until the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift event have been identified.The late Miocene to Pliocene event influenced a broad region and had important implications for reservoir rock deposition and the generation,migration,trapping and preservation of hydrocarbons in the surrounding basins (e.g. Indolo-Kuban,Terek-Caspian, South Caspian, Kura-Kartli, Rion, Black Sea).One area of particular interest is the development of the Stavropol Arch through time,since foreland basins are presently restricted to the Indolo-Kuban and Terek-Caspian Sub-basins.The Stavropol Arch lies immediately north of the central, most elevated parts of the Caucasus Mountains and separates the main areas of enhanced foreland subsidence.Although in most palaeogeographic reconstructions of the area, the Stavropol Arch is shown as an uplifted massif during much of the Mesozoic and Lower Cenozoic, it seems likely from recent studies that it is a feature of Late Miocene to Pliocene exhumation.One major potential implication is that an Oligocene to Miocene (foreland) succession developed in a major basin across the whole region north of the Greater Caucasus.Much of this was subsequently eroded from the Stavropol Arch during uplift and exhumation, separating the Indolo-Kuban and Terek-Caspian foreland basins.From qualitative section balancing we

  6. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt

    Science.gov (United States)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon

    2017-12-01

    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  7. An analysis of prominent prospect of in-situ sandstone type uranium deposits in Yanji basins group, Jilin province

    International Nuclear Information System (INIS)

    Peng Zhidong; Zhang Shuyi

    2003-01-01

    In Mesozoic-Cenozoic era, many medium-small-sized sedimentary basins had been formed in Yanbian draped-faulted region of Jilin Province. The basement of these basins is constituted of U-riched granite body produced during late Hercynian-early Yanshan period. Uranium-mineralization has been found in coal-bearing formation, oil-bearing formation and in tint layer of red formation. On the bases of analyzing of uranium source, geologic tectonic, paleoclimatology, paleogeography, hydrogeology and reconstruction, it is concluded that there is a prominent prospect to discover large in-situ sandstone-type uranium deposits in Yanji basins. (authors)

  8. Tectonic Geomorphology.

    Science.gov (United States)

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  9. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  10. Seismic sequence stratigraphy of Miocene deposits related to eustatic, tectonic and climatic events, Cap Bon Peninsula, northeastern Tunisia

    Science.gov (United States)

    Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad

    2013-09-01

    The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.

  11. Evidences of a tangential proterozoic tectonic from Quadrilatero Ferrifero, Minas Gerais state, Brazil

    International Nuclear Information System (INIS)

    Belo de Oliveira, O.A.; Teixeira, W.

    1990-01-01

    Radiometric Rb/Sr ages of 2,1 - 2,2 Ga determined for milonites of the Caete complex, combined with tectonic relationships among the sequences of the Espinhaco, Minas and Rio das Velhas Supergroups, suggest that the thrust and fold tectonic style observed around Caete results from two deformation episodes, with similar vergence and style. The parautochthonous domain in Caete Region has been affected by both deformations episodes (Early Proterozoic and Upper Proterozoic) whereas the allochthonous domain apparently was affected only by the younger episode. A preliminary analysis of the Quadrilatero Ferrifero as a whole, considering these two major deformation episodes, is compatible, at least in part, with the large scale features observed in maps. In an effort to understand the tectonic framework of Q.F. an speculation is made on av evolutive model, considering also the existence of two district extensional events (Late Archean and Middle Proterozoic), respectively related to the deposition of Minas and Espinhaco Supergroups in a rift/aulacogen systems. (author)

  12. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    Science.gov (United States)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically

  13. Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillan y Copahue-Callaqui (Andes del Sur, 36-39°S Cenozoic basins and their control on volcanism of Nevados de Chillan and Copahue-Callaqui complexes (36-39°S, Southern Andes

    Directory of Open Access Journals (Sweden)

    Juan Pablo Radic

    2010-01-01

    Full Text Available La Cordillera Principal de los Andes entre los 36° y 39°S constituye un excelente lugar para el estudio de la relación entre volcanismo y tectónica. Por medio del análisis tectonoestratigráfico de las cuencas cenozoicas se ha podido reconocer una clara coincidencia espacial entre estructuras de primer orden pertenecientes a estas cuencas y la distribución del volcanismo plio-pleistocénico. Las cuencas cenozoicas comenzaron su desarrollo durante el Oligoceno-Mioceno como depresiones extensionales, conformando un sistema de al menos tres subcuencas orientadas N-S y conectadas por dos zonas de acomodación estructural. Posteriormente este sistema de cuencas fue tectónicamente invertido hacia finales del Mioceno y los antiguos depocentros fueron deformados y exhumados, reutilizando las fallas originalmente extensionales. Las zonas de acomodación estructural permanecieron como estructuras de primer orden a escala de cuenca y constituyeron zonas de debilidad que favorecieron el posterior desarrollo del volcanismo y magma-tismo en los complejos volcánicos Nevados de Chillan y Copahue-Callaqui. Cada uno de estos complejos volcánicos se caracteriza por una orientación de sus centros de emisión, morfología y depósitos volcánicos en forma subparalela a la orientación de las zonas de acomodación estructural inmediatamente por debajo.The Cordillera Principal at 36° to 39°S is an excellent place to address the relationship between tectonics and volcanism. Based on tectonostratigraphic analysis of the Cenozoic basins it has been possible to recognize a clear spatial coincidence between first order basin scale structures and Plio-Pleistocene volcanism. Cenozoic basins started in the Oligocene-Miocene as extensional depocenters, characterized by at least three north-south oriented sub-basins connected by two structural accommodation zones. Towards the Late Miocene this extensional system was tectonically inverted deforming and uplifting the

  14. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    Science.gov (United States)

    Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina

    2013-12-01

    south-dipping subduction, most probably with a slab window caused by ridge subduction, of the Paleo-Asian Ocean plate beneath the Alxa block in the Late Carboniferous to Late Permian before the Ocean completely closed. This sheds light on the controversial tectonic history of the southern Altaids and supports the concept that the termination of orogenesis was in the end-Permian to Triassic.

  15. Features and uranium mineralization of Malou thrust nappe structure in Rencha basin of northeast Guangdong

    International Nuclear Information System (INIS)

    Song Shizhu; Zhao Wei; Zheng Mingliang; Chen Zhuhai

    2010-01-01

    Rencha basin was a Cenozoic volcanic fault basin (K 2 -E). Due to strong and frequent tectonic-magmatic activities, especially the late volcanic activities in the region, the acidic volcanic rock was formed which is the host rocks of uranium-molybdenum polymetallic deposit. Malou structural belt is a east-west trending and a long-term tectonic-magmatic activities belt, and is also a linear structure of volcanic eruption. Through recent exploration and study, Malou structure (F 1 )was found to be a thrust nappe structure. In the early stage of evolution, the structure controled the formation of Rencha basin and rock distribution, in the later, it controled the formation of uranium mineralization. Because farely rich orebody has been discovered in some deep part of the structure, large and richer orebody can be predicted in the depth of 500-1500 m. (authors)

  16. The shallow sedimentary and structural deformation in the southern Longmen Shan: constraints on the seismotectonics of the 2013 Lushan Mw6.7 Earthquake

    Science.gov (United States)

    Lu, R.; Xu, X.; He, D.; Suppe, J.

    2017-12-01

    On April 20, 2013, an unexpected Mw 6.7 earthquake occurred in Lushan County at the southern Longmen Shan, the eastern margin of the Tibetan Plateau. After this Lushan earthquake, whether the seismogenic fault is a high-angle or low-angle fault? The structural characteristics, attribution, and the seismotectonic model of this earthquake have many debates and problems. In this study, a high-resolution seismic reflection profile was combined with near-surface geological data, earthquake relocation and geodetic measurements, and a recent deep artificial seismic reflection profile to identify the active fault and seismotectonics of this earthquake. Three-dimensional imaging of the aftershocks was used to identify two planar faults that together form a y-shape (f1 and f2). Seismic interpretations suggest that the seismogenic fault f1 is a typical basement blind fault that did not penetrate into the overlying Mesozoic and Cenozoic units, and it is not a Shuangshi-Dachuan fault (F4) or the frontal Dayi buried fault (F6). Geodetic measurements suggest that the coseismic deformation is consistent with the geometry and kinematics of shear fault-bend folding (FBF). The history of tectonic evolution since the Paleozoic in Longmen Shan area also referred. There are three major detachments control the structural deformation of the upper crust in the Longmen Shan and Western Sichuan Basin, resulting in multiple superimposed deformation events. Deep seismic data indicate the syndepositional nature of fault f1 a preexisting normal fault older than the Triassic, which underwent positive inversion tectonics during the Late Cenozoic. A thrust fault f3 converges with f1 at a depth of approximately12 km with an accumulated slip 3.6 km. This 2013 Lushan earthquake triggered by blind faults is a hidden earthquake. Since the Late Cenozoic, with the strong and on-going compression of the Qinghai-Tibet Plateau to the Sichuan Basin, the early-period normal faults were activated after

  17. On the origin of Amazonian landscapes and biodiversity: a synthesis

    NARCIS (Netherlands)

    Wesselingh, F.P.; Hoorn, C.; Kroonenberg, S.B.; Antonelli, A.; Lundberg, J.G.; Vonhof, H.B.; Hooghiemstra, H.; Hoorn, M.; Wesselingh, F.P.

    2010-01-01

    In northern South America the Cenozoic was a period of intense tectonic and climatic interaction that resulted in a dynamic Amazonian landscape dominated by lowlands with local and shield-derived rivers. These drainage systems constantly changed shape and size. During the entire Cenozoic, the

  18. Quaternary tectonic control on channel morphology over sedimentary low land: A case study in the Ajay-Damodar interfluve of Eastern India

    Directory of Open Access Journals (Sweden)

    Suvendu Roy

    2015-11-01

    Full Text Available The style of active tectonic on the deformation and characterization of fluvial landscape has been investigated on three typical skrike-slip fault zones of the Ajay-Damodar Interfluve (ADI in Eastern India through field mapping, structural analysis and examination of digital topography (ASTER-30 m, multi-spectral imageries, and Google Earth images. Channel morphology in Quaternary sediment is more deformed than Cenozoic lateritic tract and igneous rock system by the neotectonic activities. The structural and lithological controls on the river system in ADI region are reflected by distinct drainage patterns, abrupt change in flow direction, offset river channels, straight river lines, ponded river channel, marshy lands, sag ponds, palaeo-channels, alluvial fans, meander cutoffs, multi-terrace river valley, incised compressed meander, convexity of channel bed slope and knick points in longitudinal profile. Seven morphotectonic indices have been used to infer the role of neotectonic on the modification of channel morphology. A tectonic index map for the ADI region has been prepared by the integration of used morphotectonic indices, which is also calibrated by Bouguer gravity anomaly data and field investigation.

  19. Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth

    Science.gov (United States)

    Chowdhury, Priyadarshi; Gerya, Taras; Chakraborty, Sumit

    2017-09-01

    The rock record and geochemical evidence indicate that continental recycling has been occurring since the early history of the Earth. The stabilization of felsic continents in place of Earth's early mafic crust about 3.0 to 2.0 billion years ago, perhaps due to the initiation of plate tectonics, implies widespread destruction of mafic crust during this time interval. However, the physical mechanisms of such intense recycling on a hotter, (late) Archaean and presumably plate-tectonic Earth remain largely unknown. Here we use thermomechanical modelling to show that extensive recycling via lower crustal peeling-off (delamination but not eclogitic dripping) during continent-continent convergence was near ubiquitous during the late Archaean to early Proterozoic. We propose that such destruction of the early mafic crust, together with felsic magmatism, may have caused both the emergence of silicic continents and their subsequent isostatic rise, possibly above the sea level. Such changes in the continental character have been proposed to influence the Great Oxidation Event and, therefore, peeling-off plate tectonics could be the geodynamic trigger for this event. A transition to the slab break-off controlled syn-orogenic recycling occurred as the Earth aged and cooled, leading to reduced recycling and enhanced preservation of the continental crust of present-day composition.

  20. Style and timing of salt tectonics in the Dniepr-Donets Basin (Ukraine): implications for triggering and driving mechanisms of salt movement in sedimentary basins.

    NARCIS (Netherlands)

    Stovba, S.M.; Stephenson, R.A.

    2003-01-01

    The Ukrainian Dniepr-Donets Basin (DDB) is a Late Palaeozoic intracratonic rift basin, with sedimentary thicknesses up to 19 km, displaying the effects of salt tectonics during its entire history of formation, from Late Devonian rifting to the Tertiary. Hundreds of concordant and discordant salt

  1. Tectonic superposition of the Kurosegawa Terrane upon the Sanbagawa metamorphic belt in eastern Shikoku, southwest Japan

    International Nuclear Information System (INIS)

    Suzuki, Hisashi; Isozaki, Yukio; Itaya, Tetsumaru.

    1990-01-01

    Weakly metamorphosed pre-Cenozoic accretionary complex in the northern part of the Chichibu Belt in Kamikatsu Town, eastern Shikoku, consists of two distinct geologic units; the Northern Unit and Southern Unit. The Northern Unit is composed mainly of phyllitic pelites and basic tuff with allochthonous blocks of chert and limestone, and possesses mineral paragenesis of the glaucophane schist facies. The Southern Unit is composed mainly of phyllitic pelites with allochthonous blocks of sandstone, limestone, massive green rocks, and chert, and possesses mineral paragenesis of the pumpellyite-actinolite facies. The Southern Unit tectonically overlies the Northern Univ by the south-dipping Jiganji Fault. K-Ar ages were dated for the recrystallized white micas from 11 samples of pelites and basic tuff in the Northern Unit, and from 6 samples of pelites in the Southern Unit. The K-Ar ages of the samples from the Northern Unit range in 129-112 Ma, and those from the Southern Unit in 225-194 Ma. In terms of metamorphic ages, the Northern Unit and Southern Unit are referred to the constituents of the Sanbagawa Metamorphic Belt, and to those of the Kurosegawa Terrane, respectively. Thus, tectonic superposition of these two units in the study area suggests that the Kurosegawa Terrane occurs in a higher structural position over the Sanbagawa Metamorphic Belt in eastern Shikoku. (author)

  2. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  3. The III working days of the Cenozoic

    International Nuclear Information System (INIS)

    2012-06-01

    The third working days in geology were organized by the Uruguayan Society of geology and took place in DINAMIGE in June - 2012. The lectures were given by national and foreign professionals and included important topics such as mineral raw materials used in the archaeological artifacts in Guayacas - Dayman - Paysandu . The Holocene in the coastal zone of Uruguay. Aspect of the early human occupation in Uruguay. Change effects in the land use about the mineral clay (eucalyptus forestation, illite). Paleoclimatic and paleoenvironmental reconstruction for middle and late holocene (Rocha). Gas hydrate resource quantification in Uruguay. Application of the geophysical techniques in the environmental pollution in Montevideo - Piriapolis. Environmental evolution and builders of small hills in India Muerta zone. Human or natural forcing in the geomorphological processes in Pocitos and Ramirez beaches (80 years of aerophotographic records).Tipology and nomenclature proposal for technological soil. Quarries reconditioning methodology. Hydraulic conductivity in sugar cane cultivated in soils previous vinaza application. Paleosoils and pedogenic calcretes formations in Fray Bentos (Oligocene - early miocene) Raigon (late pliocene and Middle pleistocene) and Libertad (early - middle pleistocene). Tectonics and sedimentary process in the continental talud in Uruguay. Rio de la Plata as paleoenvironmental focus using diatomos as proxies. Oleistocene mammals in the late-early Holocene in Santa Lucia river basin (Uruguay southern). Anthropization in Montevideo Bay during the Holocene. Paleocene stratigraphic plays in Uruguay offshore. Continental Influence versus marine transition in Rio de la Plata zone - internal continental shelf of the South Atlantic - a multiproxy study. Macrofossils vegetable in Palmar formation (later pleistocene) in Entre Rios - Argentina. Phytolith analysis in quaternary fluvial sediment (plio-pleistocene) in San Salvador and Palmar formation - Uruguay

  4. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  5. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  6. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events

    Science.gov (United States)

    Itaki, Takuya

    2016-12-01

    Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have provided important information about environmental changes in the Japan Sea that are related to the global climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5-2.7 Ma) surface-water assemblages were characterized mainly by cold-temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from 2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the northern strait. An increase in the abundance of subtropical

  7. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  8. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  9. Basement inheritance and salt tectonics in the SE Barents Sea: Insights from new potential field data

    Science.gov (United States)

    Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.

    2017-12-01

    The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp

  10. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: a case study of the Súľov Conglomerates (Middle Váh Valley, Western Carpathians

    Directory of Open Access Journals (Sweden)

    Soták Ján

    2017-10-01

    Full Text Available The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4, early Ypresian (Zones P5 - E2 and late Ypresian to early Lutetian (Zones E5 - E9 age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites. The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE, which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW. Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

  11. Late Cenozoic cooling history of the central Menderes Massif and the contribution of erosion to rock exhumation during active continental extension

    Science.gov (United States)

    Nilius, Nils-Peter; Wölfler, Andreas; Heineke, Caroline; Glotzbach, Christoph; Hetzel, Ralf; Hampel, Andrea; Akal, Cüneyt; Dunkl, István

    2017-04-01

    erosion rates from catchments in the exposed footwall of the Büyük Menderes detachment indicates that erosion has contributed 10-40% to the exhumation of metamorphic rocks beneath the detachment. Our finding underlines that the contribution of erosion to rock exhumation cannot be neglected in regions of active continental extension. References Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I, Glotzbach, C., Struffert, A., Akal, C., Rätz, M. 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London. 170, 669-683. Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W., Güngör, T., 2001. An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29, 611-614. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N., 2013. What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research 24, 243-274. Wölfler, A., Glotzbach, C., Heineke, C., Nilius, N.P., Hetzel, R., Hampel, A., Akal, C., Dunkl, I., Christl, M. (manuscript in revision for Tectonophysics). Late Cenozoic cooling history of the central Menderes Massif: timing and slip rate of the Büyük Menderes detachment and the relative contribution of normal faulting and erosion to rock exhumation.

  12. A coccolithophore concept for constraining the Cenozoic carbon cycle

    Science.gov (United States)

    Henderiks, J.; Rickaby, R. E. M.

    2007-06-01

    An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO>sub>2). To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing a constraint on pCO2 over the Cenozoic based on the physiological plasticity of extant coccolithophores. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of evolution of certain morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  13. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  14. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    Science.gov (United States)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the tectonic implication of blueschists in central Inner Mongolia is that they may be a new type attributed to closure of limited ocean basins and do not represent a tectonic regime occurred in conventional subduction setting.

  15. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe.......During Late Cretaceous and Cenozoic times many Paleozoic and Mesozoic rifts and basin structures in the interior of the European continent underwent several phases of inversion. The main phases occurred during the Late Cretaceous and Middle Paleocene, and have been explained by pulses...... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...

  16. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    Science.gov (United States)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  17. Mesozoic and Cenozoic structural evolution of North Oman: New insights from high-quality 3D seismic from the Lekhwair area

    Science.gov (United States)

    Bazalgette, Loïc; Salem, Hisham

    2018-06-01

    This paper highlights the role of Triassic-Jurassic extension and late Cretaceous compression in the Mesozoic-Cenozoic (Alpine) structuring of North Oman. The syn/post-Mesozoic regional structural evolution is usually documented as a succession of two stages of deformation. The Alpine 1 phase, late Cretaceous in age, occurred in association with two ophiolite obduction stages (Semail and Masirah ophiolites). It was characterised by strike slip to extensional deformation in the North Oman foreland basin sub-surface. The Alpine 2 phase, Miocene in age, was related to the continental collision responsible for both the Zagros orogen and the uplift of the Oman Mountains. The Alpine 2 deformation was transpressional to compressional. Observation and interpretation of good quality 3D seismic in the Lekhwair High area enabled the distinction of two earlier phases. Early Mesozoic extension occurred concomitantly with the regional Triassic to Jurassic rifting, developing Jurassic-age normal faults. Late Cretaceous compression occurred prior to the main Alpine 1 phase and triggered the inversion of Jurassic-seated normal faults as well as the initiation of compressional folds in the Cretaceous overburden. These early phases have been ignored or overlooked as part of the North Oman history although they are at the origin of structures hosting major local and regional hydrocarbon accumulations.

