WorldWideScience

Sample records for late archean weathering

  1. A model for late Archean chemical weathering and world average river water

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-01-01

    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  2. Mobility of nutrients and trace metals during weathering in the late Archean

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  3. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean

    Science.gov (United States)

    Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.

    2015-01-01

    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  4. Was there a late Archean biospheric explosion?

    Science.gov (United States)

    Lindsay, John F

    2008-08-01

    There is a growing body of evidence which suggests that the evolution of the planet drives the evolution of the biosphere. There have been 2 significant stages in Earth history when atmospheric oxygen levels rose rapidly, and both appear to be associated with supercontinent cycles. The earlier biospheric event, which extends across the Archean-Proterozoic boundary (ca. 3.0-2.2 Ga), has received little attention and is the focus of this study. Recent work on the Pilbara Craton of Western Australia has shown that concretion formed by microbial activity during the diagenesis of these sediments are absent from early Archean sediments but abundant in late Archean and early Paleoproterozoic successions of the Hamersley Basin, appearing abruptly in sedimentary rocks younger than 2.7 Ga. This study suggests that their internal architecture may have been defined by the diffusion of humic acids and the formation of polymer gels during diagenesis. The data imply that the biosphere expanded suddenly shortly after 3.0 Ga and may have begun to raise the oxygen levels of the oceanic water column earlier than thought-possibly as much as 300 my earlier.

  5. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  6. Late Archean Euxinia as a Window into Early Biogeochemical Cycles

    Science.gov (United States)

    Scott, C.; Bekker, A.; Reinhard, C.; Lyons, T. W.

    2009-12-01

    A number of transition metals present in seawater in trace amounts (10-10 to 10-7 moles/L) are nevertheless bioessential micronutrients, utilized in a wide range of cellular activities. Because their abundances in seawater are largely a reflection of redox-controlled sources and sinks, Precambrian biogeochemists increasingly focus on the interrelated nature of major redox transitions, the chemical composition of the oceans, and the evolution of life on Earth. Of particular interest are temporal trends in seawater inventories of elements utilized in the nitrogen cycle, both nitrogen fixation (Fe, V, Mo) and denitrification (Cu). Recent work on the link between trace metal abundance and the biologically mediated nitrogen cycle has focused on the Proterozoic Eon, when oxidative weathering was well established and sulfidic conditions were common in the deep ocean. However, we know little about trace metal availability during the Archean Eon, when oxygenic photosynthesis first appeared on Earth and began to alter the chemical composition of the oceans and atmosphere. The development of euxinic conditions, or anoxic and sulfidic bottom waters, provides important information regarding the cycling of major elements such as C, S and Fe. However, euxinic black shales can also provide a record of trace metal abundance. Mo is highly enriched in these shales and displays a conspicuous covariation with the concentration of total organic carbon (TOC). Furthermore, it has been demonstrated that the ratio Mo/TOC is proportional to the concentration of Mo in seawater. Cu and V are also enriched in euxinic black shales, and both correlate with TOC. By analogy with Mo, it is likely that the ratios Cu/TOC and V/TOC also contain information on the concentration of these transition metals in seawater. Here we present C-S-Fe systematics as well as trace metal concentrations from black shales of the Roy Hill Member of the late Archean Jeerinah Formation. Fe speciation indicates that the

  7. Geostable molecules and the Late Archean 'Whiff of Oxygen'

    Science.gov (United States)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.

    2012-12-01

    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  8. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim. Acta, 58, n. 24: 5443-5454. 3Lehner et al., 2015. PLoS ONE, 10, n. 6: 1-15.

  9. Continental emergence in the Late Archean reconciles early and late continental growth models

    Science.gov (United States)

    Flament, Nicolas; Coltice, Nicolas; Rey, Patrice

    2014-05-01

    The analysis of ancient sediments (Rare Earth Element composition of black shales, isotopic strontium composition of marine carbonates, isotopic oxygen composition of zircons) suggests that continental growth culminated around the Archean-Proterozoic transition. In stark contrast, the geochemical analysis of ancient basalts suggests that depletion of the mantle occurred in the Hadean and Eoarchean. This paradox may be solved if continents were extracted from the mantle early in Earth's history, but remained mostly below sea level throughout the Archean. We present a model to estimate the area of emerged land and associated isotopic strontium composition of the mantle and oceans as a function of the coupled evolution of mantle temperature, continental growth and distribution of surface elevations (hypsometry). For constant continental hypsometry and four distinct continental growth models, we show that sea level was between 500 and 2000 m higher in the Archean than at present, resulting in isotopic composition of the mantle and oceans, we show that a reduced area of emerged continental crust can explain why the geochemical fingerprint of continents extracted early in Earth's history was not recorded at the surface of the Earth until the late Archean.

  10. Triple sulfur isotope composition of Late Archean seawater sulfate

    Science.gov (United States)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  11. Accretionary origin for the late Archean Ashuanipi Complex of Canada

    Science.gov (United States)

    Percival, J. A.

    1988-01-01

    The Ashuanipi complex is one of the largest massif granulite terrains of the Canadian Shield. It makes up the eastern end of the 2000 km long, lower-grade, east-west belts of the Archean Superior Province, permitting lithological, age and tectonic correlation. Numerous lithological, geochemical and metamorphic similarities to south Indian granulites suggest common processes and invite comparison of tectonic evolution. The Ashuanipi granulite terrain of the Cannadian Superior Province was studied in detail, and an origin through self-melting of a 55 km thick accretionary wedge seems possible.

  12. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    Abstract Reported are findings of Neoarchean benthic colonial coccoid cyanobacteria preserved as abundant remnants of mineralized capsules and sheaths visible in SEM images as characteristic patterns after etching highly polished carbonate rock platelets. The samples described herein were collected from the Nauga Formation at Prieska (Kaapvaal craton, South Africa). The stratigraphic position of the sampling horizon (Fig. 1) is bracketed by single zircon ages from intercalated tuffs, of 2588±6 Ma and 2549±7Ma [1]. The cyanobacteria-bearing samples are located within sedimentary sequence which begins with Peritidal Member displaying increasingly transgressive character, passing upward into the Chert Member and followed by the Proto-BIF Member and by the Naute Shale Member of the Nauga Formation successively. All three latter members were deposited below the fair weather wave base. As in our previous report [2], the samples are taken from lenses of massive micritic flat pebble conglomerate occurring in otherwise finely laminated siliceous shales intercalating with thin bedded platy limestone. This part of the Nauga Formation is about 30 m thick. The calcareous, cyanobacteria-bearing flat pebble conglomerate and thin intercalations of fine-grained detrital limestones embedded in the clayey sapropel-rich deposits are interpreted as carbonate sediments winnowed during stormy weather from the nearby located peritidal carbonate platform. The mass occurrence and exceptional preservation of mineralised cyanobacterial remains in the micritic carbonate (Mg-calcite) of the redeposited flat pebbles can be explained by their sudden burial in deeper, probably anoxic clay- and sapropel-rich sediments. When examined with standard petrographic optical microscopic technique, the micritic carbonates show rather obscure structure (Fig. 2a), whereas under the SEM, polished and slightly etched platelets of the same samples reveal surprisingly well preserved patterns (Fig. 2b

  13. Seismic structure of a late-Archean microcontinent in the middle of the Western Australian Craton

    Science.gov (United States)

    Yuan, Huaiyu; Johnson, Simon; Dentith, Mike; Murdie, Ruth; Gessner, Klaus; Korhonen, Fawna; Bodin, Thomas

    2017-04-01

    The Capricorn Orogen recorded the Paleoproterozoic amalgamation of the Archean Pilbara and Yilgarn cratons to form the Western Australian Craton. Regional surveys involving geological mapping, geochemistry, and geophysics reveal a prolonged tectonic history in craton assembly and subsequent intracratonic reworking, which have significantly re-shaped the orogenic crust. A high-density earthquake seismology deployment targeted the Glenburgh Terrane, an exotic late-Archean to Paleoproterozoic crustal block previously inferred from distinct structural and isotopic characters in the core region of the terrane. Prominent Moho and intracrustal discontinuities are present, replicating the overall trend and depth range found in the previous high-resolution deep crustal reflection image. Significant lateral variations in the seismic signal are found across the terrane boundary, showing a relatively thin crust (40km) crust with elevated Vp/Vs ratios (>1.76) in the margin. The small Vp/Vs ratios ( 1.70) are mapped terrane-wide, indicating a felsic bulk crustal composition. Considering the available constraints from isotopic age, magnetotelluric models and absolute shear wave velocities from ambient noise tomography, the Glenburgh Terrane is interpreted as a microcontinent made in the Archean, which however may have been altered during the WAC assembly and cratonization, as well as subsequent intracratonic reworking/magmatic differentiation processes. Our results illustrate that multi-disciplinary datasets bring complementary resolution and therefore may put tighter constraints on the tectonic processes that have affected the crust.

  14. Late Archean-Early Proterozoic timing for an Andean-style porphyry Cu-Mo deposit at Malanjkhand, Central Indian Tectonic Zone: implications for a Late Archean supercontinent

    Science.gov (United States)

    Stein, H. J.; Zimmerman, A.; Hannah, J. L.; Markey, R. J.

    2003-04-01

    Eight Re-Os ages from six molybdenite samples representative of Cu-Mo mineralization in a highly deformed quartz reef and granite host rock comprising the large Malanjkhand deposit were obtained using ID-NTIMS. These data provide a clear Late Archean-Early Proterozoic age for this recently discovered deposit and by implication a minimum age for its hosting terrane, the Central Indian Tectonic Zone (CITZ), a continental scale structure separating peninsular India from northern India. The CITZ was previously inferred to be Middle Proterozoic or younger. Molybdenite dating indicates that stringer mineralization in the quartz reef and disseminated mineralization in the granite were contemporaneous at 2493 ± 8 Ma (2493.1 ± 1.4 Ma based on regression without uncertainty in the 187Re decay constant, MSWD = 0.5, n = 5). Additional molybdenite was precipitated during at least two pulses of reworking (ěrb1 12480 and ěrb1 12450 Ma) that we suggest configured the elongate quartz reef as the CITZ developed in response to NW-directed oblique convergence of a landmass from the south. Previously unrecognized petrographic evidence coupled with high Re concentrations for molybdenites (400-650 ppm) suggest that Malanjkhand is a porphyry Cu-Mo deposit of classic Andean-type, forming in a subduction-accretionary setting that includes involvement of mantle. We suggest that the CITZ may provide a median segment of an extensive and continuous Late Archean-Early Proterozoic orogenic belt that may include portions of the Moyar, Bhavani, Palghat, and Cauvery shear zones in southern India, the Eastern Ghats orogenic belt along the eastern side of India, and connecting to the Aravalli-Delhi belt extending through northwest India. This now folded orogenic belt could be related to the assembly of a Late Archean supercontinent whose eastward margin included East Antartica (Napier complex) at 2.5 Ga. In addition, we suggest that the Vestfold Hills complex (East Antartica) was part of this

  15. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    Science.gov (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  16. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    Science.gov (United States)

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  17. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    Science.gov (United States)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an

  18. Chondritic osmium isotopic composition of late Archean convecting upper mantle:Evidence from Zunhua podiform chromitites, Hebei, North China

    Institute of Scientific and Technical Information of China (English)

    XIA Qiongxia; ZHI Xiachen; LI Jianghai; HUANG Xiongnan

    2004-01-01

    Podiform chromite deposits are a characteristic feature of the mantle sequences of harzburgitic ophiolites. The chromites usually have very low Re and high Os contents, which makes it the most resistant phase remaining from the primary magmatic history of the ultramafic sections of ophiolites. The podiform chromite is one of the robust indicators of initial Os isotopic compositions of the ophiolites where podiform chromites were derived from, which provides strong evidence for the origin and evolution of oceanic lithosphere. The Re and Os contents and the Os isotopic compositions of seven podiform chromitites from Zunhua ophiolitic mélange belt, North China are reported in this study. The Re contents range from 0.019 to 0.128 ng/g, Os from 8.828 to 354.0 ng/g, and the 187Os/188Os ratio from 0.11003 to 0.11145. Three massive chromitites among the sample set have very high Os contents (>300 ng/g), and their 187Os/188Os ratios range from 0.11021 to 0.11030, averaging 0.11026 ± 0.00005 (σ), equivalent to a γOs = -0.12 ± 0.06 at 2.6 Ga, which means that the Os isotopic composition of convecting upper mantle is chondritic in late Archean. It is the Os isotopic composition of podiform chromitites that are derived from the oldest ophiolite in the world till now.

  19. Strontium and neodymium isotopic variations in early Archean gneisses affected by middle to late Archean high-grade metamorphic processes: West Greenland and Labrador

    Science.gov (United States)

    Collerson, K. D.; Mcculloch, M. T.; Bridgwater, D.; Mcgregor, V. R.; Nutman, A. P.

    1986-01-01

    Relicts of continental crust formed more than 3400 Ma ago are preserved fortuitously in most cratons. The cratons provide the most direct information about crust and mantle evolutionary processes during the first billion years of Earth history. In view of their polymetamorphic character, these terrains are commonly affected by subsequent tectonothermal events. Hence, their isotope systematics may be severely disturbed as a result of bulk chemical change or local isotopic homogenization. This leads to equivocal age and source information for different components within these terrains. The Sr and Nd isotopic data are presented for early Archean gneisses from the North Atlantic Craton in west Greenland and northern Labrador which were affected by younger metamorphic events.

  20. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind River Range, west-central Wyoming: conventional and ion microprobe U-Pb data

    Science.gov (United States)

    Aleinikoff, J.N.; Williams, I.S.; Compston, W.; Stuckless, J.S.; Worl, R.G.

    1989-01-01

    Gneissic rocks that are basement to the Late Archean granites comprising much of the Wind River Range, west-central Wyoming, have been dated by the zircon U-Pb method using both conventional and ion microprobe techniques. A foliated hornblende granite gneiss member from the southern border of the Bridger batholith is 2670??13 Ma. Zircons from a granulite just north of the Bridger batholith are equant and faceted, a typical morphology for zircon grown under high grade metamorphic conditions. This granulite, which may be related to a second phase of migmatization in the area, is 2698??8 Ma. South of the Bridger batholith, zircons from a granulite (charnockite), which is related to an earlier phase of migmatization in the Range, yield a discordia with intercept ages of about 2.3 and 3.3 Ga. However, ion microprobe analyses of single zircon grains indicate that this rock contains several populations of zircon, ranging in age from 2.67 to about 3.8 Ga. Based on zircon morphology and regional geologic relationships, we interpret the data as indicating an age of ???3.2 Ga for the first granulite metamorphism and migmatization. Older, possibly xenocrystic zircons give ages of ???3.35, 3.65 and ???3.8 Ga. Younger zircons grew at 2.7 and 2.85 Ga in response to events, including the second granulite metamorphism at 2.7 Ga, that culminated in the intrusion of the Bridger batholith and migmatization at 2.67 Ga. These data support the field and petrographic evidence for two granulite events and provide some temporal constraints for the formation of continental crust in the Early and Middle Archean in the Wyoming Province. ?? 1989 Springer-Verlag.

  1. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, P.; Lenton, T. M.; Pohl, A.; Weber, B.; Mander, L.; Donnadieu, Y.; Beer, C.; Pöschl, U.; Kleidon, A.

    2016-07-01

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr-1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.

  2. Examining Archean methanotrophy

    Science.gov (United States)

    Slotznick, Sarah P.; Fischer, Woodward W.

    2016-05-01

    The carbon isotope ratios preserved in sedimentary rocks can be used to fingerprint ancient metabolisms. Organic carbon in Late Archean samples stands out from that of other intervals with unusually low δ13C values (∼-45 to -60‰). It was hypothesized that these light compositions record ecosystem-wide methane cycling and methanotrophy, either of the aerobic or anaerobic variety. To test this idea, we studied the petrography and carbon and oxygen isotope systematics of well-known and spectacular occurrences of shallow water stromatolites from the 2.72 Ga Tumbiana Formation of Western Australia. We examined the carbonate cements and kerogen produced within the stromatolites, because methanotrophy is expected to leave an isotopic fingerprint in these carbon reservoirs. Mathematical modeling of Archean carbonate chemistry further reveals that methanotrophy should still have a discernible signature preserved in the isotopic record, somewhat diminished from those observed in Phanerozoic sedimentary basins due to higher dissolved inorganic carbon concentrations. These stromatolites contain kerogen with δ13Corg values of ∼ - 50 ‰. By microsampling different regions and textures within the stromatolites, we determined that the isotopic compositions of the authigenic calcite cements show a low degree of variation and are nearly identical to values estimated for seawater at this time; the lack of low and variable δ13Ccarb values implies that methanotrophy does not explain the low δ13Corg seen in the coeval kerogen. These observations do not support a methanotrophy hypothesis, but instead hint that the Late Archean may constitute an interval wherein autotrophs employed markedly different biochemical processes of energy conservation and carbon fixation.

  3. Microbial and Metabolic Diversity of the Alkaline Hot Springs of Paoha Island: A Late Archean and Proterozoic Ocean Analogue Environment.

    Science.gov (United States)

    Foster, I. S.; Demirel, C.; Hyde, A.; Motamedi, S.; Frantz, C. M.; Stamps, B. W.; Nunn, H. S.; Oremland, R. S.; Rosen, M.; Miller, L. G.; Corsetti, F. A.; Spear, J. R.

    2016-12-01

    Paoha Island formed 450 years ago within Mono Lake, California, as a result of magmatic activity in the underlying Long Valley Caldera. Previous studies of Paoha Island hot springs focused on the presence of novel organisms adapted to high levels of arsenic (114-138 µM). However, the microbial community structure, relationship with Mono Lake, and preservation potential of these communities remains largely unexplored. Here, we present water chemistry, 16S and 18S rRNA gene sequences, and metagenomic data for spring water and biofilms sampled on a recently exposed mudflat along the shoreline of Paoha Island. Spring waters were hypoxic, alkaline, and saline, had variable temperature (39-70 °C near spring sources) and high concentrations of arsenic, sulfide and reduced organic compounds. Thermodynamic modeling based on spring water chemistry indicated that sulfide and methane oxidation were the most energetically favorable respiratory metabolisms. 16S rRNA gene sequencing revealed distinct communities in different biofilms: red biofilms were dominated by arsenite-oxidizing phototrophs within the Ectothiorhodospiraceae, while OTUs most closely related to the cyanobacterial genus Arthrospira were present in green biofilms, as well as a large proportion of sequences assigned to sulfur-oxidizing bacteria. Metagenomic analysis identified genes related to arsenic resistance, arsenic oxidation/reduction, sulfur oxidation and photosynthesis. Eukaryotic rRNA gene sequencing analyses revealed few detectable taxa in spring biofilms and waters compared to Mono Lake; springs receiving splash from the lake were dominated by the alga Picocystis. The co-occurrence of hypoxia, high pH, and close proximity of anoxygenic and oxygenic phototrophic mats makes this site a potential Archean/Proterozoic analogue environment, but suggests that similar environments if preserved in the rock record, may not preserve evidence for community dynamics or the existence of photosynthetic metabolisms.

  4. Search for petrographic and geochemical evidence for the late heavy bombardment on earth in early archean rocks from Isua, Greenland

    Science.gov (United States)

    Koeberl, Christian; Reimold, Wolf Uwe; McDonald, Iain; Rosing, Minik

    The Moon was subjected to intense post-accretionary bombardment between about 4.5 and 3.9 billion years ago, and there is evidence for a short and intense late heavy bombardment period, around 3.85 ± 0.05 Ga. If a late heavy bombardment occurred on the Moon, the Earth must have been subjected to an impact flux at least as intense. The consequences for the Earth must have been devastating. In an attempt to investigate if any record of such a late heavy bombardment period on the Earth has been preserved, we performed a petrographic and geochemical study of some of the oldest rocks on Earth, from Isua in Greenland. We attempted to identify any remnant evidence of shock metamorphism in these rocks by petrographic studies, and used geochemical methods to detect the possible presence of an extraterrestrial component in these rocks. For the shock metamorphic study, we studied zircon, a highly refractive mineral that is resistant to alteration and metamorphism. Zircon crystals from old and eroded impact structures were found earlier to contain a range of shock-induced features at the optical and electron microscope level. Many of the studied zircon grains from Isua are strongly fractured, and single planar fractures do occur, but never as part of sets; none of the crystals studied shows any evidence of optically visible shock deformation. Several samples of Isua rocks were analyzed for their chemical composition, including the platinum group element (PGE) abundances, by neutron activation analysis and ICP-MS. Three samples showed somewhat elevated Ir contents (up to 0.2 ppb) compared to the detection limit, which is similar to the present-day crustal background content (0.03 ppb), but the chondrite-normalized siderophile element abundance patterns are non-chondritic, which could be a sign of either a small extraterrestrial component (if an indigenous component is subtracted), or terrestrial (re)mobilization mechanisms. In absence of any evidence for shock metamorphism

  5. A tale of two eras: Pliocene-Pleistocene unroofing of Cenozoic and late Archean zircons from active metamorphic core complexes, Solomon Sea, Papua New Guinea

    Science.gov (United States)

    Baldwin, Suzanne L.; Ireland, Trevor R.

    1995-11-01

    U/Pb ion microprobe analyses of zircons from gneisses and granodiorites exposed in the D'Entrecasteaux Islands, and from conglomerate sections of the Goodenough No. 1 well in the adjacent Trobriand Basin, provide constraints on the age of magmatism, peak metamorphism, and nature of rocks unroofed during initial stages of metamorphic core complex formation in the Solomon Sea. The youngest populations of zircons from felsic gneisses and granodiorites indicate late Pliocene 206Pb*/238U ages. No inherited zircons were identified in the granodiorites, and the 206Pb*/238U ages (1.65 ± 0.18 Ma; 1.98 ± 0.08 Ma [2σ]) are interpreted as crystallization ages. These synkinematically emplaced granodiorites, intruded into actively extending continental crust, are some of the youngest known granitoids currently exposed at the Earth' surface. Zircon ages from felsic gneisses (2.63 ± 0.16 Ma; 2.72 ± 0.28 Ma [2σ]) are interpreted to date zircon growth subsequent to eclogite facies metamorphism. Felsic gneiss samples also contained zircon xenocrysts from Cretaceous-Miocene protoliths. In striking contrast, zircons from igneous and metamorphic clasts from the Goodenough No. 1 well indicate a single population with a 207Pb*/206/Pb* age of 2781 ± 9 Ma (2σ). We speculate that they are derived from basement rocks unroofed during initial stages of development of the D&Entrecasteaux metamorphic core complexes. These results provide the first direct evidence for the existence of Archean protoliths in the basement rocks of southeastern Papua New Guinea.

  6. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    Science.gov (United States)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  7. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  8. Sulfate-rich Archean Oceans

    Science.gov (United States)

    Brainard, J. L.; Choney, A. P.; Ohmoto, H.

    2012-12-01

    - contents. Contrary to a widely held belief, pyrite- and organic C rich black Archean shales are quite common, such as the 2.7 Ga Jeerinah and the 2.5 Ga McRae Shales in WA. Our modeling suggests that the formation of such pyrite-rich shales requires seawater SO4 contents greater than ~1 mM. As for the main source of SO4 in the Archean oceans, the current paradigm, based on mass independent fractionation of sulfur isotopes (MIF-S) in some pyrite and barite samples from some pre-2.4 Ga sedimentary rocks, postulates that the seawater SO4 was produced by UV photolysis of volcanic SO2 gas in an O2-poor atmosphere. However, the recent findings of the absence of MIF-S in many Archean sedimentary rocks, as well as those of oxidized paleosols of Archean ages, suggest that the abundant SO4 in the Archean oceans were generated by the oxidative weathering of sulfides.

  9. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    Science.gov (United States)

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  10. Carbonyl sulfide (OCS) in the Archean atmosphere

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Danielache, Sebastian Oscar; Johnson, Matthew Stanley

    2009-01-01

    to have existed in the reducing Archean atmosphere. Such a high level of OCS also absorbs infrared light from 8 to 13 µm, which is not absorbed by water vapor. Hence, OCS could be an alternative or even more efficient greenhouse gas than CO2 to resolve the faint young Sun paradox [4]. Furthermore, OCS...... also has absorption band in lethal UVC region like ozone, thus could be an alternative UV-shielding molecule in an ozonefree reducing atmosphere. The decline of OCS might have coursed the late Archean Pongola glaciation (2.9 Ga) and possibly resulted in UV crisis of terrestrial and shallow water...

  11. High potential for chemical weathering and climate effects of early lichens and bryophytes in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2016-04-01

    Non-vascular vegetation in the Late Ordovician may have considerably increased global chemical weathering, thereby reducing atmospheric CO2 concentration and contributing to a decrease in global temperature and the onset of glaciations. Usually, enhancement of weathering by non-vascular vegetation is estimated using field experiments which are limited to small areas and a low number of species. This makes it difficult to extrapolate to the global scale and to climatic conditions of the past, which differ markedly from the recent climate. Here we present a global, spatially explicit modelling approach to estimate chemical weathering by non-vascular vegetation in the Late Ordovician. During this period, vegetation probably consisted of early forms of today's lichens and bryophytes. We simulate these organisms with a process-based model, which takes into account their physiological diversity by representing multiple species. The productivity of lichens and bryophytes is then related to chemical weathering of surface rocks. The rationale is that the organisms dissolve rocks to extract phosphorus for the production of new biomass. To account for the limited supply of unweathered rock material in shallow regions, we cap biotic weathering at the erosion rate. We estimate a potential global weathering flux of 10.2 km3 yr-1 of rock, which is around 12 times larger than today's global chemical weathering. The high weathering potential implies a considerable impact of lichens and bryophytes on atmospheric CO2 concentration in the Ordovician. Moreover, we find that biotic weathering is highly sensitive to atmospheric CO2, which suggests a strong feedback between chemical weathering by lichens and bryophytes and climate.

  12. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau

    Science.gov (United States)

    Miao, WeiLiang; Fan, QiShun; Wei, HaiCheng; Zhang, XiYing; Ma, HaiZhou

    2016-09-01

    At the Qarhan Salt Lake (QSL) on the central-eastern Qaidam Basin, northern Tibetan Plateau, Quaternary lacustrine sediments have a thickness of over 3000 m and mainly composed of organic-rich clay and silty clay with some silt halite and halite. In this study, a 102-m-long sediment core (ISL1A) was obtained from the QSL. Combining with AMS 14C and 230Th dating, clay minerals and major-element concentrations of ISL1A were used to reconstruct the weathering process and trend of the QSL since late Pleistocene. The results reveal that the clay mineral from rocks, gneisses and schists of Eastern Kunlun Mountains on the south of the QSL. The abundance of illite mineral displays an opposite fluctuation trending with that of smectite, chlorite and kaolinite mineral in ISL1A, which is significantly different from the monsoon-controlled regions. Moreover, higher values of illite, kaolinite/chlorite and illite/chlorite ratios, and lower values of smectite, chlorite and kaolinite minerals occurred in 83-72.5 ka, 68.8-54 ka, 32-24 ka, corresponding to late MIS 5, late MIS 4, early MIS 3 and late MIS 3, respectively. These three phases were almost similarly changed with oxygen isotopes of authigenic carbonates and pollen records in ISL1A, which implies that stronger chemical weathering corresponds to higher effective moisture periods of source region in the Qaidam Basin. Based on chemical weathering index and (Al2O3-(CaO + Na2O)-K2O) diagram, chemical weathering degree in this study area takes a varying process from low to intermediate on the whole.

  13. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    Science.gov (United States)

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-01-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region. PMID:28290474

  14. Abrupt response of chemical weathering to Late Quaternary hydroclimate changes in northeast Africa

    Science.gov (United States)

    Bastian, Luc; Revel, Marie; Bayon, Germain; Dufour, Aurélie; Vigier, Nathalie

    2017-03-01

    Chemical weathering of silicate rocks on continents acts as a major sink for atmospheric carbon dioxide and has played an important role in the evolution of the Earth’s climate. However, the magnitude and the nature of the links between weathering and climate are still under debate. In particular, the timescale over which chemical weathering may respond to climate change is yet to be constrained at the continental scale. Here we reconstruct the relationships between rainfall and chemical weathering in northeast Africa for the last 32,000 years. Using lithium isotopes and other geochemical proxies in the clay-size fraction of a marine sediment core from the Eastern Mediterranean Sea, we show that chemical weathering in the Nile Basin fluctuated in parallel with the monsoon-related climatic evolution of northeast Africa. We also evidence strongly reduced mineral alteration during centennial-scale regional drought episodes. Our findings indicate that silicate weathering may respond as quickly as physical erosion to abrupt hydroclimate reorganization on continents. Consequently, we anticipate that the forthcoming hydrological disturbances predicted for northeast Africa may have a major impact on chemical weathering patterns and soil resources in this region.

  15. Biomarker evidence for Archean oxygen fluxes (Invited)

    Science.gov (United States)

    Hallmann, C.; Waldbauer, J.; Sherman, L. S.; Summons, R. E.

    2010-12-01

    Knowledge of deep-time organismic diversity may be gained from the study of preserved sedimentary lipids with taxonomic specificity, i.e. biomarker hydrocarbons (e.g. Brocks and Summons, 2003; Waldbauer et al., 2009). As a consequence of long residence times and high thermal maturities however, biomarker concentrations are extremely low in most ancient (Precambrian) sediment samples, making them exceptionally prone to contamination during drilling, sampling and laboratory workup (e.g. Brocks et al., 2008). Outcrop samples most always carry a modern overprint and deep-time biogeochemistry thus relies on drilling operations to retrieve ‘clean’ sediment cores. One such effort was initiated by NASA’s Astrobiology Institute (NAI): the Archean biosphere drilling project (ABDP). We here report on the lipids retrieved from sediment samples in drill hole ABDP-9. Strong heterogeneities of extractable organic matter - both on a spatial scale and in free- vs. mineral-occluded bitumen - provide us with an opportunity to distinguish indigenous lipids from contaminants introduced during drilling. Stratigraphic trends in biomarker data for mineral-occluded bitumens are complementary to previously reported data (e.g. S- and N-isotopes, molybdenum enrichments) from ABDP-9 sediments (Anbar et al., 2007; Kaufman et al., 2007; Garvin et al., 2009) and suggest periodic fluxes of oxygen before the great oxidation event. Anbar et al. A whiff of oxygen before the great oxidation event. Science 317 (2007), 1903-1906. Brocks & Summons. Sedimentary hydrocarbons, biomarkers for early life. In: Schlesinger (Ed.) Treatise on Geochemistry, Vol. 8 (2003), 63-115. Brocks et al. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72 (2008), 871-888. Garvin et al. Isotopic evidence for a aerobic nitrogen cycle in the latest Archean. Science 323 (2009), 1045-1048. Kaufman et al. Late Archean

  16. An Archean Biosphere Initiative

    Science.gov (United States)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  17. Reconciling atmospheric temperatures in the early Archean

    Science.gov (United States)

    Pope, E. C.; Rosing, M.; Bird, D. K.; Albarede, F.

    2012-12-01

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic, and consider only one or two factors that drive Archean climate (e.g. a fainter young sun, a low albedo, the extent and effect of cloud cover, or the presence and abundance of a wide array of greenhouse and icehouse gasses). Compounded on the limitations of modeling is the sparse and often ambiguous Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate secular variation in δDSEAWATER which may fluctuate significantly due to hydrogen escape, continental growth and large-scale glaciation events. Further, ancient records of low-δD meteoric fluids signal both cooler temperatures and the emergence of large continents (increasing the effects of continental weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly

  18. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics.

    Science.gov (United States)

    Tang, Ming; Chen, Kang; Rudnick, Roberta L

    2016-01-22

    The Archean Eon witnessed the production of early continental crust, the emergence of life, and fundamental changes to the atmosphere. The nature of the first continental crust, which was the interface between the surface and deep Earth, has been obscured by the weathering, erosion, and tectonism that followed its formation. We used Ni/Co and Cr/Zn ratios in Archean terrigenous sedimentary rocks and Archean igneous/metaigneous rocks to track the bulk MgO composition of the Archean upper continental crust. This crust evolved from a highly mafic bulk composition before 3.0 billion years ago to a felsic bulk composition by 2.5 billion years ago. This compositional change was attended by a fivefold increase in the mass of the upper continental crust due to addition of granitic rocks, suggesting the onset of global plate tectonics at ~3.0 billion years ago. Copyright © 2016, American Association for the Advancement of Science.

  19. The Rise of Late Tertiary and Quaternary Erosion and Weathering Rates revisited (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    von Blanckenburg, Friedhelm

    2010-05-01

    increased, the isotope ratio of Be-10 to Be-9 would have decreased by roughly the same factor. Over the past 10 My, records of chemical marine deposits (Fe-Mn crusts and authigenic deep sea sediments) show no change in this ratio after correction for radioactive decay of Be-10. Therefore, these records support the hypothesis of constant global erosion and weathering fluxes. If this hypothesis is true, neither Late Tertiary mountain building nor Quaternary cooling affected or was affected by a change in silicate weathering rates. Instead, a more continuous mechanism is suggested in that subtle ongoing hillslope rejuvenation in any soil-mantled hillslopes in kinetically-limited settings enable the feedback that stabilizes atmospheric CO2 and climate levels through silicate weathering. In fact, in steep, active mountain belts an increase of relief and erosion rates to those that are in excess of conditions were soils are stable lead to a decrease, not an increase of weathering rate. But the aim here is not to discount active mountains as premier agents of CO2 withdrawal. Silicate weathering may still take place within the adjacent sedimentary basins, and large carbon deposits could also be buried there in the organic form. (1) P. Z. Zhang, P. Molnar, W. R. Downs, Nature 410, 891 (2001). (2) J. Kuhlemann, W. Frisch, B. Székely, I. Dunkl, M. Kázmér, Int J Earth Sci) 91, 818 (2002). (3) F. Métivier, Y. Gaudemer, P. Tapponier, M. Klein, Geophys. J. Int 137, 280 (1999). (4) P. M. Sadler, GeoResearch Forum 5, 15 (1999). (5) F. von Blanckenburg, R. K. O'Nions, Earth and Planet. Sci. Letters 167, 175 (1999).

  20. Conjunction Assessment Late-Notice High-Interest Event Investigation: Space Weather Aspects

    Science.gov (United States)

    Pachura, D.; Hejduk, M. D.

    2016-01-01

    Late-notice events usually driven by large changes in primary (protected) object or secondary object state. Main parameter to represent size of state change is component position difference divided by associated standard deviation (epsilon divided by sigma) from covariance. Investigation determined actual frequency of large state changes, in both individual and combined states. Compared them to theoretically expected frequencies. Found that large changes ( (epsilon divided by sigma) is greater than 3) in individual object states occur much more frequently than theory dictates. Effect is less pronounced in radial components and in events with probability of collision (Pc) greater than 1 (sup -5) (1e-5). Found combined state matched much closer to theoretical expectation, especially for radial and cross-track. In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component.

  1. Hospitable archean climates simulated by a general circulation model.

    Science.gov (United States)

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model.

  2. Geochemistry of late Quaternary tephra-sediment sequence from north-eastern Basin of Mexico (Mexico): implications to tephrochronology, chemical weathering and provenance

    OpenAIRE

    Priyadarsi D. Roy; José Luis Arce; Rufino Lozano; M.P. Jonathan; Elena Centeno; Socorro Lozano

    2012-01-01

    A ca.30 m thick tephra-sediment sequence from the north-eastern Basin of Mexico (Pachuca subbasin, central Mexico) is investigated for stratigraphy and multi-element geochemistry to understand the tephrochronology, provenance and conditions of chemical weathering during Late Quaternary. Chemical compositions of tephra layers are compared with products from surrounding volcanic structures (Apan- Tezontepece, Acoculco, Huichapan, Sierra de las Cruces and Tláloc) in order to identify their sourc...

  3. How to draw down CO2 from severe Hadean to habitable Archean?

    Science.gov (United States)

    Zhelezinskaia, I.; Ding, S.; Mulyukova, E.; Martirosyan, N.; Johnson, A.; West, J. D.; Kolesnichenko, M.; Saloor, N.; Moucha, R.

    2015-12-01

    It has been hypothesized that as the magma ocean crystallized in the Hadean, volatiles such as CO2 and H2O were released to the surface culminating with the formation of a liquid ocean by about 4.4 Ga [1] and hot CO2-rich atmosphere [2]. The resulting late Hadean atmospheric pCO2 may have been as high as 100 bars [3] with corresponding surface temperatures ~500 K [4]. Geological evidence suggests that by the early-to-mid Archean, atmospheric pCO2 became less than 1 bar [5]. However, the mechanisms responsible for the great amount of CO2 drawdown in a relatively short period of time remain enigmatic. To identify these possible mechanisms, we have developed a box model during the CIDER 2015 Summer Program that takes into account geological constraints on basalt alteration [6, 7] and possible rate of new oceanic crust formation [8] for the Archean. Our model integrates geodynamic and geochemical approaches of interaction between the Hadean atmosphere, hydrosphere, oceanic crust, and mantle to drawdown CO2. Our primary assumption for the Hadean is the absence of the continental crust and thus continental weathering. Therefore in the model we present, the level of CO2 in the atmosphere is regulated by the formation of oceanic crust (OC), rate of the interaction between the ocean and OC, and carbonate subduction/CO2 degassing. Preliminary results suggest that it would take about 1 billion years for the atmospheric CO2 to decrease to 1 bar if the production of oceanic crust was 10 times more than today and the pH of the ocean was less than 7, making the basalt alteration more efficient. However, there is evidence that some continental crust began to form as early as 4.4 Ga [9] and therefore the role of continental weathering and its rate of CO2 drawdown will need to be further explored. References: [1] Wilde et al. (2001). Nature 409(6817), 175-178. [2] Walker (1985). Origins of Life and Evolution of the Biosphere 16(2), 117-127. [3] Elkins-Tanton (2008). EPSL, 271, 181

  4. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life

    Science.gov (United States)

    Waldbauer, Jacob R.; Newman, Dianne K.; Summons, Roger E.

    2011-01-01

    The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth’s evolution. Among the various geochemical proxies for the presence of O2 in the environment, molecular fossils offer a unique record of O2 where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires molecular oxygen, fossil steranes have been used to draw inferences about aerobiosis in the early Precambrian. However, better quantitative constraints on the O2 requirement of this biochemistry would clarify the implications of these molecular fossils for environmental conditions at the time of their production. Here we demonstrate that steroid biosynthesis is a microaerobic process, enabled by dissolved O2 concentrations in the nanomolar range. We present evidence that microaerobic marine environments (where steroid biosynthesis was possible) could have been widespread and persistent for long periods of time prior to the earliest geologic and isotopic evidence for atmospheric O2. In the late Archean, molecular oxygen likely cycled as a biogenic trace gas, much as compounds such as dimethylsulfide do today. PMID:21825157

  5. Geological Sulfur Isotopes Indicate Elevated OCS in the Archean Atmosphere, Solving the Faint Young Sun Paradox

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Johnson, Matthew Stanley; Danielache, Sebastian Oscar

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological re......-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation....

  6. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    Science.gov (United States)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  7. Archean photoautotrophy: some alternatives and limits.

    Science.gov (United States)

    Knoll, A H

    1979-09-01

    From the Archean geological record, one can infer that photoautotrophy evolved early in earth history; however the nature of this photosynthesis -- whether it was predominately or cyanobacterial -- is less clearly understood. General agreement tht the earth's atmosphere did not become oxygen rich before the Early Proterozoic era places constraints on theories concerning more ancient biotas. Accommodating this limitation in various ways, different workers have hypothesized (1) that blue-green algae frist evolved in the Early Proterozoic; (2) that oxygen producing proto-cyanobacteria existed in the Archean, but had no biochemical mechanism for coping with ambient O2; and (3) that true cyanobacteria flourished in the Archean, but did not oxygenate the atmosphere because of high rates of oxygen consumption caused, in part, by the emanation of reduced gases from widespread Archean volcanoes. Inversion of hypothesis three leads to another, as yet unexplored, alternative. It is possible that physiologically modern blue-green algae existed in Archean times, but had low productivity. Increased rates of primary production in the Early Proterozoic era resulted in the atmospheric transition documented in strata of this age. An answer to the question of why productivity should have changed from the Archean to the Proterozoic may lie in the differing tectonic frameworks of the two areas. The earliest evidence of widespread, stable, shallow marine platforms is found in Lower Proterozoic sedimentary sequnces. In such environments, productivity was, and is high. In contrast, Archean shallow water environments are often characterized by rapid rates of clastic and pyroclastic influx -- conditions that reduce rates of benthonic primary production. This hypothesis suggests that the temporal correlation of major shifts in tectonic mode and atmospheric composition may not be fortuitous. It also suggests that sedimentary environments may have constituted a significant limit to the

  8. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: Implications for source weathering, provenance and tectonic setting

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2012-09-01

    Full Text Available Major, trace and rare earth element (REE concentrations of Late Triassic sediments (fine-grained sandstones and mudstones from Hongcan Well 1 in the NE part of the Songpan-Ganzi Basin, western China, are used to reveal weathering, provenance and tectonic setting of inferred source areas. The Chemical Index of Alteration (CIA reflects a low to moderate degree of chemical weathering in a cool and somewhat dry climate, and an A-CN-K plot suggests an older upper continental crust provenance dominated by felsic to intermediate igneous rocks of average tonalite composition. Based on the various geochemical tectonic setting discrimination diagrams, the Late Triassic sediments are inferred to have been deposited in a back-arc basin situated between an active continental margin (the Kunlun-Qinling Fold Belt and a continental island arc (the Yidun Island Arc. The Triassic sediments in the study area underwent a rapid erosion and burial in a proximal slope-basin environment by the petrographic data, while the published flow directions of Triassic turbidites in the Aba-Zoige region was not supported Yidun volcanic arc source. Therefore, we suggest that the Kunlun-Qinling terrane is most likely to have supplied source materials to the northeast part of the Songpan-Ganzi Basin during the Late Triassic.

  9. Radiative forcings for 28 potential Archean greenhouse gases

    Directory of Open Access Journals (Sweden)

    B. Byrne

    2014-05-01

    Full Text Available Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP. CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar. For CO2 to resolve the FYSP alone, 0.21 bar is needed with 0.5 bar of atmospheric pressure, 0.13 bar with 1 bar of atmospheric pressures, or 0.07 bar with 2 bar of atmospheric pressure. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 W m−2 for background pressures of 0.5, 1 or 2 bar, likely limiting the utility of CH4 for warming the Archean. For the other 26 HITRAN gases, radiative forcings of up to a few to 10 W m−2 are obtained from concentrations of 0.1–1 ppmv for many gases. We further calculate the reduction of radiative forcing due to gas overlap for the 20 strongest gases. We recommend the forcings provided here be used both as a first reference for which gases are likely good greenhouse gases, and as a standard set of calculations for validation of radiative forcing calculations for the Archean.

  10. A record of Late Quaternary continental weathering in the sediment of the Caspian Sea: evidence from U-Th, Sr isotopes, trace element and palynological data

    Science.gov (United States)

    Pierret, M. C.; Chabaux, F.; Leroy, S. A. G.; Causse, C.

    2012-09-01

    This study presents combined mineralogical, chemical, isotopic (87Sr/86Sr and U-Th disequilibria series) and palynological analyses on bulk sediments and on distinct mineral phases (carbonates and clays) from a 10-m-long core drilled in the southern Caspian Sea and containing a Late Pleistocene and Early Holocene record. The data allowed identifying 1) the main variations in sedimentation, 2) the processes causing these variations, 3) the modification of erosion vs weathering, and 4) the influence of climatic and/or Caspian Sea level changes in the region since the Late Pleistocene. The chemical and mineralogical results allowed the division of the sedimentary sequence into three main units and a transition zone. The lower unit (unit U1) primarily consists of silicate and carbonate-rich detritus. Sedimentation characteristics, including observation of detritus in secular equilibrium, are relatively constant within this unit and reflect mechanical erosion in a cold climate. Unit U1 probably corresponds to a glacial period when the vegetation cover was sparse and wind and river transport of pollen were strong. Subsequently, global increase in temperatures has greatly modified the sedimentation in the Caspian Sea south basin. Biogenic sedimentation is higher in units U2 and U3, and detrital inputs varied from unit U1. Variations in detrital input are likely to be caused by decreasing aeolian contribution and by relative changes in river volumes and origins. The study of the bulk sediments, clays and carbonates reflects an increase in chemical weathering since about 10 14C ka BP ago (base of unit U2), in line with an increase in the vegetation cover. Our results suggest an evolution of continental weathering conditions in the catchment area of the Caspian Sea, from dominantly mechanical/physical erosion during the cold period to a continuous increase in weathering since the Lateglacial period, as climate improved, which illustrates the strong relation between climate

  11. Reappraisal of hydrocarbon biomarkers in Archean rocks

    Science.gov (United States)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  12. Late Cenozoic Chemical Weathering and Environmental Changes Recorded in the Co Ngoin Sediments, Central Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    CHEN Shiyue; JIN Zhangdong; WANG Sumin; SHEN Ji

    2005-01-01

    A series of faulted inland basins were developed in the central Qinghai-Tibet Plateau, among which the Co Ngoin Basin containing thick lacustrine sediments is located in the peripheral area of the Indian monsoon. In this paper, we present the weathering history and paleoclimatic changes in the last 2.8 Ma based on studies of high-resolution temporal distributions of Sr, Rb and Zr concentrations, Rb/Sr and Zr/Rb ratios and δ 13C and TOC for the Co Ngoin sediments, in combination with the sediment properties, grain size distribution and clay mineralogy. The sedimentary records indicate three environmental stages in the last 2.8 Ma. At the core depth of 197-170 m (about 2.8-2.5 Ma), low-intensity chemical weathering in the Co Ngoin catchment was experienced under warm-dry to cool-wet climate conditions with relatively low Sr concentration and high Rb/Sr and Zr/Rb ratios. The sudden occurrence of both subalpine coniferous forest and coarse sand and gravel sediments in the Co Ngoin core reflects a strong tectonic uplift. The high Sr concentrations and low Rb/Sr and Zr/Rb ratios reflect a relatively strong chemical weathering between 2.5 Ma and 0.8 Ma (at the core depth of 170-38.5m) under a temperate/cool and wet climate, characterized by mud and silt with fine sand, probably indicating a stable process of denudation and planation of the plateau. Above the depth of 38.5 m (about 0.8-0 Ma), the coarsening of sediments indicates a strong tectonic uplift and a relatively low intensity of chemical weathering as supported by the record of sediments having relatively low Sr concentrations and high Rb/Sr and Zr/Rb ratios. Since then, the plateau has taken the shape of the modern topographic pattern above 4000 m a.s.1.

  13. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox

    Science.gov (United States)

    Ueno, Yuichiro; Johnson, Matthew S.; Danielache, Sebastian O.; Eskebjerg, Carsten; Pandey, Antra; Yoshida, Naohiro

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological record. The calculated isotopic fractionation factors for SO2 photolysis give mass independent distributions that are highly sensitive to the atmospheric concentrations of O2, O3, CO2, H2O, CS2, NH3, N2O, H2S, OCS, and SO2 itself. Various UV-shielding scenarios are considered and we conclude that the negative Δ33S observed in the Archean sulfate deposits can only be explained by OCS shielding. Of relevant Archean gases, OCS has the unique ability to prevent SO2 photolysis by sunlight at λ >202 nm. Scenarios run using a photochemical box model show that ppm levels of OCS will accumulate in a CO-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation. PMID:19706450

  14. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    Science.gov (United States)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  15. Archean Paleo-climate: The first snowball?

    CERN Document Server

    Durand-Manterola, Hector Javier

    2010-01-01

    The model accepted is one where during the Archean Eon the Earths climate was clement despite the weaker Sun. The observational evidence that supports this concept is: the emergence of life, the existence of evaporitic sediments and the presence of terrigenous sediments, all of which require liquid water and clement conditions. A theoretical argument used to support this idea is the so called ice-albedo feedback, which states that if the Earth was frozen, it would still be frozen.The aim of this document is to present an alternative scenario in which a frozen world, "snowball" style, with liquid water at the bottom of the sea, also allows for the emergence of life and evaporitic and terrigenous sedimentation. Archean climatic evidence, available at present, is discussed and can be reinterpreted to support the idea that, in Archean times, the surface of the Earth was frozen. Also, a mathematical model is being developed to demonstrate that the ice-albedo feedback is not an inevitable consequence of a frozen Ar...

  16. Identification of an Archean marine oxygen oasis

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Fralick, Dr Philip [Lakehead University, Canada; Liang, Liyuan [ORNL

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  17. ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness

    Energy Technology Data Exchange (ETDEWEB)

    O' Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.; Oke, Peter R.

    2014-08-15

    South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the central tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of

  18. The influence of weather on potato late blight infection during the growing season in Weichang%河北省围场县马铃薯生长季节气象条件对晚疫病的影响

    Institute of Scientific and Technical Information of China (English)

    谭宗久; 王文泽; 丁明亚; 庄重; 钟瑞彬; 孙占勤

    2001-01-01

    根据围场1994-1998年晚疫病的流行情况和主要气象资料,分析了生长季节6-8月气象因素对马铃薯晚疫病的影响.结果表明,空气相对湿度是马铃薯晚疫病侵染的%Based on the data of main weather and late blight infection during 1994-1998 in Weichang, the authors analyzed the influence of main weather factor on potato late blight during the growing season (Jun, July and August). The result showed that relative air humidity is the key factor on late blight infection, and the late blight spots would be present within 10 days if relative air humidity was above 72% and kept for 3~4 days. The primary condition to increase and keep air humidity is rainfall and fog-dew weather. Late blight infection follows relative humidity peak value. The earlier the peak value, the earlier the infection comes. The refore, air temperature is not the main factor during this period.

  19. Iron isotopes in an Archean ocean analogue

    Science.gov (United States)

    Busigny, Vincent; Planavsky, Noah J.; Jézéquel, Didier; Crowe, Sean; Louvat, Pascale; Moureau, Julien; Viollier, Eric; Lyons, Timothy W.

    2014-05-01

    Iron isotopes have been extensively used to trace the history of microbial metabolisms and the redox evolution of the oceans. Archean sedimentary rocks display greater variability in iron isotope ratios and more markedly negative values than those deposited in the Proterozoic and Phanerozoic. This increased variability has been linked to changes in either water column iron cycling or the extent of benthic microbial iron reduction through time. We tested these contrasting scenarios through a detailed study of anoxic and ferruginous Lac Pavin (France), which can serve as a modern analogue of the Archean ocean. A depth-profile in the water column of Lac Pavin shows a remarkable increase in dissolved Fe concentration (0.1-1200 μM) and δ56Fe values (-2.14‰ to +0.31‰) across the oxic-anoxic boundary to the lake bottom. The largest Fe isotope variability is found at the redox boundary and is related to partial oxidation of dissolved ferrous iron, leaving the residual Fe enriched in light isotopes. The analysis of four sediment cores collected along a lateral profile (one in the oxic layer, one at the redox boundary, one in the anoxic zone, and one at the bottom of the lake) indicates that bulk sediments, porewaters, and reactive Fe mostly have δ56Fe values near 0.0 ± 0.2‰, similar to detrital iron. In contrast, pyrite δ56Fe values in sub-chemocline cores (60, 65, and 92 m) are highly variable and show significant deviations from the detrital iron isotope composition (δ56Fepyrite between -1.51‰ and +0.09‰; average -0.93‰). Importantly, the pyrite δ56Fe values mirror the δ56Fe of dissolved iron at the redox boundary—where near quantitative sulfate and sulfide drawdown occurs—suggesting limited iron isotope fractionation during iron sulfide formation. This finding has important implications for the Archean environment. Specifically, this work suggests that in a ferruginous system, most of the Fe isotope variability observed in sedimentary pyrites can

  20. Sulphur tales from the early Archean world

    Science.gov (United States)

    Montinaro, A.; Strauss, H.

    2016-07-01

    Sedimentary and magmatic rocks and their distinct sulphur isotopic signatures indicate the sources and processes of sulphur cycling, in particular through the analysis of all four stable sulphur isotopes (32S, 33S, 34S and 36S). Research over the past 15 years has substantially advanced our understanding of sulphur cycling on the early Earth, most notably through the discovery of mass-independently fractionated sulphur isotopic signatures. A strong atmospheric influence on the early Archean global sulphur cycle is apparent, much in contrast to the modern world. Diverse microbially driven sulphur cycling is clearly discernible, but its importance for Earth surface environments remains to be quantified.

  1. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...... of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of delta S-34 values. Using models informed by sulfur cycling in Lake Matano, we infer...... Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans....

  2. The Rise of Continents and the Transition Archean to Proterozoic

    Science.gov (United States)

    Rey, P. F.; Flament, N.; Coltice, N.

    2011-12-01

    Terrestrial planets evolve in part via partial melting and gravitational differentiation, and in part via fluid/rock interactions at the surface. Mass and energy transfers across their various envelopes depend on the mode of convective motion, which may involve stagnant or mobile lid systems, for which plate tectonics is a possible mode; one promoting the coupling between exogenic and endogenic envelopes. In the other hand, fluid/rock interaction at the surface depends on the planet hypsometry and availability of weathering agents such as liquid water. It also depends on fluid/rock interaction at mid-oceanic ridge and therefore on the mode of convection. Hence, from 4.54 to 2.5 Ga the interplay between deep and surface processes under the forcing of secular cooling was such that the Earth differentiation was non-linear with sudden crises that punctuated periods of relative quietness. The Earth secular cooling impacted on deep and surface processes through the modulation of the Earth's hypsometry. This modulation occurred via cooling and strengthening of the lithosphere (Rey and Coltice, Geology, 2008), and via the deepening of oceanic basin, which lowered the mean sea level forcing the continents to emerge (Flament et al., EPSL, 2008). Stronger lithospheres are able to sustain higher orogenic belts and orogenic plateaux, the erosion of which lead to stronger fluxes towards the ocean. Secular strengthening and emergence conspired to enhance weathering and erosion of the continents and therefore to enhance the geochemical coupling between the endogenic and exogenic Earth's envelopes (Rey and Coltice, Geology, 2008). The shift to the aerobic world, at the Archean to Proterozic transition, took place at a time when exogenic envelopes recorded major shifts in composition (eg. Taylor and McLennan, Rev. of Geophys., 1995; Veizer and Compston, Geochem. Cosmochem Acta, 1976; Valley et al., Contrib. to Mineral. Petrol., 2005) that are consistent with the progressive exposure

  3. Radiative forcings for 28 potential Archean greenhouse gases

    CERN Document Server

    Byrne, Brendan

    2014-01-01

    Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP). CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar of atmospheric N2. For CO2 to resolve the FYSP alone at 2.8 Gyr BP (80% of present solar luminosity), 0.32 bar is needed with 0.5 bar of atmospheric N2, 0.20 bar with 1 bar of atmospheric N2, or 0.11 bar with 2 bar of atmospheric N2. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 Wm-2 for background pressures of 0.5, 1 or 2 bar, likely limiting ...

  4. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    geochemical mass balances suggests that the water-rock ratio during the propylitic alteration event was weak. On the contrary, it was much higher during the overprinted illitization which is characterized by an intense leaching of Na, Ca, Mg, Sr, REE and an enrichment in K, Rb,Cs. Neither the petrographic features nor the geochemical data militate for an Archean weathering event (paleosol). In the present case, diagenetic fluids have percolated from the unconformity into the basement where they overprinted the illitization processes upon the previously propylitized rocks. These fluids were probably oxidant as they are also responsible of the U mobilization which led to the formation of the ore deposits close to the FA-FB interface.

  5. No coincidence? Exploring the connection between the Great Oxidation Event and craton stabilization during the Archean-Proterozoic transition

    Science.gov (United States)

    Kump, L. R.

    2014-12-01

    As geochronological constraints on the timing of the Great Oxidation Event (here defined as the passage of atmospheric oxygen levels through the proposed upper limit of 10-5 of present) have improved, it has become increasingly clear that this event is somehow tied to the tectonic factors that have defined the Archean-Proterozoic boundary for decades, namely the stabilization of continental cratons allowing for the growth of large continents. We have proposed two connections in the past: 1) elevated late Archean mantle plume activity brought oxidized material from the lithospheric graveyard to the upper mantle, reducing the oxygen fugacity of post-Archean volcanism, and 2) that the stabilization of the cratons allowed for a proportional increase in less-reducing, subaerial volcanism at the expense of more reducing, submarine volcanism. Critiques of these two proposals will be addressed in the context of subsequent work by the geosciences community on the geodynamics and geochemistry of the Archean-Proterozoic transition, and a synthetic hypothesis for a tectonic driver for atmospheric oxygenation will be presented.

  6. Middle Archean continent formation by crustal delamination

    Science.gov (United States)

    Zegers, Tanja E.; van Keken, Peter E.

    2001-12-01

    The processes that created the first large cratonic areas such as the Pilbara and the Kaapvaal remain poorly understood. Models based on the uniformitarian extrapolation of present-day arc volcanic processes to a hotter early Earth have not adequately explained the observations in these terranes. Here we propose an alternative mechanism for the formation of the earliest continental crust. The formation of continental crust may be achieved by delamination of the lower eclogitic part of an oceanic plateau like protocrust. Such delamination results in uplift, extension, and the production of tonalite, trondhjemite, and granodiorite (TTG) suites as recorded in Middle Archean cratons. The available geologic and geophysical observations in combination with model calculations permit this scenario as an alternative to subduction-based hypotheses.

  7. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic...... the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to which...... hydrogen isotopes contribute to the geologic record as a signal for glaciations, continental growth and atmospheric methane levels. Oceanic serpentinites and subduction-related volcanic and hydrothermal environments obtain their hydrogen isotope signature from seawater, and thus may be used to calculate...

  8. Mantle differentiation and chemical cycling in the Archean (Invited)

    Science.gov (United States)

    Lee, C.