  18. Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55-25 Ma) volcanism in central Mexico: A geological basis for a volcano-tectonic stress model

    Science.gov (United States)

    Tristán-González, Margarito; Aguirre-Díaz, Gerardo J.; Labarthe-Hernández, Guillermo; Torres-Hernández, José Ramón; Bellon, Hervé

    2009-06-01

    At central-eastern Mexico, in the Mesa Central province, there are several ranges that were formed after the K/T Laramide compression but before the Basin and Range peak extensional episodes at middle-late Oligocene. Two important volcano-tectonic events happened during this time interval, 1) uplift of crustal blocks exhuming the Triassic-Jurassic metamorphic sequence and formation of basins that were filled with red beds and volcanic sequences, and 2) normal faulting and tilting to the NE of these blocks and fanglomerate filling of graben and half-graben structures. The first event, from late Paleocene to early Eocene, was related to NNE and NNW oriented dextral strike-slip faults. These faults were combined with NW-SE en echelon faulting in these blocks through which plutonism and volcanism occurred. The second event lasted from early Oligocene to early Miocene and coincided with Basin and Range extension. Intense volcanic activity occurred synchronously with the newly-formed or reactivated old fault systems, producing thick sequences of silicic pyroclastic rocks and large domes. Volcano-tectonic peaks occurred in three main episodes during the middle-late Oligocene in this part of Mexico, at about 32-30 Ma, 30-28 Ma, and 26-25 Ma. The objectives of this work is to summarize the volcano-tectonic events that occurred after the end of the Laramide orogeny and before the peak episodes of Basin and Range faulting and Sierra Madre Occidental Oligocene volcanism, and to discuss the influence of these events on the following Oligocene-Miocene volcano-tectonic peak episodes that formed the voluminous silicic volcanism in the Mesa Central, and hence, in the Sierra Madre Occidental. A model based upon geological observations summarizes the volcanic-tectonic evolution of this part of Mexico from the late Paleocene to the Early Miocene.

  19. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  20. Along-strike structural variation and thermokinematic development of the Cenozoic Bitlis-Zagros fold-thrust belt, Turkey and Iraqi Kurdistan

    Science.gov (United States)

    Barber, Douglas E.; Stockli, Daniel F.; Koshnaw, Renas I.; Tamar-Agha, Mazin Y.; Yilmaz, Ismail O.

    2016-04-01

    The Bitlis-Zagros orogen in northern Iraq is a principal element of the Arabia-Eurasia continent collision and is characterized by the lateral intersection of two structural domains: the NW-SE trending Zagros proper system of Iran and the E-W trending Bitlis fold-thrust belt of Turkey and Syria. While these components in northern Iraq share a similar stratigraphic framework, they exhibit along-strike variations in the width and style of tectonic zones, fold morphology and trends, and structural inheritance. However, the distinctions of the Bitlis and Zagros segments remains poorly understood in terms of timing and deformation kinematics as well as first-order controls on fold-thrust development. Structural and stratigraphic study and seismic data combined with low-T thermochronometry provide the basis for reconstructions of the Bitlis-Zagros fold-thrust belt in southeastern Turkey and northern Iraq to elucidate the kinematic and temporal relationship of these two systems. Balanced cross-sections were constructed and incrementally restored to quantify the deformational evolution and use as input for thermokinematic models (FETKIN) to generate thermochronometric ages along the topographic surface of each cross-section line. The forward modeled thermochronometric ages from were then compared to new and previously published apatite and zircon (U-Th)/He and fission-track ages from southeastern Turkey and northern Iraq to test the validity of the timing, rate, and fault-motion geometry associated with each reconstruction. The results of these balanced theromokinematic restorations integrated with constraints from syn-tectonic sedimentation suggest that the Zagros belt between Erbil and Suleimaniyah was affected by an initial phase of Late Cretaceous exhumation related to the Proto-Zagros collision. During the main Zagros phase, deformation advanced rapidly and in-sequence from the Main Zagros Fault to the thin-skinned frontal thrusts (Kirkuk, Shakal, Qamar) from middle

  1. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    Science.gov (United States)

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-09-15

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  2. Late cenozoic evolution of Fortymile Wash: Major change in drainage pattern in the Yucca Mountain, Nevada region during late miocene volcanism

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Warren, R.G.

    1994-01-01

    The site characterization of Yucca Mountain, NV as a potential high level nuclear waste repository includes study of the surficial deposits as a record of the paleoenvironmental history of the Yucca Mountain region. An important aspect of this history is an understanding of the evolution of paleogeography leading to establishment of the present drainage pattern. Establishment of drainage basin evolution is needed before geomorphic response to paleoclimate and tectonics can be assessed, because a major change in drainage basin geometry can predominantly affect the sedimentary record. Because alluvial aquifers are significant to regional hydrology, a major change in surface drainage resulting in buried alluvium could have hydrogeologic significance. In this paper, we report on geologic evidence for a major modification in surface drainage pattern in the Yucca Mountain region, resulting in the probable establishment of the Fortymile Wash drainage basin by latest Miocene time

  3. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    Science.gov (United States)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  4. New paleomagnetic data from late Paleozoic sedimentary rocks of Novaya Zemlya Archipelago: tectonic implications

    Science.gov (United States)

    Abashev, Victor V.; Metelkin, Dmitry V.; Mikhaltsov, Nikolay E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    New paleomagnetic data for Novaya Zemlya archipelago were obtained by processing the samples collection gathered during the 2014 field season. The paleomagnetic directions and paleomagnetic poles were determined from the Paleozoic sedimentary complexes located on the Southern Island (Upper Permian) and the Northern Island (Lower and Upper Devonian, Upper Carboniferous) of the archipelago. Positive fold and reversal tests indicate that the isolated paleomagnetic directions correspond to the primary magnetization components. The corresponding paleomagnetic pole are in good agreement with poles obtained earlier in the 1980s by E.L. Gurevich and I.A. Pogarskaya. Considering the confidence ovals, the paleomagnetic poles obtained for the sites of the Northern Island are located close to the corresponding path segment of the APWP of Europe. This means that at least since the early Devonian, the northern part of Novaya Zemlya Archipelago had a position that was close to its current position relatively to the Arctic margin of Europe and has not undergone significant shifts or rotations. However, the upper Permian paleomagnetic pole for the Southern Island is very different from the corresponding part of the European APWP. We are considering this pole position within a model, involving significant intraplate movement between the structures of the European and Siberian tectonic provinces until the Late Cretaceous. The sinistral strike-slips inferred by the model could have caused or were accompanying the opening of the Mesozoic rift system in Western Siberia. This event has reached its maximum within the South Kara basin and resulted in the north-westward (in geographic coordinates) displacement of the southern part of the Novaya Zemlya Archipelago in relation to the Arctic margin of Europe and in the deformation of the Pay-Khoy-Novaya Zemlya margin, which caused its modern curved form. The study was supported by the Russian Science Foundation, grant No. 14-37-00030 and the

  5. Tectonic Characteristics and its Effects on the Control of the Oil and Gas Accumulation in Bayanhushu Depression

    Directory of Open Access Journals (Sweden)

    Tan Zhaobin

    2015-01-01

    Full Text Available In this paper, it makes full use of seismic and Wells in the single well data on the basis of predecessors’ research. On the basis of structural geology theory as the instruction, the detailed characteristics of structure and fracture were studied in this paper. Based on the fracture characteristics, the authors studied the basement depth and the development of hydrocarbon source rocks characteristics, and the restoration method of sag tectonic evolution characteristics are analyzed as well. The authors also discussed the construction control of the oil and gas distribution rules. Through this research, the authors found out the regional tectonic framework, the fault distribution and the tectonic evolution stage, illustrated the structure of oil and gas accumulation conditions, the accumulation mode, and the distribution rule of control law. Through prototype basin restoration, the authors given concerns about the early depression and tectonic background of stuck faults control source, the distribution of sand body, the western steep slope fan delta and gentle slope belt of eastern braided river delta front sand body is favorable reservoir. Depression after Nantun group and the end of the Yimin group at the end of the reversal of the two big changes, ring between the concave structure development, favorable traps formed early reverse changes, late reverse change on the early formation of trap destruction; reservoir by the late Nantun group is formed by the reverse change control in the construction of the steep slope belt wing structure oil and gas enrichment.

  6. Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront

    Science.gov (United States)

    Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.

    2017-10-01

    The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.

  7. Active Magmatic Underplating in Western Eger Rift, Central Europe

    Science.gov (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst

    2017-12-01

    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  8. Mineral fabrics in high-level intrusions recording crustal strain and volcano-tectonic interactions: the Shellenbarger pluton, Sierra Nevada, California

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Verner, K.; Holub, F. V.; Sláma, Jiří; Paterson, S. R.; Memeti, V.

    2017-01-01

    Roč. 174, č. 2 (2017), s. 193-208 ISSN 0016-7649 Institutional support: RVO:67985831 Keywords : tectonics * volcanic rocks * volcanoes * Late Cretaceous * magmatic arc Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.037, year: 2016

  9. Tectonic control on turbiditic sedimentation: The Late Cretaceous-Eocene successions in the Sinop-Boyabat Basin of north-central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Janbu, Nils Erik

    2004-07-01

    The aim of this study: Tectonics is widely recognized by geologists as the single most important factor controlling the development, filling and deformation of sedimentary basins. In general terms, the role of tectonics seems rather ''obvious'' to most geologists, because we know reasonably well as what tectonics ''can do'' as the agent of structural deformation. Therefore, the role of tectonics is often invoked as a kind of ballpark variable - as the obvious cause of ''subsidence'' or ''uplift'' - and seems to some authors even too obvious to mention. Relatively little attempt has been in sedimentological and stratigraphic studies to recognize as to what effects exactly the tectonic activity had on sedimentation in a particular basin. The principal aim of the present study has been to improve our understanding of how tectonic activity can affect deep-water turbiditic sedimentation in a particular basin, including its ''external'' influences (basin geometry, basin-margin configuration, sediment source/supply and relative sea-level change) and ''internal'' effects (basin-floor subsidence, seafloor deformation). Foreland basins are some of the most active tectonically, and the Sinop- Boyabat Basin is a fascinating case of a rift converted into a foreland basin and increasingly deformed. Summary of papers: The main part of the field study, concerned with the sedimentology and facies analysis of the turbiditic succession, is summarized in Papers 1-3, which put special emphasis on the physical character and morphodynamic evolution of the depositional systems and on the tectonic control on their development. Paper 4 focuses on the frequency distribution of bed thickness data collected by detailed logging of various turbiditic assemblages: siliciclastic deposits of nonchannelized currents (lobe and overbank facies); siliciclastic deposits of poorly confined, aggradational channels; siliciclastic deposits of well-defined sinuous channels nested into channel complexes; and

  10. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    Science.gov (United States)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  11. Lithospheric structure of northwest Africa: Insights into the tectonic history and influence of mantle flow on large-scale deformation

    Science.gov (United States)

    Miller, Meghan S.; Becker, Thorsten

    2014-05-01

    Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.

  12. Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany

    Science.gov (United States)

    Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor

    2018-02-01

    The majority of hydrothermal vein systems of economic interest occur at relatively shallow crustal levels, although many of them formed at significantly greater depths. Their present position is a consequence of uplift and erosion. Although, many aspects of their formation are well constrained, the temporal chemical evolution of such systems during uplift and erosion is still poorly understood. These vein minerals comprise calcite, dolomite-ankerite, siderite-magnesite, anhydrite and gypsum forming the last gangue assemblages in Jurassic and Tertiary sulphide-fluorite-quartz-barite veins of the Schwarzwald mining district, SW Germany. Mineral textures of samples from nine localities reveal that in these sequences, mineral precipitation follows a recurring pattern: early calcite is followed by anhydrite or gypsum, siderite and/or dolomite. This succession may repeat up to three times. In-situ (LA-ICP-MS) U-Pb age dating of 15 carbonates from three subsequent generations of the late-stage vein assemblage yield robust ages between 20 and 0.6 Ma. Each mineral sequence forms in a distinctive period of about 2-5 Ma. These ages clearly relate these late-stage mineral phases to the youngest geological episode of the Schwarzwald, which is associated with the Cenozoic Rhine Graben rifting and basement uplift. Based on thermodynamic modelling, the formation of the observed mineral assemblages required an deeply sourced Mg-, Fe- and SO4-rich fluid (b), which was episodically mixed with a shallow crustal HCO3-rich fluid (a). As a consequence of fluid mixing, concentrations of Mg, Fe and SO4 temporarily increased and initiated the formation of the observed sulphate-carbonate mineral sequences. This discontinuous large-scale vertical fluid mixing was presumably directly related to episodes of active tectonics associated with the Cenozoic strike-slip regime of the Upper Rhine Graben. Analogously, episodic fluid mixing is a major key in the formation of older (Jurassic to early

  13. A New Global Geomorphology?

    Science.gov (United States)

    Baker, V. R.

    1985-01-01

    Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.

  14. Stratigraphy and structure of eastern Syria across the Euphrates depression

    Science.gov (United States)

    Sawaf, Tarif; Al-Saad, Damen; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.

    1993-04-01

    A N-S crustal-scale geotransect across the northern Arabian platform in eastern Syria reveals an alternating series of basement uplifts and basins separated by predominantly transpressional fault zones above an effectively uniform crust. Four major tectonic provinces are crossed along a 325 × 100 km corridor that extends from the Iraqi border in the south to the Turkish border in the north: the Rutbah uplift, the Euphrates depression, the Abd el Aziz structural zone, and the Qamichli uplift. These features are the manifestations of reactivated pre-Cenozoic structures that responded to forces acting along nearby Arabian plate boundaries, particularly Cenozoic convergence and collision along the margins of the northern Arabian platform i.e., the Bitlis suture and the East Anatolian fault in southern Turkey and the Zagros suture in Iran and Iraq. The database for this study consists of 3000 km of industry seismic reflection data, 28 exploratory wells, and geologic and Bouguer gravity maps. The deep crustal structure and, in part, the basement geometry along this transect are inferred from two-dimensional modeling of Bouguer gravity, whereas the shallow (about 8 km) structure is constrained primarily by well and seismic data. Features of the geotransect reveal: (1) A relatively uniform crustal column approximately 37 km thick with only minor crustal thinning beneath the Euphrates. Crustal thinning may be slightly more pronounced beneath the Euphrates (about 35 km) to the southeast of the transect where the Bouguer gravity anomaly is slightly higher. (2) Along the Euphrates depression, ongoing subsidence, which began during the Late Cretaceous, resulted in the deposition of at least 3 km of Late Cretaceous and Cenozoic rocks. The structural complexity of the Paleozoic and most of the Mesozoic sedimentary sections along the transect contrasts markedly with a relatively simple, flat-lying Cenozoic section along most of the transect. A notable exception is the Abd el Aziz

  15. Late Paleozoic sedimentation on the northern margin of the North China block: implications for regional tectonics and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Cope, T.; Ritts, B.D.; Darby, B.J.; Fildani, A.; Graham, S.A.

    2005-03-01

    The Late Paleozoic collision between the North China continental block and the Altaid arc terranes of Mongolia represents one of the earliest and most fundamental tectonic events in the ongoing construction of Asia. New detrital zircon provenance data from Carboniferous-Permian nonmarine strata on the northern margin of North China imply that the northern margin of the North China block constituted a continental margin arc prior to this collision (-400-275 Ma) and that collision took place via south-directed subduction beneath North China. A significant and widespread climate change took place in North China in mid-Permian time, and is recorded by a change from Carboniferous and Lower Permian humid-climate, coal-bearing sedimentary facies to Upper Permian and Lower Triassic arid-climate redbeds. In northern North China, this climate change is accompanied by a paleocurrent reversal, which indicates the onset of uplift on the northern margin of the North China block. The temporal association of climate change and uplift suggests that aridification of North China may have been caused by a rainshadow effect from topography related to the convergence and ultimate collision between the North China block and the Altaid arc terranes of Mongolia. Alternatively, climate change may have occurred as a result of northward drift of the North China block through arid subtropical latitudes.

  16. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    Science.gov (United States)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in

  17. Ecological impacts of the late Quaternary megaherbivore extinctions.

    Science.gov (United States)

    Gill, Jacquelyn L

    2014-03-01

    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species.

  18. Types of Cenozoic Mollusca from Java in the Martin Collection of Naturalis

    NARCIS (Netherlands)

    Leloux, J.; Wesselingh, F.P.

    2009-01-01

    An updated type catalogue of the Martin Collection (fossil Mollusca, predominantly from the Cenozoic of Java, Indonesia) is presented. Type specimen data, updated locality data, and illustrations are given.

  19. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  20. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    Science.gov (United States)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  1. Structural inversion in the northern South China Sea continental margin and its tectonic implications

    Directory of Open Access Journals (Sweden)

    Chin-Da Huang

    2017-01-01

    Full Text Available The northern South China Sea (SCS continental margin was proposed to be an active margin during the Mesozoic. However, only a few papers discussed the Mesozoic structural evolution in this region. Here, we provide information based on the seismic profile interpretations with age control from biostratigraphic studies and detrital zircon U-Pb dates of well MZ-1-1 in the western Dongsha-Penghu Uplift of the northern SCS continental margin. The industrial seismic profiles reveal evidence for structural inversion as represented by folds and high-angle reverse faults, formed by reactivation of pre-existing normal faults. The inversion event likely started after the Early Cretaceous, and developed in Late Cretaceous, but ceased before the Cenozoic. The areal extent of the structural inversion was restricted in the western Dongsha-Penghu Uplift and was approximately 100 km in width. Based on the paleogeographic reconstruction of SCS, the structural inversion was likely formed by a collision between the seamount (volcanic islands swarm of the current North Palawan block (mainly the Calamian Islands and the northern SCS continental margin around Late Cretaceous.

  2. Late Cretaceous sub-volcanic structure in the continental shelf off Portugal and its implications on tectonics and seismicity

    Science.gov (United States)

    Neres, Marta; Terrinha, Pedro; Custódio, Susana; Noiva, João; Brito, Pedro; Santos, Joana; Carrilho, Fernando

    2017-04-01

    West Iberia during the Late Cretaceous and at Present, specifically: What was the tectonic control for the emplacement of these magmatic bodies emplaced on the rifted margin? Is the rheological contrast between magmatic bodies and host-rocks controlling the seismicity localization? Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.

  3. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    Science.gov (United States)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  4. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  5. Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows™

    Science.gov (United States)

    Ortner, Hugo; Reiter, Franz; Acs, Peter

    2002-12-01

    TectonicVB for Macintosh and TectonicsFP for Windows TM operating systems are two menu-driven computer programs which allow the shared use of data on these environments. The programs can produce stereographic plots of orientation data (great circles, poles, lineations). Frequently used statistical procedures like calculation of eigenvalues and eigenvectors, calculation of mean vector with concentration parameters and confidence cone can be easily performed. Fault data can be plotted in stereographic projection (Angelier and Hoeppener plots). Sorting of datasets into homogeneous subsets and rotation of tectonic data can be performed in interactive two-diagram windows. The paleostress tensor can be calculated from fault data sets using graphical (calculation of kinematic axes and right dihedra method) or mathematical methods (direct inversion or numerical dynamical analysis). The calculations can be checked in dimensionless Mohr diagrams and fluctuation histograms.

  6. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  7. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... the back. As the body accelerated, the foot was forced backward. The rotated disc was forced backward along a detachment fault that was bounded by lateral ramps. The interramp segment matches the width of the dinosaur's foot which created an imbricate fan thrust system that extended to the far end...

  8. Tectonic control on turbiditic sedimentation: The Late Cretaceous-Eocene successions in the Sinop-Boyabat Basin of north-central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Janbu, Nils Erik

    2004-07-01

    The aim of this study: Tectonics is widely recognized by geologists as the single most important factor controlling the development, filling and deformation of sedimentary basins. In general terms, the role of tectonics seems rather ''obvious'' to most geologists, because we know reasonably well as what tectonics ''can do'' as the agent of structural deformation. Therefore, the role of tectonics is often invoked as a kind of ballpark variable - as the obvious cause of ''subsidence'' or ''uplift'' - and seems to some authors even too obvious to mention. Relatively little attempt has been in sedimentological and stratigraphic studies to recognize as to what effects exactly the tectonic activity had on sedimentation in a particular basin. The principal aim of the present study has been to improve our understanding of how tectonic activity can affect deep-water turbiditic sedimentation in a particular basin, including its ''external'' influences (basin geometry, basin-margin configuration, sediment source/supply and relative sea-level change) and ''internal'' effects (basin-floor subsidence, seafloor deformation). Foreland basins are some of the most active tectonically, and the Sinop- Boyabat Basin is a fascinating case of a rift converted into a foreland basin and increasingly deformed. Summary of papers: The main part of the field study, concerned with the sedimentology and facies analysis of the turbiditic succession, is summarized in Papers 1-3, which put special emphasis on the physical character and morphodynamic evolution of the depositional systems and on the tectonic control on their development. Paper 4 focuses on the frequency distribution of bed thickness data collected by detailed logging of various turbiditic assemblages: siliciclastic deposits of nonchannelized currents (lobe and overbank facies); siliciclastic deposits of poorly

  9. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    Science.gov (United States)

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  10. Tectonically controlled relief evolution in the Northern Tien Shan and Junggar Alatau from the Eocene to the Present

    Science.gov (United States)

    Seib, N.; Kley, J.; Voigt, T.; Kober, M.

    2012-04-01

    across them. This first phase of deformation was followed by erosional leveling. Well-consolidated caliche layers indicate an extended period of stable soil formation in a (semi-)arid climate. Renewed shoting and uplift led to river incision and the formation of terraces and gave rise to new active faults, but their displacements are still low due to their short lifespans. These faults are presently expressed at the surface as fold scarps. The scarps are underlain by flexures affected in places by small thrust faults. Some of them, judging by their directions, are probably reactivating Miocene faults. The differences in the timing of range uplift, the progression of Cenozoic folding and the location of the young flexures all indicate migration of thrusting and folding from the borders of the Ili basin toward its center. A similar pattern of tectonic activity shifting from the flanking ridges toward the basin center was also observed in the Issyk-Kul basin (Korzhenkov, et al., 2007).

  11. Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: association with the opening of the south Atlantic Ocean

    Science.gov (United States)

    Tello Saenz, C. A.; Hackspacher, P. C.; Hadler Neto, J. C.; Iunes, P. J.; Guedes, S.; Ribeiro, L. F. B.; Paulo, S. R.

    2003-01-01

    Apatite fission-track analysis was used for the determination of thermal histories and ages in Precambrian areas of southeast Brazil. Together with geological and geomorphologic information, these ages enable us to quantify the thermal histories and timing of Mesozoic and Cenozoic epirogenic and tectonic processes. The collected samples are from different geomorphologic blocks: the high Mantiqueira mountain range (HMMR) with altitude above 1000 m, the low Mantiqueira mountain range (LMMR) under 1000 m, the Serra do Mar mountain range (SMMR), the Jundiaí and Atlantic Plateaus, and the coastline, all of which have distinct thermal histories. During the Aptian (˜120 Ma), there was an uplift of the HMMR, coincident with opening of the south Atlantic Ocean. Its thermal history indicates heating (from ˜60 to ˜80 °C) until the Paleocene, when rocks currently exposed in the LMMR reached temperatures of ˜100 °C. In this period, the Serra do Mar rift system and the Japi erosion surface were formed. The relief records the latter. During the Late Cretaceous, the SMMR was uplifted and probably linked to its origin; in the Tertiary, it experienced heating from ˜60 to ˜90 °C, then cooling that extends to the present. The SMMR, LMMR, and HMMR were reactivated mainly in the Paleocene, and the coastline during the Paleogene. These processes are reflected in the sedimentary sequences and discordances of the interior and continental margin basins.

  12. Sr-Nd isotope systematics of xenoliths in Cenozoic volcanic rocks from SW Japan

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Iwata, Masatoshi; Iizumi, Shigeru; Nureki, Terukazu.

    1993-01-01

    Based on new and previously published Sr and Nd isotope data, we examined the petrogenetic relationship between deep crust- and upper mantle-derived xenoliths contained in Cenozoic volcanic rocks and Cretaceous-Paleogene granitoid rocks in SW Japan. The deep crust- and upper mantle-derived mafic to ultramafic xenoliths contained in Cenozoic volcanic rocks from SW Japan have comparable initial Sr and Nd isotope ratios to the Cretaceous-Paleogene granitoid rocks in their respective districts. This may suggest that these xenoliths were genetically related to the Cretaceous-Paleogene granitoid rocks in SW Japan, and that regional variations in Sr and Nd isotope ratios observed in the granitoid rocks are attributed to differences in the geochemistry of the magma sources. (author)

  13. Geomorphology, tectonics, and exploration

    Science.gov (United States)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  14. Seismic structure and tectonics of the Alasehir--Gediz Graben, Western Turkey

    Science.gov (United States)

    Turk, Sezer

    The Aegean Extensional Province (AEP) in Western Anatolia includes three major graben systems that have formed as a result of N-S tectonic extension in the latest Cenozoic. The 6 to 30-km-wide Alasehir--Gediz Graben (AGG) in the north contains ˜3-km-thick Miocene and Plio-Quaternary, alluvial--fluvial and lacustrine sedimentary rocks. I have used seismic profiles, well-log data and the regional stratigraphy to identify the key stratigraphic units, their bounding surfaces and vertical thicknesses, and to document the subsurface structural architecture of the AGG. A north-dipping detachment fault exposed in the southern shoulder of the AGG basin occurs at 2--2.5 km at depth beneath the graben fill, and is dissected by ˜E--W--striking, synthetic to antithetic, high-angle normal faults. The graben system is crosscut by NNE-oriented cross faults, showing several km of recurrence interval and 10s of meters of vertical displacement. These faults divide the graben into several sub-basins and display positive and negative flower structures. The structural architecture in the sub-basins shows important variations in stratigraphic thicknesses, fault geometry-displacement and deformation patterns, indicating that cross faulting played a critical role in the evolution of the AAG.

  15. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose

    2010-01-01

    the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western margin...... that Plio-Pleistocene erosion over-deepened a pre-existing topography....

  16. New insights into Late Quaternary slip rate of the thrust fault zone, northern margin of the Qilian Shan, NE Tibet

    Science.gov (United States)

    Hai-bo, Y.; Yang, X., Sr.; LI, A.; Huang, X.; Huang, W.

    2017-12-01

    The India-Eurasian plate collision caused widespread Cenozoic crustal deformation within the Tibetan Plateau and on its margins. Ongoing post-collisional convergence formed multi-row NWW-trending folded mountain ranges and basins pattern in the northeastern Tibet. Late Quaternary tectonic deformation and quantitative slip rate estimates around the Qilian Shan and the Hexi corridor foreland basin are critical to understanding crustal deformation process of the Tibetan plateau and assessing regional seismic hazards. The Fodongmo-Hongyazi fault (FHF) is a major thrust at the Northeastern Tibet, bounding the Qilian Shan. It is accommodating the crustal shortening across this region and has produced strong historical earthquake. Until now the slip rate has been poorly constrained limiting our understanding of its role in the accommodation of deformation across this region. In this work, faulted terraces at the Hongshuiba River and Fengle River sites on the western and middle segments of the FHF were mapped with satellite imagery and field observations. Chronological constraints are placed on the ages of displaced river terraces at these sites using terrestrial cosmogenic nuclide (TCN) exposure dating. These ages combined with offsets measured from SPOT 6 DEM's yield average vertical slip rates of 1.3±0.1mm/yr for the western segment since 207 ka and 0.9±0.1 mm/yr since 46 ka for the middle segment. These data suggest that the FHF accommodates 15-20% of the total shortening across the Qilian Shan (5.5-7 mm/yr). In addition, comparisons of our data with published slip rates along the Northern Qilian Thrust Fault Zone show that the fastest tectonic uplift occurs along the western portion of the Northern Qilian Shan. This is consistent with estimates deduced from geomorphology. The western portion of the Qilian Shan is mainly controlled by compressional deformation produced by the northward movement of the Northeastern Tibetan Plateau, while the eastern Qilian Shan is

  17. Study of the metamorphic belts and tectonics; Henseitai kenkyu to tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Hokkaido University, Sapporo (Japan)

    1997-10-25

    Study of metamorphic belts and tectonics is introduced. Minerals supposedly originating in the transitional zone and the lower mantle, that is, inclusions in diamond in kimberlite, are deemed to carry information about the depth level of 670km and lower. The place of origin of peridotite, Alpe Arami of Switzerland, is again estimated at a level of 300km or deeper. In the tectonic cross section in this region, the oceanic crust is bent and folded, and such a structure enables the supposition that fragments off the transitional zone may be carried upward to the ground surface. This region is now being limelighted, with plume tectonics enjoying popularity. The split of Pangaea is related with the ascent of plume. In the eastern part of Australia, there are alkali rocks attributable to the plume that was supposedly active at the end of the Proterozoic. Zircon U-Pb dating by SHRIMP offers a new approach to the tectonics of metamorphic rocks, and is reinforcing the position of metamorphic petrology relative to the study of collision and split of continents. 64 refs., 10 figs.

  18. The ANDRILL programme: a new multinational initiative to investigate Antarctica's climatic and tectonic history from stratigraphic drilling

    Science.gov (United States)

    Naish, T.; Andrill Steering Committee

    2003-04-01

    ANDRILL is a multinational initiative to investigate Antarctica’s role in Cenozoic-Recent (65 million years ago to the present) climatic, glacial and tectonic change through the recovery of stratigraphic records from and around the Antarctic margin. The ANDRILL programme was initially conceived and promoted by scientists who led the successful Cape Roberts Project (CRP) and other interested parties. A key motivation of ANDRILL is that the role of the Antarctic cryosphere (ice sheets, ice shelves and sea ice) in the climate system is complex and very poorly understood. While, high-quality sedimentary archives of past ice sheet behaviour have recently be-come available from projects such as the Cape Roberts Project and the Ocean Drilling Program (Leg 188, Prydz Bay), unfortunately they are too few in number to allow a comprehensive understanding of the continents influence on global climate. ANDRILL will address this issue through drilling a targeted portfolio of sites initially in the McMurdo Sound region. Here the dynamic behaviour of the East and West Antarctic ice sheets, and the Ross Ice Shelf have left their signature in the thick Cenozoic sedimentary fills of the West Antarctic Rift system and flexural moat basins. The ANDRILL McMurdo Sound Portfolio, is an 8 to 9 year programme spanning from 2001 to 2010 of which geophysical and site survey scientific investigations are nearing completion and the drilling phase will soon begin. An ANDRILL consortium has been established comprising five countries : USA, Italy, Germany, UK and NZ. This paper will present the scientific objectives of the programme, discuss the current status and future plans.

  19. A remarkable new genus of Protosmylinae (Neuroptera: Osmylidae) from late Eocene Florissant, Colorado.

    Science.gov (United States)

    Makarkin, Vladimir N

    2017-05-18

    Pseudosmylidia relicta gen. et sp. nov. (Neuroptera: Osmylidae) is described from the late Eocene of Florissant (U.S.A., Colorado). It is assigned to the subfamily Protosmylinae based on the presence of two venational features characteristic of the subfamily: most crossveins in the radial to intramedial spaces of the forewing are arranged in four gradate series, and CuP is short and simple or forked only once in the hind wing. This genus is remarkable by CuP in the forewing bearing few pectinate branches. This is the only genus of extant and Cenozoic fossil Osmylidae in which this plesiomorphic condition is retained.

  20. Climatic and tectonic controls on late Quaternary reef growth in New Caledonia

    International Nuclear Information System (INIS)

    Cabioch, G.; Recy, J.; Jouannic, CH.; Turpin, L.

    1996-01-01

    Sedimentological and stratigraphic analysis of about 40 sub-surface cores drilled through the reefs of New Caledonia provides valuable data on the processes of reef recolonization following the past post glacial sea-level rise, and on the vertical tectonic behaviour of the island over the past 125,000 years. Holocene reefs in New Caledonia are not older than 8.5 ky. The fringing reef which developed during the last interglacial high sea-level 125 ky ago, is today uplifted and lies along some 30 km of coast in the area of 10 m, while the present-day barrier reef is deeply submerged (around - 15 to - 20 m). Near Hienghene (east coast), a double system of two notches is markedly deformed by a bulge, but is much more localized (3 km long) than in the Yate area, with a maximum uplift of 13 m of the upper double notch system (interpreted as having formed during the last interglacial event). Relics of the 125 ky fringing reef are emergent at various locations in the Bourail region (west coast). However, their altitudes are lower than that generally admitted (+ 6 m) for their construction at 125 ky, thus most probably reflecting a slight subsidence of the area. Elsewhere, the 125 ky fringing reef underlies the Holocene reef: in the SW of the island, in particular, the Holocene - Pleistocene unconformity is observed at - 6 m. In areas of higher subsidence rates, such as the NW or NE of the island, the 125 ky fringing reef may be more deeply buried. In that case, the Holocene reef rests directly on a metamorphic or sedimentary substratum. Within the barrier reef build-up itself, the 125 ky reef flat is overlain by a Holocene sequence, whose thickness depends on local subsidence rates. The observation of notches, raised becah-rocks or coral reefs (dated ar around 5,500 yr) uplifted up to 1 to 1,5 m above MLWS reflects the existence of a hydro-isostatic rebound. Traces of this rebound disappear in areas of high subsidence rate, illustrating the action of local tectonics

  1. Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: Geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2017-05-01

    Full Text Available The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basic-intermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases and NW-trending (mainly diabasic diorites dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with εHf (t values of −8.90 to 7.49 and −23.39 to −7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma, respectively. Geochemically these rocks are characterized by low TiO2 (0.91–1.73 wt.% and MgO (3.04–7.96 wt.%, and high Al2O3 (12.5–16.60 wt.% and K2O (0.60–3.63 wt.%. Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K, but depleted in HFSEs (Nb, Ta and Zr. The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional environment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.

  2. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights From Shortening Structures in the Sichuan Basin

    Science.gov (United States)

    Tian, Yuntao; Kohn, Barry P.; Qiu, Nansheng; Yuan, Yusong; Hu, Shengbiao; Gleadow, Andrew J. W.; Zhang, Peizhen

    2018-02-01

    A distinctive NNE trending belt of shortening structures dominates the topography and deformation of the eastern Sichuan Basin, 300 km east of the Tibetan Plateau. Debate continues as to whether the structures resulted from Cenozoic eastward growth of the Tibetan Plateau. A low-temperature thermochronology (AFT and AHe) data set from four deep boreholes and adjacent outcrops intersecting a branch of the shortening structures indicates distinctive differential cooling at 35-28 Ma across the structure, where stratigraphy has been offset vertically by 0.8-1.3 km. This result forms the first quantitative evidence for the existence of a late Eocene-Oligocene phase of shortening in the eastern Sichuan Basin, synchronous with the early phase of eastward growth and extrusion of the Tibetan Plateau. Further, a compilation of regional Cenozoic structures reveals a Miocene retreat of deformation from the foreland basin to the hinterland areas. Such a tectonic reorganization indicates that Eocene to Miocene deformation in the eastern Tibetan Plateau is out-of-sequence and was probably triggered by enhanced erosion in the eastern Tibetan Plateau.

  3. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  4. Depositional environments of Late Triassic lake, east-central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hester, P.M. (Bureau of Land Management, Albuquerque, NM (USA))

    1989-09-01

    The Redonda Member of the Chinle Formation represents deposition in a large, polymictic lake during the Late Triassic (Norian) in east-central New Mexico. This study documents and defines an extensive lacustrine system situated in western Pangaea which was influenced by both tectonic and climatic events. Areal extent of the lake may have been as much as 5,000 km{sup 2}.

  5. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    Science.gov (United States)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  6. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  7. Pre-Cenozoic basement rocks of the Proto-Philippine Sea Plate: Constraints for the birthplace of the Izu-Bonin-Mariana Arc

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Horie, K.; Barth, A. P.; Harigane, Y.; Ueda, H.

    2016-12-01

    The Izu-Bonin-Mariana Arc is widely regarded to be a typical intra-oceanic arc, with the oceanic Pacific Plate subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. However, little is known about the origin of the proto-Philippine Sea Plate, which existed along with the Pacific Plate at the time of subduction initiation in the Eocene. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible and dredge surveys in the Daito Ridges and the Kyushu-Palau Ridge. The Daito Ridges comprise the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that the Daito Ridges expose deep crustal sections of gabbroic, granitic, metamorphic, and ultra-mafic rocks, along with volcanic rocks ranging from basalt to andesite. Mesozoic magmatic zircon U-Pb ages have been obtained from the plutonic rocks, and whole-rock geochemistry of the igneous rocks indicates arc origins. Furthermore, mafic schist collected from the Daito Ridge has experienced amphibolite facies metamorphism, with phase assemblages suggesting that the crust was thicker than 20 km at the time. Similar amphibolite-facies metamorphic rocks with Proterozoic zircons have been recovered in the southern Kyushu-Palau Ridge, indicating that such distinctively older basement rocks exist as isolated tectonic blocks within the present Philippine Sea Plate. These finds show that the parts of the Daito Ridges and Kyushu-Palau Ridge represent developed crustal sections of the Pre-Cenozoic arc that comprises part of the proto-Philippine Sea Plate, and, together with the tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR), they suggest that subduction of the Izu-Bonin-Mariana Arc initiated at the continental margin of the Southeast Asia.

  8. Precise U-Pb dating of Cenozoic tropical reef carbonates: Linking the evolution of Cenozoic Caribbean reef carbonates to climatic and environmental changes.

    Science.gov (United States)

    Silva-Tamayo, J. C.; Ducea, M.; Cardona, A.; Montes, C.; Rincon, D.; Machado, A.; Flores, A.; Sial, A.; Pardo, A.; Niño, H.; Ramirez, V.; Jaramillo, C.; Zapata, P.; Barrios, L.; Rosero, S.; Bayona, G.; Zapata, V.

    2012-04-01

    rapid anthropogenic CO2 release to the atmosphere on reef areas. Here we report precise U-Pb ages of several Cenozoic Caribbean-tropical reef carbonate successions along the SE Circum-Caribbean Region from which major temporal variations in the reef carbonate factories, structure and ecology are related to major climate/environmental changes. Calcareous algae are the principal calcifying reef builders along the SE Circum-Caribbean during the Paleocene-middle Oligocene interval, a period of predominant high atmospheric pCO2 and OA. Calcareous algae persisted as the main calcifying reef builders until the late Oligocene when atmospheric pCO2 levels dropped, allowing the onset of global icehouse conditions and the appearance of corals as the main calcifying reef builders along the SE Circum-Caribbean. Coral reefs would have dominated until the middle Miocene, when a new period of calcareous algae reefs occurred along the Caribbean, coinciding with the Miocene thermal optimum in mid-latitude areas (i.e. the Mediterranean). Coral reef carbonates dominated since the Pliocene. From the data presented here we suggest that calcareous algae dominated were the main calcifying reef builders during periods of warm temperatures and pronounced environmental change in the tropical seas (i.e. OA). Corals would have conversely dominated as main calcifying reef builders during periods of optimal tropical climatic/environmental conditions. Comparisons between this geologic conditions and data for the period 1984-2006 in the Caribbean11 suggest that the transition from corals towards calcareous algae is repeating again. 1.Zachos et al., Science Mag. 292 (2001) 2.Zachos et al., Science Mag. 308 (2005) 3.Haug et al., Geology 29 (2001) 4.Jain and Collins, Marine Micropaleo. 62 (2007) 5.Merinco et al., Nature 452 (2008) 6.O'Dea et al., Proc. Nat. Acad. Sci. 104 (2007) 7.Jhonson et al., Palaios 24(2009) 8.Pagani et al., Nature 460 (2007) 9.Cohen et al., Journ. Geolog. Society 164 (2009) 10

  9. Sedimentology and paleoenvironments of a new fossiliferous late Miocene-Pliocene sedimentary succession in the Rukwa Rift Basin, Tanzania

    Science.gov (United States)

    Mtelela, Cassy; Roberts, Eric M.; Hilbert-Wolf, Hannah L.; Downie, Robert; Hendrix, Marc S.; O'Connor, Patrick M.; Stevens, Nancy J.