    2010-12-01

    Differentiation of Earth’s silicate mantle is largely controlled by solid-state convection. Today, upwelling mantle leads to decompression melting. Melts, being of low density, rise to form the continental and oceanic crusts. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts, melt extraction concentrates these elements into the crust or atmosphere. However, one by-product of whole-mantle convection is that melting during the Earth’s first billion years was likely deep and hot. Such high pressure melts may have been dense, allowing them to stall, crystallize and later founder back into the lower mantle. These sunken lithologies would have ‘primordial’ chemical signatures despite a non-primordial origin. As the Earth cools, the proportion of upwards melt segregation relative to downwards melt segregation increases, removing volatiles and other incompatible elements to the surface. Recycling of these elements back into the Earth’s interior occurs by subduction, but because of chemical weathering, hydrothermal alteration and photosynthetic reactions occurring in the Earth’s exosphere, these recycled materials may re-enter the mantle already chemically transformed. In particular, photosynthetic production of oxygen and, especially, the progressive oxygenation of the Earth’s atmosphere require removal of reduced carbon from the Earth’s surface. If such removal occurred by subduction, the mantle would have become progressively reduced. During the Archean and early Proterozoic, much of this material may have contributed to making cratonic mantle, and if so, cratonic mantle may have been assembled by reduced building blocks, perhaps explaining the origin of diamonds with organic carbon isotopic signatures. The origin of peridotitic diamonds in cratonic mantle could then be explained if the underlying convecting mantle was in fact more oxidizing such that carbonatitic liquids

  9. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    Science.gov (United States)

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  10. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps

    Science.gov (United States)

    Egli, Markus; Mirabella, Aldo; Sartori, Giacomo

    2008-12-01

    Interactions between climate and soil remain ambiguous, particularly when silicate weathering and clay mineral formation and transformation rates are considered in relation to global climate changes. Recent studies suggest that climate affects weathering rates much less than previously thought. Here we show that the climate in the central European Alps has a significant, but indirect, influence on the weathering of soils through vegetation. The pattern of element leaching and mineral transformations is not only due to precipitation and temperature. Element leaching was greatest in subalpine forests near the timberline; weathering is lessened at higher and lower altitudes. Vegetation, therefore, contributes significantly to weathering processes. The highest accumulation of organic matter was found in climatically cooler sites (subalpine range) where the production of organic ligands, which enhance weathering, is greatest. Patterns of smectite formation and distribution had strong similarities to that of the elemental losses of Fe and Al ( R = 0.69; P climate, element leaching (Fe, Al, Ca, Mg, K, Na), and smectite formation is strongly nonlinear and driven by the podzolisation process, which is more pronounced near the timberline because of the bioclimatic constellation. Climate warming will probably, in the future, lead to a decrease in SOM stocks in the subalpine to alpine range because of more favourable conditions for biodegradation that would also affect weathering processes.

  11. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water.

    Science.gov (United States)

    Veizer, J; Hoefs, J; Lowe, D R; Thurston, P C

    1989-01-01

    Carbonate rocks with geological attributes of marine sediments are a minor component of the Archean greenstone belts. Despite their relative scarcity, these rocks are important because they record chemical and isotopic properties of coeval oceans. The greenstones containing such carbonates appear to cluster at approximately 2.8 +/- 0.2 and approximately 3.5 +/- 0.1 Ga ago. The samples for the younger group are from the Abitibi, Yellowknife, Wabigoon (Steep Rock Lake), Michipicoten and Uchi greenstone belts of Canada and the "Upper Greenstones" of Zimbabwe. The older group includes the Swaziland Supergroup of South Africa, Warrawoona Group of Australia and the Sargur marbles of India. Mineralogically, the carbonates of the younger greenstones are mostly limestones and of the older ones, ferroan dolomites (ankerites); the latter with some affinities to hydrothermal carbonates. In mineralized areas with iron ores, the carbonate minerals are siderite +/- ankerite, irrespective of the age of the greenstones. Iron-poor dolomites represent a later phase of carbonate generation, related to post-depositional tectonic faulting. The original mineralogy of limestone sequences appears to have been an Sr-rich aragonite. The Archean carbonates yield near-mantle Sr isotopic values, with (87Sr/86Sr)o of 0.7025 +/- 0.0015 and 0.7031 +/- 0.0008 for younger and older greenstones, respectively. The best preserved samples give delta 13C of +1.5 +/- 1.5% PDB, comparable to their Phanerozoic counterparts. In contrast, the best estimate for delta 18O is -7% PDB. Archean limestones, compared to Phanerozoic examples, are enriched in 16O as well as in Mn2+ and Fe2+, and these differences are not a consequence of post-depositional alteration phenomena. The mineralogical and chemical attributes of Archean carbonates (hence sea water) are consistent with the proposition that the composition of the coeval oceans may have been buffered by a pervasive interaction with the "mantle", that is, with

  12. The Case for a Hot Archean Climate and its Implications to the History of the Biosphere

    CERN Document Server

    Schwartzman, David W

    2015-01-01

    The case for a much warmer climate on the early Earth than now is presented. The oxygen isotope record in sedimentary chert and the compelling case for a near constant isotopic oxygen composition of seawater over geologic time support thermophilic surface temperatures prevailing in the Archean, with some support for hot conditions lasting until about 1.5 billion years ago, aside from lower temperatures including glacial episodes at 2.1-2.4 Ga and possibly an earlier one at 2.9 Ga. Other evidence includes the following: 1) Melting temperatures of proteins resurrected from sequences inferred from robust molecular phylogenies give paleotemperatures at emergence consistent with a very warm early climate. 2) High atmospheric pCO2 levels in the Archean are consistent with high climatic temperatures near the triple point of primary iron minerals in banded iron formations, the formation of Mn-bicarbonate clusters leading to oxygenic photosynthesis and generally higher weathering intensities on land. These higher weat...

  13. Archean Subduction or Not? The Archean Volcanic Record Re-assessed.

    Science.gov (United States)

    Pearce, Julian; Peate, David; Smithies, Hugh

    2013-04-01

    Methods of identification of volcanic arc lavas may utilize: (1) the selective enrichment of the mantle wedge by 'subduction-mobile' elements; (2) the distinctive preconditioning of mantle along its flow path to the arc front; (3) the distinctive combination of fluid-flux and decompression melting; and (4) the effects of fluids on crystallization of the resulting magma. It should then be a simple matter uniquely to recognise volcanic arc lavas in the Geological Record and so document past subduction zones. Essentially, this is generally true in the oceans, but generally not on the continents. Even in recent, fresh lavas and with a full battery of element and isotope tools at our disposal, there can be debate over whether an arc-like geochemical signature results from active subduction, an older, inherited subduction component in the lithosphere, or crustal contamination. In the Archean, metamorphism, deformation, a different thermal regime and potential non-uniformitarian tectonic scenarios make the fingerprinting of arc lavas particularly problematic. Not least, the complicating factor of crustal contamination is likely to be much greater given the higher magma and crustal temperatures and higher magma fluxes prevailing. Here, we apply new, high-resolution immobile element fingerprinting methods, based primarily on Th-Nb fractionation, to Archean lavas. In the Pilbara, for example, where there is a volcanic record extending for over >500 m.y., we note that lavas with high Th/Nb (negative Nb anomalies) are common throughout the lava sequence. Many older formations also follow a basalt-andesite-dacite-rhyolite (BADR) sequence resembling present-day arcs. However, back-extrapolation of their compositions to their primitive magmas demonstrates that these were almost certainly crustally-contaminated plume-derived lavas. By contrast, this is not the case in the uppermst part of the sequence where even the most primitive magmas have significant Nb anomalies. The

  14. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    Science.gov (United States)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  15. Some examples of deep structure of the Archean from geophysics

    Science.gov (United States)

    Smithson, S. B.; Johnson, R. A.; Pierson, W. R.

    1986-01-01

    The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.

  16. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: Occurrence of Archean oceanic plateau

    Science.gov (United States)

    El Atrassi, Fatima; Debaille, Vinciane; Mattielli, Nadine; Berger, Julien

    2015-04-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African craton in Mauritania (Amsaga area). The Amsaga Archean crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. We report the results of a combined petrologic, Sm-Nd isotopic, major element and rare earth element (REE) study of the Archean amphibolites in the West African craton. This study was conducted in order to characterize these rocks, to constrain the time of their formation and to evaluate their tectonic setting and their possible mantle source. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. They are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. These amphibolites have tholeiitic basalt composition. On a primitive mantle-normalized diagram, they display fairly flat patterns without negative anomalies for either Eu or Nb-Ta. We have shown using Sm-Nd whole rock isotopic data that these amphibolites formed at 3.3 ±0.075 Ga. They have positive ɛNdi values (+5.2 ± 1.6). These samples show isotopically juvenile features, which rule out the possibility of significant contamination of the protolith magmas by ancient continental crust. Based on these geochemical data we propose that the tholeiitic basalts were formed in an oceanic plateau tectonic setting from a mantle plume source and that they have a

  17. Partition coefficients for calcic plagioclase - Implications for Archean anorthosites

    Science.gov (United States)

    Phinney, W. C.; Morrison, D. A.

    1990-01-01

    In most Archean cratons, cumulates of equant plagioclase megacrysts form anorthositic complexes, including those at Bad Vermilion Lake (Ontario). In this paper, partition coefficients (Ds) of REEs between natural high-Ca plagioclase megacrysts and their basaltic matrices were determined, using a multiple aliquot techique, and megacrystic plagioclases occurring in anorthosites were analyzed for the same components which, in conjunction with their Ds, were applied to calculations of melts in equilibrium with anorthosites. The REE's Ds were found to agree well with experimentally determined values and to predict equilibrium melts for Archean anorthosites that agree well with coeval basaltic flows and dikes. The Ds also appear to be valid for both the tholeiitic and alkali basalts over a wide range of mg numbers and REE concentrations. It is suggested that the moderately Fe-rich tholeiites that are hosts to plagioclase megacrysts in greenstone belts form the parental melts for megacrysts which make up the Bad Vermilion Lake Archean anorthositic complex.

  18. A Detailed Record of Archean Biogochemical Cycles and Seawater Chemistry Preserved in Black Shales of the Abitibi Greenstone Belt

    Science.gov (United States)

    Scott, C.; Planavsky, N. J.; Bates, S. M.; Wing, B. A.; Lyons, T. W.

    2011-12-01

    Geological and biological evolution are intimately linked within the Earth System through the medium of seawater. Thus, in order to track the co-evolution of Life and Earth during the Archean Eon we must determine how biogeochemical cycles responded to and initiated changes in the composition of Archean seawater. Among our best records of biogeochemical cycles and seawater chemistry are organic carbon-rich black shales. Here we present a detailed multi-proxy study of 2.7 Ga black shales from the Abitibi Greenstone Belt, Canada. Abitibi shales demonstrate extreme enrichments in total organic carbon (up to 15 wt. %) and total sulfur (up to 6 wt. %) reflecting vigorous biogeochemical cycling in the basin, likely driven by cyanobacteria. The speciation of reactive Fe minerals indicates that pyrite formed in a sulfidic water column (euxinia) and that dissolved Fe was the limiting reactant. The deposition of more than 50 m of euxinic black shales suggests that the Fe-rich conditions reflected by Archean BIF deposition were not necessarily ubiquitous. Biologically significant trace metals fall into two categories. Metals that can be delivered to seawater in large quantities from hydrothermal sources (e.g., Cu and Zn) are enriched in the shales, reflecting their relative abundance in seawater. Conversely, metals that are primarily delivered to the ocean during oxidative weathering of the continents (e. g., Mo and V) are largely absent from the shales, reflecting depleted seawater inventories. Thus, trace metal supply at 2.7 Ga was still dominated by geological processes. Biological forcing of trace metal inventories, through oxidative weathering of the continents, was not initiated until 2.5 Ga, when Mo enrichments are first observed in the Mt. McRae Shale, Hamersley Basin. Multiple sulfur isotope analysis (32S, 33S, 34S) of disseminated pyrite displays large mass independent fractionations (Δ33S up to 6 %) reflecting a sulfur cycle dominated by atmospheric processes

  19. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  20. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  1. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  2. An Archean Terrestrial Fractionation Line for Oxygen Isotopes

    Science.gov (United States)

    Rumble, D.; Blake, R. E.; Bao, H.; Bowring, S.; Komiya, T.; Rosing, M.; Ueno, Y.

    2008-12-01

    The Terrestrial Fractionation Line (TFL) for oxygen isotopes is defined by 17O/16O and 18O/16O analyses of meteoric waters, seawater, sedimentary, metamorphic, and igneous rocks and constituent minerals. Interlaboratory measurements of the slope of the TFL on a plot of d18O vs. d17O revealed eclogitic garnets with a slope of 0.526 and hydrothermal quartz of 0.524 from rocks younger than 0.8 Ga (Giga years before present). New measurements show Archean metamorphic rocks and minerals from Barberton, (3.2 Ga, S. Africa), Isua (3.8 Ga, Greenland), and Acasta (4.0 Ga, Canada) have a slope of 0.524 +/- 0.002 (95% confidence, MSWD = 0.66). Analysis of Ag3PO4 prepared from apatite mineral separates from Isua meta-sediments gives a slope of 0.509 +/- 0.022 (95% confidence, MSWD = 0.59). Taken at face value, steeper slopes on a d17O vs. d18O diagram indicate an approach towards isotope exchange equilibrium. Lower slopes are expected when isotope fractionation is kinetically controlled. The lower slope of 0.509 for Isua apatite suggests that the formation of orthophosphate was kinetically controlled. Kinetic fractionations are known to occur during catalysis of reactions by enzymes secreted by microbes. Enzymatic catalysis confers an advantage on organisms because energy-producing reactions may be induced to occur at lower temperature conditions more accessible to the organism. May it be definitively concluded that enzymatic catalysis was responsible for the measured 0.509 slope? No, abiotic kinetic fractionation cannot be disproven with existing data. The preparation of Ag3PO4 from apatite may have introduced kinetic fractionation as an analytical artifact. Conclusions fully supported by the data suggest: (1) Mixing accompanying the violent birth of the Earth- Moon system had already succeeded in establishing Earth's current oxygen isotope composition by 4.0 Ga; and (2) No trace of an episode of late heavy meteorite bombardment remains in the oxygen isotope compositions of

  3. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    Science.gov (United States)

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  4. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  5. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    G. Muttoni

    2012-09-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production. However, ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that although decarbonation of pelagic sediments in Tethyan subduction likely contributed to generally high pCO2 levels from the Late Cretaceous until the Early Eocene, shutdown of Tethyan subduction with collision of India and Asia at the Early Eocene Climate Optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basaltic provinces in the equatorial humid belt (5° S–5° N seems to be the dominant control on how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  6. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    Science.gov (United States)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  7. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models

    Science.gov (United States)

    Polat, Ali; Wang, Lu; Appel, Peter W. U.

    2015-11-01

    The Archean craton of West Greenland consists of many fault-bounded Eoarchean to Neoarchean tectonic terranes (crustal blocks). These tectonic terranes are composed mainly of tonalite-trondhjemite-granodiorite (TTG) gneisses, granitic gneisses, metavolcanic-dominated supracrustal belts, layered anorthositic complexes, and late- to post-tectonic granites. Rock assemblages and geochemical signatures in these terranes suggest that they represent fragments of dismembered oceanic island arcs, consisting mainly of TTG plutons, tholeiitic to calc-alkaline basalts, boninites, picrites, and cumulate layers of ultramafic rocks, gabbros, leucogabbros and anorthosites, with minor sedimentary rocks. The structural characteristics of the terrane boundaries are consistent with the assembly of these island arcs through modern style of horizontal tectonics, suggesting that the Archean craton of West Greenland grew at convergent plate margins. Several supracrustal belts that occur at or near the terrane boundaries are interpreted as relict accretionary prisms. The terranes display fold and thrust structures and contain numerous 10 cm to 20 m wide bifurcating, ductile shear zones that are characterized by a variety of structures including transposed and redistributed isoclinal folds. Geometrically these structures are similar to those occurring on regional scales, suggesting that the Archean craton of West Greenland can be interpreted as a continental scale accretionary complex, such as the Paleozoic Altaids. Melting of metavolcanic rocks during tectonic thickening in the arcs played an important role in the generation of TTGs. Non-uniformitarian models proposed for the origin of Archean terranes have no analogs in the geologic record and are inconsistent with structural, lithological, petrological and geochemical data collected from Archean terranes over the last four decades. The style of deformation and generation of felsic rocks on outcrop scales in the Archean craton of West

  8. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    Science.gov (United States)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  9. Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar

    Science.gov (United States)

    Saikia, Utpal; Das, Ritima; Rai, S. S.

    2017-03-01

    The shear wave velocity of the crust along a ∼660 km profile from the west to the east coast of South India is mapped through the joint inversion of receiver functions and Rayleigh wave group velocity. The profile, consisting of 38 broadband seismic stations, covers the Archean Dharwar craton, Proterozoic Cuddapah basin, and rifted margin and escarpment. The Moho is mapped at a depth of ∼40 km beneath the mid-Archean Western Dharwar Craton (WDC), Cuddapah Basin (CB), and the west and east coasts formed through the rifting process. This is in contrast with a thin (∼35 km) crust beneath the late-Archean Eastern Dharwar Craton (EDC). Along the profile, the average thickness of the upper, middle and lower crust is ∼4 km, 12 ± 4 km and 24 ± 4 km respectively. Above the Moho, we observe a high-velocity layer (HVL, Vs > 4 km/s) of variable thickness increasing from 3 ± 1 km beneath the EDC to 11 ± 3 km beneath the WDC and the CB, and 18 ± 2 km beneath the west coast of India. The seismic wave velocity in this layer is greater than typical oceanic lower crust. We interpret the high-velocity layer as a signature of magmatic underplating due to past tectonic processes. Its significant thinning beneath the EDC may be attributed to crustal delamination or relamination at 2.5 Ga. These results demonstrate the dual signature of the Archean Dharwar crust. The change in the geochemical character of the crust possibly occurred at the end of Archean when Komatiite volcanism ceased. The unusually thick HVL beneath the west coast of India and the adjoining region may represent underplated material formed due to India-Madagascar rifting, which is supported by the presence of seaward dipping reflectors and a 85-90 Ma mafic dyke in the adjoining island.

  10. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    Science.gov (United States)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  11. Origin of microbial biomineralization and magnetotaxis during the Archean.

    Science.gov (United States)

    Lin, Wei; Paterson, Greig A; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A; Zhu, Rixiang; Kirschvink, Joseph L; Pan, Yongxin

    2017-02-28

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  12. Origin of microbial biomineralization and magnetotaxis during the Archean

    Science.gov (United States)

    Paterson, Greig A.; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A.; Zhu, Rixiang; Kirschvink, Joseph L.; Pan, Yongxin

    2017-01-01

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria. This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth’s dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time. PMID:28193877

  13. Origin of microbial biomineralization and magnetotaxis during the Archean

    Science.gov (United States)

    Lin, Wei; Paterson, Greig A.; Zhu, Qiyun; Wang, Yinzhao; Kopylova, Evguenia; Li, Ying; Knight, Rob; Bazylinski, Dennis A.; Zhu, Rixiang; Kirschvink, Joseph L.; Pan, Yongxin

    2017-02-01

    Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria. This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth’s dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.

  14. Iron isotope composition of some Archean and Proterozoic iron formations

    Science.gov (United States)

    Planavsky, Noah; Rouxel, Olivier J.; Bekker, Andrey; Hofmann, Axel; Little, Crispin T. S.; Lyons, Timothy W.

    2012-03-01

    Fe isotopes can provide new insight into redox-dependent biogeochemical processes. Precambrian iron formations (IF) are deserving targets for Fe isotope studies because they are composed predominantly of authigenic Fe phases and record a period of unprecedented iron deposition in Earth's history. We present Fe isotope data for bulk samples from 24 Archean and Proterozoic IF and eight Phanerozoic Fe oxide-rich deposits. These data reveal that many Archean and early Paleoproterozoic iron formations were a sink for isotopically heavy Fe, in contrast to later Proterozoic and Phanerozoic Fe oxide-rich rocks. The positive δ56Fe values in IF are best explained by delivery of particulate ferric oxides formed in the water column to the sediment-water interface. Because IF are a net sink for isotopically heavy Fe, there must be a corresponding pool of isotopically light Fe in the sedimentary record. Earlier work suggested that Archean pyritic black shales were an important part of this light sink before 2.35 billion years ago (Ga). It is therefore likely that the persistently and anomalously low δ56Fe values in shales are linked with the deposition of isotopically heavy Fe in IF in the deeper parts of basins. IF deposition produced a residual isotopically light dissolved Fe pool that was captured by pyritic Fe in shales. Local dissimilatory Fe reduction in porewater and associated diagenetic reactions resulting in pyrite and carbonate precipitation may have further enhanced Fe isotope heterogeneity in marine sediments, and an 'iron shuttle' may have transported isotopically light Fe from shelf sediments to the basin. Nevertheless, water-column processing of hydrothermally delivered Fe likely had the strongest influence on the bulk iron isotope composition of Archean and Paleoproterozoic iron formations and other marine sediments.

  15. Mantle decarbonation and Archean high-Mg magmas

    Science.gov (United States)

    Edwards, Garth R.

    1992-10-01

    Magnesium-rich mane to ultramafic extrusions were most common in the Archean and pose interesting petrological problems. The high Mg content of komatiites (>18 wt%, for example, is usually interpreted as indicating an origin at higher temperatures than exist in mantle melting zones in the modern Earth. Current contrasting models for the origin of komatiites in the mantle require either high degrees of melting or lower degrees of melting at great depth. A potential complementary mechanism for Mg enrichment in magmas involves the melting of magnesite-bearing garnet Iherxolite. In this model, the ascending primary mafic or ultramafic magma is enriched in MgO by the loss of some off the CO2 to the adjacent mantle at pressures of ˜2.2 GPa, where the magma becomes saturated with CO2. To generate komatiite in this way from a picritelike parent, for example, requires that the primary magma lose some of its major and trace element components to the adjacent mantle concurrently with the CO2. Production of magnesian magmas by magnesite breakdown may not have required the heat or depth of those produced by other means; this mechanism may help to explain some apparently low Archean geothermal gradients, as well as the contemporaneity of Archean diamonds and komatites. The mantle magnesite could have formed by direct reaction of primordial CO2 or CO with hot, protomantle material during Earth's accretionary period.

  16. How widely is the Andean type of continental margin represented in the Archean

    Science.gov (United States)

    Burke, Kevin

    1988-01-01

    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  17. Large amplitude variations in global carbon cycling and terrestrial weathering from the late Paleocene through the early Eocene: carbon isotope and terrigenous accumulation records at Mead Stream, New Zealand

    Science.gov (United States)

    Slotnick, B. S.; Dickens, G. R.; Nicolo, M.; Hollis, C. J.; Crampton, J. S.; Zachos, J. C.

    2010-12-01

    Global temperatures rose ~6°C from the late Paleocene ca. 58 Ma to the Early Eocene Climatic Optimum (EECO) ca. 52 - 50 Ma. Superimposed on this were at least two geologically brief (CIEs) and clay-rich horizons (marls), the latter caused by excess terrigenous dilution. 283 new samples were collected, mostly between ETM-2 and the EECO; these were analyzed for carbonate content, lithology, and bulk carbonate carbon isotopes. Five marl-rich beds occur in upper Paleocene and lowermost Eocene strata. These mark the known and suspected hyperthermals: PETM, ETM-2, H-2, I-1 and I-2. Above is a greatly expanded (100 m-thick) unit represented by a series of marl beds which correlates to the EECO. Carbonate contents are generally 60-90% throughout the studied interval, with lows being marls. Similar to findings elsewhere, there is an overall long-term drop in δ13C from the late Paleocene to early Eocene. This is punctuated by multiple short-term CIEs of variable magnitude (PETM: 2.5‰; ETM-2: 1.0‰; H-2: 0.2‰; I-1: 0.6%). The EECO is a series of negative CIEs with magnitudes ranging between 0.2 - 0.6‰. Of these, the K/X/ETM-3 event (another suspected hyperthermal) is the most pronounced (0.6‰). The late Paleocene-early Eocene δ13C record at Mead Stream is remarkably similar to other records generated at deep-sea sites, except that lows in δ13C span intervals of relatively high sedimentation (terrigenous dilution) rather than intervals of relatively low sedimentation (carbonate dissolution). We suggest that over ~6 million years, there was a series of short-term climate perturbations, each characterized by massive carbon input and greater continental weathering. The suspected link involves global warming and enhanced seasonality in precipitation.

  18. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton

    Indian Academy of Sciences (India)

    Y J Bhaskar Rao; Anil Kumar; A B Vrevsky; R Srinivasan; G V Anantha Iyer

    2000-03-01

    Whole-rock Sm-Nd isochron ages are reported for two stratiform meta-anorthosite complexes emplaced into the Archean supracrustal-gneiss association in the amphibolite facies terrain around Holenarsipur, in the Dharwar carton, South India. While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c.2.5Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 Ga, Nd = 0.82 ± 0.78 for the Honnavalli meta-anorthosite complex from a supracrustal enclave in the low-strain zone, and 2.495 ± 0.033 Ga, Nd = -2.2+-0.3 for the Dodkadnur meta-anorthosites from the high-strain southern arm of the Holenarsipur Supracrustal Belt (HSB). We interpret these results as indicating that the magmatic protoliths of both meta-anorthosite complexes were derived from a marginally depleted mantle at c.3.29 Ga but only the Dodkadnur rocks were isotopically reequilibrated on a cm-scake about 800 Ma later presumably due to the development of strong penetrative fabrics in them during Late Archean thermotectonic event around 2.5Ga. Our results set a younger age limit at c.3.29Ga for the supracrustal rocks of the HSB in the Dharwar craton.

  19. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  20. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  1. Composition and origin of Archean lower crust, Northern Tanzania

    Science.gov (United States)

    Mansur, A. T.; Manya, S.; Rudnick, R.

    2008-12-01

    Granulite-facies xenoliths from tuff cones erupted on the margin of the Tanzanian craton and within the adjacent Mozambique belt in northern Tanzania offer an opportunity to assess the role of lower crustal processes in the tectonic evolution of these two terranes. Both terranes are Archean, but record very different histories, starting in the Proterozoic and continuing today. Whereas the craton experienced little metamorphism or igneous activity following its stabilization around 2.8 Ga, Archean rocks of the Mozambique belt in the study area experienced at least one episode of high-grade metamorphism during the East African orogeny (ca. 640 Ma). Today, the East African rift exists at the contact between the Mozambique belt and the craton, implying a fundamental lithospheric weakness at this boundary. Granulite xenoliths come from Labait, on the craton margin, and Lashaine and Naibor Soito in the metamorphic belt. Most xenoliths are mafic and all are igneous in origin. Cratonic xenoliths (pl- opx±cpx±gt±hbl) are primarily anhydrous two-pyroxene granulites that likely originated as crystallized high-Ni, Archean basaltic melts. Xenoliths from the Mozambique belt are dominated by mafic granulites (pl-cpx-gt±opx) at Lashaine and banded, mafic to intermediate granulites at Naibor Soito. Positive Sr and Eu anomalies imply that the Lashaine granulites originated as plagioclase cumulates. The wide range in SiO2 (47-65 wt%) and correlation of Ni-MgO in the Naibor Soito xenoliths suggests they may have originated as igneous rocks that subsequently underwent partial melting to form the mafic (pl- opx±cpx±gt±hbl±bt) and felsic bands (pl-qtz-opx±kfs). U-Pb zircon ages for xenoliths from both terranes are Archean, as are most TDM ages, though younger TDM ages are seen in some Lashaine samples that were contaminated by rift magma. High pressures (up to 2.7GPa) are recorded by the Mozambique belt xenoliths, suggesting equilibration in thickened crust during the East

  2. Erosion of Archean continents: The Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks

    Science.gov (United States)

    Garçon, M.; Carlson, R. W.; Shirey, S. B.; Arndt, N. T.; Horan, M. F.; Mock, T. D.

    2017-06-01

    Knowing the composition, nature and amount of crust at the surface of the early Earth is crucial to understanding the early geodynamics of our planet. Yet our knowledge of the Hadean-Archean crust is far from complete, limited by the poor preservation of Archean terranes, and the fact that less attention has been paid to the sedimentary record that tracks erosion of these ancient remnants. To address this problem and get a more comprehensive view of what an Archean continent may have looked like, we investigated the trace element and Sm-Nd, Lu-Hf isotopic records of Archean metasedimentary rocks from South Africa. We focused our study on sandstone and mudstone from drill core in the Fig Tree Group (3.23-3.26 Ga) of the Barberton granite-greenstone belt, but also analyzed the 3.4 Ga Buck Reef cherts and still older (3.5-3.6 Ga) meta-igneous rocks from the Ancient Gneiss Complex, Swaziland. Based on principal component analysis of major and trace element data, the Fig Tree metasedimentary rocks can be classified into three groups: crustal detritus-rich sediments, Si-rich sediments and Ca-, Fe-rich sediments. The detritus-rich sediments have preserved the Sm-Nd and Lu-Hf isotopic signatures of their continental sources, and hence can be used to constrain the composition of crust eroded in the Barberton area in the Paleoarchean period. Based on Sm/Nd ratios, we estimate that this crust was more mafic than today, with an average SiO2 content of 60.5 ± 2 wt.%. This composition is further supported by isotopic mixing calculations suggesting that the sedimentary source area contained equal proportions of mafic-ultramafic and felsic rocks. This implies that the Archean crust exposed to weathering was more mafic than today but does not exclude a more felsic composition at depth. Neodymium and Hf crustal residence ages show that the eroded crust was, on average, ∼300-400 Ma older than the deposition age of the sediments, which highlights the importance of intracrustal

  3. Mirador - Weather

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. Our weather system includes the dynamics of the atmosphere and its interaction with the oceans and land. The improvement of...

  4. The Cosmic Ray Intensity Near the Archean Earth

    CERN Document Server

    Cohen, O; Kota, J

    2012-01-01

    We employ three-dimensional state of the art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic ray transport to investigate the cosmic ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic ray spectrum is to changes in the sunspot placement and magnetic field strength, the large scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic ray flux than is the case today. The cosmic ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic ray flux at 1AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variat...

  5. Manganese carbonates as possible biogenic relics in Archean settings

    Science.gov (United States)

    Rincón-Tomás, Blanca; Khonsari, Bahar; Mühlen, Dominik; Wickbold, Christian; Schäfer, Nadine; Hause-Reitner, Dorothea; Hoppert, Michael; Reitner, Joachim

    2016-07-01

    Carbonate minerals such as dolomite, kutnahorite or rhodochrosite are frequently, but not exclusively generated by microbial processes. In recent anoxic sediments, Mn(II)carbonate minerals (e.g. rhodochrosite, kutnahorite) derive mainly from the reduction of Mn(IV) compounds by anaerobic respiration. The formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling in an oxygenated atmosphere. However, putative anaerobic pathways such as microbial nitrate-dependent manganese oxidation, anoxygenic photosynthesis and oxidation in ultraviolet light may facilitate manganese cycling even in an early Archean environment, without the availability of oxygen. In addition, manganese carbonates precipitate by microbially induced processes without change of the oxidation state, e.g. by pH shift. Hence, there are several ways how these minerals could have been formed biogenically and deposited in Precambrian sediments. We will summarize microbially induced manganese carbonate deposition in the presence and absence of atmospheric oxygen and we will make some considerations about the biogenic deposition of manganese carbonates in early Archean settings.

  6. Geochemistry of Archean Tonalitic—Ganodioritic Gneisses from Chicheng County,Northwestern Hebei Province

    Institute of Scientific and Technical Information of China (English)

    陈岳龙; 陈伟邦; 等

    1989-01-01

    Detailed geological,chronological,mineralogical,petrological and geochemical studies have been conducted of the Chichent gneissic complex in northwestern Hebei province.The gneissic complex is composed mainly of tonalitic-granodioritic rocks according to O'Connor's classification.The zircou U-Pb age of the gneissic complex is 2468-27+33 Ma.,consistent with that of the rocks in the North Tonalitic-granodioritic Gneiss Belt in the North China Platorm.The Archean Chicheng gneissic complex is part of the belt.No significant difference in composition between early anhedral metasomatic and late semi-euhedral plagiocalases suggests that the gneissic complex is not composed merely of mafic rocks replaced by felsic fiuids.The REE patterns in the complex,in conjunction with major and trace elements data,show that the gneissic complex is the mixture of felsic magma produced by partial melting of FI dacitic granulite and crystallate derived from the magma produced by 50%±partial melting of TH2 tholeiitic granulite and 40%±fractional crystallization of hornblende.

  7. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  8. In search of early life: Carbonate veins in Archean metamorphic rocks as potential hosts of biomarkers

    Science.gov (United States)

    Peters, Carl A.; Piazolo, Sandra; Webb, Gregory E.; Dutkiewicz, Adriana; George, Simon C.

    2016-11-01

    The detection of early life signatures using hydrocarbon biomarkers in Precambrian rocks struggles with contamination issues, unspecific biomarkers and the lack of suitable sedimentary rocks due to extensive thermal overprints. Importantly, host rocks must not have been exposed to temperatures above 250 °C as at these temperatures biomarkers are destroyed. Here we show that Archean sedimentary rocks from the Jeerinah Formation (2.63 billion yrs) and Carawine Dolomite (2.55 billion yrs) of the Pilbara Craton (Western Australia) drilled by the Agouron Institute in 2012, which previously were suggested to be suitable for biomarker studies, were metamorphosed to the greenschist facies. This is higher than previously reported. Both the mineral assemblages (carbonate, quartz, Fe-chlorite, muscovite, microcline, rutile, and pyrite with absence of illite) and chlorite geothermometry suggest that the rocks were exposed to temperatures higher than 300 °C and probably ∼400 °C, consistent with greenschist-facies metamorphism. This facies leads to the destruction of any biomarkers and explains why the extraction of hydrocarbon biomarkers from pristine drill cores has not been successful. However, we show that the rocks are cut by younger formation-specific carbonate veins containing primary oil-bearing fluid inclusions and solid bitumens. Type 1 veins in the Carawine Dolomite consist of dolomite, quartz and solid bitumen, whereas type 2 veins in the Jeerinah Formation consist of calcite. Within the veins fluid inclusion homogenisation temperatures and calcite twinning geothermometry indicate maximum temperatures of ∼200 °C for type 1 veins and ∼180 °C for type 2 veins. Type 1 veins have typical isotopic values for reprecipitated Archean sea-water carbonates, with δ13CVPDB ranging from - 3 ‰ to 0‰ and δ18OVPDB ranging from - 13 ‰ to - 7 ‰, while type 2 veins have isotopic values that are similar to hydrothermal carbonates, with δ13CVPDB ranging from - 18

  9. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition

    Science.gov (United States)

    Planavsky, Noah; Bekker, Andrey; Rouxel, Olivier J.; Kamber, Balz; Hofmann, Axel; Knudsen, Andrew; Lyons, Timothy W.

    2010-11-01

    The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today's. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column. Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE

  10. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kota, J. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  11. Archean evolution of the Leo Rise and its Eburnean reworking

    Science.gov (United States)

    Thiéblemont, Denis; Goujou, Jean Christian; Egal, Emmanuel; Cocherie, Alain; Delor, Claude; Lafon, Jean Michel; Fanning, C. Mark

    2004-06-01

    Recent geological mapping in southeastern Guinea, supported by zircon dating, has called into question traditional understanding concerning the evolution of the Leo Rise. Gneiss dated at about 3540 Ma appears to constitute the earliest evidence for continental accretion within the Leo Rise. The existence of a Leonian depositional cycle at about 3000 Ma is confirmed, marked by volcanic and sedimentary rocks that can be correlated with the Loko Group in Sierra Leone. The span of ages (3244-3050 Ma) suggests that the Leonian cycle comprises different episodes whose respective chronology is as yet uncertain. Clearly distinct from the Leonian cycle, the Liberian cycle (˜2900-2800 Ma) is represented in Guinea by granite and migmatite (˜2910-2800 Ma), reflecting remobilization of the ancient Archean basement and deformation of the Leonian rocks; no deposition is associated with this cycle. After the Liberian, the Nimba and Simandou successions, containing Liberian detrital zircons, are assigned to the Birimian (˜2200-2000 Ma). Finally, Eburnean tectonism caused intense deformation of the Archean craton, accompanied by high-grade metamorphism and the intrusion of granite and syenite with ages between 2080 and 2020 Ma. The evolution of the Kénéma-Man domain, attributed to the cumulated effect of the Leonian and Liberian cycles, is thus in part Eburnean. We can suppose, therefore, that the NNE-SSW-trending structures attributed to the Liberian in Sierra Leone are, in fact, Eburnean. The Kambui Supergroup, also affected by this tectonism, should thus be assigned to the Birimian rather than the Liberian, which would explain its similarities with the Nimba and Simandou successions.

  12. The Bombardment of the Earth During the Hadean and Early Archean Eras

    Science.gov (United States)

    Marchi, S.; Bottke, W. F.; Elkins-Tanton, L. T.; Morbidelli, A.; Wuennemann, K.; Kring, D. A.; Bierhaus, M.

    2013-12-01

    near ~4.1 Ga caused by the so-called Late Heavy Bombardment should have delivered a new round of large impactors striking at a mean velocity ~1.5 times higher than in previous epochs. Overall, only a relatively small fraction of ancient terrain survives unscathed all the way to the early Archean. We speculate that if impacts are involved with Hadean zircon formation, a scenario we find plausible, the apparent preference for ~4.1 Ga ages among Hadean zircons may be a combination of (i) terrain (and zircon) preservation and (ii) the ability of large impactors to create zircons (i.e., ~4.1 Ga would potentially be the 'sweet spot' in this competition). The relevance of this model for other early Earth issues (e.g., accretion of volatile elements; Kring 2003) will also be discussed. Bottke W.F., et al., Nature 485, 78, 2012. Harrison T.M., Annu. Rev. Earth. Planet Sci., 37, 2009. Kring D.A., Astrobiology 3, 133, 2003. Marchi S., et al., EPSL, 325, 2012. Morbidelli A., et al., EPSL, 355, 2012. Pollack H.N. Greenstone belts, Oxford University Press, 1997. Valley J.W., et al., Geology, 30, 2002. Walker R.J., Chem. Der Erd., 69, 2009. Neumann G. et al., AGU 2012.

  13. Stormy Weather

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Inspired by the deep abyss of the unknown; a constant source for investigation and discovery, heating and destruction, all simultaneously. Beneath the deep darkness, millions of species vibrantly thrive in another universe wholly untouched by human hands, though affected by their choices. The weathered pieces and people associated with seaside villages, the deep wrinkles that tell a story of one's life and experiences like

  14. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin

    2009-09-01

    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  15. 太古宙TTG岩石是什么含义?%What is the Archean TTG?

    Institute of Scientific and Technical Information of China (English)

    张旗; 翟明国

    2012-01-01

    太古宙TTG岩石的成因是一个热门话题,它与太古宙麻粒岩地体并称为太古宙两大疑案.TTG岩石关系到地球早期陆壳是如何形成、生长和演化的.现在流行的观点是,太古宙TTG要么产于板块消减带,要么来自加厚的下地壳,这两种说法孰对孰错?笔者认为二者证据都不充分.上述认识是将太古宙TTG与现代埃达克岩简单对比得出来的,而这种对比忽略了地质时代和构造背景的差异,正确的对比应当是在太古宙不同类型花岗质岩石之间进行.太古宙地壳异常的热,什么时候开始出现板块构造至今没有得到明确的结论.太古宙TTG是太古宙地壳的主要成分,太古宙TTG地体反映的是太古宙地壳的平均厚度,加厚是相对于正常地壳厚度而言的.太古宙地质研究存在一个明显的误区,即不恰当地运用“将今论古”的原则,“将今论古”只适合显生宙或中-新元古代.研究TTG岩石意义十分重大,对我们理解前板块构造以及板块构造何时开始的是很关键的.%The Archean granulite massif and Archean TTG are two big mystery in Archean. Archean TTG has long been a hot topic. It is related to how the early continental crust formed grew and evolved. It has been widely acknowledged that Archean TTG formed either in a subduction zone or a product of melting thickened lower continental crust. However, these understandings were based on a simple comparison between Archean TTG and modern adakite. Instead, the correct comparison should be made between various types of Archean granites. And the Archean crust was abnormally hot and the presence of plate tectonics in Archean is still questioned. As the major component of the Archean crust, Archean TTG reflects the average thickness of the Archean crust. But, thickened crust is a concept compared to normal crust thickness. Consequently, there is a significant misunderstanding in the studies on Archean geology and improper usage

  16. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: Implication for Asian summer monsoon

    Science.gov (United States)

    Deng, Xiao-Dong; Li, Jian-Wei; Shuster, David L.

    2017-08-01

    Chemical weathering has provided a potentially important feedback between tectonic forcing and climate evolution of the Asian continent, although precise constraints on the timing and history of weathering are only variably documented. Here, we use goethite (U-Th)/He and 4He/3He geochronology to constrain the timing and rates of chemical weathering at the Yulong porphyry Cu deposit on the eastern Tibetan Plateau. Goethite grains have (U-Th)/He ages ranging from 6.73 ± 0.51 to 0.53 ± 0.04 Ma that correlate with independent paleoclimatic proxies inferred from supergene Mn-oxides and loess deposits under variable tectonic regimes and vegetation zones over the southeastern Asia. This correlation indicates that regional climatic conditions, especially monsoonal precipitation, controlled chemical weathering and goethite precipitation in a vast area of southeastern Asia. The goethite ages suggest that the Asian summer monsoon was relatively strong from 7 to 4.6 Ma, but weakened between 4.6 and 4 Ma, and then significantly intensified from 4 to 2 Ma. The precipitation ages of goethites collected along a 100-m-thick weathering profile decrease with depth, and indicate a downward propagation of the weathering front at rates of <6.7, 53.5 ± 10.8, and 4.8 ± 0.6 m/Ma during the intervals of 7-4, 4-2, and 2-0.7 Ma, respectively. The rapid propagation of weathering front during 4-2 Ma was caused by abrupt lowering of the water table, which was possibly related to local surface uplift or reorganization of the river systems in southeastern Tibet during this period.

  17. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  18. Weather Prediction Models

    Science.gov (United States)

    Bacmeister, Julio T.

    Awareness of weather and concern about weather in the proximate future certainly must have accompanied the emergence of human self-consciousness. Although weather is a basic idea in human existence, it is difficult to define precisely.

  19. Reconstructing Earth's Surface Oxidation Across The Archean- Proterozoic Transition

    Science.gov (United States)

    Kaufman, A. J.; Guo, Q.; Strauss, H.; Schröder, S.; Gutzmer, J.; Wing, B. A.; Baker, M.; Bekker, A.; Jin, Q.; Kim, S.; Farquhar, J.

    2010-12-01

    The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth’s earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate associated sulfate as well as sulfides in the glaciogenic Duitschland Formation of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of mass independent sulfur isotope fractionation. This is arguably associated with the atmospheric rise of oxygen (as well as the protective ozone layer) coincident with profound changes in ocean chemistry and biology. The loss of the MIF signal within the Duitschland succession is in phase with the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga). The emergence of cyanobacteria and oxygenic photosynthesis may be associated with a geochemical “whiff of oxygen” recorded in 2.5 Ga sediments. If true, the delay in the GOE can then be understood in terms of a finite sink for molecular oxygen - ferrous iron, which was abundant in deep Neoarchean seawater and sequestered in a worldwide episode of iron formation deposition ending shortly before accumulation of the Duitschland Formation. Insofar as early Paleoproterozoic glaciation is associated with oxygenation of a methane-rich atmosphere, we conclude that Earth’s earliest ice age(s) and the onset of a modern and far more energetic carbon cycle are directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  20. Mesoproterozoic suturing of Archean crustal blocks in western peninsular India: Implications for India-Madagascar correlations

    Science.gov (United States)

    Ishwar-Kumar, C.; Santosh, M.; Wilde, S. A.; Tsunogae, T.; Itaya, T.; Windley, B. F.; Sajeev, K.

    2016-10-01

    Ma, indicating the approximate timing of a major lead-loss event, possibly corresponding to metamorphism, and is broadly coeval with events in the Kumta suture. Synthesis of the above results indicates that the Kumta and Mercara suture zones incorporated sediments from Palaeoarchean to Mesoproterozoic sources and underwent high-pressure metamorphism in the late Mesoproterozoic. The protolith sediments were derived from regions containing juvenile Palaeoarchean crust, together with detritus from the recycling of older continental crust. Integration of the above results with published data suggests that the Mesoproterozoic (1460-1100 Ma) Kumta and Mercara suture zones separate the Archean (3400-2500 Ma) Karwar-Coorg block and Dharwar Craton in western peninsular India. Based on regional structural and other geological data we interpret the Kumta and Mercara suture zones as extensions of the Betsimisaraka suture of eastern Madagascar into western India.

  1. Oxidative weathering recorded by U-Th-Pb behavior in shales

    Science.gov (United States)

    Krogstad, E. J.; Bekker, A.

    2009-12-01

    Pb-isotope data from eleven suites of sedimentary (shales) and metasedimentary rocks (metapelites), new data or from the literature, are studied for indications of their Th/U histories. Variations in 208Pb/204Pb versus 206Pb/204Pb can be interpreted as indicating syn-depositional and/or post-depositional variations in Th/U. REE data can be used to test if apparent Th/U variations resulted from placer concentration of REE-, U-, and Th-rich heavy minerals. Such placer Th- or U-enrichment has not been identified in any of the shale Pb-Pb v. REE data. The early and middle Archean metasedimentary suites described (Isua, Barberton, Buhwa) show no evidence for separation of Th/U, suggesting that surficial conditions were too poor in free oxygen for uranium to be substantially transformed into U6+. A 2.7 Ga graphitic metapelite suite, the Vermilion Lake Formation from NE Minnesota, shows some decrease in Th/U consistent with addition of U upon reduction of U6+to U4+ by the sediments. Younger suites from the Early Proterozoic (Black Hills, 1.8 Ga shelf sediments of the S.W. U.S.A., Belt Supergroup), to samples from the late Paleozoic of the Appalachians, show profound separation of Th from U, consistent with oxic weathering in the modern style. Studies that showed U-enrichment in organic-rich shales as the effect of the rise of atmospheric oxygen neglect the effect of oxidative U-loss in sediments; in this study U-loss in contemporary organic-poor shales is shown to be the necessary, complementary reservoir to account for oxidative U mobility. Both high Th/U in organic-poor shales, or low Th/U in organic-rich shales, therefore, show the effect of oxidation on U.

  2. Experimental late brood surveys: Southern Saskatchewan: 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the late brood surveys for southern Saskatchewan during 1991. Survey methods, weather and habitat conditions, production indices, and tables...

  3. Variations in the magnitude of non mass dependent sulfur fractionation in the Archean atmosphere

    Science.gov (United States)

    Claire, M.; Kasting, J. F.

    2010-12-01

    Recent experimental data have enabled quantitatively meaningful computations of the non-mass dependent fractionation of sulfur’s isotopes (Δ33S) that exemplify the Archean rock record. The Δ33S signal originates as a result of fine structure in the absorption cross-section of SO2 isotopologues [1], which only undergo significant photolysis in reducing atmospheres [2]. The Δ33S signal produced by SO2 photolysis varies significantly between 190 and 220 nm, and thus is strongly dependent on any other atmospheric gases which absorb photons in this range [3], as well as the height at which photolysis occurs. A model that is capable of resolving the altitude-dependent radiative transfer through a realistic self-consistent reducing atmosphere is therefore essential when making direct comparisons between atmospheric Δ33S production and the rock record. In this work, we investigate how the magnitude of Δ33S might vary as function of atmospheric composition, which in turn allows the rock record to constrain the Archean atmosphere. Other recent work on this topic using simplied atmospheric models has implicated large concentrations of SO2 [5], OCS [3], and CO2 [6] as being responsible for the variations in Archean Δ33S. We present results from an altitude-dependent photochemical model of Archean photochemistry [4] of necessary complexity to resolve the complicated redox structure of the Archean atmosphere. We show that while increased concentrations of these gases all affect Δ33S in an unconstrained model, the atmospheric conditions required for OCS or SO2 shielding are unlikely to occur in an Archean atmosphere constrained by reasonable expectations of volcanic and biogenic fluxes. Within the context of plausible Archean atmospheres, we investigate how shielding due to changing amounts of CO2, biogenic sulfur gases, and fractal organic haze [7] affect the magnitude of Δ33S produced by the Archean atmosphere, and show why simplified atmospheric modeling may lead to

  4. Weather in Your Life.

    Science.gov (United States)

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  5. Lead isotopic evolution of Archean continental crust, Northern Tanzania

    Science.gov (United States)

    Bellucci, J. J.; McDonough, W. F.; Rudnick, R. L.; Walker, R. J.

    2010-12-01

    The continental crust is stratified in composition; the upper crust is generally enriched in highly incompatible trace elements relative to the lower crust [1]. The Western Granulite section of the Mozambique Belt of Northern Tanzania yields Archean Nd model ages and has zircons with U-Pb ages of ~2.6 Ga [2,3], but was strongly re-worked during the Pan-African Orogeny, ca. 560 Ma [2,3,4]. Here we use time-integrated Pb isotopic modeling for lower and middle crustal xenoliths, as well as upper crustal granulites to determine the timing of, and degree of intra-crustal differentiation. The Pb isotopic compositions of most feldspars in the lower crustal samples, measured via LA-MC-ICPMS, fall on the trend defined by the Tanzanian Craton [5] and therefore, were most likely extracted from the mantle at a similar time, ca. 2.7 Ga. However, some xenoliths fall off this trend and show enrichment in 207Pb/204Pb, which we interpret as reflecting derivation from more heterogeneous mantle than that sampled in the Tanzanian Craton. In contrast to lower crustal xenoliths from the Tanzanian Craton [5], we see no single feldspar Pb-Pb isochrons, which indicates complete re-homogenization of the Pb isotopic composition of the feldspars in the lower crust of the Mozambique Belt during the Pan-African Orogeny, and heating to > 600°C [5]. Using time integrated Pb modeling, the upper crust of the Western Granulites is enriched in U by ˜ 2.5 relative to that of the lower crust, which must have taken place around the time of mantle extraction (ca. 2.7 Ga). In addition, these calculations are consistent with a Th/U ratio of ˜ 4 for the bulk lower crust and ˜ 3 for the bulk upper crust. The common Pb isotopic composition of a single middle crustal xenolith implies a Th/U of 20, but is unlikely to be generally representative of the middle crust. [1] Rudnick, R. L. and Gao, S. (2003). In the Crust, vol. 3, Treatise on Geochemistry:1-64. [2] Mansur, A. (2008) Masters Thesis, University of

  6. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  7. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.

    Science.gov (United States)

    Keller, Markus A; Turchyn, Alexandra V; Ralser, Markus

    2014-04-25

    The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.

  8. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    Science.gov (United States)

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  9. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    Science.gov (United States)

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  10. Geochemistry of Archean Mafic Amphibolites from the Amsaga Area, West African Craton, Mauritania: What Is the Message?

    Science.gov (United States)

    El Atrassi, F.; Debaille, V.; Mattielli, N. D. C.; Berger, J.

    2014-12-01

    While Archean terrains are mainly composed of a TTG (Tonalite-trondhjemite-granodiorite) suite, more mafic lithologies such as amphibolites are also a typical component of those ancient terrains. Although mafic rocks represent only ~10% of the Archean cratons, they may provide key evidence of the role and nature of basaltic magmatism in the formation of the Archean crust as well as the evolution of the Archean mantle. This study focuses on the Archean crust from the West African Craton in Mauritania (Amsaga area). The Amsaga Archean Crust mainly consists of TTG and thrust-imbricated slices of mafic volcanic rocks, which have been affected by polymetamorphic events from the amphibolite to granulite facies. Our main objectives aim to the identification of the mafic lithology origin and a better understanding of their role in the continental crust emplacement. Our petrological observations show that these amphibolites have fine to medium granoblastic and nematoblastic textures. The amphibolites are dominated by amphibolite-facies mineral assemblages (mainly amphibole and plagioclase), but garnet and clinopyroxene occur in a few samples. Two groups are distinct in their geochemical characteristics (major and trace elements), although both have tholeiitic basalt composition. The first group show LREE-enriched patterns and negative Nb-Ta anomalies. The second group is characterized by near-flat LREE patterns and flat HREE patterns. This second group clearly shows no Nb-Ta anomalies. The first group could be related to arc-like basalts, as it is many similarities with some Archean amphibolites probably formed in a supra-subduction zone, for instance the volcanic rocks from the southern edge of the Isua Supracrustal Belt. On the contrary, the second group has a MORB-like signature which is more unusual during the Archean. Different scenarios will be discussed regards to the Archean geodynamics.

  11. National Ignition Facility wet weather construction plan

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  12. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  13. Project Weather and Water.

    Science.gov (United States)

    Hansen, Pal J. Kirkeby

    2000-01-01

    Introduces Project Weather and Water with the goal of developing and testing ideas of how to implement weather topics and water physics in an integrated way. Discusses teacher preparation, implementation, and evaluation of this project. (ASK)

  14. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  15. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  16. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  17. Surface Weather Observing Manuals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Manuals and instructions for taking weather observations. Includes the annual Weather Bureau 'Instructions for Preparing Meteorological Forms...' and early airways...

  18. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  19. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  20. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  1. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  2. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  3. The power of weather

    OpenAIRE

    Christian Huurman; Francesco Ravazzolo; Chen Zhou

    2010-01-01

    This paper examines the predictive power of weather for electricity prices in day ahead markets in real time. We find that next-day weather forecasts improve the forecast accuracy of Scandinavian day-ahead electricity prices substantially in terms of point forecasts, suggesting that weather forecasts can price the weather premium. This improvement strengthens the confidence in the forecasting model, which results in high center-mass predictive densities. In density forecast, such a predictive...

  4. Weather Fundamentals: Meteorology. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  5. Cold-Weather Sports

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports A A A What's in this article? ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...

  6. Convective Weather Avoidance with Uncertain Weather Forecasts

    Science.gov (United States)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  7. Weather Conditions, Weather Information and Car Crashes

    Directory of Open Access Journals (Sweden)

    Adriaan Perrels

    2015-11-01

    Full Text Available Road traffic safety is the result of a complex interaction of factors, and causes behind road vehicle crashes require different measures to reduce their impacts. This study assesses how strongly the variation in daily winter crash rates associates with weather conditions in Finland. This is done by illustrating trends and spatiotemporal variation in the crash rates, by showing how a GIS application can evidence the association between temporary rises in regional crash rates and the occurrence of bad weather, and with a regression model on crash rate sensitivity to adverse weather conditions. The analysis indicates that a base rate of crashes depending on non-weather factors exists, and some combinations of extreme weather conditions are able to substantially push up crash rates on days with bad weather. Some spatial causation factors, such as variation of geophysical characteristics causing systematic differences in the distributions of weather variables, exist. Yet, even in winter, non-spatial factors are normally more significant. GIS data can support optimal deployment of rescue services and enhance in-depth quantitative analysis by helping to identify the most appropriate spatial and temporal resolutions. However, the supportive role of GIS should not be inferred as existence of highly significant spatial causation.

  8. Evidence for Archean inheritance in the pre-Panafrican crust of Central Cameroon: Insight from zircon internal structure and LA-MC-ICP-MS Usbnd Pb ages

    Science.gov (United States)

    Ganwa, Alembert Alexandre; Klötzli, Urs Stephan; Hauzenberger, Christoph

    2016-08-01

    The main geological feature of Central Cameroon is the wide spread occurrence of granitoids emplaced in close association with transcurrent regional shear zones. The basement of this vast domain is a Paleoproterozoic ortho-and para-derivative formation, which has been intensely reworked, together with subsequent intrusions and sediments, during the Panafrican orogenesis in the Neoproterozoic. As consequence, the area underwent pervasive metamorphism and intense deformation. This makes it difficult to distinguish between Panafrican metasediments or syntectonic plutonites and their respective basement. Our study presents zircon features (CL-BSE-SE) and in-situ U-Th-Pb LA-MC-ICP-MS geochronology of a meta-sedimentary pyroxene-amphibole-bearing gneiss of the Méiganga area in Central Cameroon. Based on the Internal structures of the zircon four characteristic zonation patterns can be deciphered: 1) cores with magmatic oscillatory zonation 2) zircons with oscillatory or sector zonation, 3) zircons with sector zoning or blurred zoning, and 4) narrow bright un-zoned rims. These groups suggest that the rock experienced a number of geological events. Considering this zircon characteristic, the U-Th-Pb data allow to distinguish four ages: 2116 ± 57 Ma, consistent with ages from the Paleoproterozoic West Central African Belt; 2551 ± 33 Ma which marks a late Neoarchean magmatic event; 2721 ± 27 Ma related to a Neoarchean magmatic even in Central Cameroon, similar to one found in the Congo Craton. A zircon core gives ages around 2925 Ma which provides some evidence of the presence of the Mesoarchean basement prior to the Neoarchean magmatism. A weighted average of lower intercepts ages gives a value of 821 ± 50 Ma, representing the age of later metamorphism event. The various characteristic group and related ages reflect not only the complexity of the history of the pyroxene amphibole gneiss, but also show that the meta-sediment has at least three zircon contributing

  9. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  10. Phase equilibria constraints on Archean crustal genesis from crystallization experiments on trondhjemite with water at 10-17 kbar

    OpenAIRE

    van der Laan, Sieger R.; Johnston, A. Dana; Wyllie, Peter J.

    1990-01-01

    The formation of continental crust during the Archean and early Proterozoic occurred through a different mechanisms than the currently active processes of calc-alkaline volcanism in orogenic regions. In view that most crustal growth models imply that by the end of the Archean a continental mass equivalent to 75% or more of the current crust had evolved, it seems highly relevant to study early crustal genesis.

  11. A much warmer Earth surface for most of geologic time: implications to biotic weathering

    Science.gov (United States)

    Schwartzman, D. W.; McMenamin, M.

    1993-01-01

    The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

  12. A much warmer Earth surface for most of geologic time: implications to biotic weathering

    Science.gov (United States)

    Schwartzman, D. W.; McMenamin, M.

    1993-01-01

    The authors present two scenarios for the temperature history of Earth. One scenario is conventional, the other relies on a warmer history. Both scenarios include surface cooling determined by the evolution of the biosphere and are similar until the Proterozoic period. The warmer scenario requires a higher plant/lichen terrestrial biota to increase weathering intensity. Justification for a warmer surface includes period temperatures from the oxygen isotope record of coexisting phosphates and cherts, an upper limit of 58 degrees C from primary gypsum precipitation, and the lack of fractionation of sulfur isotopes between sulfide and sulfates in Archean sediments.