    2017-05-01

    This paper presents a detailed sedimentologic investigation of a newly identified, fossiliferous Late Neogene sedimentary succession in the Rukwa Rift Basin, southwestern Tanzania. This synrift deposit is a rare and significant new example of a fossiliferous succession of this age in the Western Branch of East Africa Rift System. The unit, informally termed the lower Lake Beds succession, is late Miocene to Pliocene in age based on cross-cutting relationships, preliminary biostratigraphy, and U-Pb geochronology. An angular unconformity separates the lower Lake Beds from underlying Cretaceous and Oligocene strata. Deposition was controlled by rapid generation of accommodation space and increased sediment supply associated with late Cenozoic tectonic reactivation of the Rukwa Rift and synchronous initiation of the Rungwe Volcanic Centre. The lower Lake Beds, which have thus far only been identified in three localities throughout the Rukwa Rift Basin, are characterized by two discrete lithologic members (herein A and B). The lower Member A is a volcanic-rich succession composed mostly of devitrified volcanic tuffs, and volcaniclastic mudstones and sandstones with minor conglomerates. The upper Member B is a siliciclastic-dominated succession of conglomerates, sandstones, mudstones and minor volcanic tuffs. Detailed facies analysis of the lower Lake Beds reveals various distinctive depositional environments that can be grouped into three categories: 1) alluvial fan; 2) fluvial channel; and 3) flood basin environments, characterized by volcanoclastic-filled lakes and ponds, abandoned channel-fills and pedogenically modified floodplains. Member A represents a shallow lacustrine setting filled by tuffaceous sediments, which grade up into a system of alluvial fans and high-energy, proximal gravel-bed braided rivers. An unconformity marks the contact between the two members. Member B shows an upward transition from a high-energy, gravel-bed braided river system to a sandy

  10. The palaeogeography of Sundaland and Wallacea since the Late Jurassic

    Directory of Open Access Journals (Sweden)

    Robert Hall

    2013-08-01

    Full Text Available The continental core of Southeast (SE Asia, Sundaland, was assembled from Gondwana fragments by the Early Mesozoic. Continental blocks rifted from Australia in the Jurassic [South West (SW Borneo, East Java-West Sulawesi-Sumba], and the Woyla intraoceanic arc of Sumatra, were added to Sundaland in the Cretaceous. These fragments probably included emergent areas and could have carried a terrestrial flora and fauna. Sarawak, the offshore Luconia-Dangerous Grounds areas, and Palawan include Asian continental material. These probably represent a wide accretionary zone at the Asia-Pacific boundary, which was an active continental margin until the mid Cretaceous. Subduction ceased around Sundaland in the Late Cretaceous, and from about 80 Ma most of Sundaland was emergent, physically connected to Asia, but separated by deep oceans from India and Australia. India moved rapidly north during the Late Cretaceous and Early Cenozoic but there is no evidence that it made contact with SE Asia prior to collision with Asia. One or more arc-India collisions during the Eocene may have preceded India-Asia collision. The arcs could have provided dispersal pathways from India into SE Asia before final suturing of the two continents. During the Late Cretaceous and Early Cenozoic there was no significant subduction beneath Sumatra, Java and Borneo. At about 45 Ma Australia began to move north, subduction resumed and there was widespread rifting within Sundaland. During the Paleogene east and north Borneo were largely submerged, the Makassar Straits became a wide marine barrier within Sundaland, and West Sulawesi was separated from Sundaland but included land. By the Early Miocene the proto-South China Sea had been eliminated by subduction leading to emergence of land in central Borneo, Sabah and Palawan. Australia-SE Asia collision began, eliminating the former deep ocean separating the two continents, and forming the region now known as Wallacea. The microplate or

  11. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard

    2015-01-01

    through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  12. Convergent tectonics and coastal upwelling: a history of the Peru continental margin ( Pacific).

    Science.gov (United States)

    von Huene, Roland E.; Suess, E.; Emeis, K.C.

    1987-01-01

    Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the 3 scientific leaders on this cruise discuss their results. -from Journal Editor

  13. New constraints on the tectonic and thermal evolution of the Central-Western Carpathians

    Science.gov (United States)

    Castelluccio, Ada; Andreucci, Benedetta; Grigo, Domenico; Jankowski, Leszek; Ketcham, Richard A.; Mazzoli, Stefano; Szaniawski, Rafal; Zattin, Massimiliano

    2014-05-01

    The Central-Western Carpathians have been studied for long time but they are a still matter of discussion. In addition, they are one of the principal East European targets for oil and gas exploration. Understanding the tectonic evolution and the spatial and temporal variation of the thermal regime is crucial for this purpose. This orogene formed after the collision between the European Platform and the ALCAPA and Tisza-Dacia microplates from the Upper Jurassic to the Neogene. The widely accepted interpretation suggests the occurrence of the oceanic lithosphere subducting under the two microplates and the development of the oceanic suture in the Pieniny Klippen Belt area during the Paleocene. The subduction ends when the accretionary wedge reaches its present-day position on top of the southern border of the European Platform. The Carpathian arc can be subdivided into three tectonic domains: • Outer Carpathians made up of Upper Jurassic to Lower Miocene siliciclastic deposits intercalated with shales and sandstones; • Pieniny Klippen Belt formed by Mesozoic olistoliths and olistostromes in a sandy-clay Cretaceous sheared matrix; • Inner Carpathians consisting in Variscan allochthonous crystalline basement with its Mesozoic cover involved in the late Cretaceous folding and thrusting These deposits are unconformably overlain by the undeformed Central Carpathian Paleogene Basin successions. Cross-section balancing and sequential restoration integrated with low-temperature thermochronometry (apatite fission track and apatite (U-Th-Sm)/He analysis) can better constrain the tectonic evolution of this area and, in particular, its exhumation history. Seven balanced sections have been constructed across the Polish and Ukrainian Carpathians. The sequential restoration shows a thick-skinned tectonics during the Upper Cretaceous, involving the Inner Carpathian basin. The erosion of the Mesozoic basement cover and the sedimentation of these deposits in the foreland basin

  14. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    2008-01-01

    It is well known that sediment deposition in the North Sea and on the Norwegian Shelf varied significantly during the Cenozoic as a consequence of varying erosion rate mainly in Western Scandinavia, in Scotland and in the Alps. Recent results have demonstrated that a causal relationship exists...... of variations in erosion rates. Here we present the rationale behind the project, the data available and some preliminary results. The dense seismic and well coverage in the area makes it possible to estimate the rate of deposition of matrix mass. Assuming that sediment storage is not important, this provides...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  15. The impact of fire on the Late Paleozoic Earth System

    Directory of Open Access Journals (Sweden)

    Ian J. Glasspool

    2015-09-01

    Full Text Available Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2 that mass balance models predict prevailed. At higher levels of p(O2, increased fire activity would have rendered vegetation with high moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2 rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can therefore be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2 played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  16. The impact of fire on the Late Paleozoic Earth system.

    Science.gov (United States)

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  17. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    Science.gov (United States)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in

  18. Denan Depression controlled by northeast-directed Olongbulak Thrust Zone in northeastern Qaidam basin: Implications for growth of northern Tibetan Plateau

    Science.gov (United States)

    Yu, Xiangjiang; Guo, Zhaojie; Zhang, Qiquan; Cheng, Xiang; Du, Wei; Wang, Zhendong; Bian, Qing

    2017-10-01

    The Denan Depression is a unique depression in the northeastern Qaidam basin, with a maximum Cenozoic sedimentary thickness of 5 km. Detailed field work, interpretation of seismic profiles and analyzation of well data were conducted to define the Cenozoic tectonic evolution of the northeastern Qaidam basin. All geological evidences indicate that the Denan Depression is controlled by the northeast-directed Olongbulak Thrust at its southern boundary. The Denan Depression grew in concert with the development of the northeast-directed Olongbulak Thrust at least since it began to accept the Xiaganchaigou Formation, supporting the early Cenozoic growth of the northern Tibetan Plateau. Surface and subsurface data both point to enhanced tectonic activity since the Quaternary in the northeastern Qaidam basin, leading to a more individual Denan Depression relative to the main Qaidam basin. The northern boundary of the Denan Depression is a passive boundary, and no foreland developed at the northern slope of the Denan Depression.

  19. Thick-skinned tectonics in a Late Cretaceous-Neogene intracontinental belt (High Atlas Mountains, Morocco): The flat-ramp fault control on basement shortening and cover folding

    Science.gov (United States)

    Fekkak, A.; Ouanaimi, H.; Michard, A.; Soulaimani, A.; Ettachfini, E. M.; Berrada, I.; El Arabi, H.; Lagnaoui, A.; Saddiqi, O.

    2018-04-01

    Most of the structural studies of the intracontinental High Atlas belt of Morocco have dealt with the central part of the belt, whose basement does not crop out. Here we study the Alpine deformation of the North Subatlas Zone, which is the part of the Western High Atlas (WHA) Paleozoic Massif that involves both Paleozoic basement units and remnants of their Mesozoic-Cenozoic cover formations. Our aim is to better constrain the geometry and kinematics of the basement faults during the Alpine shortening. Based on detail mapping, satellite imagery and field observations, we describe an array of sub-equatorial, transverse and oblique faults between the WHA Axial Zone and the Haouz Neogene basin. They define a mosaic of basement blocks pushed upon one another and upon the Haouz basement along the North Atlas Fault (NAF). The Axial Zone makes up the hanging-wall of the Adassil-Medinet Fault (AMF) south of this mosaic. The faults generally presents flat-ramp-flat geometry linked to the activation of multiple décollement levels, either within the basement where its foliation is subhorizontal or within favourable cover formations (Jurassic evaporites, Lower Cretaceous silty red beds, Upper Cretaceous evaporitic marls, Neogene basal argillites). The occurrence of the North Atlas detachment (NAD) allowed folded pop-up units to develop in front of the propagating NAF. Shortening began as early as the Campanian-Maastrichtian along the AMF. The direction of the maximum horizontal stress rotated from NNE-SSW to NNW-SSE from the Maastrichtian-Paleocene to the Neogene. The amount of shortening reaches 20% in the Azegour transect. This compares with the shortening amount published for the central-eastern High Atlas, suggesting that similar structures characterize the Paleozoic basement all along the belt. The WHA thick-skinned tectonics evokes that of the frontal Sevier belt and of the external Western Alps, although with a much minor pre-inversion burial.

  20. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  1. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism

    Science.gov (United States)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.

    2018-04-01

    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  2. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  3. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India-Eurasia collision and Tibetan Plateau deformation

    Science.gov (United States)

    Jin, Chunsheng; Liu, Qingsong; Liang, Wentian; Roberts, Andrew P.; Sun, Jimin; Hu, Pengxiang; Zhao, Xiangyu; Su, Youliang; Jiang, Zhaoxia; Liu, Zhifeng; Duan, Zongqi; Yang, Huihui; Yuan, Sihua

    2018-03-01

    Early Cenozoic plate collision of India and Eurasia was a significant geological event, which resulted in Tibetan Plateau (TP) uplift and altered regional and global atmospheric circulations. However, the timing of initial collision is debated. It also remains unclear whether the TP was deformed either progressively northward, or synchronously as a whole. As the largest basin in the hinterland of the TP, evolution of the Hoh Xil Basin (HXB) and its structural relationship with development of the Tanggula Thrust System (TTS) have important implications for unraveling the formation mechanism and deformation history of the TP. In this study, we present results from a long sedimentary sequence from the HXB that dates the Fenghuoshan Group to ∼72-51 Ma based on magnetostratigraphy and radiometric ages of a volcanic tuff layer within the group. Three depositional phases reflect different stages of tectonic movement on the TTS, which was initialized at 71.9 Ma prior to the India-Eurasia collision. An abrupt sediment accumulation rate increase from 53.9 Ma is a likely response to tectonic deformation in the plateau hinterland, and indicates that initial India-Eurasia collision occurred at no later than that time. This remote HXB tectonosedimentary response implies that compressional deformation caused by India-Eurasia collision likely propagated to the central TP shortly after the collision, which supports the synchronous deformation model for TP.

  4. Late Miocene (Proto-Gulf) Extension and Magmatism on the Sonoran Margin

    Science.gov (United States)

    Gans, P.; MacMillan, I.; Roldan-Quintana, J.

    2003-12-01

    Constraints on the magnitude and character of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California extensional province are key to understanding how and when Baja California was captured by the Pacific plate and how strain was partitioned during the early stages of this transtensional rift system. Our new geologic mapping in southwestern Sonora and 40Ar/39Ar dating of pre-, syn-, and post-tectonic volcanic units indicate that late Miocene deformation and volcanic activity were largely restricted to a NW-trending, 100-120 km wide belt adjacent to the coast. Inboard of this belt, NW-SE extension is mainly older (>15 Ma) and occurred in an intra-arc or back-arc setting. Proto-Gulf deformation within the coastal belt was profoundly transtensional, with NW-striking, dextral strike slip faults operating in concert with N-S and NNE-striking normal and oblique slip faults to produce an inferred NW or NNW tectonic transport direction. The total amount of late Miocene NW directed dextral shear within the coastal belt is still poorly constrained, but may exceed 100 km. The locus of deformation and volcanic activity migrated westward or northwestward within the Sonoran coastal belt. in the eastern portion (Sierra Libre and Sierra El Bacatete) major volcanic activity commenced at ˜13.0 Ma and peaked at 12.0 Ma, and major faulting and tilting is bracketed between 12.0 and 10.6 Ma. Further west in the Sierra El Aguaje/San Carlos region, major volcanic activity commenced at 11.5 Ma and peaked at 10.5 Ma, and most faulting and tilting is bracketed between 10.7 and 9.3 Ma. On the coastal mountains northwest of San Carlos, rift related faulting and tilting continued after 8.5 Ma. Voluminous late Miocene (13-8 Ma) volcanic rocks within the Sonoran coastal belt were erupted from numerous centers (e.g. Sierra Libre, Guaymas, Sierra El Aguaje). These thick volcanic sections are compositionally diverse (basalt to rhyolite, with abundant dacite and

  5. Constraints on the evolution of the Naga Hills: from disparate origins to tectonic amalgamation

    Science.gov (United States)

    Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.; Kapesa, L.; Roeder, T.; Stojanovic, D.; Kachovich, S.

    2016-12-01

    Recent field expeditions supported by the Australia-India Strategic Research Fund (AISRF07021) have allowed a collaborative team of Australian and Indian geologists to examine, in detail, regions along the border between Nagaland and Manipur in India and Myanmar. This area has previously been little explored and we present new field and laboratory observations. The Myanmar microplate has been dextrally translated over 480 km northwards along Sagaing Fault system during the Miocene. Clearly it did not originate where it presently lies but how far it has travelled remains uncertain. The Indo-Myanmar ranges include the Naga Hills that are dominated by Cenozoic sediments, which have been thrust westwards (in present-day coordinates). They structurally overlie an Indian passive-margin sequence that includes the Gondwana break-up rift-drift counterpart to parts of the NW Shelf of Australia. Near the Indo-Myanmar border this giant imbricate thrust stack also contains sheets of ophiolitic mélange. The ophiolite is heavily disrupted and subsequent to this dismemberment it has been overlain by a succession of Eocene shallow marine shelf sediments; the Phokphur Formation. Further east a succession of high-grade metamorphic units is also thrust westwards over the ophiolite. Well-preserved radiolarian microfossils and U/PB SHRIMP data provide important new age constraints. While superficially it appears that rocks in this area can be correlated with units known from the Himalaya in fact this is problematic. As oceans to the north and west of Australia have opened, grown and been recycled through subduction various continental fragments that originated as part of Gondwana have departed and, with time, transferred to Asia. They have not necessarily all followed the same tectonic pathways. The area lies to the east of the Namche Barwa syntaxis and tectonic reconstructions indicate it has not directly participated in continent-continent collision. Indeed, stratigraphic and

  6. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping

    Science.gov (United States)

    Taylor, R. G.; Howard, K. W. F.

    1998-11-01

    A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.

  7. Satellite Gravity Transforms Unmask Tectonic Pattern of Arabian-African Region

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2017-04-01

    basement and Mesozoic-Cenozoic structures play dominating structural- geodynamic role in this region. Precambrian generations include two main structural elements: (1) Archean platforms (Eastern Arabian, Tanzanian and Eastern Saharan cratons), and (2) Neoproterozoic belt. In the Neoproterozoic belt we distinguish: (a) final Proterozoic back-arc belts with ophiolites, and (b) more ancient Early/Middle Proterozoic massifs (detected both in some previous works of various authors and recognized by the authors of the present investigation using a set of geological-geophysical indicators). In the areas of development of sedimentary Phanerozoic cover in the northern part of Arabian and African (Nubian) Plates, boundaries of Early/Middle Proterozoic massifs (Tabuk, Haif-Rutfah, Widyan and Nile Cone) and Neoproterozoic belts (Azraq-Sirhan, Ga'ara and Northern Western Desert) were delineated by analysis of: (1) land and airborne geophysical data, and (2) satellite derived gravity data. Meso-Cenozoic structures of the region contain two tectonic complexes of its forming. 1st complex (from Permian to present) is associated with the Neotethys Ocean evolution. 2nd complex (from Oligocene to present) is associated with initial phases of spreading in the Arabian-African segment of Earth's crust. 1st complex structurally and geodynamically is a multiple generation since the Neotethys Ocean evolution was accompanied by processes of spreading, movements of some giant blocks along tectonic transforms, and collisions. These processes have formed structures of three types: (1) Mesozoic terrane belt, (2) Cenozoic orogenic belt, and (3) remain depressions of the Neotethys with oceanic crust. Western (Levantine) part of the Mesozoic terrane belt is characterized by more ancient (Hauterive) age of consolidation comparing with the eastern part of the belt (Persian-Oman). Its terranes (from Zagros to Makran) and ophiolites were joined to Arabian platform in the Middle Cretaceous (Senomanian

  8. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes

    Science.gov (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.

    2009-04-01

    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  9. Detrital Zircon Geo- and Thermochronologic Constraints on Late Mississippian-Early Pennsylvanian Sediment Transport and Tectonics, Southwestern Kansas and Northwestern Arkansas

    Science.gov (United States)

    Bidgoli, T. S.; Wang, W.; Moeller, A.; Stockli, D. F.; Watney, L.

    2017-12-01

    The Late Mississippian to Early Pennsylvanian is a critical time interval across the globe, with major changes in tectonics, climate, and eustacy. Transcontinental sediment transport in North America, from the Appalachians to Great Canyon, has been proposed to initiate at this time (Gehrels et al., 2011). In the midcontinent, clastic influx to the Hugoton Embayment and Arkoma Shelf, during widespread carbonate platform deposition, may record evidence for this model, but the limited number of provenance studies has hindered interpretations. To test this model and further constrain sediment dispersal and source-to-sink systems in the midcontinent, we evaluate the provenance of upper Mississippian to middle Pennsylvanian siliciclastic intervals, in two areas, using sandstone component analysis and detrital zircon U-Pb and (U-Th)/He double dating. (1) For the Hugoton Embayment in southwestern Kansas, we focus on sandstones deposited in two valley-filling intervals, the Chester and Morrow. A total of 1100 zircon U-Pb ages have been acquired from samples from 10 boreholes, 6 from Chester and 4 from Morrow. Preliminary analysis suggests that the Chester is characterized by two major zircon U-Pb age clusters of 900-1295 Ma (Grenville) and 390-475 Ma, consistent with sediment delivery from the Appalachian orogen. Morrow strata record a change in provenance, with the presence of two additional age groups, 1300-1500 Ma (24.5%) and 1600-1800 Ma (17.9%), that correspond well with the age of basement rocks in the Granite-Rhyolite and Yavapai-Maztzal provinces, respectively. We ascribe changes in the zircon age spectra and introduction of these grains to the development of local uplifts, like the Nemaha Ridge, in the early Pennsylvanian. Double dating of zircons from these peaks may reveal additional information about these basement sources and the timing of denudation of these uplifts. (2) For the Arkoma shelf, we are analyzing 11 samples, collected from outcrops in northwestern

  10. Relations between tectonics and sedimentation along the Eastern Sardinian margin (Western Tyrrhenian Sea) : from rifting to reactivation

    Science.gov (United States)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Lymer, Gaël; Maillard, Agnès; Thinon, Isabelle; Lofi, Johanna; Sage, Françoise; Giresse, Pierre; Bassetti, Maria-Angela

    2014-05-01

    The offshore-onshore project "METYSS-METYSAR" aims at better understand the Miocene-Pliocene relationships between crustal tectonics, salt tectonics, and sedimentation along the Eastern Sardinian margin, Western Tyrrhenian Sea. In this key-area, the Tyrrhenian back-arc basin underwent recent rifting (9-5 Ma), pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), sea-floor spreading starting during Pliocene times. Thereby, the Tyrrhenian basin and the Eastern Sardinian margin are excellent candidates for studying the mechanisms of extreme lithospheric stretching and thinning, the role of pre-existing structural fabric during and after rifting, and the reactivation of a passive margin and the associated deformation and sedimentation patterns during the MSC. We looked at the respective contributions of crustal and salt tectonics in quantifying vertical and horizontal movements, using especially the seismic markers of the MSC. Overall, we delineate the history of rifting and tectonic reactivation in the area. The distribution maps respectively of the Messinian Erosion Surface and of Messinian units (Upper Unit and Mobile Unit) show that a rifted basin already existed by Messinian time. This reveals a major pre-MSC rifting across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and thin-skinned salt tectonics. Our data surprisingly show that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and can only be attributed to post-rift reactivation. This reactivation is characterized not only by normal faulting but also by contractional structures. Some Pliocene vertical movements caused localized gravity gliding of the mobile

  11. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming

    2008-01-01

    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  12. Late Jurassic low latitude of Central Iran: paleogeographic and tectonic implications

    Science.gov (United States)

    Mattei, Massimo; Muttoni, Giovanni; Cifelli, Francesca

    2014-05-01

    The individual blocks forming present-day Central Iran are now comprised between the Zagros Neo-Tethys suture to the south and the Alborz Palaeo-Tethys suture to the north. At the end of the Palaeozoic, the Iranian blocks rifted away from the northern margin of Gondwana as consequence of the opening of the Neo-Tethys, and collided with Eurasia during the Late Triassic, giving place to the Eo-Cimmerian orogeny. From then on, the Iranian block(s) should have maintained European affinity. Modern generations of apparent polar wander paths (APWPs) show the occurrence in North American and African coordinates of a major and rapid shift in pole position (=plate shift) during the Middle-Late Jurassic. This so-called monster polar shift is predicted also for Eurasia from the North Atlantic plate circuit, but Jurassic data from this continent are scanty and problematic. Here, we present paleomagnetic data from the Kimmeridgian-Tithonian (Upper Jurassic) Garedu Formation of Iran. Paleomagnetic component directions of primary (pre-folding) age indicate a paleolatitude of deposition of 10°N ± 5° that is in excellent agreement with the latitude drop predicted for Iran from APWPs incorporating the Jurassic monster polar shift. We show that paleolatitudes calculated from these APWPs, used in conjunction with simple zonal climate belts, better explain the overall stratigraphic evolution of Iran during the Mesozoic.

  13. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics

    Science.gov (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario

    2018-03-01

    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  14. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    This paper is related to previous research by the authors that examine the phenomenon of tectonics as architectural design theory and method. These studies have shown that the notion of tectonics at large is associated with exclusive architecture, and that, as a profession architects have...... to develop methods for applying tectonic knowledge extracted from significant existing examples for developing future practical methods (Frampton 2002: 81). The specific intention of this paper is to push the understanding of tectonics further, into the scale of the urban context and thereby to discuss...... using Hansen’s work as a case study. (Beim & Madsen (ed.) 2014) Methodologically this has been done by applying the notion of ‘urban tectonics’ inspired by the work of Eduard F. Sekler, as a critical lens. (Sekler 1964, Sekler 1965) Through this lens we study how Hansen was able to treat culture...

  15. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history

    Science.gov (United States)

    Fielding, C.R.; Whittaker, J.; Henrys, S.A.; Wilson, T.J.; Nash, T.R.

    2007-01-01

    A new stratigraphic model is presented for the evolution of the Cenozoic Victoria Land Basin of the West Antarctic Rift, based on integration of seismic reflection and drilling data. The Early Rift phase (?latest Eocene to Early Oligocene) comprises wedges of strata confined by early extensional faults, and which contain seismic facies consistent with drainage via coarse-grained fans and deltas into discrete, actively subsiding grabens and half-grabens. The Main Rift phase (Early Oligocene to Early Miocene) comprises a lens of strata that thickens symmetrically from the basin margins into a central depocenter, and in which stratal events pass continuously over the top of the Early Rift extensional topography. Internal seismic facies and lithofacies indicate a more organized, cyclical shallow marine succession, influenced increasingly upward by cycles of glacial advance and retreat into the basin. The Passive Thermal Subsidence phase (Early Miocene to ?) comprises an evenly distributed sheet of strata that does not thicken appreciably into the depocentre, with more evidence for clinoform sets and large channels. These patterns are interpreted to record accumulation under similar environmental conditions but in a regime of slower subsidence. The Renewed Rifting phase (? to Recent, largely unsampled by coring thus far) has been further divided into 1, a lower interval, in which the section thickens passively towards a central depocentre, and 2. an upper interval, in which more dramatic thickening patterns are complicated by magmatic activity. The youngest part of the stratigraphy was accumulated under the influence of flexural loading imposed by the construction of large volcanic edifices, and involved minimal sediment supply from the western basin margin, suggesting a change in environmental (glacial) conditions at possibly c. 2 Ma.

  16. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  17. Syn-sedimentary tectonics and facies analysis in a rift setting: Cretaceous Dalmiapuram Formation, Cauvery Basin, SE India

    Directory of Open Access Journals (Sweden)

    Nivedita Chakraborty

    2018-04-01

    Full Text Available The Cretaceous (Albian–Cenomanian Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic–Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation, exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous (Barremian–Aptian Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association (FA 1, records the first carbonate marine transgression within the basin, comprising a bar–lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite–glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association (FA 2. While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement. Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association (FA 3. A tidal bar–interbar shelf depositional system allowed a

  18. Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene

    NARCIS (Netherlands)

    von der Heydt, A.S.|info:eu-repo/dai/nl/245567526; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2006-01-01

    We investigate the effect of changes in the tectonic boundary conditions on global ocean circulation patterns. Using a fully coupled climate model in an idealized setup, we compare situations corresponding to the late Oligocene, the early Miocene, and present day. The model results show the

  19. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    Science.gov (United States)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  20. A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique among Tetrapods

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Background Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250–65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. Principal Findings A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. Conclusion/Significance The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late

  1. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Science.gov (United States)

    Bardet, Nathalie; Jalil, Nour-Eddine; de Lapparent de Broin, France; Germain, Damien; Lambert, Olivier; Amaghzaz, Mbarek

    2013-01-01

    Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further

  2. A giant chelonioid turtle from the late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods.

    Directory of Open Access Journals (Sweden)

    Nathalie Bardet

    Full Text Available BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils. The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth and beaked whales (large size and elongated edentulous jaws. This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to

  3. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  4. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.

    1989-01-01

    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  5. Geochemistry, age and strontium isotope composition of late tertiary and quaternary basalts and andesites in western Nevada and their relation to geothermal potential. Final report, October 1, 1982-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Fultz, L.A.; Bell, E.J.; Trexler, D.T.

    1984-01-01

    This research was undertaken to characterize the late Cenozoic volcanic rocks associated with active geothermal systems in west-central Nevada. Petrographic and microprobe, geochemical and isotopic analysis and age dating techniques were used to characterize these young volcanic rocks. These data were combined with the limited data previously reported in the literature on these same volcanic areas to interpret their petrogenesis. The overall characterization resulted from integrating the petrogenesis with a structural-tectonic model of the region. Potassium-argon isotopic ages ranging up to 14 million years were determined for eight localities within the Reno 1 x 2/sup 0/ study region. These ages are consistent with the morphology of the volcanic landforms, the active geothermal systems associated with them, and with other isotopic ages reported in the literature for these and similar rocks within the study region. Petrographic analysis of hand specimens and thin-sections indicated mineralogic assemblages of the respective rock types and specific mineral textures and phenocryst compositions and characteristics. These identifications were further substantiated by microprobe analysis of selected phenocrysts and groundmass phases. Classification of the respective rock types was also based on chemical composition and normative calculations using the program PETCAL. Basaltic andesites are identified and described for Steamboat Hills, Table Mountain, Silver Springs, Churchill Butte, Cleaver Peak, Desert Peak and Carson City sites.

  6. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.

    2017-11-01

    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  7. Volcanic sequence in Late Triassic – Jurassic siliciclastic and evaporitic rocks from Galeana, NE Mexico

    International Nuclear Information System (INIS)

    Cruz-Gómez, E.M.; Velasco-Tapia, F.; Ramírez-Fernández, J.A.; Jenchen, U.; Rodríguez-Saavedra, P.; Rodríguez-Díaz, A.A.; Iriondo, A.

    2017-01-01

    In northeastern Mexico, volcanic rocks interbedded with Late Triassic–Jurassic siliciclastic and evaporitic strata have been linked to magmatic arcs developed in the Pangea western margin during its initial phase of fragmentation. This work provides new petrographic and geochemical data for volcanism included in the El Alamar and Minas Viejas formations outcropping in the Galeana region. Andesitic dykes and sills (n= 10) in the El Alamar redbeds show SiO2= 47.5–59.1% and MgO= 1.2–4.2%, as well as a geochemical affinity to island arc magmas. This work represents the first report of this tectonic setting in the region. Geological and petrographic evidence suggest that this arc system likely developed after ~220 and before ~193Ma. Trachy-andesitic and rhyodacitic domes (n= 20) associated with the Minas Viejas gypsum-carbonates sequence show SiO2= 61.8–82.7% and MgO= 0.1–4.0% with a tectonic affinity to continental arc. A rhyodacite sample from this region has been dated by U-Pb in zircon, yielding an age of 149.4 ± 1.2Ma (n= 21), being the youngest age related to this arc. Finally, we propose a threestep model to explain the tectonic evolution from Late Triassic island arc to Jurassic continental arc system in the northeastern Mexico.

  8. The tectonic plates are moving!

    CERN Document Server

    Livermore, Roy

    2018-01-01

    Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1...

  9. Theory of denudation tectonics and practice in prospecting. Pt.1

    International Nuclear Information System (INIS)

    Tong Hangshou

    1994-01-01

    The theory of denudation tectonics--earth science frontiers--upsurged in the 1980's of the century and a great mass fervor of its research has spread to the uranium geology. For the studying and applying the theory of denudation tectonics and on the invitation of the Editorial Department of 'Uranium Geology', this paper has been written and will be published in several issues with the following contents accordingly: (1) New progress in the research on denudation tectonics in China; (2) The evolution of denudation tectonics' concept and layer zoning of the Earth; (3) The fundamental implication of the denudation tectonics and relevant tectonic terminology; (4) Discussion on dynamics of the formation of denudation tectonics; (5) Definition and discrimination of denudation tectonics; (6) Research method of denudation tectonics; (7) Ore control theory of denudation tectonics and prospecting; (8) Outlook on the research of denudation tectonics

  10. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia)

    NARCIS (Netherlands)

    Hoorn, C.; Roddaz, M.; Dino, R.; Soares, E.; Uba, C.; Ochoa-Lozano, D.; Mapes, R.; Hoorn, C.; Wesselingh, F.P.

    2010-01-01

    The Amazonian Craton is an old geological feature of Archaean/Proterozoic age that has determined the character of fluvial systems in Amazonia throughout most of its past. This situation radically changed during the Cenozoic, when uplift of the Andes reshaped the relief and drainage patterns of

  11. Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic.

    Science.gov (United States)

    Toussaint, Emmanuel F A; Condamine, Fabien L; Hawlitschek, Oliver; Watts, Chris H; Porch, Nick; Hendrich, Lars; Balke, Michael

    2015-01-01

    During the Cenozoic, Australia experienced major climatic shifts that have had dramatic ecological consequences for the modern biota. Mesic tropical ecosystems were progressively restricted to the coasts and replaced by arid-adapted floral and faunal communities. Whilst the role of aridification has been investigated in a wide range of terrestrial lineages, the response of freshwater clades remains poorly investigated. To gain insights into the diversification processes underlying a freshwater radiation, we studied the evolutionary history of the Australasian predaceous diving beetles of the tribe Hydroporini (147 described species). We used an integrative approach including the latest methods in phylogenetics, divergence time estimation, ancestral character state reconstruction, and likelihood-based methods of diversification rate estimation. Phylogenies and dating analyses were reconstructed with molecular data from seven genes (mitochondrial and nuclear) for 117 species (plus 12 outgroups). Robust and well-resolved phylogenies indicate a late Oligocene origin of Australasian Hydroporini. Biogeographic analyses suggest an origin in the East Coast region of Australia, and a dynamic biogeographic scenario implying dispersal events. The group successfully colonized the tropical coastal regions carved by a rampant desertification, and also colonized groundwater ecosystems in Central Australia. Diversification rate analyses suggest that the ongoing aridification of Australia initiated in the Miocene contributed to a major wave of extinctions since the late Pliocene probably attributable to an increasing aridity, range contractions and seasonally disruptions resulting from Quaternary climatic changes. When comparing subterranean and epigean genera, our results show that contrasting mechanisms drove their diversification and therefore current diversity pattern. The Australasian Hydroporini radiation reflects a combination of processes that promoted both diversification

  12. Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Dickson Cunningham

    2017-01-01

    Full Text Available The Central Asian Orogenic Belt (CAOB records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in northernmost China and the Jurassic Mongol-Okhotsk suture in northeast Mongolia and eastern Siberia. The distribution, style, and kinematics of deformation associated with these two terminal collision events is poorly documented in southern Mongolia and northernmost China because these regions were later tectonically overprinted by widespread Cretaceous basin and range-style crustal extension and Miocene-recent sinistral transpressional mountain building. These younger events structurally compartmentalized the crust into uplifted crystalline basement blocks and intermontane basins. Consequently, widespread Cretaceous and Late Cenozoic clastic sedimentary deposits overlie older Permian-Jurassic sedimentary rocks in most basinal areas and obscure the deformation record associated with Permian-Triassic Solonker and Jurassic Mongol-Okhotsk collisional suturing. In this report, satellite image mapping of basinal compartments that expose folded Permian-Jurassic sedimentary successions that are unconformably overlapped by Cretaceous-Quaternary clastic sediments is presented for remote and poorly studied regions of southern Mongolia and two areas of the Beishan. The largest folds are tens of kilometers in strike length, east-west trending, and reveal north-south Late Jurassic shortening (present coordinates. Late Jurassic fold vergence is dominantly northerly in the southern Gobi Altai within a regional-scale fold-and-thrust belt. Local refolding of older Permian north-south trending folds is also evident in some areas. The folds identified and mapped in this study provide new evidence for the regional distribution and

  13. Tectonic vocabulary and materialization: Discourse on the future of tectonic architectural research in the Nordic countries

    DEFF Research Database (Denmark)

    Beim, Anne; Bundgaard, Charlotte; Hvejsel, Marie Frier

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday....... On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative...... to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...

  14. Formwork tectonics

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: Based on the concept of techné and framed in architectural studies of tectonics and an experimental practice of making, this paper investigates the multiple technological roles of textiles in fabric formwork for concrete in four analytical studies of experimental data of the author......’s doctoral dissertation Fabric Formwork for Concrete – Investigations into Formwork Tectonics and Stereogeneity in Architectural Constructions. In the paper only textile roles are discussed but it is suggested that a study of multiple technological roles of key formwork elements will emphasize...... their potential as ‘common denominators’ between architects, engineers and builders. Findings include textile used for the ‘textilization’ of concrete and the ‘concretization’ of textiles as two opposite starting points in fabric-forming. Recent research into thin-shell construction using fabric formwork is shown...

  15. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  16. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  17. Study on Sr-Nd isotopes of mesozoic-cenozoic granites in Qinghai-Tibetan plateau

    International Nuclear Information System (INIS)

    Qiu Ruizhao; Deng Jinfu; Zhou Su; Xiao Qinghui; Cai Zhiyong

    2003-01-01

    Mesozoic-Cenozoic magmatic activities were intensive in Qinghai-Tibetan plateau. Nd-Sr isotopic compositions of representative granitic plutons in western Qinghai-Tibetan plateau are reported in this paper. Combining with past isotopic data, which has reported in eastern Qinghai-Tibetan plateau, Sr-Nd isotopic compositions and material source and genesis of Mesozoic and Cenozoic granites in Qinghai-Tibetan plateau have been studied. The research result indicates there are three types of granite existing in Qinghai-Tibetan plateau, the granites of Late stage of Yanshan Period which distributing on north and south boundary of Gandes block (namely in north and south granitic belts of Dangdes) and cause of oceanic crust subduction, have ( 87 Sr/ 86 Sr)i of 0.7041-0.7064, ε (Nd) t of +2.5 - +5.7 and TDM age of 312-562 Ma, positive ε Nd, low ( 87 Sr/ 86 Sr)i ratio and young Nd model ages suggest relatively high contents of mantle-derived components in their sources, and this type granite might melt from subduction oceanic crust. The granites occurred intra-Gangdes block which were caused by collision of continent and post-collision, have ( 87 Sr/ 86 Sr)i of 0.706-0.719, ε (Nd) t of -5.3 - -8.3 and TDM age of 1323-1496 Ma, negative ε Nd, relative high ( 87 Sr/ 86 Sr)i ratio with an mid-Proterozoic Nd model ages, suggest granite has the mixing genesis of mantle-derived components and old crustal components in their sources. With relatively small variation range in ε (Nd) t and TDM age, it might imply granitic isotopic source in Gandes block to keep relative homogenization in long period. The granites in Himalayan block which there is not oceanic material to join in melting and to cause of intra-continental subduction, has most ( 87 Sr/ 86 Sr)i ratio more than 0.720, ε (Nd) t of -10.3 - -16.3 and TDM age of 1792-2206 Ma, high ( 87 Sr/ 86 Sr)i ratio, low negative ε (Nd)t with old Nd isotopic model ages and consistent with the Sr, Nd isotopic compositions of basement

  18. Vertical tectonic movement in northeastern Marlborough : stratigraphic, radiocarbon, and paleoecological data from Holocene estuaries

    International Nuclear Information System (INIS)

    Ota, Y.; Brown, L.J.; Berryman, K.R.; Fujimori, T.; Miyauchi, T.

    1995-01-01

    Height and age information from Holocene estuarine deposits along the northeastern Marlborough coast provide a database to evaluate coastal vertical tectonics. These data are related to the postglacial marine transgression and coastal geomorphic features formed since the culmination of sea-level rise. Four tectonic domains are recognised. The Wairau domain is characterised by subsidence at rates over 4 mm/yr. About 60% of this subsidence is tectonic and may be related to Marlborough Sounds subsidence, and 40% is a result of compaction. The Vernon Fault at the south side of the lower Wairau plain separates the Wairau domain from the high-standing Vernon domain. The Awatere Fault marks the southern boundary between the Vernon domain and the Grassmere domain, which extends from the Awatere River valley to Mussel Point. Slight uplift (c. 1 m in 6500 yr) characterises the Grassmere domain, based on data obtained from Blind River, Lake Grassmere, and, to a lesser extent, from Awatere River fluvial terraces. The north-trending London Hill Fault reaches the coast at Mussel Point and coincides with the boundary between the Grassmere and Cape Campbell domains. The latter is characterised by rapid uplift (16 m in c. 6500 yr). No late Quaternary traces are known on the London Hill Fault, but the data presented are indicative of Holocene activity. (author). 23 refs., 10 figs., 1 tab

  19. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    Science.gov (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  20. Towards a Tectonic Sustainable Building Practice

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    and environmental problems? The objective of the project is to analyse and develop the tectonic practice based on case studies, in relation to: • Cultural anchoring and identity creation • Building culture and creative processes • Sustainability, lifecycle and resource management The research project is divided...... into a main project and various subprojects, respectively, two levels that mutually feed each other.The main project, which constitutes the general level, seeks to identify a coherent strategy towards a new tectonically sustainable building culture.The subprojects look at partial issues and go into specific......Can a tectonic building practice be strengthened through new creation processes, where resources are used more purposefully, deliberately and systematically? Which new measures are necessary if we are to develop a strong tectonic building practice with due consideration for increasing climate...

  1. Division of volcanic activity cycles in the late mesozoic in South Jiangxi and North Guangdong

    International Nuclear Information System (INIS)

    Li Qinglong; Wu Jianhua

    1999-01-01

    Based on stratigraphical unconformity, rock association, fossil assemblage, isotope age and tectonic features, the volcanic activity in late Mesozoic in south Jiangxi and north Guandong can be divided into four cycles: Yutian volcanic activity cycle, Lianhuazhai volcanic activity cycle. Banshi volcanic activity cycle and Nanxiong volcanic activity cycle. Yutian volcanic cycle which occurs in middle Jurassic epoch is the bimodal rock association composed of rhyolite and basalt. Lianhuazhai volcanic cycle which occurs in late Jurassic epoch is unimodal rock association composed of rhyolite. Banshi volcanic cycle occurs from the late stage of early Cretaceous to the early stage of late Cretaceous epoch. There are two types of rock associations related to this cycle: unimodal rock association composed of rhyolite or basalt and bimodal rock association composed of rhyolite and basalt. Nanxiong volcanic activity cycle which occurred in late stage of late Cretaceous epoch is the unimodal rock association composed of basalt which is the interlayer of the red sedimentary series

  2. Tectonic setting and uplift analysis of the Pangani rift basin in northern Tanzania using apatite fission track thermochronology

    International Nuclear Information System (INIS)

    Mbede, E.I.