  13. Archean Arctic continental crust fingerprints revealing by zircons from Alpha Ridge bottom rocks

    Science.gov (United States)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Shevchenko, Sergey; Presnyakov, Sergey; Antonov, Anton; Belyatsky, Boris

    2015-04-01

    Whereas thick Cenozoic sedimentary cover overlapping bedrock of the Arctic Ocean, some tectonic windows were sampled by scientific submarine manipulator, as well as by grabbing, dredging and drilling during «Arctic-2012» Russian High-Arctic expedition (21 thousands samples in total, from 400-km profile along Alpha-Mendeleev Ridges). Among others, on the western slope of Alpha Ridge one 10x10 cm fragment without any tracks of glacial transportation of fine-layered migmatitic-gneiss with prominent quartz veinlets was studied. Its mineral (47.5 vol.% plagioclase + 29.6% quartz + 16.6% biotite + 6.1% orthoclase) and chemical composition (SiO2:68.2, Al2O3:14.9, Fe2O3:4.44, TiO2:0.54, MgO:2.03, CaO:3.13, Na2O:3.23, K2O:2.16%) corresponds to trachydacite vulcanite, deformed and metamorphozed under amphibolite facies. Most zircon grains (>80%) from this sample has an concordant U-Pb age 3450 Ma with Th/U 0.8-1.4 and U content of 100-400 ppm, epsilon Hf from -4 up to 0, and ca 20% - ca 3.3 Ga with Th/U 0.7-1.4 and 90-190 ppm U, epsilon Hf -6.5 to -4.5, while only 2% of the grains show Proterozoic age of ca 1.9 Ga (Th/U: 0.02-0.07, U~500 ppm, epsilon Hf about 0). No younger zircons were revealed at all. We suppose that magmatic zircon crystallized as early as 3450 Ma ago during acid volcanism, the second phase zircon crystallization from partial melt (or by volcanics remelting) under amphibolite facies metamorphism was at 3.3 Ga ago with formation of migmatitie gneisses. Last zircon formation from crustal fluids under low-grade metamorphic conditions was 1.9 Ga ago. There are two principal possibilities for the provenance of this metavolcanic rock. The first one - this is ice-rafted debris deposited by melted glacial iceberg. However, presently there are no temporal and compositional analogues of such rocks in basement geology of peri-oceanic regions, including Archean Itsaq Gneiss Complex, Lewisian Complex and Baltic Shield but these regions are far from the places of

  14. Returning from the deep: Archean atmospheric fingerprints in modern hotspot lavas (Invited)

    Science.gov (United States)

    Jackson, M. G.; Cabral, R. A.; Rose-Koga, E. F.; Koga, K. T.; Whitehouse, M. J.; Antonelli, M. A.; Farquhar, J.; Day, J. M.; Hauri, E. H.

    2013-12-01

    Ocean plates transport surface materials, including oceanic crust and sediment, into the mantle at subduction zones. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials reside in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. Sulfur isotopes provide an important new tool to evaluate the presence of ancient recycled materials in hotspot lavas. Widespread terrestrial mass independently fractionated sulfur (MIF-S) isotope signatures were generated exclusively through atmospheric photochemical reactions until ~2.45 Ga. In fact, the only significant reservoirs of MIF-S containing rocks documented so far are sediments and hydrothermal rocks older than ~2.45 Ga. Armed with this insight, we examined sulfur isotopes in olivine phenocrysts and olivine-hosted sulfides in lavas from the island of Mangaia, Cook Islands. Lavas from this location host unusually radiogenic Pb-isotopic compositions--referred to as a HIMU (high U/Pb) component--and this has been attributed to ancient recycled oceanic crust in the mantle source. In Cabral et al. (2013), we report MIF-S in olivine phenocrysts and olivine-hosted sulfides. The discovery of MIF-S isotopic signatures in young hotspot lavas appears to provide a "timestamp" and "signature" for preservation of subducted Archean surface materials in the mantle sourcing Mangaia lavas. We report new sulfur isotope data on olivine-hosted sulfides from the Mangaia lavas that reinforce our discovery of MIF-S anomalies reported in Cabral et al. (2013). We also report new sulfur isotopic data on Mangaia whole rock powders, and we find no evidence of MIF-S signatures. It is not yet clear why the individual Mangaia sulfides and the olivine separates have more extreme MIF-S than the whole rocks. We consider it

  15. Geochemistry of some banded iron-formations of the archean supracrustals, Jharkhand–Orissa region, India

    Indian Academy of Sciences (India)

    H N Bhattacharya; Indranil Chakraborty; Kaushik K Ghosh

    2007-06-01

    Banded iron-formations (BIF) form an important part of the Archean supracrustal belts of the Jharkhand–Orissa region, India. Major, trace and REE chemistry of the banded iron-formation of the Gandhamardan, Deo Nala, Gorumahisani and Noamundi sections of the Jharkhand–Orissa region are utilized to explore the source of metals and to address the thermal regime of the basin floor and the redox conditions of the archean sea. Hydrothermal fluids of variable temperatures might have contributed the major part of the Fe and other trace elements to the studied banded iron-formations. Diagenetic fluids from the sea floor sediments and river water might have played a subdued role in supplying the Fe and other elements for the banded iron-formations.

  16. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    Science.gov (United States)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and inclusions in the microtextures have strongly depleted δ34SVCDT values of -39.8 to +3.2‰ (n= 32). The magnitude, range and spatial heterogeneity of these δ34S values are consistent with an early microbial origin (McLoughlin et al. 2012). In contrast, sulfides cross-cutting the microtextures related to later veining have positive δ34S of +6.7 to +18.0‰ (n=20). These data can be compared to magmatic sulfides (δ34S = +3±3‰), Archean seawater (δ34S ca. +5‰) and Archean sedimentary sulfides (δ34S = +8 to -23‰). We propose that the Hooggenoeg sulfides probably formed during early fluid-rock-microbe interaction involving sulfate-reducing microbes (c.f. Rouxel et al. 2008). The pillow lavas were then metamorphosed, the glass transformed to a greenschist facies assemblage and titanite growth encapsulated the microbial sulfides. In summary, the extreme sulfur isotope fractionations reported here independently point towards the potential involvement of microbes in the alteration of Archean volcanic glass. In situ sulfur isotope analysis of basalt-hosted sulfides may provide an alternative approach to investigating the existence of an Archean sub-seafloor biosphere that does not require the mineralization of early microbial microborings with organic linings.

  17. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-01-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  18. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  19. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  20. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    Science.gov (United States)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Zucchetti, Márcia; Noce, Carlos; Baltazar, Orivaldo; da Silva, Luiz; Pinto, Claiton

    2001-07-01

    Rocks of the Rio das Velhas Supergroup comprise one of the most significant Archean greenstone-belt successions in Brazil, in both their appreciable mineral productivity and extensive mineral potential. A large part of this greenstone belt is contained within the Quadrilátero Ferrífero (Iron Quadrangle) region, Minas Gerais state, southeastern Brazil, which occupies the southernmost portion of the São Francisco craton. The Nova Lima Group rocks, at the base of the Rio das Velhas greenstone belt, host important orogenic gold deposits. The group contains lithological associations from bottom to top as follows: (1) mafic-ultramafic volcanic, (2) volcanic-chemical, (3) clastic-chemical, (4) volcaniclastic, and (5) resedimented rocks. Rocks of the resedimented, volcanic-chemical, and mafic-ultramafic volcanic associations mainly host the most important gold deposits. An early compressional deformation occurs in the rocks of the Rio das Velhas greenstone belt and basement gneisses, with tangential thrusting from the north to the south or southwest. Structures generated during a second, compressional deformation, encompass NW-striking thrust faults and SW-vergent, tight to isoclinal folds, inferring a general southwest transport direction. In the central portion of the Quadrilátero Ferrífero, the Paciência lineament, which strikes northwest and dips to the northeast in the south, or strikes northeast and dips to the southeast in the north, is a thrust-related, oblique ramp fault that hosts important gold deposits. The convergence of these two trends in the Nova Lima region is accommodated by roughly E-W-striking transcurrent faults, which are the most favored sites for large gold concentrations. Intracratonic extension in Late Archean to early Paleoproterozoic times and NW-vergent, Trans-Amazonian compressional deformation post-date gold deposition. Late extension during the Paleoproterozoic led to basin formation and the prominent dome-and-keel architecture of the

  1. Controls on the Archean climate system investigated with a global climate model.

    Science.gov (United States)

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  2. Comparison of Archean and Phanerozoic granulites: Southern India and North American Appalachians

    Science.gov (United States)

    Mcsween, Harry Y., Jr.; Kittleson, Roger C.

    1988-01-01

    Archean granulites at the southern end of the Dharwar craton of India and Phanerozoic granulites in the southern Appalachians of North America share an important characteristic: both show continuous transitions from amphibolite facies rocks to higher grade. This property is highly unusual for granulite terranes, which commonly are bounded by major shears or thrusts. These two terranes thus offer an ideal opportunity to compare petrogenetic models for deep crustal rocks formed in different time periods, which conventional wisdom suggests may have had different thermal profiles. The salient features of the Archean amphibolite-to-granulite transition in southern India have been recently summarized. The observed metamorphic progression reflects increasing temperature and pressure. Conditions for the Phanerozoic amphibolite-to-granulite transition in the southern Appalachians were documented. The following sequence of prograde reactions was observed: kyanite = sillimanite, muscovite = sillimanite + K-feldspar, partial melting of pelites, and hornblende = orthopyroxene + clinopyroxene + garnet. The mineral compositions of low-variance assemblages in mafic and intermediate rocks are almost identical for the two granulite facies assemblages. In light of their different fluid regimes and possible mechanisms for heat flow augmentation, it seems surprising that these Archean and Phanerozoic granulite terranes were apparently metamorphosed under such similar conditions of pressure and temperature. Comparison with other terrains containing continuous amphibolite-to-granulite facies transitions will be necessary before this problem can be addressed.

  3. Dome and Keel dynamics in the hot Archean lithosphere: a numerical approach

    Science.gov (United States)

    Duclaux, G.; Thebaud, N.; Gessner, K.; Doublier, M.

    2012-12-01

    The long-term interactions between greenstone belts and adjacent granitoids domes is key for understanding hot lithosphere rheology, crustal evolution and major ore deposits formation in Archean terrains. Some few tectonic processes have been proposed to explain both local and regional granite/greenstone finite deformation patterns observed in Archean terrains such as the West Australian Pilbara or Yilgarn cratons, including crustal extension following gravitational collapse, metamorphic core complex formation, folding interferences, and gravity driven deformation associated with exhumation of granitoids relative to a supracrustal cover. We propose to assess gravity driven deformation processes from simplified 2-D and 3-D thermo-mechanical numerical experiments using Underworld. A series of visco-plastic experiments under controlled boundary conditions have allowed us to identify three distinct stages in the hot lithosphere tectonic evolution: (1) an internal heating phase, (2) an inversion phase where dense mafic materials fall toward the lower crust while mid-crustal granitoids raise toward the surface, and (3) a freezing phase where the system stops. The relative duration of these phases is dependent on models initial geometries and inherited structures, materials thermal properties and rheologies, and the rheological contrast between granitoids and greenstones. We compare our experimental results with field observations and geophysical data from the Yilgarn craton in order to validate the gravity driven tectonic model, and eventually constrain the range of thermal and mechanical parameters that best capture Archean crustal dynamics.

  4. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    Science.gov (United States)

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  5. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    Science.gov (United States)

    Delavault, Hélène; Chauvel, Catherine; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste

    2016-11-01

    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = -0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairńs characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.

  6. Benign Weather Modification

    Science.gov (United States)

    2007-11-02

    operational interest in modifying weather to support combat operations increased, ultimately leading to a multi-service effort called PROJECT POPEYE . The goal...This, coupled with the revelations concerning weather modification use in the Vietnam War (PROJECT POPEYE ), was a double blow to weather modification...AWS-TR-74-247, June 1984. Cobb, James T., Jr., et. al. Project Popeye : Final Report. China Lake, CA: Naval Weapons Center, 1967. Langmuir, Irving

  7. Is Weather Chaotic?

    CERN Document Server

    Raidl, A

    1998-01-01

    The correlation dimension and K2-entropy are estimated from meteorological time- series. The results lead us to claim that seasonal variability of weather is under influence of low dimensional dynamics, whereas changes of weather from day to day are governed by high dimensional system(s). Error-doubling time of this system is less than 3 days. We suggest that the outstanding feature of the weather dynamics is deterministic chaos.

  8. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  9. Space Weather Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Space Weather Analysis archives are model output of ionospheric, thermospheric and magnetospheric particle populations, energies and electrodynamics

  10. Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites

    Science.gov (United States)

    Li, Su; Gaschnig, Richard M.; Rudnick, Roberta L.

    2016-03-01

    continental crust (UCC) over which the glaciers traversed. The strength of this weathering signature, based on the CIA, is greatest in the Mesoarchean and some of the Paleoproterozoic diamictites and is weaker in the Neoproterozoic and Phanerozoic glacial diamictites. Combining these data with data for Archean shales and other types of post-Paleoproterozoic sedimentary rocks (i.e., shales, mudstones, etc.), it appears that post-Paleoproterozoic upper continental crust experienced less intense chemical weathering, on average, than Archean and Paleoproterozoic upper continental crust.

  11. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  12. 极端天气%Wild Weather

    Institute of Scientific and Technical Information of China (English)

    林于靖(译注)

    2012-01-01

    从龙卷风、干旱到洪水,毫无疑义,近来的天气一直很恶劣。问题是:这可能是气候变化造成的吗?%From tornadoes and droughts to floods,there's no argument that the weather has been wild lately.The question is:Could climate change be the cause?

  13. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather

  14. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  15. Evaporation and weather

    NARCIS (Netherlands)

    Bruin, H.A.R. de; Feddes, R.A.; Holtslag, A.A.M.; Lablans, W.N.; Schuurmans, C.J.E.; Shuttleworth, W.J.

    1987-01-01

    Data on evaporation to be used in agriculture, hydrology, forestry, etc. are usually supplied by meteorologists. Meteorologists themselves also use evaporation data. Air mass properties determining weather are strongly dependent on the input of water vapour from the surface. So for weather predictio

  16. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore......, the capacity of the highway seems to be reduced in bad weather and there are indications that travel time variability is also increased, at least in free-flow conditions. Heavy precipitation reduces speed and capacity by around 5-8%, whereas snow primarily reduces capacity. Other weather variables......-parametrically against traffic density and in step 2 the residuals from step 1 are regressed linearly against the weather variables. The choice of a non-parametric method is made to avoid constricting ties from a parametric specification and because the focus here is not on the relationship between traffic flow...

  17. Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support)

    Science.gov (United States)

    2011-02-15

    Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support) Fiesta Resort & Conference Center Tempe, AZ February 1...Meteorology Overcoming Scientific Barriers to Weather Support Fiesta Resort & Conference Center Tempe, AZ February 1 & 2, 2010 Hosted by University

  18. Nb/Ta variations of mafic volcanics on the Archean-Proterozoic boundary: Implications for the Nb/Ta imbalance

    Institute of Scientific and Technical Information of China (English)

    LIU Yongsheng; GAO Shan; WANG Xuance; HU Shenghong; WANG Jianqi

    2005-01-01

    The HFSE and REE of the Precambrian mafic volcanics from the North China craton demonstrate obvious A(Archean)-P(Proterozoic) boundary. The Neoarchean mafic vol-canics show weak correlation between HFSE and TiO2. Their superchondritic Nb/Ta ratio (18.8(1.2) could be attributed to partial melting of mantle peridotite in the presence of garnet. Compared with Neoarchean mafic volcanics, the Paleoproterozoic ones have higher HFSE contents and lower Nb/Ta ratio (15.6(2.9). The significantly elevated HFSE and REE contents of Paleoproterozoic mafic volcanics imply metasomatic enrichment of mantle source, in which Ti-rich silicates could be present as suggested by significant positive correlations between TiO2 and HFSE. The global database of Precambrian mafic volcanics shows a similar A-P boundary. 23 Archean mafic volcanic suites yield an average Nb/Ta ratio of 17.8(1.9 higher than or close to the PM value; Proterozoic mafic volcanics from 28 suites yield an average Nb/Ta ratio of 14.7(4.1 deficit could be mainly formed in post-Archean time. Archean mafic volcanics could be one of the geochemical reservoirs complementing the low Nb/Ta of the post-Archean continental crust and DM.

  19. EPR study of thermally treated Archean microbial mats analogues and comparison with Archean cherts: towards a possible marker of oxygenic photosynthesis?

    Science.gov (United States)

    Bourbin, M.; Derenne, S.; Westall, F.; Gourier, D.; Gautret, P.; Rouzaud, J.-N.; Robert, F.

    2012-04-01

    The datation of photosynthesis apparition remains an open question nowadays: did oxygenic photosynthesis appear just before the Great Oxidation Event (GOE) of the atmosphere, 2.3 to 2.4 Gyr ago, or does it originate much earlier? It is therefore of uttermost interest to find markers of oxygenic photosynthesis, applicable to samples of archean age. In order to handle this problem, Microcoleus Chtonoplastes cyanobacteria and Chloroflexus-like non-oxygenic photosynthetic bacteria, were studied using Electron Paramagnetic Resonance (EPR) spectroscopy, a high sensitivity technique for the study of organic radicals in mature geological samples (coals, cherts, meteorites...). M. chtonoplastes and Chloroflexus-like bacteria were sampled in mats from the hypersaline lake "La Salada de Chiprana" (Spain), an analogue to an Archean environment, and were submitted to accelerated ageing through cumulative thermal treatments. For thermal treatment temperatures higher than 620° C, a drastic increase in the EPR linewidth of the oxygenic photosynthetic bacteria (M. chtonoplastes) occurred, as compared with the anoxygenic photosynthetic one (Chloroflexus-like). The EPR study of a thermally treated mixture of the two bacteria evidences that this linewidth increase is driven by catalytic reaction at high temperatures on an element selectively fixed by M. chtonoplastes. Based on comparative EDS analyses, Mg is a potential candidate for this catalytic activity but its precise role and the nature of the reaction are still to be determined. The EPR study of organic radicals in chert rocks of ages ranging from 0.42 to 3.5 Gyr, from various localities and that underwent various metamorphisms, revealed a dispersion of the signal width for the most mature samples. This comparative approach between modern bacterial samples and Precambrian cherts leads to propose the EPR linewidth of mature organic matter in cherts as a potential marker of oxygenic photosynthesis. If confirmed, this marker

  20. Molecular fossils and the late rise of oxygenic photosynthesis

    Science.gov (United States)

    Brocks, J. J.

    2012-04-01

    Biomarkers are the molecular fossils of natural products such as lipids and pigments. They can yield a wealth of information about early microbial ecosystems and are particularly valuable when preserved in > 1 billion-year old (Ga) sedimentary rocks where conventional fossils are often lacking. Therefore, in 1999, the detection of traces of biomarkers in 2.5 to 2.7 Ga shales from Western Australia (Brocks et al. 1999, Summons et al. 1999) was celebrated as a breakthrough. The discovery, which was later confirmed by several independent studies, led to far reaching conclusions about the early evolution of oxygenic photosynthesis (Summons et al. 1999) and ancestral eukaryotes (Brocks et al. 1999). However, here we present new data based on the carbon isotopic composition of solidified hydrocarbons (Rasmussen et al. 2008) and the spatial distribution of liquid hydrocarbons within the original 2.5 and 2.7 Ga shales (Brocks 2011) that demonstrate that the molecules must have entered the rocks much later in Earth's history and therefore provide no information about the Archean (>2.5 Ga) biosphere or environment. The elimination of the Archean biomarker data has immense implications for our understanding of Earth's early biosphere. 2-Methylhopanes have been interpreted as evidence for the existence of cyanobacteria at 2.7 Ga, about ~300 million years before the atmosphere became mildly oxygenated in the Great Oxidation Event (GOE; between 2.45 and 2.32 Ga). Now, the oldest direct fossil evidence for cyanobacteria reverts back to 2.15 Ga, and the most ancient robust sign for oxygenic photosynthesis becomes the GOE itself. Moreover, the presence of steranes has been interpreted as evidence for the existence of ancestral eukaryotes at 2.7 Ga. However, without the steranes, the oldest fossil evidence for the domain falls into the range ~1.78-1.68 Ga. Recognition that the biomarkers from Archean rocks are not of Archean age renders permissive hypotheses about a late evolution

  1. Land plants, weathering, and Paleozoic climatic evolution

    Science.gov (United States)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  2. Leucogranites of the Teton Range, Wyoming: A record of Archean collisional orogeny

    Science.gov (United States)

    Frost, Carol D.; Swapp, Susan M.; Frost, B. Ronald; Finley-Blasi, Lee; Fitz-Gerald, D. Braden

    2016-07-01

    Leucogranitic rocks formed by crustal melting are a prominent feature of collisional orogens of all ages. This study describes leucogranitic gneisses associated with an Archean collisional orogeny preserved in the Teton Range of northwestern Wyoming, USA. These leucogneisses formed at 2.68 Ga, and initial Nd isotopic compositions suggest they are derived from relatively juvenile sources. Two distinct groups of leucogneisses, both trondhjemitic, are identified on the basis of field relations, petrology, and geochemistry. The Webb Canyon gneiss forms large, sheet-like bodies of hornblende biotite trondhjemite and granodiorite. This gneiss is silica-rich (SiO2 = 70-80%), strongly ferroan, comparatively low in alumina, and is characterized by high Zr and Y, low Sr, and high REE contents that define "seagull"-shaped REE patterns. The Bitch Creek gneiss forms small sills, dikes, and plutons of biotite trondhjemite. Silica, Zr, Y, and REE are lower and alumina and Sr are higher than in the Webb Canyon gneiss. These differences reflect different melting conditions: the Webb Canyon gneiss formed by dehydration melting in which amphibole and quartz breaks down, accounting for the low alumina, high FeO, high silica content and observed trace element characteristics. The Bitch Creek gneiss formed by H2O-excess melting in which plagioclase breaks down leaving an amphibole-rich restite, producing magmas higher in alumina and Sr and lower in FeO and HREE. Both melt mechanisms are expected in collisional environments: dehydration melting accompanies gravitational collapse and tectonic extension of dramatically thickened crust, and water-excess melting may occur when collision places a relatively cool, hydrous lower plate beneath a hotter upper plate. The Archean leucogranitic gneisses of the Teton Range are calcic trondhjemites and granodiorites whereas younger collisional leucogranites typically are true granites. The difference in leucogranite composition reflects the

  3. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric T.; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G.

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ˜ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO2. Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets.

  4. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    Science.gov (United States)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  5. Comparison of oxygen fugacities of S-type granites across the Archean-Proterozoic boundary

    Science.gov (United States)

    Bucholz, C. E.; Eiler, J. M.; Stolper, E. M.; Breaks, F. B.

    2016-12-01

    We investigate whether changes in atmospheric O2 levels across the Archean-Proterozoic (AP) boundary were translated into the igneous record via partial melting or assimilation of sedimentary rocks with potentially differing oxidation states. To isolate the effects of sediment melting, we studied 5 S-type granites from the Superior Province (2640-2685 Ma) and 19 from the Paleoproterozoic (PP) Trans-Hudson and Wopmay orogenies (1715-1885 Ma), which were derived from sediments deposited at most 100-400 Ma before subsequent burial and partial melting. Published data from sediment melting experiments indicate that at a fixed temperature, the FeT/Mg ratios of partial melts - and therefore also FeT/Mg in biotites in granites formed from such melts - are sensitive to the abundance of Fe-Ti oxides in the residue. Specifically, FeT/Mg melt and biotite ratios are lower when Fe-Ti oxides are modally important in the residue due to the incorporation of a significant amount of bulk sediment Fe in the oxide phase. In turn, Fe-Ti oxide stability is highly sensitive to the Fe oxidation state inherited from the sedimentary source, being favored at high Fe3+/Fe2+ ratios. Analyzed biotite compositions from the Archean S-type granites have higher FeT/Mg ratios than those from the PP (2.7-3.7 v. 1.6-2.3) and therefore likely reflect more reducing conditions. The simplest explanation of our results is that the Archean S-type granites were derived from more reduced metasedimentary sources relative to the PP S-type granites, being richer in Fe2+-bearing minerals (e.g., pyrite or siderite) and poorer in Fe3+-bearing phases (e.g., magnetite or hematite). The variation in Fe oxidation state of S-type granites across the AP boundary could reflect the effect on sediments of the Great Oxygenation Event that roughly coincides with this boundary. Another possibility is that there is more reduced organic carbon in the sources of the Archean versus PP S-type granites; however, existing data

  6. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    Science.gov (United States)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  7. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    Science.gov (United States)

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  8. The Archean sulfur cycle and the early history of atmospheric oxygen.

    Science.gov (United States)

    Canfield, D E; Habicht, K S; Thamdrup, B

    2000-04-28

    The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).

  9. Minor Sulfur Isotope Constraints on the composition of Earth's Archean atmosphere

    Science.gov (United States)

    Claire, M.

    2016-12-01

    Minor sulfur isotope anomalies in the sedimentary record are direct recorders of ancient chemical reactions that occurred in the atmosphere, and therefore form the most direct proxy for Archean atmospheric composition. The mere presence of mass-independently fractionated sulfur isotopes (MIF-S) in the rock record has resolved nearly a century's worth of debate by constraining atmospheric oxygen to trace levels prior to 2.4 billion years ago, and indirectly indicates the presence of a dominant reducing gas, likely H2 or CH4. The MIF-S database has grown substantially in the past decade, and reveals complex time- and facies-dependent changes in MIF-S magnitudes. The structure within the sedimentary MIF-S record suggests that constraints beyond this simple "on-off" switch for atmospheric O2 are possible once we understand the mechanisms that generate and preserve the signal in the rock record. Recently, I proposed an initial quantitative framework for predictions of atmospheric MIF-S [1], but concluded that new measurements of MIF-S generation mechanisms were needed to provide robust constraints. Since then, identification of MIF-S arising from SO2 photoexcitation [2], and updated absorption cross-sections for SO2 and SO [3-4] provide critical new ground-truth on all 4 isotopes of sulfur. Furthermore, breakthroughs in coupled photochemical-climate modeling have enabled better predictions of UV transparency within hazy atmospheres [5] such as those that might have dominated in the Archean [6-8]. I will present 1-D photochemical modeling results based on these new fundamental constraints, in comparison with MIF-S data from the Archean, to interpret the steady-state composition of the Archean atmosphere and time-dependent perturbations to it. In particular, Δ36S/Δ33S resulting from perturbations to atmospheric species will be discussed as a key tool for constraining the composition of the reducing atmosphere. [1] Claire et al. (2014) GCA; [2] Whitehill et al., PNAS

  10. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting...... in a presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...... are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  11. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988......The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting...... in a presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...

  12. Regional variation in the Amitsoq gneisses related to crustal levels during late Archean granulite facies metamorphism: Southern west Greenland

    Science.gov (United States)

    Nutman, A. P.; Bridgwater, D.; Mcgregor, V. R.

    1986-01-01

    The dominant lithology at Kangimut sangmissoq is described as nebulitic tonalitic gneiss containing highly distended plagioclase phyric amphibolites. The gneiss amphibolite complex was intruded by Nuk gneiss between 3.05 and 2.90 Ga and later (2.6 to 2.7 Ga) by post granulite facies granitoid sheets. The amphibolites are though to be Ameralik dikes and the older gray gneiss are then Amitsoq by definition. The problem arises when the isotopic data are considered, none of which indicate rocks older that about 3.0 Ga.

  13. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  14. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  15. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  16. Monthly Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  17. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  18. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  19. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  20. A Good Start: Workshop Tackles Space Weather Economics

    Science.gov (United States)

    Lanzerotti, Louis J.

    2008-07-01

    As I wrote earlier this year, reliable estimates of the economic impacts of a space weather event on technologies have often been seriously lacking (see L. Lanzerotti, Space Weather, 6, S01002, doi:10.1029/2007SW000385, 2008). However, I am happy to note that the Space Studies Board of the U.S. National Research Council took an important step toward setting a framework for achieving some of these "reliable estimates" in a workshop that was held in late May in Washington, D. C. The meeting drew active participation from the academic research community and major government agencies in the National Space Weather Program ()http://www.nswp.gov, as well as a significant number of commercial interests large and small. These latter included enterprises that use space weather information for design decisions and/or successful operations, as well as vendors of space weather products and services.

  1. Genetically optimizing weather predictions

    Science.gov (United States)

    Potter, S. B.; Staats, Kai; Romero-Colmenero, Encarni

    2016-07-01

    humidity, air pressure, wind speed and wind direction) into a database. Built upon this database, we have developed a remarkably simple approach to derive a functional weather predictor. The aim is provide up to the minute local weather predictions in order to e.g. prepare dome environment conditions ready for night time operations or plan, prioritize and update weather dependent observing queues. In order to predict the weather for the next 24 hours, we take the current live weather readings and search the entire archive for similar conditions. Predictions are made against an averaged, subsequent 24 hours of the closest matches for the current readings. We use an Evolutionary Algorithm to optimize our formula through weighted parameters. The accuracy of the predictor is routinely tested and tuned against the full, updated archive to account for seasonal trends and total, climate shifts. The live (updated every 5 minutes) SALT weather predictor can be viewed here: http://www.saao.ac.za/ sbp/suthweather_predict.html

  2. Cockpit weather information system

    Science.gov (United States)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  3. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean

    Science.gov (United States)

    Garcia, Amanda K.; Schopf, J. William; Yokobori, Shin-ichi; Akanuma, Satoshi; Yamagishi, Akihiko

    2017-05-01

    Paleotemperatures inferred from the isotopic compositions (δ18O and δ30Si) of marine cherts suggest that Earth’s oceans cooled from 70 ± 15 °C in the Archean to the present ˜15 °C. This interpretation, however, has been subject to question due to uncertainties regarding oceanic isotopic compositions, diagenetic or metamorphic resetting of the isotopic record, and depositional environments. Analyses of the thermostability of reconstructed ancestral enzymes provide an independent method by which to assess the temperature history inferred from the isotopic evidence. Although previous studies have demonstrated extreme thermostability in reconstructed archaeal and bacterial proteins compatible with a hot early Earth, taxa investigated may have inhabited local thermal environments that differed significantly from average surface conditions. We here present thermostability measurements of reconstructed ancestral enzymatically active nucleoside diphosphate kinases (NDKs) derived from light-requiring prokaryotic and eukaryotic phototrophs having widely separated fossil-based divergence ages. The ancestral environmental temperatures thereby determined for these photic-zone organisms--shown in modern taxa to correlate strongly with NDK thermostability--are inferred to reflect ancient surface-environment paleotemperatures. Our results suggest that Earth's surface temperature decreased over geological time from ˜65-80 °C in the Archean, a finding consistent both with previous isotope-based and protein reconstruction-based interpretations. Interdisciplinary studies such as those reported here integrating genomic, geologic, and paleontologic data hold promise for providing new insight into the coevolution of life and environment over Earth history.

  4. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    Science.gov (United States)

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  5. Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with Archean cherts.

    Science.gov (United States)

    Bourbin, M; Derenne, S; Gourier, D; Rouzaud, J-N; Gautret, P; Westall, F

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  6. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    Science.gov (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  7. Oxygen-Dependent Morphogenesis of Modern Clumped Photosynthetic Mats and Implications for the Archean Stromatolite Record

    Directory of Open Access Journals (Sweden)

    Malcolm R. Walter

    2012-10-01

    Full Text Available Some modern filamentous oxygenic photosynthetic bacteria (cyanobacteria form macroscopic tufts, laminated cones and ridges that are very similar to some Archean and Proterozoic stromatolites. However, it remains unclear whether microbes that constructed Archean clumps, tufts, cones and ridges also produced oxygen. Here, we address this question by examining the physiology of cyanobacterial clumps, aggregates ~0.5 mm in diameter that initiate the growth of modern mm- and cm-scale cones. Clumps contain more particulate organic carbon in the form of denser, bowed and bent cyanobacterial filaments, abandoned sheaths and non-cyanobacterial cells relative to the surrounding areas. Increasing concentrations of oxygen in the solution enhance the bending of filaments and the persistence of clumps by reducing the lateral migration of filaments away from clumps. Clumped mats in oxic media also release less glycolate, a soluble photorespiration product, and retain a larger pool of carbon in the mat. Clumping thus benefits filamentous mat builders whose incorporation of inorganic carbon is sensitive to oxygen. The morphogenetic sequence of mm-scale clumps, reticulate ridges and conical stromatolites from the 2.7 Ga Tumbiana Formation likely records similar O2-dependent behaviors, preserving currently the oldest morphological signature of oxygenated environments on Early Earth.

  8. Establishing Denudation Chronology through Weathering Geochronology

    Science.gov (United States)

    Riffel, S. B.; Vasconcelos, P. M.; Farley, K. A.; Carmo, I. O.

    2011-12-01

    Planar landforms - erosion surfaces - are used as temporal markers in denudation chronology. These surfaces are interpreted as the result of long-term weathering and denudation controlled by a specific base level within a given time-interval characterized by long-term tectonic stability. The presence of several planar landforms at distinct elevations is interpreted as evidence for distinct denudation events, separated by periods of tectonic reactivation and crustal uplift. We selected an area in the Paraná-La Plata basin, southern Brazil (25°S lat.) to investigate if the application of weathering geochronology by the 40Ar/39Ar and (U-Th)/He methods could permit differentiating different elevation landsurfaces. We dated supergene Mn oxyhydroxides by 40Ar/39Ar geochronology and coexisting supergene Fe oxyhydroxides by the (U-Th)/He method from one of the three regional landsurfaces - The First, Second, and Third Paraná plateaus - previously identified in this area. Two sites were sampled from the Second Paraná Plateau: a ferricrust at Serra das Almas (7 hand specimens of goethite at 1080 m of altitude) and deeply weathered ferricretes and saprolites at Vila Velha (11 hand specimens of cryptomelane and 14 of goethite at 910 m of altitude). The Serra das Almas sites hosts a stratified weathering profile with ferricrust, and mottle zone. The Vila Velha site results from intense weathering that led to the precipitation of well-crystallized supergene minerals precipitated within fractures in the saprolites. The geochronological results are correlatable between the two sites and the two distinct methods (40Ar/39Ar and (U-Th)/He), and they reveal three generations of weathering and mineral precipitation: Late Eocene-Oligocene, Early Miocene, and Pleistocene. The geochronological results suggested that the Second Paraná Plateau formed by regional erosion during the Oligocene, and that this landsurface has been continuously exposed to weathering and erosion since then

  9. Agricultural Decision Making Using North Dakota Agricultural Weather Network

    Science.gov (United States)

    Akyuz, F.; Mullins, B.; Morlock, D.; Carcoana, R.

    2010-09-01

    The North Dakota Agricultural Weather Network (NDAWN) consists of 72 automated weather stations spread across agricultural locations of North Dakota, the Red River Valley, and border regions of surrounding states. The NDAWN Center is a part of the Department of Soil Science, North Dakota State University. The NDAWN stations measure wind speed and direction, air temperature, rainfall, solar radiation, pressure (31 stations), atmospheric moisture and soil temperatures under bare and turf at 10 cm (4 inch) depth. The center provides daily summaries consisting of maximums and minimums as well as time of occurrence, and various totals or averages for all variables in English or metric units. Measured and calculated variables along with complete descriptions are available. The NDAWN Center web site: http://ndawn.ndsu.nodak.edu/ allows direct access to NDAWN data in various special and temporal scales. The voice modem accommodates those who do not have internet access. The NDAWN Center has assisted many North Dakotans in making weather critical decisions concerning their crops, livestock, and livelihood. The stations provide weather data, which was instrumental in developing various agricultural models including but not limited to the late blight model, degree day and growth stage models for barley, corn, canola, potato, sugarbeet, sunflower, wheat and other small grains, irrigation scheduling, crop water use, sugarbeet root maggot, and insect development models. Late blight model, for example, predicts when leaf disease can occur in potato plants. Late blight doesn't occur in North Dakota every year and is prevalent during cool and moist periods of weather. In 1993-94, this model predicted that late blight would occur and growers were able to use fungicide applications to prevent the disease. Another direct benefit of NDAWN data is that it provides universities and the National Weather Service with an additional database for research and forecasting applications

  10. Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Science.gov (United States)

    Oehler, D. Z.; Robert, F.; Walter, M. R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E. K.

    2010-01-01

    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms.

  11. A search for weather in late l dwarfs

    Directory of Open Access Journals (Sweden)

    M. Morales-Calderón

    2007-01-01

    Full Text Available Hemos llevado a cabo un programa de monitorización de 3 enanas marrones de campo con tipos espectrales L tardíos utilizando Spitzer/IRAC en 4.5 y 8 um. La finalidad de este trabajo es buscar evidencias de la existencia de estructuras irregulares en las fotosferas de estos objetos. El hecho de que dos de los tres objetos estudiados mostraran variaciones en sólo una de las dos bandas sugiere un origen instrumental para las mismas. Sin embargo, dado que los ujos en distintas longitudes de onda provienen de distintas regiones verticales de la atmósfera, nuestras observaciones son consistentes con variabilidad intrínseca del objeto. En cualquier caso, estas observaciones constituyen la búsqueda de variabilidad en el infrarrojo medio más precisa hasta la fecha y nuestra fotometría proporciona límites superiores a la estructura de las fotosferas de estos objetos de transición.

  12. Space weather & telecommunications

    CERN Document Server

    Goodman, John M

    2006-01-01

    This book is both a survey of practical concepts for forecasting the performance of various telecommunication systems as well as a balanced treatment of space-weather phenomena that give rise to telecommunication impairment episodes. It bridges the gap in the relationship that exists between the following two disciplines: space weather and telecommunication system performance. There are a number of books that address one of the two disciplines in some detail, but only merely mention the other as an afterthought. In this book the author has married the two disciplines so that the readership can

  13. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa.

    Science.gov (United States)

    Walsh, M M

    1992-01-01

    There is widespread textural evidence for microbial activity in the cherts of the Early Archean Onverwacht Group. Layers with fine carbonaceous laminations resembling fossil microbial mats are abundant in the cherty metasediments of the predominantly basaltic Hooggenoeg and Kromberg Formations. In rare cases, filamentous microfossils are associated with the laminae. The morphologies of the fossils, as well as the texture of the encompassing laminae suggest an affinity to modern mat-dwelling cyanobacteria or bacteria. A variety of spheroidal and ellipsoidal structures present in cherts of the Hooggenoeg and Kromberg Formations resemble modern coccoidal bacteria and bacterial structures, including spores. The development of spores may have enabled early microorganisms to survive the relatively harsh surficial conditions, including the effects of very large meteorite impacts on the young Earth.

  14. Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex

    Science.gov (United States)

    Mccallum, I. S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.

  15. In situ carbon isotope analysis of Archean organic matter with SIMS

    Science.gov (United States)

    Williford, K. H.; Ushikubo, T.; Lepot, K.; Hallmann, C.; Spicuzza, M. J.; Eigenbrode, J. L.; Summons, R. E.; Valley, J. W.

    2011-12-01

    Spatiotemporal variability in the carbon isotope composition of sedimentary organic matter (OM) preserves information about the evolution of the biosphere and of the exogenic carbon cycle as a whole. Primary compositions, and imprints of the post-depositional processes that obscure them, exist at the scale of individual sedimentary grains (mm to μm). Secondary ion mass spectrometry (SIMS) (1) enables analysis at these scales and in petrographic context, (2) permits morphological and compositional characterization of the analyte and associated minerals prior to isotopic analysis, and (3) reveals patterns of variability homogenized by bulk techniques. Here we present new methods for in situ organic carbon isotope analysis with sub-permil precision and spatial resolution to 1 μm using SIMS, as well as new data acquired from a suite of Archean rocks. Three analytical protocols were developed for the CAMECA ims1280 at WiscSIMS to analyze domains of varying size and carbon concentration. Average reproducibility (at 2SD) using a 6 μm spot size with two Faraday cup detectors was 0.4%, and 0.8% for analyses using 1 μm and 3 μm spot sizes with a Faraday cup (for 12C) and an electron multiplier (for 13C). Eight coals, two ambers, a shungite, and a graphite were evaluated for μm-scale isotopic heterogeneity, and LCNN anthracite (δ13C = -23.56 ± 0.1%, 2SD) was chosen as the working standard. Correlation between instrumental bias and H/C was observed and calibrated for each analytical session using organic materials with H/C between 0.1 and 1.5 (atomic), allowing a correction based upon a 13CH/13C measurement included in every analysis and a 12CH measurement made immediately after every analysis. The total range of the H/C effect observed for the Archean samples analyzed was < 3%. Analyses of Archean OM domains for which 12C count rate varies with the proportions of organic carbon, carbonate carbon, and quartz suggest that instrumental bias is consistent for 12C count

  16. Archean relic body at lower crust in Sulu area: Evidence from magnetic data

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    After the new 1:1000000 aero magnetic data were processed and the three-dimensional inversion work was carried out, a vast high magnetic body northwestward was discovered. The magnetic body is located at the depth of about 20 km on the west side of Tanlu fault and at about 25 km on the east side of Tanlu fault beneath the Sulu area. There is a difference of vertical distance of 3-5 km in depth between both sides. We think that the magnetic body is an Archean metamorphic plate and belongs to the North China block. The discovery of the magnetic body is significant for us to reconstruct the structure model of the Sulu orogenic belt, delineate the suture of collision between the North China block and the Yangtze block, and estimate the depth of slipping surface when the eastside of Tanlu fault moved northward.

  17. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  18. Microbial Weathering of Olivine

    Science.gov (United States)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  19. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  20. Winter Weather: Frostbite

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  1. Winter Weather Checklists

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  2. Weather at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-19

    This report gives general information about how to become a meteorologist and what kinds of jobs exist in that field. Then it goes into detail about why weather is monitored at LANL, how it is done, and where the data can be accessed online.

  3. Cold Weather Pet Safety

    Science.gov (United States)

    ... they can be knocked over, potentially starting a fire. Check your furnace before the cold weather sets in to make ... avoided because of the risk of burns or fire. Heated pet mats should also be used ... to burrow, get them back inside quickly because they are showing signs of ...

  4. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  5. 'Is it the weather?'

    NARCIS (Netherlands)

    B. Jacobsen (Ben); W.A. Marquering (Wessel)

    2004-01-01

    textabstractWe show that results in the recent strand of the literature that tries to explain stock returns by weather induced mood shifts of investors might be data-driven inference. More specifically, we consider two recent studies (Kamstra, Kramer and Levi, 2003a and Cao and Wei, 2004) that claim

  6. Paleosol at the Archean–Proterozoic contact in NW India revisited – Evidence for oxidizing conditions during paleo-weathering?

    Indian Academy of Sciences (India)

    Manoj K Pandit; Helga de Wall; Narendra K Chauhan

    2008-06-01

    A number of fine-grained sericite bearing pelitic,schistose lithologies occur along the Archean (Banded Gneiss Complex)–Proterozoic (Aravalli Supergroup)contact (APC)in the Udaipur valley in NW Indian craton.These Al-rich lithologies (subsequently metamorphosed)have been described as ‘paleosols ’,developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleopro- terozoic Aravalli quartzite.The paleosol was developed between 2.5 and 2.1,coincident with the globally recognized Great Oxidation Event (GOE).In previous studies these paleosol sections were interpreted to have developed under reducing environment,however,the finding of a ‘ferricrete ’ zone in the upper part of Tulsi Namla section (east of Udaipur)during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development.The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons.The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part.Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part,in the ferricrete zone.The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.

  7. The Photochemical Oxidation of Siderite That Drove Hydrogen Based Microbial Redox Reactions in The Archean Biosphere

    Science.gov (United States)

    Kim, J. D.; Yee, N.; Falkowski, P. G.

    2012-12-01

    Hydrogen is the most abundant element in the universe and molecular hydrogen (H2) is a rich source of electron in a mildly reducing environment for microbial redox reactions, such as anoxygenic photosynthesis and methanogenesis. Subaerial volcanoes, ocean crust serpentinization and mid-ocean ridge volcanoes have been believed to be the major source of the hydrogen flux to the atmosphere. Although ferrous ion (Fe2+) photooxidation has been proposed as an alternative mechanism by which hydrogen gas was produced, ferruginous water in contact with a CO2-bearing atmosphere is supersaturated with respect to FeCO3 (siderite), thus the precipitation of siderite would have been thermodynamically favored in the Archean environment. Siderite is the critical mineral component of the oldest fossilized microbial mat. It has also been inferred as a component of chemical sedimentary protolith in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada and the presence of siderite in the protolith suggests the occurrence of siderite extends to Hadean time. Analyses of photooxidation of siderite suggest a significant flux of hydrogen in the early atmosphere. Our estimate of the hydrogen production rate under Archean solar flux is approximately 50 times greater than the estimated hydrogen production rate by the volcanic activity based on a previous report (Tian et al. Science 2005). Our analyses on siderite photooxidation also suggest a mechanism by which banded iron formation (BIF) was formed. The photooxidation transforms siderite to magnetite/maghemite (spinnel iron oxide), while oxygenic oxidation of siderite leads to goethite, and subsequently to hematite (Fe3+2O3) upon dehydration. We will discuss the photochemical reaction, which was once one of the most ubiquitous photochemical reactions before the rise of oxygen in the atmosphere. Photooxidation of siderite over time by UV light From left to right: UV oxidized siderite, pristine siderite, oxidized siderite by oxygen

  8. Modeling the globally-integrated spectral variability of the Archean Earth: The purple planet

    Science.gov (United States)

    Palle, E.; Sanroma, E.; Parenteau, M. N.; Kiang, N. Y.; Gutierrez-Navarro, A. M.; Lopez, R.; Montañes-Rodríguez, P.

    2014-03-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3 Gyr ago. At that time, one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and bacteria concentration/ distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  9. Characterizing the Purple Earth: Modeling the Globally Integrated Spectral Variability of the Archean Earth

    Science.gov (United States)

    Sanromá, E.; Pallé, E.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.; López, R.; Montañés-Rodríguez, P.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  10. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014

    Directory of Open Access Journals (Sweden)

    R. V. Kochanov

    2015-08-01

    Full Text Available In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014, the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm−1, the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer+ NO2 was used in place of the monomer. Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.

  11. Petrology of the Rainy Lake area, Minnesota, USA-implications for petrotectonic setting of the archean southern Wabigoon subprovince of the Canadian Shield

    Science.gov (United States)

    Day, W.C.

    1990-01-01

    The Rainy Lake area in northern Minnesota and southwestern, Ontario is a Late Archean (2.7 Ga) granite-greenstone belt within the Wabigoon subprovince of the Canadian Shield. In Minnesota the rocks include mafic and felsic volcanic rocks, volcaniclastic, chemical sedimentary rocks, and graywacke that are intrucded by coeval gabbro, tonalite, and granodiorite. New data presented here focus on the geochemistry and petrology of the Minnesota part of the Rainy Lake area. Igneous rocks in the area are bimodal. The mafic rocks are made up of three distinct suites: (1) low-TiO2 tholeiite and gabbro that have slightly evolved Mg-numbers (63-49) and relatively flat rare-earth element (REE) patterns that range from 20-8 x chondrites (Ce/YbN=0.8-1.5); (2) high-TiO2 tholeiite with evolved Mg-numbers (46-29) and high total REE abundances that range from 70-40 x chondrites (Ce/YbN=1.8-3.3), and (3) calc-alkaline basaltic andesite and geochemically similar monzodiorite and lamprophyre with primitive Mg-numbers (79-63), enriched light rare-earth elements (LREE) and depleted heavy rare-earth elements (HREE). These three suites are not related by partial melting of a similar source or by fractional crystallization of a common parental magma; they resulted from melting of heterogeneous Archean mantle. The felsic rocks are made up of two distinct suites: (1)low-Al2O3 tholeiitic rhyolite, and (2) high-Al2O3 calc-alkaline dacite and rhyolite and consanguineous tonalite. The tholeiitic felsic rocks are high in Y, Zr, Nb, and total REE that are unfractionated and have pronounced negative Eu anomalies. The calcalkaline felsic rocks are depleted in Y, Zr, and Nb, and the REE that are highly fractionated with high LREE and depleted HREE, and display moderate negative Eu anomalies. Both suites of felsic rocks were generated by partial melting of crustal material. The most reasonable modern analog for the paleotectonic setting is an immature island arc. The bimodal volcanic rocks are

  12. Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites

    Science.gov (United States)

    Gaschnig, Richard M.; Rudnick, Roberta L.; McDonough, William F.; Kaufman, Alan J.; Hu, Zhaochu; Gao, Shan

    2014-12-01

    Glacial diamictites deposited in the Mesoarchean, Paleoproterozoic, Neoproterozoic, and Paleozoic eras record temporal variations in their average compositions that reflect the changing composition of the upper continental crust (UCC). Twenty six of the 27 units studied show elevated chemical index of alternation (CIA) and low Sr abundances, regardless of their age, documenting pervasive weathering of the average UCC. Lower abundances of transition metals reflect a shift towards more felsic crustal compositions after the Archean. Superimposed on this chemical difference is the signal of the rise of oxidative weathering of the continents, recorded by changes in the absolute and relative abundances of the redox sensitive elements Mo and V. Neoproterozoic and Paleozoic diamictites show pervasive depletion in Mo and V, reflecting their loss from the continents due to increasing intensity of oxidative weathering, as also recorded in some of the Paleoproterozoic diamictites. A few of the Paleoproterozoic diamictites deposited after the Great Oxidation Event show no depletion in Mo and V (e.g., Gowganda), but such signatures could be inherited from their provenance. In contrast, the pre-GOE Duitschland diamictite (ca. 2.3-2.5 Ga) from South Africa reveals evidence of intense oxidative weathering (i.e., large depletions in Mo), supporting a growing body of observations showing the presence of measurable atmospheric oxygen prior to permanent loss of the mass independent fractionation signal in sulfur isotopes.

  13. Weatherization Works: An interim report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp., Syracuse, NY (United States)

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  14. Weatherization Works: An interim report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp., Syracuse, NY (United States)

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  15. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    Science.gov (United States)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2017-03-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  16. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  17. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  18. What characterizes planetary space weather?

    OpenAIRE

    2014-01-01

    International audience; Space weather has become a mature discipline for the Earth space environment. With increasing efforts in space exploration, it is becoming more and more necessary to understand the space environments of bodies other than Earth. This is the background for an emerging aspect of the space weather discipline: planetary space weather. In this article, we explore what characterizes planetary space weather, using some examples throughout the solar system. We consider energy s...

  19. Severe Weather Planning for Schools

    Science.gov (United States)

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  20. Whether weather affects music

    Science.gov (United States)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  1. The Weather Man

    Institute of Scientific and Technical Information of China (English)

    蒋涵毅

    2009-01-01

    Secondly. the weather man一定会告诉我们每天的最高和最低温度(the highest and the lowest temperature)。我们用℃来表示摄氏度,有的地方则用°F,那是华氏温度。°F=9/5×℃+32

  2. Tactical Weather Expert System.

    Science.gov (United States)

    The objective of this project was to assess the feasibility of developing an expert system for tactical weather prediction. Using WILLARD, an expert ...indicate that intelligent interpretations of cloud formations can be made. These inferences can then be automatically passed to the expert system for...processing as another piece of information. It is anticipated that this technology will significantly reduce the dependence of the expert system on a

  3. Space Weather Ballooning

    Science.gov (United States)

    Phillips, Tony; Johnson, Sam; Koske-Phillips, Amelia; White, Michael; Yarborough, Amelia; Lamb, Aaron; Herbst, Anna; Molina, Ferris; Gilpin, Justin; Grah, Olivia; Perez, Ginger; Reid, Carson; Harvey, Joey; Schultz, Jamie

    2016-10-01

    We have developed a "Space Weather Buoy" for measuring upper atmospheric radiation from cosmic rays and solar storms. The Buoy, which is carried to the stratosphere by helium balloons, is relatively inexpensive and uses off-the-shelf technology accessible to small colleges and high schools. Using this device, we have measured two Forbush Decreases and a small surge in atmospheric radiation during the St. Patrick's Day geomagnetic storm of March 2015.

  4. Weathering the financial storm

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi; Pétursson, Thórarinn G.

    2011-01-01

    to explain a significant share of the cross-country variation in the depth and duration of the crisis and provide quite sharp predictions of the incidence of banking and currency crises. This suggests that country-specific initial conditions played an important role in determining the economic impact...... of the crisis and, in particular, that countries with sound fundamentals and flexible economic frameworks were better able to weather the financial storm....

  5. Areosynchronous weather imager

    Science.gov (United States)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  6. Weather Monitoring Station: A Review

    Directory of Open Access Journals (Sweden)

    Mr. Dipak V. Sose

    2016-06-01

    Full Text Available Weather monitoring plays a very important role in human life hence study of weather system is necessary. Currently there are two types of the weather monitoring stations available i.e. wired and wireless. Wireless system has some advantages over the wired one hence popular now a days. The parameters are include in weather monitoring usually temperature, humidity atmospheric pressure, light intensity, rainfall etc. There are many techniques existed using different processor such as PIC, AVR, ARM etc. Analog to digital channel are used to fetch the analog output of the sensors. The wireless techniques used in the weather monitoring having GSM, FM channel, Zigbee, RF etc Protocols

  7. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... Year-Old Can the Weather Affect My Child's Asthma? KidsHealth > For Parents > Can the Weather Affect My ... empeorar el asma de mi hijo? Weather and Asthma The effect of weather on asthma symptoms isn' ...

  8. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  9. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  10. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    Science.gov (United States)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Spatiotemporal variability in the carbon isotope composition of sedimentary organic matter (OM) preserves information about the evolution of the biosphere and of the exogenic carbon cycle as a whole. Primary compositions, and imprints of the post-depositional processes that obscure them, exist at the scale of individual sedimentary grains (mm to micron). Secondary ion mass spectrometry (SIMS) (1) enables analysis at these scales and in petrographic context, (2) permits morphological and compositional characterization of the analyte and associated minerals prior to isotopic analysis, and (3) reveals patterns of variability homogenized by bulk techniques. Here we present new methods for in situ organic carbon isotope analysis with sub-permil precision and spatial resolution to 1 micron using SIMS, as well as new data acquired from a suite of Archean rocks. Three analytical protocols were developed for the CAMECA ims1280 at WiscSIMS to analyze domains of varying size and carbon concentration. Average reproducibility (at 2SD) using a 6 micron spot size with two Faraday cup detectors was 0.4 %, and 0.8 % for analyses using 1 micron and 3 micron spot sizes with a Faraday cup (for C-12) and an electron multiplier (for C-13). Eight coals, two ambers, a shungite, and a graphite were evaluated for micron-scale isotopic heterogeneity, and LCNN anthracite (delta C-13 = -23.56 +/- 0.1 %, 2SD) was chosen as the working standard. Correlation between instrumental bias and H/C was observed and calibrated for each analytical session using organic materials with H/C between 0.1 and 1.5 (atomic), allowing a correction based upon a C-13H/C-13 measurement included in every analysis. Matrix effects of variable C/SiO2 were evaluated by measuring mm to sub-micron graphite domains in quartzite from Bogala mine, Sri Lanka. Apparent instrumental bias and C-12 count rate are correlated in this case, but this may be related to a crystal orientation effect in graphite. Analyses of amorphous

  11. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  12. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non-33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  13. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  14. Eclogite-High-Pressure Granulite Belt in Northern Edge of the Archean North China Craton

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The discovery of retrograded eclogites and high-pressure basic granulites in the joining region of Hebei-Shanxi-Inner Mongolia (HSIM) abandon the old thoughts that Archean granulites in the North China craton are of middle or low pressure facies and promote the reconsideration of Early Precambrian cratonization tectonic process, and reveal the geological fact that the scale, rigid behavior and geological structure of Archean cratonic blocks have strong similarities to the present fundamental plate tectonics, which suggest new tectonic mechanism to understand the early continental evolution of the North China craton. (1) The retrograded eclogites and high-pressure granulites constitute a ENE-NE-striking structure-rock zone termed as the Sanggan structural belt. (2) The retrograded eclogites are closely associated with high-pressure granulites. We can call this belt a transitional eclogite-granulite facies metamorphic belt. Petrographically three metamorphic stages, at least, in the retrograded eclogite can be distinguished. ① The main mineral assemblage is composed of garnet+clinopyroxene+quartz+rutile. The mineral inclusions in garnet are fine-grained quartz, rutile and small inclusions of fine-grained second stage mineral aggregate. This aggregate consists of hypersthene+albite, and has the typical texture of small hypersthene core surrounded by albite micro-grained grains. ② The second mineral assemblage is represented by corona of garnet and symplectite of clinopyroxene. The corona of garnet is composed of hypersthene+plagioclase+clinopyroxene+a minor amount of quartz and magnetite. The symplectite of clinopyroxene is composed of hypersthene + albite+clinopyroxene. The secondary mineral assemblage along boundaries between quartz and garnet (or clinopyroxene) is fine-grained aggregate of hypersthene and clinopyroxene. ③ The third retrograded metamorphic minerals are mainly amphiboles replacing pyroxenes and plagioclases replacing garnets. The estimated

  15. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  16. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... If you must travel by car, use tire chains and take a mobile phone with you. If you must travel, let someone know your destination and when you expect to arrive. Ask them to notify authorities if you are late. Check and restock the winter emergency supplies in your car before you leave. Never pour ...

  17. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  18. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  19. Severe Weather Forecast Decision Aid

    Science.gov (United States)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  20. Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: Evidence from 2.4 Ga komatiites

    Science.gov (United States)

    Puchtel, I. S.; Touboul, M.; Blichert-Toft, J.; Walker, R. J.; Brandon, A. D.; Nicklas, R. W.; Kulikov, V. S.; Samsonov, A. V.