    2001-01-01

    Thirty four new Apatite Fission Track (AFT) ages and 32 track length distributions from samples of basement rocks flanking the Pangani rift, East African Rift System (EARS) are presented, in an attempt to elucidate the uplift and erosion of the rift flanks. The ages fall in the range of 207±15 to 48±4 Ma, spanning from Early Jurassic to Early Tertiary. These ages are much younger than the last thermal event in the Mozambique belt that form the basement complex and are interpreted to represent the most recent tectonic events. Track length (TL) distributions suggest that uplift and erosion of the rift flanks are related to three different tectonic events, which are also recorded by the sedimentary units within the adjacent coastal basins. These included the Triassic/Early Jurassic, Late Cretaceous and Early Tertiary tectonic events. Erosion and isostatic rebound have modified the tectonically induced topographic patterns and the highly elevated plateaus flanking the Pangani rift represent an erosional surface referred to as the 'Gondwana surface' of eastern and central Africa. T he present AFT data suggest that initial exhumation of the 'Gondwana surface' from temperatures above 383.15 K to temperatures less than 333.15 K, in this area, took place during Early Jurassic times, but the final sub-aerial exposure of the surface did not take place until Early Tertiary. (author)

  3. Tectonics, hydrothermal zoning, and uranium in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Gabelman, J W

    1961-01-01

    The geological features of the Peruvian Andes are discussed in some detail. The geologic history of the Andrean tectonics was found to be virtually the same as that represented in both North and South American Cordillera. The study indicated that Andrean hydrothermal mineralization occurred intermittently but in close time relation with accompanying deformations from the late Cretaceous or early Tertiary up to the present. The mineralization cycle is discussed as it relates to several metals, particularly uranium. Uranium is believed to occupy the same several temperature--environmental positions in the Andes that it does throughout the rest of the western hemisphere Cordillera. Even though uranium is present in minor quantities in several high-to-moderate-temperature environments, the bulk of uranium present in the cycle is believed to precipitate in the subepithermal environment.

  4. The last interglacial period at Guantanamo Bay, Cuba and an estimate of late Quaternary tectonic uplift rate in a strike-slip regime

    Science.gov (United States)

    Schweig, E. S.; Muhs, D. R.; Simmons, K. R.; Halley, R. B.

    2015-12-01

    Guantanamo Bay, Cuba is an area dominated by a strike-slip tectonic regime and is therefore expected to have very low Quaternary uplift rates. We tested this hypothesis by study of an unusually well preserved emergent reef terrace around the bay. Up to 12 m of unaltered, growth-position reef corals are exposed at about 40 sections examined around ˜40 km of coastline. Maximum reef elevations in the protected, inner part of the bay are ˜11-12 m, whereas outer-coast shoreline angles of wave-cut benches are as high as ˜14 m. Fifty uranium-series analyses of unrecrystallized corals from six localities yield ages ranging from ˜134 ka to ˜115 ka, when adjusted for small biases due to slightly elevated initial 234U/238U values. Thus, ages of corals correlate this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Previously, we dated the Key Largo Limestone to the same high-sea stand in the tectonically stable Florida Keys. Estimates of paleo-sea level during MIS 5.5 in the Florida Keys are ~6.6 to 8.3 m above present. Assuming a similar paleo-sea level in Cuba, this yields a long-term tectonic uplift rate of 0.04-0.06 m/ka over the past ~120 ka. This estimate supports the hypothesis that the tectonic uplift rate should be low in this strike-slip regime. Nevertheless, on the southeast coast of Cuba, east of our study area, we have observed flights of multiple marine terraces, suggesting either (1) a higher uplift rate or (2) an unusually well-preserved record of pre-MIS 5.5 terraces not observed at Guantanamo Bay.

  5. Uranium and thorium in Cenozoic basaltods of Kamchatka

    International Nuclear Information System (INIS)

    Puzankov, Yu.M.

    1984-01-01

    Regularities in distribution of radioactive elements (RAE) in basaltoids of Kamchatka have been analyzed. The RAE concentration in samples was determined by γ-spectrometric method. The results compared with the instrumental neutron-activation analysis data are found to be in agreement. Results of evaluating the average contents of U, Th and roch-forming elements in ce-- nozoic basaltoids are presented. The radiogeochemical data enable to associate the origin of the Kamchatka Cenozoic basaltoids with both fractional melting of the upper mantle depleted of radioactive elements and the development of magmatic chambers in submerged blocks of the Pre-Cretaceous melanocratic basement the composition of which is close to oceanic tholeiite

  6. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    Science.gov (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  7. Large-scale thrusting at the northern Junggar Basin since Cretaceous and its implications for the rejuvenation of the Central Asian Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Jieyun Tang

    2015-03-01

    Full Text Available The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic–Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic–Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous–Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed.

  8. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting

    Science.gov (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan

    2018-05-01

    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  9. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NARCIS (Netherlands)

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia.

  10. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  11. Upper Paleogene shallow-water events in the Sandino Forearc Basin, Nicaragua-Costa Rica - response to tectonic uplift

    Science.gov (United States)

    Andjic, Goran; Baumgartner-Mora, Claudia; Baumgartner, Peter O.

    2016-04-01

    The Upper Cretaceous-Neogene Sandino Forearc Basin is exposed in the southeastern Nicaraguan Isthmus and in the northwestern corner of Costa Rica. It consists of an elongated, slightly folded belt (160 km long/30 km wide). During Campanian to Oligocene, the predominantly deep-water pelagic, hemipelagic and turbiditic sequences were successively replaced by shelf siliciclastics and carbonates at different steps of the basin evolution. We have made an inventory of Tertiary shallow-water limestones in several areas of Nicaragua and northern Costa Rica. They always appear as isolated rock bodies, generally having an unconformable stratigraphic contact with the underlying detrital sequences. The presence of these short-lived carbonate shoals can be attributed to local or regional tectonic uplift in the forearc area. The best-preserved exposure of such a carbonate buildup is located on the small Isla Juanilla (0.15 km2, Junquillal Bay, NW Costa Rica). The whole island is made of reef carbonates, displaying corals in growth position, associated with coralline red algae (Juanilla Formation). Beds rich in Larger Benthic Foraminifera such as Lepidocyclina undosa -favosa group permit to date this reef as late Oligocene. A first uplift event affected the Nicaraguan Isthmus, that rose from deep-water to shelfal settings in the latest Eocene-earliest Oligocene. The upper Oligocene Juanilla Formation formed on an anticline that developed during the early Oligocene, contemporaneously with other folds observed in the offshore Sandino Forearc Basin. During the early Oligocene, a period of global sea-level fall, the folded tectonic high underwent deep erosion. During the late Oligocene, a time of overall stable eustatic sea level, tectonic uplift gave way to moderate subsidence, creating accommodation space for reef growth. A 4th or 5th order (Milankovic-type) glacio-eustatic sea level rise, could also have triggered reef growth, but its preservation implies at least moderate

  12. LATE DEVONIAN-CARBONIFEROUS CONODONTS FROM EASTERN IRAN

    Directory of Open Access Journals (Sweden)

    MEHDI YAZDI

    1999-07-01

    Full Text Available Conodont data from acid-leaching 110 samples from two Late Devonian-Carboniferous areas in the Shotori Range (Tabas region of eastern Iran are presented. At Howz-e-Dorah, a section (88 samples commencing high in the Bahram Formation (Givetian-early Frasnian extended through the Shishtu Formation (Frasnian, Early hassi Zone or older, to latest Tournaisian, anchoralis-latus Zone and the Sardar Formation (earliest Visean, texanus Zone, to late Namurian, sinuatus-corrugatus-sulcatus Zone and into the Jamal Formation (Permian. Four less exhaustively sampled sections (22 samples show the Kale Sardar area to be tectonically more complicated than the Howz-e-Dorah area. Useful marker horizons in the Howz-e-Dorah section, well constrained by conodont data, are: the early Frasnian (no older than Early hassi Zone biostromal beds of the Shishtu Formation, an early Famennian (Late triangularis to Early crepida interval of oolitic limestone, a cyclothem sequence straddling the Early Carboniferous-Late Carboniferous boundary, and an Early Permian interval of siliceous sand ("the white quartzite" of previous authors. Additionally, several iron-rich horizons, readily traceable from locality to locality, are well constrained by conodont ages. Eighty-five conodont species/subspecies are documented representing 24 genera.. Two new species, Polygnathus capollocki and Polygnathus ratebi and one new subspecies, Icriodus alternatus mawsonae are described. 

  13. Geochemistry and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Špaček, Petr; Medaris Jr., G.; Hegner, E.; Svojtka, Martin; Ulrych, Jaromír

    2012-01-01

    Roč. 57, č. 4 (2012), s. 199-219 ISSN 1802-6222 R&D Projects: GA ČR(CZ) GA205/09/1170 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z30120515 Institutional support: RVO:67985831 ; RVO:67985530 Keywords : pyroxenite * xenolith * Cenozoic * basalt * Sr-Nd isotopes * geothermobarometry Subject RIV: DD - Geochemistry Impact factor: 0.804, year: 2012

  14. Late Neoproterozoic to holocene thermal history of the precambrian Georgetown inlier, northeast Australia

    International Nuclear Information System (INIS)

    Spikings, R.A.; Foster, D.A.; University of Melbourne, VIC; Kohn, B.P.; O'Sullivan, P.B.

    2001-01-01

    Carboniferous-Permian volcanic complexes and isolated patches of Upper Jurassic - Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40 Ar/ 39 Ar and apatite fission track data from the inlier record a protracted and non-linear cooling history since ca 750 Ma. 40 Ar/ 39 Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 mm. These results record up to four periods of localised accelerated cooling within the temperature range of ∼ 320-60 deg C and up to ∼ 14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19-0.05 km/10 6 years) are observed to have occurred during the Devonian, late Carboniferous - Permian and mid-Cretaceous - Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian-age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid-Cretaceous exhumation may be a far-field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present-day erosion surface suggests small-scale fault-bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ∼2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid-Cretaceous times. Copyright (2001) Geological Society of Australia

  15. Geothermal appearances in connection with the neo-tectonics and magmatism at the territory of the Republic of Macedonia

    International Nuclear Information System (INIS)

    Arsovski, Milan; Stojanov, Risto

    1995-01-01

    The region of the Republic of Macedonia, as a part of the Alpine orogenic zone in late Alpine period was included by intensive neotectonic destructive movements, which is reflected on the high seismic activity in all the geo tectonic units: Serbo Macedonian massif. the Vardar zone, the Pelagonian massif and the West Macedonian zone, but of different intensity. The thermal and hydrothermal springs in Macedonia are connected to the activations of lineal neo tectonic fault structure with the Vardar immeridional direction of extension, as well as with the recently formed dislocations with vertical extension (in a form of orthogonal system) in the marginal parts of the depressions with positive morpho structures. According to the recent studies of the tectonic-magmatic factors, as well as the known thermal and thermo mineral springs in Macedonia, the most potential areas are the east boundary pails of the Vardar zone with the S. M. massif (the Rodopian mass) and the inner parts of the Vardar zone, particularly the marginal parts of the depressions, in the West Macedonia, the marginal parts of the Polog valley and the area of Debar. (Original)

  16. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    李乃胜

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan,China, Germany, France, the U. S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes,rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic sur-vey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P. , the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  17. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    Science.gov (United States)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  18. New Evidence For A Late Miocene Onset Of The Amazon River Following Andean Tectonics And Quaternary Climate Change

    Science.gov (United States)

    Hoorn, M. C.; Bogota-Angel, G.; Romero-Baez, M.; Lammertsma, E.; Flantua, S. G. A.; Dantas, E. L.; Dino, R.; do Carmo, D.; Chemale, F., Jr.

    2017-12-01

    The Amazon River influenced biotic evolution on land and at sea, but its onset and development are still debated. Terrestrial sedimentary records are sparse, far apart, and do not present a continuous stratigraphy and thus greatly complicate the reconstruction of the history of this river system. At sea the stratigraphic record is better known thanks to hydrocarbon exploration efforts, but these data are not in the public domain. Renewed exploration in the Amazon submarine fan (Brazilian Equatorial Margin) has provided novel data and materials from wells drilled along the slope of the Amazon submarine fan, that are now partially available for scientific research. Here we report on the results of a geochemical and palynological study of `Well 2' based on which we determined the age and provenance of early Miocene to Pleistocene sediments. The palynological data were also used to reconstruct past biomes on land, which ranged from mangrove and lowland forest to alpine vegetation. A distinct change in provenance was observed between 9.4 Ma and 9 Ma, which represented a change from Amazonian to Andean sediment source. This signal is replicated in the palynological record, which shows a shift from lowland to high-mountain taxa. Furthermore, we observed a very large increase of grass pollen from the Pliocene onwards with a further rise in the Pleistocene. These changes coincide with a rise in sedimentation rates. We interpret these results as following: a) the arrival of Andean sediments is related to the onset of the transcontinental river, b) the two-step rise of grass pollen and manifold increase in sediment discharge are related to Quaternary climatic change. These results agree with earlier and recent findings on the Ceara Rise and firmly place the birth of this river in the late Miocene. This study exemplifies the continental scale of tectonic changes on fluvial environments and biota across a W-E transect of South America. The study of this well is continued and we

  19. Biomarkers and their stable isotopes in Cenozoic sediments above the Chicxulub impact crater

    Science.gov (United States)

    Grice, K.; Schaefer, B.; Coolen, M.; Greenwood, P. F.; Scarlett, A. G.; Freeman, K.; Lyons, S. L.

    2017-12-01

    The most widely accepted hypothesis for the cause of the End-Cretaceous mass extinction (K/Pg event) 66 Ma ago is the impact of an extra-terrestrial body, which produced the 200 km wide Chicxulub impact structure. This event led to an extinction of 75% of all species on Earth. The massive extinction in the terrestrial realm is partly attributed to the intense heat pulse, the widespread wild fires caused by the impact and the ensuing darkness, as dust and sulfate aerosols blocked out the sun leading to photosynthesis shut off and productivity collapse in both the terrestrial and marine realms. The marine realm may additionally have experienced ocean acidification resulting in mass extinction of plankton (foraminifera and coccolithophorids) and marine reptiles. Samples from the Cenozoic marine sediments including the Paleocene-Eocene Thermal Maximum (PETM) have been extracted for hydrocarbons and analysed to investigate the molecular and isotopic organic record of biotic and environmental change after the K/Pg boundary event. Specific biomarker-precursor relationship has been established by the direct correlation of sedimentary biomarkers with the biochemicals (e.g. lipids) of extant biological systems. The structural characterisation of biomarkers as well as their stable isotopic compositions (C, H and N) are used to evaluate the source(s) of organic matter (OM) and to reconstruct paleoenvironmental depositional conditions. Throughout the Cenozoic sediments (including the PETM) the biomarker distribution suggests a variation in the source of organic matter from terrestrial to marine. Furthermore, the presence of sulfurised biomarkers indicates euxinic environmental conditions at the time of deposition. Biomarker distributions indicative of green sulfur bacteria reveal persistent photic zone euxinic conditions at several intervals in the Cenozoic. Further compound specific isotope analyses will provide insights into the long-term biogeochemical cycling of C, H and S

  20. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  1. Everyday Tectonics?

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    Frascari and Kenneth Frampton (Harris & Berke 1997, Read 2000, Frascari 1984, Frampton 1995kilder). Whereas the focus upon everyday architecture seems to have lost its momentum too quickly, tectonic theory in architecture has been steadily growing as a field of research in architecture, especially related...

  2. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    Science.gov (United States)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  3. Late Cenozoic Magmatic and Tectonic Evolution of the Ancestral Cascade Arc in the Bodie Hills, California and Nevada: Insights from Integrated Geologic, Geophysical, Geochemical and Geochronologic Studies

    Science.gov (United States)

    John, D. A.; du Bray, E. A.; Box, S. E.; Blakely, R. J.; Fleck, R. J.; Vikre, P. G.; Cousens, B.; Moring, B. C.

    2012-12-01

    Geologic mapping integrated with new geophysical, geochemical, and geochronologic data characterize the evolution of Bodie Hills volcanic field (BHVF), a long-lived eruptive center in the southern part of the ancestral Cascade arc. The ~700 km2 field was a locus of magmatic activity from ~15 to 8 Ma. It includes >25 basaltic andesite to trachyandesite stratovolcanoes and silicic trachyandesite to rhyolite dome complexes. The southeastern part of the BHVF is overlain by the ~3.9 to 0.1 Ma, post-arc Aurora Volcanic Field. Long-lived BHVF magmatism was localized by crustal-scale tectonic features, including the Precambrian continental margin, the Walker Lane, the Basin and Range Province, and the Mina deflection. BHVF eruptive activity occurred primarily during 3 stages: 1) dominantly trachyandesite stratovolcanoes (~15.0 to 12.9 Ma), 2) coalesced trachydacite and rhyolite lava domes and trachyandesite stratovolcanoes (~11.6 to 9.7 Ma), and 3) dominantly silicic trachyandesite to dacite lava dome complexes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Relatively mafic stratovolcanoes surrounded by debris flow aprons lie on the margins of the BHVF, whereas more silicic dome fields occupy its center. Detailed gravity and aeromagnetic data suggest the presence of unexposed cogenetic granitic plutons beneath the center of the BHVF. Isotopic compositions of BHVF rocks are generally more radiogenic with decreasing age (e.g., initial Sr isotope values increase from ~0.7049 to 0.7061), which suggests progressively greater magma contamination by crustal components during evolution of the BHVF. Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during BHVF formation. Extensive alluvial gravel deposits that grade laterally into fluvial gravels and finer grained lacustrine sediments and the westerly sourced Eureka Valley Tuff (EVT; ~9.4 Ma) blanket large parts of the BHVF. The earliest sediments

  4. Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies

    Science.gov (United States)

    Guo, L.; Meng, X.; Shi, L.; Yao, C.

    2011-12-01

    The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We

  5. Constraints on early Cenozoic underplating-driven uplift and denudation of western Scotland from low temperature thermochronometry

    Science.gov (United States)

    Persano, Cristina; Barfod, Dan N.; Stuart, Finlay M.; Bishop, Paul

    2007-11-01

    Apatite (U-Th)/He and fission track data from profiles in western Scotland constrain the timing and magnitude of denudation during the early Cenozoic when the north Atlantic region was the site of intense magmatic activity related to the proto-Icelandic plume. Apatite helium ages vary from 77 ± 8 to 265 ± 27 Ma (± 2 σ) at Sgorr Dhonuill, Ballachulish, and from 104 ± 10 Ma to 166 ± 17 Ma at Clisham, Outer Hebrides. At both locations apatite fission track (AFT) ages are older than the corresponding He ages; at Clisham they vary from 189 ± 28 Ma to 242 ± 26 Ma, and from 186 ± 6 Ma to 257 ± 12 Ma at Sgorr Dhonuill. Apatite He ages increase linearly with elevation suggesting that the cooling rate remained constant in the late Mesozoic. However, the apatite He age profile requires a period of rapid cooling after ˜ 100 Ma. Apatite He ages predicted from the AFT-derived thermal histories are indistinguishable from measured He ages for a rapid cooling event of 1 to 10 Myr duration between 61 and 47 Ma at Sgorr Dhonuill and 65 to 49 Ma at Clisham. The combined apatite FT- and He-derived thermal histories constrain the early Cenozoic geothermal gradient at 39 ± 9 °C/km at Sgorr Dhonuill and 19 ± 6 °C/km at Clisham. Amounts of denudation related to the rapid cooling event vary from 1330 ± 230 m at Sgorr Dhonuill to 2250 ± 750 m at Clisham, in agreement with models that predict greater amounts of denudation where magmatic underplating is thicker. However, the direct correlation between underplating-driven surface uplift and denudation may only be apparent and a more complex link between spatial variation of surface uplift and denudation is suggested. The integration of results from multiple low-temperature thermochronometers, combined with inverse and forward modelling, provides a convincing and quantitative method to deduce onshore erosional histories, and provides critical information about the spatial distribution of erosion that cannot be derived from the

  6. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Directory of Open Access Journals (Sweden)

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  7. The role of the Anaxagoras Mountain in the Miocene to Recent tectonic evolution of the eastern Mediterranean

    Science.gov (United States)

    Colbourne, Mark; Hall, Jeremy; Aksu, Ali; Çifçi, Günay

    2014-05-01

    The Anaximander Mountains are one of the many enigmatic structures situated along the morphologically and structurally complicated junction between the Hellenic and Cyprus Arcs, in the eastern Mediterranean. Interpretation of ~750 km of marine multi-channel seismic reflection data show that the present day Anaximander Mountains underwent several distinct phases of tectonic activity since Miocene. During the mid-late Miocene, a protracted, contractional tectonic regime produced the east-west trending, south-verging fold-thrust belt observed in the area. The Messinian was a period of relatively low tectonic activity, and is marked by the deposition of an evaporite layer. This phase lasted until the latest Miocene - earliest Pliocene, when a major erosional event associated with the Messinian salinity crisis occurred. Beginning in the early-mid Pliocene-Quaternary a transpressional and rotational tectonic regime prevailed over the area. The Anaximander Mountain (sensu stricto) and Anaximenes Mountain developed in the Pliocene-Quaternary associated with the reactivation, uplift and rotation of a linked, thick skinned pre-Messinian imbricate thrust fan. Back thrusting in the region accentuated the morphology of these mountains. The Anaxagoras Mountain differs both lithologically and morphologically from the Anaximander Mountain (sensu stricto) and the Anaximenes Mountain. It is probably developed associated with the emplacement of the ophiolitic Antalya Nappe Complex. Faulting in the Anaxagoras region is characterized by southwest striking thrust and/or oblique thrust faults. Due to the similarities in morphology between the Isparta Angle of southwestern Turkey and the Anaximander Mountains (sensu lato), it is hypothesized that the tectonic evolution of the two regions are similar in nature. The Anaximander Mountains (sensu lato) can thus be considered the offshore replication of the Isparta Angle, produced by similar mechanisms, but being of a younger age.