    2016-05-01

    likely ancient mafic crust. The large positive 182W anomaly present in the tonalites requires that the precursor crust incorporated a primordial component with Hf/W that became fractionated, relative to the bulk mantle, within the first 50 Ma of Solar System history. The absolute HSE abundances in the mantle source of the Vetreny komatiite system are estimated to be 66 ± 7% of those in the present-day Bulk Silicate Earth. This observation, coupled with the normal 182W/184W composition of the komatiitic basalts, when corrected for crustal contamination (μ182W = -0.5 ± 4.5 ppm), indicates that the W-HSE systematics of the Vetreny komatiite system most likely were established as a result of late accretion of chondritic material to Earth. Our present results, combined with isotopic and chemical data available for other early and late Archean komatiite systems, are inconsistent with the model of increasing HSE abundances in komatiitic sources as a result of slow downward mixing into the mantle of chondritic material accreted to Earth throughout the Archean. The observed HSE concentration variations rather reflect sluggish mixing of diverse post-magma ocean domains characterized by variably-fractionated lithophile and siderophile element abundances.

  1. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  2. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  3. New Constraints on Archean-Paleoproterozoic Carbonate Chemistry and pCO2

    Science.gov (United States)

    Blättler, C. L.; Higgins, J. A.

    2015-12-01

    Very few constraints exist on Archean and Proterozoic seawater chemistry, leaving huge uncertainties on the boundary conditions for the evolution of life and a habitable environment. Ancient carbonate chemistry, which is intimately related to oceanic pH and atmospheric pCO2, remains particularly uncertain, despite its importance for understanding environments and temperatures on early Earth. Using a new application of high-precision calcium isotope measurements, we present data from the Tumbiana Formation (2.7 Ga, Western Australia), the Campbellrand Platform (2.6 Ga, South Africa) and the Pethei Group (1.9 Ga, Northwest Territories, Canada) that allow us to place constraints on carbonate chemistry both before and after the Great Oxidation Event. By analogy with calcium isotope behavior in sulfate minerals (Blättler and Higgins, 2014) and Mono Lake (Nielsen and DePaolo, 2013), we infer a lower limit on the ratio of calcium ions to carbonate alkalinity during deposition of these three sedimentary sequences. These data rule out the soda ocean hypothesis (Kempe and Degens, 1985) and make further predictions about the role of CO2 in solving the faint young Sun problem.

  4. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    Science.gov (United States)

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere.

  5. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth

    CERN Document Server

    Arney, Giada; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-01-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (tau ~ 5 at 200 nm) even with the fainter young sun. We find that optically thicker hazes are self-...

  6. Characterizing the purple Earth: Modelling the globally-integrated spectral variability of the Archean Earth

    CERN Document Server

    Sanromá, E; Parenteau, M N; Kiang, N Y; Gutiérrez-Navarro, A M; López, R; Montañés-Rodríguez, P

    2013-01-01

    The ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected, and the efforts of future missions are placed on the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly what we know about our planet will be our guideline for the characterization of such planets. But the Earth has been inhabited for at least 3.8 Ga, and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Ga ago. At that time one of the more widespread life forms on the planet were purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we used a radiative transfer model to simulate the visible and near-IR radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents an...

  7. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    Science.gov (United States)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  8. Road Weather and Connected Vehicles

    Science.gov (United States)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  9. Weathering Rinds and Soil Development on Basaltic Andesite, Guadeloupe

    Science.gov (United States)

    Sak, P. B.; Murphy, M.; Ma, L.; Engel, J.; Pereyra, Y.; Gaillardet, J.; Brantley, S. L.

    2014-12-01

    An oriented clast of basaltic andesite collected from the B horizon of a soil developed in a late Quaternary volcanoclastic debris flow on the eastern, windward side of Basse Terre Island, Guadeloupe exhibits weathering patterns like that observed in many clasts from tropical settings. The sample consists of unweathered core material overlain by a ~19 mm thick weathering rind and a narrow ≤ 2mm thick indurated horizon separating the outer portion of the rind from the overlying >10mm of soil matrix material. Elemental variations are constrained by a seven point bulk ICP-AES vertical transect extending from the core, across the rind and ~15 mm into the overlying soil matix and six parallel electron microprobe transections. The porous-hydrated fraction increases from the core to the rind to the surrounding soil from 7±4% to 45±18% to 60±15%, respectively. Like the well-studied clast from the nearby Bras David watershed (Sak et al., 2010) the isovolumetric transformation from core to rind material is marked by a narrow (Ba>K≈Mn>Mg>Si>Al≈P>Fe»Ti, consistent with the relative reactivity of phases in the clast from plagioclasepyroxeneglass>apatite>ilmenite. Unlike previously studied clasts, the preservation of the rind-soil interface permits characterization of weathering reactions between the weathering clast and surrounding soil matrix. The abrupt (weathering rind suggests that weathering processes active within clasts are distinct from surrounding soil formation processes.

  10. Rough weather rescue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report, which was commissioned by the Offshore Division of the Health and Safety Executive, reviews the type of equipment and techniques used to rescue people from the water around offshore platforms in rough weather. It also examines the limitations of the equipment in extreme conditions and reports the views of the various industry sectors (as determined by a questionnaire survey). The type of incidents covered by the report include: man overboard; helicopter ditching; and evacuation from totally enclosed motor propelled survival craft (TEMPSC) and life rafts. The report considers: the approach taken by other oil-producing countries; current escape, evacuation and rescue (EER) practices for the UK Continental Shelf (UKCS); environmental limits; methods for rescue and recovery from the water and TEMPSC; launch and recovery systems; fast rescue craft (FSC) and daughter craft; emergency response and rescue vessels; helicopters; casualty personal protection equipment; claimed versus actual equipment performance; training and practice procedures; attitudes to environmental limits; lessons learnt from incidents; mechanical recovery devices; equipment design and use in rough weather; and recommendations for improvements.

  11. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  12. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  13. Weathering Intensity on Laurentia in the Mesoproterozoic: Evidence From CIA of the Lower Belt Supergroup

    Science.gov (United States)

    Kerrich, R.; Gonzalez-Alvarez, I.

    2004-05-01

    The Belt Supergroup siliciclastic sequence was deposited between 1.47 to 1.40 Ga in a passive rift on the margin of Laurentia associated with the opening of the Grenville Ocean. Nominal CIA values of the Appekunny and Grinnell siltstones are 49 to 68. Given pervasive secondary enrichment of K due to basinal brines, corrected values are 66 to 85 using the procedure of Fedo et al., (1995). Red and green colored siltstones from the Appekunny and Grinnell formations in the lower Belt Supergroup, have abundances of CaO, Na(2)O, and Sr depleted up to 6 times relative to PA-UCC, stemming from intense weathering of the provenance. In contrast, there are pronounced additions of K (x 1.5) as well as high Li, Rb, and Cs, hence high Rb/Sr ratios, and negative anomalies of Eu/Eu* relative to PA-UCC. Red siltstones have an average K/Cs ratio of 1600. This post-depositional potassic alteration is a common feature of siliciclastic sedimentary sequences, and has been documented in several Precambrian sedimentary basins. Interpretation of corrected CIA values is complex, as CIA reflects some combination of contemporaneous weathering and recycled sediments in the source area. Low Sr contents in conjunction with high Rb/Sr ratios, relative to Archean or post-Archean UCC, have been reported in other studies of several Archean and Proterozoic metasedimentary sequences as a proxy for deeply weathered cratonic rocks. Low Sr contents coupled with high Rb/Sr, with an average of 5.5 for red siltstones in the Appekunny and Grinnell formations, whereas the Aldridge and Fort Steele formations in the lower Belt Supergroup have Rb/Sr averages of 2.0 and 2.2 respectively. This stratigraphic trend is interpreted as a secular enlargement in the area of the drainage basin to erode more recycled sedimentary rocks, and/or an increase in weathering intensity. A mantle plume associated with the opening of the Grenville Ocean ~1.5 Ga ago may have degassed massive quantities of CO(2), resulting in intense

  14. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  15. Weather Forecasting Systems and Methods

    Science.gov (United States)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  16. Small Sensors for Space Weather

    Science.gov (United States)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  17. Bishop Paiute Weatherization Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez

    2010-01-28

    The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

  18. Exploring Late Globalization

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    2016-01-01

    The purpose of this viewpoint paper is to motivate a program of research on late globalization, a program that could eventually lead to one or more significant theories of late globalization. The paper explores the phenomenon of late globalization as well as the idea of “late” by drawing on sparse...... literature on late globalization from sociocultural and economic perspectives. It illustrates in a vignette the character and features of late globalization observable in the withdrawal from foreign locations or deinternationalization of universities, as late globalizing entitis. The paper discusses...... the range of constructs around the core idea of late globalization, generating questions for future work in a late globalization research program....

  19. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    National Research Council Canada - National Science Library

    Fei Weng; Wujun Zhang; Xiaoran Wu; Xia Xu; Yanfeng Ding; Ganghua Li; Zhenghui Liu; Shaohua Wang

    2017-01-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather...

  20. Using Forecasting to Teach Weather Science

    Science.gov (United States)

    Tsubota, Y.; Takahashi, T.

    2009-09-01

    Weather affects our lives and hence, is a popular topic in daily conversations and in the media. Therefore, it is not only important to teach weather, but is also a good idea to use 'weather' as a topic in science teaching. Science education has two main objectives: to acquire scientific concepts and methods. Weather forecasting is an adequate theme to teach scientific methods because it is dependent on observation. However, it is not easy to forecast weather using only temporal observation. We need to know the tendency of 'weather change' via consecutive and/or continuous weather observation. Students will acquire scientific-observation skills through weather observation. Data-processing skills would be enhanced through a weather-forecasting contest. A contest should be announced within 5 days of school events, such as a school excursion and field day. Students submit their own weather forecast by gathering weather information through the internet, news paper and so on. A weather-forecasting contest compels the student to observe the weather more often. We currently have some different weather forecasts. For example, American weather-related companies such as ACCU weather and Weather Channel provide weather forecast for the many locations all over the world. Comparing these weather forecasting with actual weather, participants such as students could evaluate the differences between forecasted and actual temperatures. Participants will judge the best weather forecast based on the magnitude of the difference. Also, participants evaluate the 'hitting ratio' of each weather forecast. Students can learn elementary statistics by comparing various weather forecasts. We have developed our weather web-site that provides our own weather forecasting and observation. Students acquire science skills using our weather web-site. We will report our lessen plans and explain our weather web-site.

  1. Data set: weather, snow, and streamflow data from four western juniper-dominated experimental catchments in southwestern Idaho, USA

    Science.gov (United States)

    Data set on weather, snow, stream, topographic, and vegetation data from the South Mountain Experimental Catchments from water years 2007-2013 (10-1-2007 to 9-30-2013). The data provide detailed information on the weather and hydrologic response for four highly instrumented catchments in the late st...

  2. Anticipatory Water Management: Using ensemble weather forecasts for critical events

    OpenAIRE

    Van Andel, S.J.

    2009-01-01

    Day-to-day water management is challenged by meteorological extremes, causing floods and droughts. Often operational water managers are informed too late about these upcoming events to be able to respond and mitigate their effects, such as by taking flood control measures or even requiring evacuation of local inhabitants. Therefore, the use of weather forecast information with hydrological models can be invaluable for the operational water manager to expand the forecast horizon and to have ti...

  3. Weatherization Assistance Program - Background Data and Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, Joel Fred [ORNL

    2010-03-01

    This technical memorandum is intended to provide readers with information that may be useful in understanding the purposes, performance, and outcomes of the Department of Energy's (DOE's) Weatherization Assistance Program (Weatherization). Weatherization has been in operation for over thirty years and is the nation's largest single residential energy efficiency program. Its primary purpose, established by law, is 'to increase the energy efficiency of dwellings owned or occupied by low-income persons, reduce their total residential energy expenditures, and improve their health and safety, especially low-income persons who are particularly vulnerable such as the elderly, the handicapped, and children.' The American Reinvestment and Recovery Act PL111-5 (ARRA), passed and signed into law in February 2009, committed $5 Billion over two years to an expanded Weatherization Assistance Program. This has created substantial interest in the program, the population it serves, the energy and cost savings it produces, and its cost-effectiveness. This memorandum is intended to address the need for this kind of information. Statistically valid answers to many of the questions surrounding Weatherization and its performance require comprehensive evaluation of the program. DOE is undertaking precisely this kind of independent evaluation in order to ascertain program effectiveness and to improve its performance. Results of this evaluation effort will begin to emerge in late 2010 and 2011, but they require substantial time and effort. In the meantime, the data and statistics in this memorandum can provide reasonable and transparent estimates of key program characteristics. The memorandum is laid out in three sections. The first deals with some key characteristics describing low-income energy consumption and expenditures. The second section provides estimates of energy savings and energy bill reductions that the program can reasonably be presumed to be

  4. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    Science.gov (United States)

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  5. Tibetan History of Weather Monitoring

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Modem weather monitoring began in Tibet at the end of the 19th century. In 1894, the British set up a weather monitoting station in Chunpei of Yadong,which continued to operate until August 1956. In the 1940s, the Nationalist Govemment's Ministry of Communications set up a rainfall measuring station in Qamdo, Xikang Province.

  6. Weather Modification: Finding Common Ground.

    Science.gov (United States)

    Garstang, Michael; Bruintjes, Roelof; Serafin, Robert; Orville, Harold; Boe, Bruce; Cotton, William; Warburton, Joseph

    2005-05-01

    Research and operational approaches to weather modification expressed in the National Research Council's 2003 report on “Critical Issues in Weather Modification Research” and in the Weather Modification Association's response to that report form the basis for this discussion. There is agreement that advances in the past few decades over a broad front of understanding physical processes and in technology have not been comprehensively applied to weather modification. Such advances need to be capitalized upon in the form of a concerted and sustained national effort to carry out basic and applied research in weather modification. The need for credible scientific evidence and the pressure for action should be resolved. Differences in the perception of current knowledge, the utility of numerical models, and the specific needs of research and operations in weather modification must be addressed. The increasing demand for water and the cost to society inflicted by severe weather require that the intellectual, technical, and administrative resources of the nation be combined to resolve whether and to what degree humans can influence the weather.The National Center for Atmospheric Research is sponsored by the National Science Foundation

  7. Japanese space weather research activities

    Science.gov (United States)

    Ishii, M.

    2017-01-01

    In this paper, we present existing and planned Japanese space weather research activities. The program consists of several core elements, including a space weather prediction system using numerical forecasts, a large-scale ground-based observation network, and the cooperative framework "Project for Solar-Terrestrial Environment Prediction (PSTEP)" based on a Grant-in Aid for Scientific Research on Innovative Areas.

  8. Weather to Make a Decision

    Science.gov (United States)

    Hoyle, Julie E.; Mjelde, James W.; Litzenberg, Kerry K.

    2006-01-01

    DECIDE is a teacher-friendly, integrated approach designed to stimulate learning by allowing students to make decisions about situations they face in their lives while using scientific weather principles. This learning unit integrates weather science, decision theory, mathematics, statistics, geography, and reading in a context of decision…

  9. Generation of TTG rocks in the Archean: insight from numerical simulations

    Science.gov (United States)

    Rozel, Antoine; Golabek, Gregor; Gerya, Taras; Jain, Charitra; Tackley, Paul

    2017-04-01

    We study the creation of primordial continental crust (TTG rocks) for the first time employing fully self-consistent numerical models of thermochemical convection on a global scale. Starting from a pyrolytic bulk composition and an initially hot core, we first generate oceanic crust and depleted mantle. In our model, the basaltic material is both erupted at the surface and intruded at the base of the crust following a predefined partitioning. Second, we track the pressure-temperature conditions of the newly formed hydrated basalt and check if it matches the conditions necessary for the formation of primordial continental crust. We show that the "heat-pipe" model (assuming 100% eruption and no intrusion) proposed to be the main heat loss mechanism during the Archean epoch (Moore & Webb 2013) is not able to produce continental crust since it forms a cold and thick lithosphere. We systematically test various mechanical properties of the brittle domain (friction coefficients). Using our parameter study, we are also able to show that an intrusion fraction close to 70% (in agreement with [Crisp 1984]) combined with a friction coefficient of 0.2 products the expected amount of the three main petrological TTG compositions previously reported (Moyen 2011). This study represents a major step towards the production of self-consistent convection models able to generate the continental crust of the Earth. REFERENCES Crisp, J. A. (1984), Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research, 20(3-4), 177-211. Moore, W., and A. Webb (2013), Heat-pipe earth. Nature, 501, 501-505, doi:10.1038/nature12473. Moyen, J. (2011), The composite archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for archaean crustal growth. Lithos, 123, 21-36, doi: 10.1016/j.lithos.2010.09.015.

  10. Cenozoic uplift on the West Greenland margin: active sedimentary basins in quiet Archean terranes.

    Science.gov (United States)

    Jess, Scott; Stephenson, Randell; Brown, Roderick

    2016-04-01

    The North Atlantic is believed by some authors to have experienced tectonically induced uplift within the Cenozoic. Examination of evidence, onshore and offshore, has been interpreted to imply the presence of kilometre scale uplift across the margins of the Barents Sea, North Sea, Baffin Bay and Greenland Sea. Development of topography on the West Greenland margin (Baffin Bay), in particular, has been subject to much discussion and dispute. A series of low temperature thermochronological (AFT and AHe) studies onshore and interpretation of seismic architecture offshore have suggested uplift of the entire margin totalling ~3km. However, challenges to this work and recent analysis on the opposing margin (Baffin Island) have raised questions about the validity of this interpretation. The present work reviews and remodels the thermochronological data from onshore West Greenland with the aim of re-evaluating our understanding of the margin's history. New concepts within the discipline, such as effect of radiation damage on Helium diffusivity, contemporary modelling approaches and denudational mapping are all utilised to investigate alternative interpretations to this margins complex post rift evolution. In contrast to earlier studies our new approach indicates slow protracted cooling across much of the region; however, reworked sedimentary samples taken from the Cretaceous Nuussuaq Basin display periods of rapid reheating and cooling. These new models suggest the Nuussuaq Basin experienced a tectonically active Cenozoic, while the surrounding Archean basement remained quiet. Faults located within the basin appear to have been reactivated during the Palaeocene and Eocene, a period of well-documented inversion events throughout the North Atlantic, and may have resulted in subaerial kilometre scale uplift. This interpretation of the margin's evolution has wider implications for the treatment of low temperature thermochronological data and the geological history of the North

  11. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    Science.gov (United States)

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  12. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    Science.gov (United States)

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time.

  13. Cool Stars and Space Weather

    CERN Document Server

    Vidotto, A A; Cameron, A C; Morin, J; Villadsen, J; Saar, S; Alvarado, J; Cohen, O; Holzwarth, V; Poppenhaeger, K; Reville, V

    2014-01-01

    Stellar flares, winds and coronal mass ejections form the space weather. They are signatures of the magnetic activity of cool stars and, since activity varies with age, mass and rotation, the space weather that extra-solar planets experience can be very different from the one encountered by the solar system planets. How do stellar activity and magnetism influence the space weather of exoplanets orbiting main-sequence stars? How do the environments surrounding exoplanets differ from those around the planets in our own solar system? How can the detailed knowledge acquired by the solar system community be applied in exoplanetary systems? How does space weather affect habitability? These were questions that were addressed in the splinter session "Cool stars and Space Weather", that took place on 9 Jun 2014, during the Cool Stars 18 meeting. In this paper, we present a summary of the contributions made to this session.

  14. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  15. Constraints on mantle evolution from 187Os/ 188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga)

    Science.gov (United States)

    Bennett, Victoria C.; Nutman, Allen P.; Esat, Tezer M.

    2002-07-01

    Initial 187Os/ 188Os isotopic compositions for geochronologically and geologically well -constrained 3.8-Ga spinel peridotites from the Itsaq Gneiss Complex of southern West Greenland and chromite separates from 3.46-Ga komatiites from the Pilbara region of Western Australia have been determined to investigate the osmium isotopic evolution of the early terrestrial mantle. The measured compositions of 187Os/ 188Os(0) = 0.10262 ± 2, from an olivine separate, and 0.10329 ± 3, for a spinel separate from ˜3.8-Ga peridotite G93/42, are the lowest yet reported from any terrestrial sample. The corrections for in situ decay over 3.8 Ga for these low Re/Os phases are minimal and change the isotopic compositions by only 0.5 and 2.2% for the spinel and the olivine, respectively, resulting in 187Os/ 188Os (3.8 Ga) = 0.1021 ± 0.0002 and 0.1009 ± 0.0002, respectively. These data extend direct measurement of Os isotopic compositions to much earlier periods of Earth history than previously documented and provide the best constraints on the Os isotopic composition of the early Archean terrestrial mantle. Analyses of Pilbara chromites yield 3.46-Ga mantle compositions of 0.1042 ± 0.0002 and 0.1051 ± 0.0002. These new data, combined with published initial Os isotopic compositions from late Archean and early Proterozoic samples, are compatible with the mantle, or at least portions of it, evolving from a solar system initially defined by meteorites to a modern composition of 187Os/ 188Os(0) = 0.1296 ± 0.0008 as previously suggested from peridotite xenolith data ( Meisel et al., 2001); the associated 187Re/ 188Os(0) = 0.435 ± 0.005. Thus, chondritic 187Os/ 188Os compositions were a feature of the upper mantle for at least 3.8 billion years, requiring chondritic Re/Os ratios to have been a characteristic of the very early terrestrial mantle. In contrast, nonchondritic initial compositions of some Archean komatiites demonstrate that Os isotopic heterogeneity is an ancient feature

  16. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  17. Archean rocks in antarctica: 2.5-billion-year uranium-lead ages of pegmatites in enderby land.

    Science.gov (United States)

    Grew, E S; Manton, W I

    1979-10-26

    Uranium-lead isotopic data indicate that the granulite-facies Napier complex of Enderby Land, Antarctica, was cut by charnockitic pegmatites 2.5 billion years ago and by pegmatites lacking hypersthene 0.52 billion years ago. The 4-bil-lion-years lead-lead ages (whole rock) reported for the Napier complex are rejected since these leads developed in three stages. Reconstructions of Gondwanaland suggest that the Napier complex may be a continuation of the Archean granulitic terrain of southern India.

  18. Modern-style Subduction Processes in the Archean:Evidence from the Shangyi Complex in North China Craton

    Institute of Scientific and Technical Information of China (English)

    WANG Renmin; WAN Yusheng; CHENG Suhua; FENG Yonggang

    2009-01-01

    Three fragments of the Arehean oceanic crust have been found between the Archean granulite belt and the Paleo-Proterozoic Hongqiyingzi group in North China craton,which spread and geochronology evidence of the ancient oceanic fragments.The magma crystallizing age of the tonalite in the Shangyi complex is 2512+19 Ma and the geochemical characteristics suggest that the Nb-enriched basalts may be related to crustal contamination and formed in the intra-oceanic arc of the supra subduction zone setting.

  19. Space weathering of asteroids

    CERN Document Server

    Shestopalov, D I; Cloutis, E A

    2012-01-01

    Analysis of laboratory experiments simulating space weathering optical effects on atmosphereless planetary bodies reveals that the time needed to alter the spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope of an S-type asteroid is about ~ 0.1 Myr. The time required to reduce the visible albedo of samples to ~ 0.05 is ~ 1 Myr. Since both these timescales are much less than the average collisional lifetime of asteroids larger than several kilometers in size, numerous low-albedo asteroids having reddish spectra with subdued absorption bands should be observed instead of an S-type dominated population. It is not the case because asteroid surfaces cannot be considered as undisturbed, unlike laboratory samples. We have estimated the number of collisions occurring in the time of 105 yr between asteroids and projectiles of various sizes and show that impact-activated motions of regolith particles counteract the progress of optical maturation of asteroid surfaces. Continual r...

  20. Cold-Weather Sports and Your Family

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  1. Geochemical Evidence of Microbially-Mediated Subglacial Mineral Weathering

    Science.gov (United States)

    Montross, S. N.; Skidmore, M. L.

    2006-12-01

    Interactions between dilute meltwater and fine-grained, freshly comminuted debris at the bed of temperate glaciers liberate significant solute. The proportions of solute produced in the subglacial environment via biotic and abiotic processes remains unknown, however, this work suggests the biotic contribution is substantial. Laboratory analyses of microbiological and geochemical properties of sediment and meltwater from the Haut Glacier d'Arolla (HGA) indicates that a metabolically active microbial community exists in water-saturated sediments at the ice-bedrock interface. Basal sediment slurries and meltwater were incubated in the laboratory for 100 days under near in situ subglacial conditions. Relative proportions of solute produced via abiotic v. biotic mineral weathering were analyzed by comparing the evolved aqueous chemistry of biologically active "live" sediment slurries with sterilized controls. Aqueous chemical analyses indicate an increase in solute produced from mineral weathering coupled with nitrate depletion in the biologically active slurries compared with the killed controls. These results infer that microbial activity at HGA is likely an important contributor to chemical weathering associated solute fluxes from the glaciated catchment. Due to the magnitude of past glaciations throughout geologic time (e.g., Neoproterozoic and Late-Pleistocene), and evidence that subglacial microbial activity impacts mineral weathering, greater consideration needs to be given to cold temperature biogeochemical weathering and its impact on global geochemical cycles.

  2. Space weathering on airless bodies

    Science.gov (United States)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  3. Early Archean (approximately 3.4 Ga) prokaryotic filaments from cherts of the apex basalt, Western Australia: The oldest cellularly preserved microfossils now known

    Science.gov (United States)

    Schopf, J. W.

    1991-01-01

    In comparison with that known from later geologic time, the Archean fossil record is miniscule: although literally hundreds of Proterozoic formations, containing more that 2800 occurrences of bona fide microfossils are now known, fewer than 30 units containing some 43 categories of putative microfossils (the vast majority of which are of questionable authenticity) have been reported from the Archean. Among the oldest known fossils are Early Archean filaments reported from cherts of the Towers Formation and the Apex Basalt of the 3.3-3.6 Ga-old Warrawoona Group of Western Australia. The paleobiologic significance of the Towers Formation microstructures is open to question: thin aggregated filaments are properly regarded as dubiomicrofossils (perhaps biogenic, but perhaps not); therefore, they cannot be regarded as firm evidence of Archean life. Although authentic, filamentous microfossiles were reported from a second Towers Formation locality, because the precise layer containing the fossiliferous cherts was not relocated, this discovery can neither be reconfirmed by the original collector nor confirmed independently by other investigators. Discovery of microfossils in bedded cherts of the Apex Basalt, the stratigraphic unit immediately overlying the Towers Formation, obviates the difficulties stored above. The cellularly preserved filaments of the Apex Basalt meet all of the criteria required of a bona fide Archean microfossils. Recent studies indicate that the Apex assemblage includes at least six morphotypes of uniseriate filaments, composed of barrel-shaped, discoidal, or quadrate cells and exhibiting rounded or conical terminal cells and medial bifurcated and paired half-cells that reflect the occurrence of prokaryotic binary cell division. Interestingly, the majority of these morphotypes are morphologically more similar to extant cyanobacteria than to modern filamentous bacteria. Prokaryotes seem clearly to have been hypobradytelic, and the evidence suggests

  4. Anthropogenic Space Weather

    CERN Document Server

    Gombosi, T I; Balogh, A; Erickson, P J; Huba, J D; Lanzerotti, L J

    2016-01-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  5. Space Weather Forecasting: An Enigma

    Science.gov (United States)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove

  6. Extreme Weather and Natural Disasters

    CERN Document Server

    Healey, Justin

    2012-01-01

    Australia is a vast land in which weather varies significantly in different parts of the continent. Recent extreme weather events in Australia, such as the Queensland floods and Victorian bushfires, are brutal reminders of nature's devastating power. Is global warming increasing the rate of natural disasters? What part do La Niña and El Niño play in the extreme weather cycle? Cyclones, floods, severe storms, bushfires, landslides, earthquakes, tsunamis - what are the natural and man-made causes of these phenomena, how predictable are they, and how prepared are we for the impacts of natural dis

  7. Late Accretion and the Late Veneer

    CERN Document Server

    Morbidelli, Alessandro

    2014-01-01

    The concept of Late Veneer has been introduced by the geochemical community to explain the abundance of highly siderophile elements in the Earth's mantle and their chondritic proportions relative to each other. However, in the complex scenario of Earth accretion, involving both planetesimal bombardment and giant impacts from chondritic and differentiated projectiles, it is not obvious what the "Late Veneer" actually corresponds to. In fact, the process of differentiation of the Earth was probably intermittent and there was presumably no well-defined transition between an earlier phase where all metal sunk into the core and a later phase in which the core was a closed entity separated from the mantle. In addition, the modellers of Earth accretion have introduced the concept of "Late Accretion", which refers to the material accreted by our planet after the Moon-forming event. Characterising Late Veneer, Late Accretion and the relationship between the two is the major goal of this chapter.

  8. STEREO Space Weather and the Space Weather Beacon

    Science.gov (United States)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  9. Structural development of high-temperature mylonites in the Archean Wyoming province, northwestern Madison Range, Montana

    Science.gov (United States)

    Kellogg, Karl S.; Mogk, David W.