  8. A constrained African craton source for the Cenozoic Numidian Flysch: Implications for the palaeogeography of the western Mediterranean basin

    Science.gov (United States)

    Thomas, M. F. H.; Bodin, S.; Redfern, J.; Irving, D. H. B.

    2010-07-01

    The provenance of the Numidian Flysch in the western Mediterranean remains a controversial subject which hinders understanding of this regionally widespread depositional system. The Numidian Flysch is a deep marine formation dated as Oligocene to Miocene which outcrops throughout the Maghreb and into Italy. Evidence that is widely used for provenance analysis has not previously been reviewed within the context of the Maghrebian Flysch Basin as a whole. The structural location within the Alpine belt indicates deposition proximal to the African margin, while the uniformity of the Numidian Flysch petrofacies suggests a single cratonic source, in stark contrast to heterolithic and immature flysch formations from the north of the basin. Detrital zircon ages constrain a source region with Pan-African and Eburnian age rocks, unaffected by either Hercynian or Alpine tectonic events, which precludes the European basement blocks to the north of the basin. Palaeocurrent trends which suggest a northern source are unreliable given foreland basin analogues and observed structural complications. An African craton source remains the only viable option once these data are reviewed in their entirety, and the Numidian Flysch therefore represents a major Cenozoic drainage system on the North African margin. Deposition is concurrent with regional Atlas uplift phases, and coincidental with globally cooling climates and high sea levels. The Numidian Flysch is therefore interpreted to represent a highstand passive margin deposit, with timing of deposition controlled primarily by hinterland uplift and climatic fluctuations.

  9. Foreland sedimentary record of Andean mountain building during advancing and retreating subduction

    Science.gov (United States)

    Horton, Brian K.

    2016-04-01

    As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick

  10. North America-Greenland-Eurasian relative motions: implications for circum-arctic tectonic reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, D.B.; Lottes, A.L.; Ziegler, A.M.

    1985-02-01

    The Mesozoic-Cenozoic tectonic evolution of the Circum-Arctic region is based on constraints imposed by (1) relative motion histories of the three major plates (North America, Greenland, and Eurasia) and a number of smaller pieces, and (2) distribution and age of sutures, accretionary prisms, volcanic arcs, fold-thrust belts, stretched continental crust, strike-slip faults, and ocean floor. The authors conclude that: (1) North America and Eurasia remained relatively fixed to each other until the latest Cretaceous-Paleocene opening of the Labrador Sea-Baffin Bay and Greenland-Norwegian and Eurasian basins (earlier convergence between North America and Eurasia in the Bering Sea region shown on many reconstructions are artifacts of incorrect plate reconstructions); (2) the North Slope-Seward-Chukotka block has constituted an isthmus connection between North America and northeast Asia since at least the middle Paleozoic and did not rotate away from the Canadian Arctic; (3) the Canada basin opened behind a clockwise-rotating Alpha Cordillera-Mendeleyev ridge arc during the Early to middle Cretaceous and consumed older, Paleozoic(.) Makarov basin ocean floor (the Chukchi cap is a detached continental fragment derived from the Beaufort Sea; the North Slope Arctic margin is a left-lateral transform fault associated with the opening of the Canada basin); and (4) the Nares Strait fault has a net relative displacement of approximately 25 km, but actual motion between Greenland and northern Ellesmere was about 250 km of strongly transpressive motion that resulted in the Eurekan and Svalbardian orogenies.

  11. Episodes of subsidence and uplift of the conjugate margins of Greenland and Norway after opening of the NE Atlantic

    Science.gov (United States)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.

    2015-04-01

    We have undertaken a regional study of the thermo-­tectonic development of East Greenland (68-75°N) and of southern Norway (58-64°N). We take advantage of the general observation that that the effects of uplift often are reflected more clearly onshore than offshore, and of the specific condition that the mountains of southern East Greenland expose thick basalts that were extruded onto a largely horizontal lava plain near sea level during breakup of the NE Atlantic at the Paleocene-Eocene transition. It is thus clear that the present-­day elevation of these basalts up to 3.7 km a.s.l. were reached after breakup. Our results based on apatite fission-­track analysis (AFTA) data from East Greenland reveal a long history of post-­Palaeozoic burial and exhumation across the region and show that the terrains of Palaeozoic and older rocks were buried below a 2-3 km­-thick cover prior to a series of Mesozoic events of uplift and exhumation. The AFTA results from southern Norway reveal events of Mesozoic uplift and exhumation that are broadly simultaneous with those in Greenland. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial. Our AFTA data from southern Norway show evidence of an event of mid­Cenozoic uplift and exhumation that overlap with the early Oligocene onset of progradation of clastic wedges towards the south and with the formation of a major, late Eocene unconformity along the NW European margin. The uplift event at the Eocene-Oligocene transition that affected wide areas in the NE Atlantic domain was followed by two regional events of uplift and incision of the East Greenland margin in the late Miocene and Pliocene whereas the Neogene uplift of southern Norway began in the early Miocene and was

  12. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    Science.gov (United States)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The

  13. Soft Plate and Impact Tectonics

    Science.gov (United States)

    Tikoff, Basil

    In the field of tectonics, most of our ideas are published in journals. This is not true of other fields, such as history, in which ideas are primarily published in books. Within my own field of structural geology, I can recall only one book, Strain Fades by E. Hansen (Springer-Verlag, 1971), which presents a new idea in book form. However, even this book is more useful for its philosophical approach and particular methodology of determining directions of folding, than for its overarching idea.Enter Soft Plate and Impact Tectonics, a new book with an interesting hypothesis that has been informally discussed in the geoscience community: A fundamental tenet of plate tectonics is incorrect—namely, that the plates are rigid. This assertion is evident when looking at any mountain range, and is perhaps most clearly stated in Molnar [1988].

  14. Intrinsic stream-capture control of stepped fan pediments in the High Atlas piedmont of Ouarzazate (Morocco)

    Science.gov (United States)

    Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.

    2012-11-01

    The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.

  15. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Krezsek, Csaba [SNGN ROMGAZ, 4 Unirii 551025 Medias (Romania); Bally, Albert W. [Department of Geology and Geophysics, University of Rice, 6100 South Main Street, Houston, TX 77005-1892 (United States)

    2006-05-15

    Interpretation of regional seismic profiles, stratigraphic and sedimentologic data improved insights in the evolution of the Transylvanian Basin. The basin evolution was coeval with the post-Mid-Cretaceous to recent deformation of the Carpathian Mts. Four tectonostratigraphic megasequences are differentiated: Upper Cretaceous (rift), Paleogene (sag), Lower Miocene (flexural basin) and Middle to Upper Miocene (backarc sequence dominated by gravitational tectonics). The Mid-Miocene continental collision in the Eastern Carpathians is associated with the rising Carpathians. This uplift enhanced the differential load, which, together with the high heat flow induced by Late Miocene to Pliocene arc volcanism, triggered large-scale Mio-Pliocene gravity spreading of the salt overburden. This 'mega-slide' comprises three structural domains, as follows: extensional weld (upslope), contractional folds (central) and contractional toe thrust (downslope). The diapirs in the east indicate a pre-shortening reactive/passive growth stage. The central folds are mostly the result of late shortening. Basement involved thrusting uplifted the toe thrust domain by the Late Pliocene. The Late Neogene to recent Carpathians uplift, backarc volcanism and gravity spreading are largely coeval. (author)

  16. Petrogenesis of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan: Provenance, tectonic, and climatic implications

    Science.gov (United States)

    Amireh, Belal S.

    2018-04-01

    special influence of local intracratonic syn-rift rhyolitic extrusions, where their plate tectonic setting is not represented by the standard plate tectonics-provenance diagrams, or to the rather unusual effect of the Late Ordovician glacial event.

  17. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte

    2015-01-01

    . On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative......By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... conditions of the built environment. We see an increasing number of square meters in ordinary housing, in commercial buildings and in public buildings such as hospitals and schools that are dealt with as performative structural frameworks rather than qualitative spaces for habitation and contemplation...

  18. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    1400 °C during post-Archean times, probably sometime shortly after 2 Ga. At around this time kimberlites replace komatiites as the hallmark mantle-derived magmatic feature of continental shields worldwide. The remarkable Mesozoic-Cenozoic 'kimberlite bloom' between 250-50 Ma may represent the ideal circumstance under which the relatively cool and volatile-fluxed cratonic roots of the Pangea supercontinent underwent significant tectonic disturbance. This created more than 60% of world's known kimberlites in a combination of redox- and decompression-related low-degree partial melting. Less than 2% of world's known kimberlites formed after 50 Ma, and the tectonic settings of rare 'young' kimberlites from eastern Africa and western North America demonstrate that far-field stresses on cratonic lithosphere enforced by either continental rifting or cold subduction play a crucial role in enabling kimberlite magma transfer to Earth's surface.

  19. The alternative concept of global tectonics

    Science.gov (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael

    2016-04-01

    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set

  20. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    Science.gov (United States)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    saturation in most perspective prospects. Factors of tectonic history, high thickness of sediments in basin, founded possible oil and gas source rocks promise success in future exploration, but in ESSB we also recommend further geophysical investigations (seismic, gravy and magnetic) and well testing of some most perspective prospects, despite of high cost of these activities. We suppose, that investigations of ESSB should be continued to receive positive effects for Russian national economy in the nearest future. References [1] Kirillova (eds) [2013] Geological setting and petroleum potential of sedimentary basins of East Siberian Sea continental margin, v. 1, (in Russian) 249. [2] Sobolev (eds) [2012] Investigation of main sequences of Paleozoic and Meso-Cenozoic sedimentary and magmatic complexes of New Siberian Islands Archipelago, (in Russian), 143. [3] Suprunenko (eds) [2005] Petroleum zoning of Russian East Arctic shelf, Comparative analysis of petroleum potential of this aquatories with definition of perspective prospects and choise of most perspective objects for future projects, v. 1, (in Russian), 264.

  1. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism

    Science.gov (United States)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Klaver, Gerard Th.; Saunders, Andrew D.

    1996-03-01

    Late Cretaceous mafic volcanic sequences in Western Colombia and in the southern Caribbean have a striking coherence in their chemistry and compositional range which suggests they are part of the same magmatic province. The chemical characteristics of the majority of the mafic lavas are totally unlike those of island arc or marginal basin basalts, so the sequences cannot represent accreted arc terranes. On the other hand their trace element characteristics closely resemble those of Icelandic/Reykjanes Ridge basalts that represent an oceanic plateau formed by extensive decompression melting of an uprising deep mantle plume. The occurrence of komatiites on Gorgona and high-MgO picritic lavas in S.E. Colombia and on Curaçao, representing high temperature melts of the plume tail, confirms this analogy. Likewise, late stage rhyolites within the Colombian mafic volcanics may well be the equivalent of the extensive silicic magmas on Iceland and at Galapagos, possibly formed by remelting of the deep parts of the overthickened basaltic crust above the plume head. These volcanics, plus others around the Caribbean, including the floor of the Central Caribbean, probably all represent part of an oceanic plateau that formed rapidly at the Galapagos hotspot at 88 Ma, and that was too hot and buoyant to subduct beneath the margin of S. America as it migrated westwards with the opening of the South Atlantic, and so was imbricated along the continental margin. Minor arc-like volcanics, tonalites and hornblende leucogabbro veins may represent the products of subduction-flip of normal ocean crust against the buoyant plateau, or hydrous melts developed during imbrication/obduction.

  2. Miocene to recent tectonic and sedimentary evolution of the Anaximander Seamounts; eastern Mediterranean Sea

    Science.gov (United States)

    Cranshaw, Jennifer

    This thesis is focused on the Messinian to Recent tectonic and sedimentary evolution of the Anaximander Mountains and surrounding environs in the eastern Mediterranean Sea. It is based on processing of high-resolution seismic reflection data and the interpretation and mapping of seismic reflection profiles collected from this area during the 2001 and 2007 research cruises. The data show that the greater Anaximander Mountains region experienced a short interval of tectonic quiescence during the Messinian when a thin evaporite unit was deposited across a major erosional surface. This phase of limited tectonic activity ended in the latest Miocene and was replaced by an erosional phase. Major unconformities in the area are interpreted to develop during the desiccation of the eastern Mediterranean associated with the so-called Messinian salinity crisis. During the early Pliocene, the region experienced an increase in tectonic activity, dominated by transpression. Small amounts of growth observed in Pliocene-Quaternary sediments suggested that the tectonic activity remained low during the early Pliocene-Quaternary. However, the extensive growth strata wedges developed in older sediments indicate a period of accelerated tectonic activity during the mid-late Pliocene-Quaternary. This study suggests that the Anaximander Mountain (sensu stricto ) and the Anaximenes Mountain developed during the Pliocene-Quaternary as the result of a crustal-scale thick-skinned linked imbricate thrust fan. The development of back thrusts in both mountains heightened the seafloor morphology of these submarine mountains and brought Eocene-Oligocene sediments into the core of these mountains. The Sim Erinc Plateau represents a 30-40 km wide transpressional fault zone developed during the Pliocene-Quaternary. In this region the corrugated seafloor morphology observed in the multibeam bathymetry map is the reflection of high-angle faults. It is speculated that this transpressional fault zone

  3. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  4. Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the East equatorial and central north Pacific Ocean

    International Nuclear Information System (INIS)

    Keigwin, L.D. Jr

    1979-01-01

    Stable isotopic analyses of Middle Miocene to Quaternary foraminiferal calcite from east equatorial and central north Pacific DSDP cores have provided much new information on the paleoceanography of the Pacific Neogene. The history of delta 18 O change in planktonic foraminifera reflects the changing isotopic composition and temperature of seawater at the time of test formation. Changes in the isotopic composition of benthonic foraminfera largely reflect changes in the volume of continental ice. Isotopic data from these cores indicates the following sequence of events related to continental galaciation: (1) A permanent Antarctic ice sheet developed late in the Middle Miocene (about 13 to 11.5 m.y. ago). (2) The Late Miocene (about 11.5 to 5 m.y. ago) is marked by significant variation in delta 18 O of about 0.5% throughout, indicating instability of Antarctic ice cap size or bottom-water temperature. (3) The early Pliocene (5 to about 3 m.y. ago) was a time of relative stability in ice volume and bottom-water temperature. (4) Growth of permanent Northern Hemisphere ice sheets is inferred to have begun about 3 m.y. ago. (5) The late Pliocene (3 to about 1.8 m.y. ago) is marked by one major glaciation or bottom-water cooling dated between about 2.1 to 2.3 m.y. (6) There is some evidence that the frequency of glacial-interglacial cycles increased at about 0.9 m.y. (Auth.)

  5. Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating - Implications for the preservation of epithermal deposits in ancient orogenic belt

    Science.gov (United States)

    Wang, Yannan; Cai, Keda

    2017-04-01

    The western Chinese Tianshan, located in the southern domain of the Central Asian Orogenic Belt (CAOB), was originally constructed by multiple accretion-collision processes in the Paleozoic, and was superimposed by complex intracontinental tectonic evolution in the Mesozoic-Cenozoic. Understanding the timing and mechanism of the latter geological processes is critical to unravel the preservation conditions of the epithermal deposits in the western Chinese Tianshan. This work presents new apatite fission track (AFT) data for three mountain ranges of the western Chinese Tianshan to track their exhumation history. Our AFT data gave a wide range of ages from 76.8 ± 5.5 Ma to 182.3 ± 9.9 Ma, and the mean confined fission track lengths are between 9.8 ± 0.5 μm and 12.3 ± 0.2 μm. The new data, in combination with the thermal history modeling,enable us to attribute the exhumation history to three primary stages, including Early Permian (300-280 Ma), Late Triassic-Early Cretaceous (230-130 Ma), and Late Oligocene-Early Miocene (30-20 Ma). The first stage may be caused by the terrane accretion-collision in the late Paleozoic. The second stage was likely related to the closure of the Mongol-Okhotsk Ocean during the Mesozoic. The last one is regarded as the result of the collision between the Indian Plate and the Eurasia Plate in the Cenozoic. The extraordinary exhumation processes of these three major mountain ranges might have been responsible for sediment supply to the corresponding intra-mountain basins in the western Chinese Tianshan, and the particularly mountain-basin coupling evolution is ascribed to an essential condition for the preservation of epithermal deposits in ancient orogenic belt.

  6. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  7. Stratigraphic and tectonic revision of Cerro Olivo Complex located of Southeastern of Uruguay

    International Nuclear Information System (INIS)

    Masquelin, E.

    2004-01-01

    This paper presents a stratigraphic and tectonic revision of Cerro Olivo Complex, located in the Southeastern part of the Uruguayan Predevonian Shield. This informal lithostratigraphic unit constitutes the country rock for the emplacement of late-orogenic granitoids, during Neoproterozoic to Cambrian times. This unit groups all the lithodemes affected by deformation and metamorphism. Recent studies indicate the presence of straight gneisses of quartzo-feldspathic composition in the coast of Maldonado Department. These rocks were interpreted as the result of intense deformation in high temperature. These tectonites base a new stratigraphic insight for the complex. They allow their lithotypes to be organized by petrotectonic features, being a function of PT conditions for every last strain process [es

  8. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  9. Geologic framework of the Alaska Peninsula, southwest Alaska, and the Alaska Peninsula terrane

    Science.gov (United States)

    Wilson, Frederic H.; Detterman, Robert L.; DuBois, Gregory D.

    2015-01-01

    The Alaska Peninsula is composed of the late Paleozoic to Quaternary sedimentary, igneous, and minor metamorphic rocks that record the history of a number of magmatic arcs. These magmatic arcs include an unnamed Late Triassic(?) and Early Jurassic island arc, the early Cenozoic Meshik arc, and the late Cenozoic Aleutian arc. Also found on the Alaska Peninsula is one of the most complete nonmetamorphosed, fossiliferous, marine Jurassic sedimentary sections known. As much as 8,500 m of section of Mesozoic sedimentary rocks record the growth and erosion of the Early Jurassic island arc.

  10. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  11. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  12. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia: Tectonic deformation of the Indochina Peninsula

    Science.gov (United States)

    Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro

    2016-01-01

    Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.

  13. Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: Their sources and magma generation

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková-Svobodová, Jana

    2014-01-01

    Roč. 46, 1/2 (2014), s. 45-58 ISSN 0369-2086 R&D Projects: GA AV ČR(CZ) IAA300130902 Institutional support: RVO:67985831 Keywords : alkaline volcanic rocks * melilitic rocks * carbonatites * magma generation * metasomatism * Cenozoic * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  14. Framework for Tectonic Thinking, a Conceptual Approach

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    This research paper is a contribution to the field of architectural design theory in the area of tectonics. From the designer’s point of view, it will develop an overarching conceptual framework for tectonic thinking (FTT), which will serve as a tool for the comparative analysis and interpretation...

  15. Late Permian to Triassic intraplate orogeny of the southern Tianshan and adjacent regions, NW China

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2014-01-01

    Based on previous studies and recent geochronogical data, we suggest that the final collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous. Therefore, the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions. We propose that an earlier, small-scale intraplate orogenic stage occurred in late Permian to Triassic time, which was the first intraplate process in the South Tianshan Orogen and adjacent regions. The later large-scale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate. The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions, which includes seven stages: (I late Ordovician–early Silurian opening of the South Tianshan Ocean; (II middle Silurian–middle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent; (III late Devonian–late Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarim continental blocks; (IV early Permian post-collisional magmatism and rifting; (V late Permian–Triassic the first intraplate orogeny; (VI Jurassic–Palaeogene tectonic stagnation and (VII Neocene–Quaternary intraplate orogeny.

  16. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

    NARCIS (Netherlands)

    Aghazadeh, Mehraj; Castro, Antonio; Badrzadeh, Zahra; Vogt, Katharina

    2011-01-01

    The petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt.

  17. Analysis on sequence stratigraphy and depositional systems of Mangbang formation, upper tertiary in Longchuanjiang basin

    International Nuclear Information System (INIS)

    Sun Zexuan; Yao Yifeng; Chen Yong; Li Guoxin

    2004-01-01

    Longchuanjiang basin is a small Cenozoic intramontane down-faulted basin. This paper, combining the Pliocene structure, the volcanic activities and the sedimentation of the basin, analyses the sequence stratigraphy and the depositional systems of Mangbang formation (the cover of the basin). Based on the analysis of depositional systems of Mangbang formation, the depositional pattern of Pliocene in Longchuanjiang basin is set up. It is suggested that because of the fast accumulation in early down-faulted zone during Pliocene time, the alluvial fan depositional system was dominated at that time. During the middle-late period, the alluvial fan entered the lake forming a combination of fan-fandelta-lacustrine depositional systems. Authors propose a view point that the formation of Mangbang formation sequence was constrained by multistage tectonic movement, and three structural sequences were established, and system tracts were divided. (authors)

  18. Tectonics: The meaning of form

    DEFF Research Database (Denmark)

    Christiansen, Karl; Brandt, Per Aage

    Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill and insi...... perspectives. You can read the chapters in any order you like – from the beginning, end or the middle. There is no correct order. The project is methodologically inductive: the more essays you read, the broader your knowledge of tectonics get....

  19. Heat flow at the proposed Appalachian Ultradeep Core Hole (ADCOH) Site: Tectonic implications

    Science.gov (United States)

    Costain, John K.; Decker, Edward R.

    The heat flow in northwestern South Carolina at the Appalachian Ultradeep Core Hole (ADCOH) site area is approximately 55 mW/m². This data supplements other data to the east in the Piedmont and Atlantic Coastal Plain provinces where heat flows > 55 mW/m² are characteristic of post- and late-synmetamorphic granitoids. Piedmont heat flow and heat generation data for granites, metagranites, and one Slate Belt site, in a zone approximately parallel to major structural Appalachian trends, define a linear relation. Tectonic truncation of heat-producing crust at a depth of about 8 km (a depth equal to the slope of the heat flow-heat production line) is proposed to explain the linear relation. Using the value of reduced heat flow estimated from this empirical relation, and assuming thicknesses of heat-producing crust defined by new ADCOH seismic data, the heat flow and heat production at the ADCOH site are consistent with a depth to the base of the Inner Piedmont crystalline allochthon of about 5.5 km. Seismic data at the ADCOH site confirm that the Inner Piedmont is tectonically truncated at about 5.5 km by the Blue Ridge master decollement. Temperatures at 10 km at the ADCOH site are predicted to be less than 200 °C.

  20. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  1. Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    history of the Late Cretaceous crust characterized by anomaly 34 through 31 (83.5-68.7Ma) under complex tectonic settings. Seafloor spreading model studies suggest that the crust, particularly between the chrons 33R and 33 (79.0-73.6 Ma), was formed...

  2. Apatite Fission-Track Analysis of the Middle Jurassic Todos Santos Formation from Chiapas, Mexico.

    Science.gov (United States)

    Abdullin, Fanis; Solé, Jesús; Shchepetilnikova, Valentina; Solari, Luigi; Ortega-Obregón, Carlos

    2014-05-01

    The Sierra de Chiapas (SCH), located in the south of Mexico, is a complex geological province that can be divided on four different lithological or tectonic areas: (1) the Chiapas Massif Complex (CMC); (2) the Central Depression; (3) the Strike-slip Fault Province, and (4) the Chiapas Fold-and-thrust Belt. The CMC mostly consists of Permian granitoids and meta-granitoids, and represents the basement of the SCH. During the Jurassic period red beds and salt were deposited on this territory, related to the main pulse of rifting and opening of the Gulf of Mexico. Most of the Cretaceous stratigraphy contains limestones and dolomites deposited on a marine platform setting during the postrift stage of the Gulf of Mexico rift. During the Cenozoic Era took place the major clastic sedimentation along the SCH. According the published low-temperature geochronology data (Witt et al., 2012), SCH has three main phases of thermo-tectonic history: (1) slow exhumation between 35 and 25 Ma, that affected mainly the basement (CMC) and is probably related to the migration of the Chortís block; (2) fast exhumation during the Middle-Late Miocene caused by strike-slip deformation that affects almost all Chiapas territory; (3) period of rapid cooling from 6 to 5 Ma, that affects the Chiapas Fold-and-thrust Belt, coincident with the landward migration of the Caribbean-North America plate boundaries. The two last events were the most significant on the formation of the present-day topography of the SCH. However, the stratigraphy of the SCH shows traces of the existence of earlier tectonic events. This study presents preliminary results of apatite fission-track (AFT) dating of sandstones from the Todos Santos Formation (Middle Jurassic). The analyses are performed with in situ uranium determination using LA-ICP-MS (e.g., Hasebe et al., 2004). The AFT data indicate that this Formation has suffered high-grade diagenesis (probably over 150 ºC) and the obtained cooling ages, about 70-60 Ma

  3. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    Science.gov (United States)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  4. Genesis of Cenozoic intraplate high Mg# andesites in Northeast China

    Science.gov (United States)

    Liu, J. Q.; Chen, L. H.; Zhong, Y.; Wang, X. J.

    2017-12-01

    High-Mg# andesites (HMAs) are usually generated in the converged plate boundary and have genetic relationships with slab subduction. However, it still remained controversial about the origin of those HMAs erupted in the intra-plate setting. Here we present major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate HMAs from Northeast China to constrain their origin and formation process. Cenozoic Xunke volcanic rocks are located in the northern Lesser Khingan Range, covering an area of about 3, 000 km2. These volcanic rocks are mainly basaltic andesite and basaltic trachyandesite, with only several classified as trachyandesite and andesites. They have high SiO2 contents (54.3-57.4 wt%) and Mg# (49.6-57.8), falling into the scope of high Mg# andesites. The Xunke HMAs are enriched in large ion lithophile elements but depleted in high field strength elements, with positive Ba, K, Sr and negative Zr-Hf, and Ti anomalies. Their trace element absolute concentrations are between those of potassic basalts and Wuchagou HMAs. The Xunke HMAs have relatively enriched Sr-Nd-Hf isotopes (87Sr/86Sr = 0.705398-0.705764, ɛNd=-8.8-3.8, ɛHf=0.5-11.7), and low radiogenic Pb isotopes (206Pb/204Pb = 16.701-17.198), towards to the EM1 end-member, which indicates that they are ultimately derived from ancient, recycled crustal components. Primitive silica-rich melts were generated from higher degrees of partial melting of recycled crustal materials (relative to potassic basalts) and then interacted with the peridotite to produce the Xunke HMAs.

  5. Emergent Marine Terraces in Cebu Island, Philippines and Their Implications for Relative Sea Level Changes in the Late Quaternary

    Science.gov (United States)

    Ramos, N. T.; Sarmiento, K. J. S.; Maxwell, K. V.; Soberano, O. B.; Dimalanta, C. B.

    2017-12-01

    The remarkable preservation and extensive distribution of emergent marine terraces in the Philippines allow us to study relative sea level changes and tectonic processes during the Late Quaternary. While higher uplift rates and possible prehistoric coseismic events are recorded by emergent coral reefs facing subduction zones, the central Philippine islands are reported to reflect vertical tectonic stability as they are distant from trenches. To constrain the coastal tectonics of the central Philippine region, we studied emergent sea level indicators along the coasts of northern Cebu Island in Tabuelan, San Remigio, and Bogo City. Upper steps of marine terraces were interpreted from IFSAR-derived DEMs, in which at least two and seven steps were identified along the west (Tabuelan) and east (Bogo) coasts, respectively. In Tabuelan, two extensive terrace steps (TPT) were interpreted with TPT1 at 5-13 m above mean sea level (amsl) and TPT2 at 27-44 m amsl. Five to possibly seven terrace steps (BPT) were delineated in Bogo City with elevations from lowest (BPT1) to highest (BPT7) at BPT1: 4-6 m, BPT2: 12-18 m, BPT3: 27-33 m, BPT4: 39-46 m, BPT5: 59-71 m, BPT6: 80-92 m, and BPT7: 103-108 m amsl. These upper terraces are inferred to be Late Pleistocene in age based on an initial MIS 5e age reported for a 5-m-high terrace in Mactan Island. At some sites, even lower and narrower terrace surfaces were observed, consisting of cemented coral rubble that surround eroded and attached corals. These lower carbonate steps, with elevations ranging from 1 to 3 m amsl, further provide clues on relative sea level changes and long-term tectonic deformation across Cebu Island.

  6. Australian Northwest Shelf: a Late Neogene Reversible Tectonic Event

    Science.gov (United States)

    Kominz, M. A.; Gurnis, M.; Gallagher, S. J.; Expedition 356 Scientists, I.

    2017-12-01

    The Northwest Shelf (NWS) of Australia is characterized by several offshore basins with active rifting in Permian and Jurassic time. Thus, by the Late Neogene this continental margin should be a very slowly subsiding passive margin. However, thick, poorly dated sediments have been noted in this region leading to speculation that this part of Australia has undergone down-warping in this time period. The International Ocean Discovery Program (IODP) Expedition 356 was designed, in part, to better constrain this even in both time and space. Post-cruise Airy-backstripping analyses of samples from four IODP 356 well sites, located as far south as the Perth Basin and as far North as the Carnarvon Basin, suggest that, in fact, this region has undergone a latest Miocene (≈ 8 to 6 Ma) subsidence event followed by a later (≈ 2 to 1 Ma) uplift event. Age constraints are from micropaleontology with some refinement using climate cycle-stratigraphy. Water depth constraints are from benthic foraminifera and from quantitative ratios of benthic foraminifera to planktonic foraminifera. These event cannot be explained as related to either the high-magnitude glacial eustatic changes nor can the uplift event be eliminated and ascribed to sediments filling the accommodation space generated in the earlier event. The magnitude and duration of the vertical movements are remarkably similar and suggests that the subsidence is reversible. Reversibility is a key aspect of a dynamic topography signal. However, it is difficult to produce a mantle anomaly that reproduces the subsidence and subsequent uplift with the requisite amplitude and rates as observed in the NWS of Australia. Additionally, the subduction of the Australian Plate into the Java Trench is too distant to affect this region of Australia. Modeling of a flexural warping due to in-plane stress related to collision of Timor with the Java trench is

  7. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    Science.gov (United States)

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  8. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  9. Late Archaean tectonics and sedimentation of the South Rand area, Witwatersrand basin

    International Nuclear Information System (INIS)

    Spencer, R.M.

    1992-01-01

    The sedimentary fill of the southern part of the northeastern Witwatersrand basin consists of four unconformity bounded mega sequences. Early sedimentation took place in a stable, epi continental basin characterized by amphidromic flow. Gradual transgression to distal shelf facies was followed by gradual emergence to intertidal facies. Unconformity Bounded Mega sequence 2 shows that the basin underwent regression, in which discrete uplifts provided a source of granite-greenstone-derived sediment to associated braid plain aprons. Thereafter the basin subsided into a system almost identical to that in which Unconformity Bounded Mega sequence 1 developed. Unconformity Bounded Mega sequence 3 was deposited in a similar marine environment, on an angular unconformity in the east. Regional uplift occurred to the northwest of the basin. Unconformity Bounded Mega sequence 4 records progradation of a perennial braid plain controlled by uplift in the east, and by the minor influence of an uplift to the northwest. Rapid transgression resulted in submarine fan facies development, after which rapid emergence was controlled by uplift in the east, and to a lesser extent, the north. The braid plain was the site of extrusion of komatiitic lavas of the lower Ventersdorp Supergroup and was subsequently smothered by the sustained outpouring of a two kilometer-thick pile of basalts. Crustal extension climaxed after extrusion of felsic volcanics. This extension is antithetic to regional down-to-the-northwest, lower Ventersdorp Supergroup rifting. The last conspicuous phase of Precambrian tectonics is the superposition of a right-lateral wrench system on the early structural framework, after deposition of the lower Transvaal Sequence. Analysis of the samples was carried out by X-ray fluorescence spectrometry. 243 refs., 119 figs., 8 tabs

  10. Devonian through early Carboniferous (Mississippian) metallogenesis and tectonics of northeast Asia, Chapter 6 in Metallogenesis and tectonics of northeast Asia

    Science.gov (United States)

    Badarch, Gombosuren; Dejidmaa, Gunchin; Gerel, Ochir; Obolenskiy, Alexander A.; Prokopiev, Andrei V.; Timofeev, Vladimir F.; Nokleberg, Warren J.

    2010-01-01

    The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and

  11. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  12. The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus

    NARCIS (Netherlands)

    Saintot, A.N.; Brunet, M.F.; Yakovlev, F.; Sébrier, M.; Stephenson, R.A.; Ershov, A.V.; Chalot-Prat, F.; McCann, T.

    2006-01-01

    The Greater Caucasus (GC) fold-and-thrust belt lies on the southern deformed edge of the Scythian Platform (SP) and results from the Cenoozoic structural inversion of a deep marine Mesozoic basin in response to the northward displacement of the Transcaucasus (lying south of the GC subsequent to the

  13. NEW BIOSTRATIGRAPHIC DATA ON THE FRAZZANO' FORMATION (LONGI-TAORMINA UNIT: CONSEQUENCES ON DEFINING THE DEFORMATION AGE OF THE CALABRIA-PELORITANI ARC SOUTHERN SECTOR

    Directory of Open Access Journals (Sweden)

    PAOLA DE CAPOA

    1997-11-01

    Full Text Available New biostratigraphic data on the Frazzanò Flysch Formation are presented. This unit is the topmost formation of the stratigraphic succession characterizing the Longi-Taormina Unit, which in turn represents the lowest tectonic unit of the Peloritani Mountains and the only unit in the entire southern sector of the Calabria-Peloritani Arc in which cenozoic terrains have been recognized. The age of the Frazzanò Fm., which as yet has not been well defined, is essential to ascertain the time period during which the tectogenetic phase responsible for the stacking (superposition of the nappes in the Peloritani Mountains occurred . Coltro (1967 reported foraminiferal assemblages of Late Eocene age, but subsequently ages ranging between the Middle Eocene and the Oligocene have been pro posed, none of them supported by new biostratigraphic data. The identification of some coccolithid taxa which appear in the Late Oligocene and Early Miocene allowed us to attribute an age not older than Upper Oligocene to the levels that mark the transition between the Frazzanò Fm.and the underlying Militello Formation, and an age not older than Early Aquitanian to the most recent beds of the Frazzanò Formation. Therefore, the tectogenetic phase responsible for the superposition of the nappes in the Peloritani Mountains, very likely started during the Aquitanian. While these data agree with the evolution of homologous units recognised in the Betic and Rifian sectors, they challenge the Late Oligocene age ascribed to the basal levels of the Stilo-Capo d'Orlando Formation, which lies unconformably over all the tectonic units of the Calabria-Peloritani Arc and pro vides a chronological upper limit to their overthrusting.    

  14. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    Science.gov (United States)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the

  15. Impact of glaciations on the long-term erosion in Southern Patagonian Andes

    Science.gov (United States)

    Simon-Labric, Thibaud; Herman, Frederic; Baumgartner, Lukas; Shuster, David L.; Braun, Jean; Reiners, Pete W.; Valla, Pierre G.; Leuthold, Julien

    2014-05-01

    The Southern Patagonian Andes are an ideal setting to study the impact of Late-Cenozoic climate cooling and onset of glaciations impact on the erosional history of mountain belts. The lack of tectonic activity during the last ~12 Myr makes the denudation history mainly controlled by surface processes, not by tectonics. Moreover, the glaciations history of Patagonia shows the best-preserved records within the southern hemisphere (with the exception of Antarctica). Indeed, the dry climate on the leeward side of Patagonia and the presence of lava flows interbedded with glacial deposits has allowed an exceptional preservation of late Cenozoic moraines with precise dating using K-Ar analyses on lava flow. The chronology of moraines reveals a long history covering all the Quaternary, Pliocene, and up to the Upper Miocene. The early growth of large glaciers flowing on eastern foothills started at ~7-6 Myr, while the maximum ice-sheet extent dates from approximately 1.1 Myr. In order to quantify the erosion history of the Southern Patagonian Andes and compare it to the glaciations sediment record, we collected samples along an age-elevation profile for low-temperature thermochronology in the eastern side of the mountain belt (Torres del Paine massif). The (U-Th)/He age-elevation relationship shows a clear convex shape providing an apparent long-term exhumation rate of ~0.2 km/Myr followed by an exhumation rate increase at ~6 Myr. Preliminary results of 4He/3He thermochronometry for a subset of samples complete the erosion history for the Plio-Pleistocene epoch. We used inverse procedure predicting 4He distributions within an apatite grain using a radiation-damage and annealing model to quantify He-diffusion kinetics in apatite. The model also allows quantifying the impact of potential U-Th zonation throughout each apatite crystal. Inversion results reveal a denudation history composed by a pulse of denudation at ~6 Ma, as suggested by the age-elevation relationship

  16. Depositional Architecture of Late Pleistocene-Holocene Coastal Alluvial-fan System in the Coastal Range, Taiwan

    Science.gov (United States)

    Chen, S. T.; Chen, W. S.

    2016-12-01

    Since late Pleistocene, the Coastal Range (Philippine Sea plate) collided and overridden on the Central Range (Eurasian Plate) along the Longitudinal Valley Fault. Therefore, the Coastal Range is exposed widely the late Pleistocene-Holocene marine and fluvial terraces caused by the tectonic uplift. Based on the estimation of paleosea-level elevations (Δh), depositional paleodepth, altitude distribution of Holocene deposits (D), altitude of outcrops (H), and 14C dating of marine deposits (t), the uplift rate (=(Δh+H +d-D)/t) is about 5-10 mm/yr in the southern Coastal Range. In this study, we suggest through field logging that the deposits can be divided into alluvial, foreshore (intertidal), shoreface, and offshore environments. In Dulan area in the southern Coastal Range, the uplift rate was 6-7 mm/yr during 16,380-10,000 cal yr BP and 3-4 mm/yr after 7,000 cal yr BP. Results from the Dulan Coastal alluvial-fan system can be divided into five depositional stages: (1) 16,380-14,300 cal yr BP: The rate of global sea level rise (SLR) has averaged about 6-7 mm/yr, similar to the tectonic uplift rate. In this stage, the bedrock was eroded and formed a wide wave-cut platform. (2) 14,300-10,000 cal yr BP: SLR of about 14 mm/yr that was faster than tectonic uplift rate of 6-7 mm/yr. As a result of transgression, the beach-lagoon deposits about 5 m thick were unconformably overlain on the wave-cut platform. (3) 10,000-8,200 cal yr BP: The ongoing sea level rise (SLR: 11 mm/yr), the lagoon deposits were overlain by an offshore slump deposits representing a gradual deepening of the depositional environment. (4) 8,200-7,930 cal yr BP (SLR: 6-7 mm/yr): The tectonic uplift rate may occur at similar SLR. The alluvial-fan deposits have prograded over the shallow marine deposits. (5) After 7,000 cal yr BP (SLR: 1-0 mm/yr): SLR was much slower than tectonic uplift rate of 3-4 mm/yr. Thus, Holocene marine terraces are extensively developed in the coastal region, showing that the

  17. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.

    1983-01-01

    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  18. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

    Science.gov (United States)

    Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina

    2017-01-01

    The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

  19. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    Science.gov (United States)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  20. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    Science.gov (United States)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and