    2009-01-01

    The Crooked Creek mylonite, in the northwestern Madison Range, southwestern Montana, is defined by several curved lenses of high non-coaxial strain exposed over a 7-km-wide, northeast-trending strip. The country rocks, part of the Archean Wyoming province, are dominantly trondhjemitic to granitic orthogneiss with subordinate amphibolite, quartzite, aluminous gneiss, and sills of metabasite (mafic granulite). Data presented here support an interpretation that the mylonite formed during a period of rapid, heterogeneous strain at near-peak metamorphic conditions during an early deformational event (D1) caused by northwest–southeast-directed transpression. The mylonite has a well-developed L-S tectonite fabric and a fine-grained, recrystallized (granoblastic) texture. The strong linear fabric, interpreted as the stretching direction, is defined by elongate compositional “fish,” fold axes, aligned elongate minerals, and mullion axes. The margins of the mylonitic zones are concordant with and grade into regions of unmylonitized gneiss. A second deformational event (D2) has folded the mylonite surface to produce meter- to kilometer-scale, tight-to-isoclinal, gently plunging folds in both the mylonite and country rock, and represents a northwest–southeast shortening event. Planar or linear fabrics associated with D2 are remarkably absent. A third regional deformational event (D3) produced open, kilometer-scale folds generally with gently north-plunging fold axes. Thermobarometric measurements presented here indicate that metamorphic conditions during D1 were the same in both the mylonite and the country gneiss, reaching upper amphibolite- to lower granulite-facies conditions: 700 ± 50° C and 8.5 ± 0.5 kb. Previous geochronological studies of mylonitic and cross-cutting rocks in the Jerome Rock Lake area, east of the Crooked Creek mylonite, bracket the timing of this high-grade metamorphism and mylonitization between 2.78 and 2.56 Ga, nearly a billion years

  10. Retrograde fluids in the Archean Shawmere anorthosite, Kapuskasing Structural Zone, Ontario, Canada

    Science.gov (United States)

    Lamb, William M.; Morrison, Jean

    The Archean Shawmere anorthosite lies within the granulite facies portion of the Kapuskasing Structural Zone (KSZ), Ontario, and is crosscut by numerous linear alteration veins containing calcite+quartz+/- dolomite+/-zoisite+/-clinozoisite+/-margarite+/-paragonite+/-chlorite. These veins roughly parallel the trend of the Ivanhoe Lake Cataclastic Zone. Equilibria involving clinozoisite+margarite+quartz+/-calcite +/-plagioclase show that the vein minerals were stable at T0.9. Thus, vein formation, while clearly retrograde, spanned a range of temperatures, and fluid compositions evolved from H2O-rich to CO2-rich. The calcite in the retrograde veins has δ18O values that range from 8.4 to 11.2‰ (average=+9.7+/-0.9‰) and δ13C values that range from -3.9 to -1.6‰ (average=-3.1+/-0.6‰). These values indicate that the fluids from which calcite precipitated underwent extensive exchange with the anorthosite and other crustal lithologies. The fluids may have been initially derived either from devolatilization of metamorphic rocks or crystallization of igneous rocks in the adjacent Abitibi subprovince. Vein quartz contains CO2-rich fluid inclusions (final melting T=-57.0 to -58.7°C) that range in size from 5 to 17 μm. Measured homogenization temperatures (T h) range from -44.0 to 14.5°C, however for most inclusions (46 of S1), T h=-44.0 to -21.1°C (ρCO2 1.13 to 1.05g/cm3). At 400 to 600°C, these densities correspond to pressures of 3.5 to 7 kbar, which is the best estimate of pressures of vein formation. It has been argued that some high density CO2-rich fluid inclusions found in the KSZ were formed during peak metamorphism and thus document the presence of a CO2-rich fluid during peak granulite facies metamorphism (Rudnick et al. 1984). The association of high density CO2-rich fluid inclusions with clearly retrograde veins documents the formation of similar composition and density inclusions after the peak of metamorphism. Thus, the coincidence of entrapment

  11. Structural development of an Archean Orogen, Western Point Lake, Northwest Territories

    Science.gov (United States)

    Kusky, Timothy M.

    1991-08-01

    The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic

  12. Coupled Iron and Sulfur Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State

    Science.gov (United States)

    Rouxel, O. J.; Bekker, A.

    2009-05-01

    The rise of atmospheric oxygen level by ca. 2.3 Ga have led to dramatic shifts in the iron and sulfur oceanic cycles. Past studies of non-mass dependent and mass dependent sulfur isotope record in sedimentary sulfides over geological time have placed important constraints on biogeochemical cycle of sulfur and evolution of Precambrian ocean chemistry. Recently, we applied a similar time-record approach to explore potential changes in Fe isotope composition of pyrite in black shales. Although the underlying mechanisms for Fe isotope fractionation in organic-rich sediments are debated, we identified direct link between the rise of atmospheric oxygen and changes in the Fe ocean cycle suggesting that Fe isotopes are useful proxies to the past ocean redox state. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave imprint on the isotopic record of both elements. Coupled Fe and S isotope systematics of Devonian pyrite display a range of 50‰ in δ34S values whereas δ56Fe values vary between - 1.0 and +0.1‰ consistent with Fe isotope variations in modern marine sediments. Similarly, pyrite in the 1.88 Ga Gunflint Formation has δ34S values ranging from - 32‰ to +10‰ and displays a range of δ56Fe values between 0 to - 0.4‰. In contrast, Archean black shales (e.g. Manjeri Fm., Belingwe Belt and Jeerinah Fm., Hamersley Basin) display a smaller range of δ34S values between together with ubiquitous non-mass dependent S-isotope fractionation but a larger range of δ56Fe values from - 3.5 to +0.2‰. A transitional period between ca. 2.3 and ca. 1.8 Ga is marked by a larger spread of δ34S values from - 34 to +28‰, disappearance of MIF and a larger range of δ56Fe values from - 1.7 to +1.1‰. These results confirm that after the rise of atmospheric oxygen by ca. 2.3 Ga, Paleoproterozoic ocean became stratified and gradually affected by an increase of seawater

  13. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    Science.gov (United States)

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei

    2015-08-01

    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  14. Archean Lithosphere Beneath Arctic Canada: Lu-Hf Isotope Systematics for Kimberlite-Hosted Garnet-Peridotites From Somerset Island

    Science.gov (United States)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.; Gariepy, C.

    2001-05-01

    Knowledge of the age of lithospheric mantle underlying the continents provides valuable constraints for the timing of formation and stabilization of Archean cratons. This study reports Lu-Hf isotopic data for garnet-peridotites, and their constituent garnets, from the Nikos kimberlite (100 Ma) on Somerset Island in the Canadian Arctic obtained using a Micromass IsoProbe multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) at GEOTOP-UQAM. The low temperature peridotites (1100 C; 160-190 km) and their 176Hf/177Hf(0.1Ga) isotopic compositions (0.28265-0.28333; \\epsilonHf(0.1Ga)=-2 to +22) are less radiogenic than those of the shallow xenoliths. A Lu-Hf isochron for six peridotites yields a mid Archean age of 3.4\\pm0.3 Ga and an initial 176Hf/177Hf ratio of 0.28101\\pm24. The remaining peridotites (n=9), in contrast, are characterized by extremely high (+35) initial \\epsilonHf(3.4Ga) values, which correlate negatively with their 176Lu/177Hf ratios, suggesting addition of Hf as a result of metasomatic interaction with the host kimberlite. The garnets from the low temperature (3.4 Ga old) peridotites are characterized by high 176Lu/177Hf ratios and define an errorchron age of 1.4\\pm0.2 Ga, which may reflect re-equilibration of Hf during kimberlite magmatism.

  15. Stratigraphy of the Archean western Superior Province from P- and S-wave receiver functions: Further evidence for tectonic accretion?

    Science.gov (United States)

    Angus, D. A.; Kendall, J.-M.; Wilson, D. C.; White, D. J.; Sol, S.; Thomson, C. J.

    2009-12-01

    The Archean western Superior Province in Canada represents the nucleus of the North American continent whose origin has been speculated to be the result of widespread crustal accretion some 2.7 Ga ago. In this paper, crustal and upper-mantle seismic discontinuities beneath the western Superior Province of the Canadian shield are imaged with teleseismic P-to-S and S-to-P converted phases using the receiver function method. Three crustal discontinuities are observed: the Moho, ranging in depth between 38 and 47 km and dipping to the south; and two intra-crustal discontinuities having depths of approximately 15 and 30 km. The crustal discontinuities undulate laterally and often lose continuity, possibly indicating an imbricated structure and/or regions of velocity gradients. In the shallow lithosphere, a positive discontinuity is imaged at approximately 65 km depth and is consistent with earlier refraction and wide-angle reflection results. Additionally, two zones of negative receiver function amplitudes at 55 km depth are observed and are coincident with a region of anomalous tomographic low P- and S-wave velocities as well as a zone of high electrical conductivity. The images for the crust and shallow upper-mantle, when integrated with previous geophysical studies, are consistent with ideas of continental root formation due to imbrication of Archean subducted material and accretion of island arcs observed in surface geology.

  16. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination?

    Science.gov (United States)

    Brocks, Jochen J.

    2011-06-01

    Archean shales from the Pilbara in Western Australia contain biomarkers that have been interpreted as evidence for the existence of cyanobacteria and eukaryotes 2.7 billion years (Ga) ago, with far reaching implications for the evolution of Earth's early biosphere. To re-evaluate the provenance of the biomarkers, this study determined the spatial distribution of hydrocarbons in the original drill core material. Rock samples were cut into millimeter-thick slices, and the molecular content of each slice was analyzed. In core from the Hamersley Group (˜2.5 Ga), C chromatographic phenomena associated with live-oil escape and contaminant diffusion have strong effects on molecular ratios and maturity parameters, potentially with broad implications for oil-source rock correlation studies and paleoenvironmental interpretations. For the Archean shales, the live-oil effect is consistent with some of the observed patterns, but only the contamination model fully explains the complex chromatographic fingerprints. Therefore, the biomarkers in the Pilbara samples have an anthropogenic origin, and previous conclusions about the origin of eukaryotes and oxygenic photosynthesis based on these samples are not valid. However, the study also identified indigenous molecules. The spatial distribution of particular aromatic hydrocarbons suggests they are syngenetic. Although devoid of biological information, these aromatics now represent the oldest known clearly-indigenous terrestrial liquid hydrocarbons.

  17. Extensive seismic anisotropy in the lower crust of Archean metamorphic terrain, South India, inferred from ambient noise tomography

    Science.gov (United States)

    Das, Ritima; Rai, S. S.

    2017-01-01

    We use Rayleigh and Love wave empirical Green's function (EGF) recovered from the cross correlation of seismic ambient noise to study the spatial distribution of radial anisotropy in the southern India crust. The corresponding dispersion curves in the period 2 to 32 s are measured from ambient noise data recorded at 57 sites, and the strength of anisotropy computed from the discrepancy between shear velocities obtained from Rayleigh (VSV) and Love (VSH) at various depths down to 40 km. In upper crust (up to a depth of 20 km) the region is characterized by anisotropy coefficients of - 2 to + 2% that could be explained due to a combination of fluid-filled open cracks and foliated metamorphic rocks. At deeper levels (beyond 20 km), except for the Archean metamorphic terrain, most part of south India has anisotropies of up to 5%. This may be due to rocks with varying degree of metamorphism. Beneath the Archean metamorphic terrain, the anisotropy is recorded up to 9% in the depth range of 20-40 km. This high anisotropy is unlikely to be the manifestation of any recent geodynamic process, considering that the region has low surface heat flow ( 30 mW/m2). We propose that the observed strong anisotropy in the metamorphic belt of southern India crust could best be explained as due to the presence of micaceous minerals or amphiboles in the deep crust that are formed possibly during the evolution of granulite terrain at 2.5 Ga.

  18. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. Fish Springs weather CY 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Weather data for calendar year 2011 at Fish Springs National Wildlife Refuge. Data is provided for each month and includes maximum temperature, minimum temperature,...

  20. Fish Springs weather CY 2010

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Weather data for calendar year 2010 at Fish Springs National Wildlife Refuge. Data is provided for each month and includes maximum temperature, minimum temperature,...

  1. The science of space weather.

    Science.gov (United States)

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.

  2. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  3. KZSE Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  4. KZMA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  5. US Weather Bureau Storm Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  6. Surface Weather Observations (Pre-1893)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly weather records from U.S. Army Forts stations (~1820-1871), U.S. Army Signal Service Stations (1871-1892), Smithsonian Institution voluntary observer network...

  7. KZLC Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  8. Weather data communication and utilization

    Science.gov (United States)

    Mcfarland, R. H.; Nickum, J. D.; Mccall, D. L.

    1983-01-01

    The communication of weather data to aircraft is discussed. Problems encountered because of the great quantities of data available and the limited capacity to transfer this via radio link to an aircraft are discussed. Display devices are discussed.

  9. Practical Weathering for Geology Students.

    Science.gov (United States)

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  10. WARP Weather Information Network Server

    Data.gov (United States)

    Department of Transportation — WINS is the dissemination module of the WARP system that provides an interface to various NAS Users/systems that require weather data/products/information from WARP...

  11. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  12. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    Science.gov (United States)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  13. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  14. Linking the Fe-, Mo-, and Cr isotope records with the multiple S isotope record of Archean sedimentary rocks

    Science.gov (United States)

    Ohmoto, H.; Watanabe, Y.

    2011-12-01

    Researchers have interpreted the isotopic data of redox sensitive elements (e.g., Fe, Mo and Cr) in Archean- and Proterozoic-aged sedimentary rocks within a framework of an atmospheric O2 evolution model that relied on an interpretation of the multiple sulfur isotopic record of sedimentary rocks. The current paradigm is that the anomalous isotopic fractionations of sulfur (AIF-S, or MIF-S) in sedimentary rocks were created by the UV photolysis of volcanic SO2 in an O2-poor (i.e., pO2 atmosphere, and that the rise of atmospheric pO2 to > 1 ppm occurred at ~2.45 Ga. However, this paradigm has recently encountered the following serious problems: (1) UV photolysis of SO2 by a broad-band UV lamp, which simulates the UV spectra of the sun light, produced the δ34S-Δ33S values for the S0 and SO4 that are significantly different from >90% of data on natural samples. (2) Many Archean-age sedimentary rocks do not exhibit AIF-S signatures. (3) Strong AIF-S signatures are typically found in organic C- and pyrite rich Archean-age black shales that were altered by submarine hydrothermal fluids during the early diagenetic stage of the rocks. (4) H2S, rather than SO2, was probably the dominant S-bearing volcanic gas on an anoxic Earth. Yet, UV photolysis of H2S does not generate AIF-S. (5) Some post-2.0 Ga natural samples were found to possess strong AIF-S signatures, such as sulfates in air pollutants that were produced by coal burning in an oxygen-rich atmosphere. Lasaga et al. (2008) demonstrated theoretically that chemisorption reactions between some solid surfaces and S-bearing aqueous (or gaseous) species, such as between organic matter and aqueous sulfate, may generate AIF-S. Watanabe et al. (2009; in prep.) demonstrated experimentally that reactions between simple amino acid crystals and sulfate under hydrothermal conditions produced AIF-S signatures that matched with more than 90% of data on natural samples. These studies, as well as the observed correlations between the

  15. Titan: Callisto With Weather?

    Science.gov (United States)

    Moore, J. M.; Pappalardo, R. T.

    2008-12-01

    , Titan might have accreted relatively cold. Without being in a forced resonance, Titan's interior may have never undergone significant tidal heating. Analogous to Callisto's tenuous CO2 atmosphere, believed to be generated by sublimation of interior ices, interior clathrated methane within Titan may slowly diffuse outward from the cold interior, rather than the atmosphere being replenished by cryovolcanism. The hypothesis that Titan is "Callisto with weather" -- with geological processes that are principally exogenic -- can be tested through geophysical and thermal modeling, and by modeling the evolution of landscapes that are shaped by exogenic processes alone.

  16. Brazil's premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero

    Science.gov (United States)

    Lobato, Lydia; Ribeiro-Rodrigues, Luiz; Vieira, Frederico

    2001-07-01

    Orogenic, gold deposits are hosted by rocks of the Archean Rio das Velhas greenstone belt in the Quadrilátero Ferrífero region, Minas Gerais state, Brazil, one of the major gold provinces in the world. The gold deposits occur at the base of the mafic-ultramafic succession, with the most important orebodies controlled by E-W-striking, strike-slip faults. The main mineralization styles are (1) structurally controlled, sulfide replacement zones in banded iron formation (BIF); (2) disseminated sulfide minerals and gold in hydrothermally altered rocks along shear zones; and (3) auriferous quartz-carbonate-sulfide veins and veinlets in mafic, ultramafic, and felsic volcanic rocks, and also in clastic sedimentary rocks. The most common host rocks for ore are metamorphosed oxide- and carbonate-facies banded iron (± iron-rich metachert) formations (e.g., the Cuiabá, São Bento and Raposos deposits) and the lapa seca unit, which is a local term for intensely carbonatized rock (e.g., the giant Morro Velho mine with >450 t of contained gold). Metabasalts host most of the remaining gold deposits. Mineralogical characteristics and fluid inclusion studies suggest variations in the H2O/CO2 ratio of a low-salinity, near-neutral, reducing, sulfur-bearing, ore fluid. The presence of abundant CH4-rich inclusions is related to reduction of the original H2O-CO2 fluid via interaction with carbonaceous matter in the wallrocks. Oxygen fugacity was close to that of graphite saturation, with variations likely to have been influenced by reaction with the carbonaceous matter. Carbon-rich phyllites and schists, which commonly bound ore-bearing horizons, seem to have played both a physical and chemical role in localizing hydrothermal mineral deposition. Microtextural studies indicate that gold deposition was mainly related to desulfidation reactions, and was paragenetically coeval with precipitation of arsenic-rich iron sulfide minerals. Carbon isotope data are compatible with dissolution of

  17. Quantitative Chemical Indices of Weathered Igneous Rocks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A study was conducted to compare the effectiveness of different weathering indices for characterising weathered igneous rocks of Hong Kong. Among eight chemical indices evaluated in this study, the Parker index has been found most suitable for a quantitative description of state of weathering. Based on geochemical results of 174 samples, the index decreases almost linearly with an increasing extent of weathering. The results enable a better understanding of the modification of geotechnical properties of igneous rocks associated with weathering processes.

  18. Raman spectra of carbonaceous material in Archean chert and silica dike: a thermal structure of ancient ocean floor

    Science.gov (United States)

    Kitajima, K.; Maruyama, S.

    2005-12-01

    Carbonaceous material (CM) is widespread in metamorphic rocks. CM is also reported from Archean rocks such as sedimentary rock and hydrothermal vein. Raman spectrum of CM changes with the degree of graphitization by metamorphism. The purpose of this study is to determine of the thermal structure of the low-grade zone in the Archean accretionary complex which was not able to determine using metamorphic petrology because of luck of index minerals, and to select of the best sample for analysis of molecular fossil. The North Pole area (3.5 Ga) is one of the best regions in the Archean greenstone belt, because this area had been subjected only to very low-grade metamorphism. A 1/5000 scale mapping was performed in the North Pole area. The mapped area is divided into seven units bounded by layer-parallel thrusts: Units-I, -II, -III, -IV, -V, -VI and -VII, in ascending order. These units are divided into MORB-type (Unit-I and -II) and OIB-type (Unit-III, -IV, -V, -VI and -VII) units by lithology and mode of occurrence. Microfossils are reported from the bedded chert and silica dike which is composed of very fine-grained silica in the Unit-I. We analyzed 20 bedded and silica dike samples collected from ancient seafloor (0 m) to 900 m depth of oceanic crust. The characterization of samples was performed by Raman microspectroscopy in situ using conventional petrologic double polished thin sections. All sample shows ordered peak (O-peak) and disordered peak (D-peak) around 1580-1610 cm-1 and ~1355 cm-1, respectively. There is no trend in D/O intensity and D/O area ratio. D/O width ratio and full width at half maximum (FWHM) of D-peak, however, indicate a clear trend, except bedded chert samples. D/O width ratio is decreasing with depth, from 2.2 to ~1, and FWHM of D-peak is also decreasing with depth from 100 cm-1 to 60 cm-1 between top of the unit and 180 m depth. It is considered that decreasing of D/O width ratio and FWHM of D-peak occurs with increasing of metamorphic

  19. Space Weather - the Economic Case

    Science.gov (United States)

    Bisi, M. M.; Gibbs, M.

    2015-12-01

    Following on from the UK Government's placement of space weather on it's National Risk Register, in 2011, and the Royal Academy of Engineering's study into the impacts of a severe space weather event, the next piece of key evidence, to underpin future investment decisions, is understanding the socio-economic impact of space weather This poster outlines a study, funded by the UK Space Agency, which will assess the socio-economic cost of space weather, both severe events, such as 1989 & a modern day repeat of the Carrington storm and also the cost of day-to-day impacts. The study will go on to estimate the cost benefit of forecasting and also investigate options for an operational L5 spacecraft mission and knowledge exchange activities with the South African Space Agency. The findings from the initial space weather socio-economic literature review will be presented along with other findings to date and sets out the tasks for the remainder of this programme of work.

  20. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  1. Weather Effects on Crop Diseases in Eastern Germany

    Science.gov (United States)

    Conradt, Tobias

    2017-04-01

    Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.

  2. The Evolving Space Weather System—Van Allen Probes Contribution

    Science.gov (United States)

    Zanetti, L. J.; Mauk, B. H.; Fox, N. J.; Barnes, R. J.; Weiss, M.; Sotirelis, T. S.; Raouafi, N.-E.; Kessel, R. L.; Becker, H. N.

    2014-10-01

    The overarching goal and purpose of the study of space weather is clear—to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA's Van Allen Probes' twin pair of satellites, launched in August of 2012 and orbiting directly through Earth's severe radiation belts. The Van Allen Probes mission, formerly the Radiation Belt Storm Probes (RBSP), was renamed soon after launch to honor the discoverer of Earth's radiation belts at the beginning of the space age, the late James Van Allen (the spacecraft themselves are still referred to as RBSP-A and RBSP-B). The Van Allen Probes are one part of NASA's Living With a Star program formulated to advance the scientific understanding of the connection between solar disturbances, the resulting heliospheric conditions, and their effects on the geospace and Earth environment.

  3. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  4. Archean hydrothermal oceanic floor sedimentary environments: DXCL drilling project of the 3.2 Ga Dixon Island Formation, Pilbara, Australia

    Science.gov (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Sakamoto, R.; Suganuma, Y.

    2009-12-01

    Many place in Archean greenstone belts have been reported of the black chert to Iron rich sediments above volcanic sequence. The chemical sedimentary sequence has been recognized to form by as hydrothermal siliceous sequence. These sediments contain the hint to understand the Archean ocean and earth surface environments. Here, we will focus the Dixon Island and Cleaverville formations, which are one of the best preserved Archean hydrothermal sedimentary sequence in the world, to recognized detail stratigraphy and restored deep ocean environment. We did scientific drilling, which is called ‘DXCL drilling project’, at 2007 summer. This drilling project had been selected two coastal sites; CL site at lower part of the Cleaverville Formation, and another is DX site at the upper Dixon Island Formation. A systematic combinations of geological, sedimentological, geochemical, and geobiological approaches will be applied to the fresh samples. Here we will show the recent result of this sequence, which will be key evidence to understand the nature of the middle Archean (3.2 Ga) marine environment influenced by hydrothermal activity. The 3.2 Ga Dixon Island -Cleaverville formations composed of volcanic rock units and chemical-volcanosedimentary sequence which are identified by accreted immature island arc setting. The ~350m-thick Dixon Island Formation which is overlie by pillow basalt consists mainly of highly silicified volcanic-siliceous sequences that contain apparent microbial mats and bacterial fossil-like structure within black chert and also includes a komatiite-rhyolite sequences bearing hydrothermal veins. The >300m-thick Cleaverville Formation, which conformably overlay pillow basalt, contains a thick unit of reddish shale, bedded red-white chert and banded iron formation. It partly contains chert fragments-bearing pyroclastic beds. In detail lithology from the drill cores, the CL and DX contain different type of organic rocks. The CL 1 and CL2 core samples

  5. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth

    Science.gov (United States)

    Nebel, Oliver; Campbell, Ian H.; Sossi, Paolo A.; Van Kranendonk, Martin J.

    2014-07-01

    Archean (>2.5 billion years) komatiites are considered expressions of mantle plumes that originate from and thereby sample the lowermost mantle overlying the Earth's core. Some komatiites have reported Hf isotope signatures that require a mantle source with a time-integrated Lu/Hf that is appreciably higher than average modern depleted mantle. The systematic study of the time and locus of parent-daughter fractionation of the mantle sources of these komatiites potentially constrains differentiation processes in the early Earth, and subsequent distribution and storage of early mantle reservoirs. We present radiogenic Hf and stable Fe isotopes for a series of komatiites from the Pilbara craton in Western Australia (aged 3.5 to 2.9 Ga). After careful evaluation of the effects of alteration, we find that pristine samples are characterised by a light Fe isotope mantle source and initial 176Hf/177Hf well above the age-corrected depleted mantle. Taken together these observations require a component of an old, melt-depleted reservoir in their mantle source. The Hf isotope signature of this component appears to be complementary to the first terrestrial crust, as preserved in Hadean (i.e., >4 Ga) detrital zircon cores, suggesting a causal relationship and a Hadean age for this depletion event. We propose that this Early Refractory Reservoir (ERR) is the residue formed by deep melting in hot Hadean mantle plumes, which then accumulated at the base of the first crust. Parts of this primordial lithosphere were destabilised and sank to the core-mantle boundary in cold drips and subsequently returned in hot mantle plumes, whose thermal capacity allows melting of such refractory mantle with its archetype isotope signature. The cycling of this material via cold drips and hot plumes suggests a plume-dominated convection prior to ∼3.9 Ga, which is then replaced by Archean-style plate tectonics.

  6. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  7. Late recurrence of medulloblastoma.

    Science.gov (United States)

    Stevens, Brittney; Razzaqi, Faisal; Yu, Lolie; Craver, Randall

    2008-01-01

    We present a child with a cerebellar medulloblastoma, diagnosed at age three, treated with near total surgical resection, radiotherapy, and chemotherapy, that recurred 13 years after the initial diagnosis. This late recurrence exceeds the typical 10-year survival statistics that are in common use, and exceeds the Collins rule. Continued follow-up of these children is justified to increase the likelihood of detecting these late recurrences early and to learn more about these late recurrences.

  8. Mineral deposit formation in Phanerozoic sedimentary basins of north-east Africa: the contribution of weathering

    Science.gov (United States)

    Germann, Klaus; Schwarz, Torsten; Wipki, Mario

    1994-12-01

    The intra- and epicontinental basins in north-east Africa (Egypt, Sudan) bear ample evidence of weathering processes repeatedly having contributed to the formation of mineral deposits throughout the Phanerozoic. The relict primary weathering mantle of Pan-African basement rocks consists of kaolinitic saprolite, laterite (in places bauxitic) and iron oxide crust. On the continent, the reaccumulation of eroded weathering-derived clay minerals (mainly kaolinite) occurred predominantly in fluvio-lacustrine environments, and floodplain and coastal plain deposits. Iron oxides, delivered from ferricretes, accumulated as oolitic ironstones in continental and marine sediments. Elements leached from weathering profiles accumulated in continental basins forming silcrete and alunite or in the marine environment contributing to the formation of attapulgite/saprolite and phosphorites. The Early Paleozoic Tawiga bauxitic laterite of northern Sudan gives a unique testimony of high latitude lateritic weathering under global greenhouse conditions. It formed in close spatial and temporal vicinity to the Late Ordovician glaciation in north Africa. The record of weathering products is essentially complete for the Late Cretaceous/Early Tertiary. From the continental sources in the south to the marine sinks in the north, an almost complete line of lateritic and laterite-derived deposits of bauxitic kaolin, kaolin, iron oxides and phosphates is well documented.

  9. Tomorrow's Forecast: Oceans and Weather.

    Science.gov (United States)

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  10. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  11. Dynamic Weather Routes Architecture Overview

    Science.gov (United States)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  12. Mexican Space Weather Service (SCIESMEX)

    Science.gov (United States)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  13. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  14. Weather-Corrected Performance Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  15. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajas iron-ore district, Brazil

    DEFF Research Database (Denmark)

    Cabral, A. R.; Creaser, R. A.; Naegler, T.

    2013-01-01

    The 250-300-m-thick Carajas Formation in the Carajas mineral province, northern Brazil, consists of banded iron formation (including giant high-grade iron-ore deposits) and minor black shale, overlying a thick pile (2-3 km) of about 2.75-Ga-old metabasalt. Carbonaceous shale with pyrite-and locally...... pyrrhotite-rich patches from drillcore of the Serra Sul exploration project has up to 29 ppm Mo; iron-speciation analysis indicates essentially ferruginous and for some samples likely euxinic depositional conditions. Positive delta S-34-isotope ratios of TRIS are between +0.3 to +10.7 parts per thousand...

  16. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions

    Science.gov (United States)

    Li, Yi-Liang

    2014-04-01

    The microbands in Precambrian banded-iron formations (BIFs) have been conjectured to record annual or even diurnal depositions. However, these bands have rarely been observed in high resolution at their true (micro) scale. Here, I suggest that nanobands of fine-grained hematite represent possible diurnal depositions and that microbands of chert/jasper represent possible annual depositions in three sets of BIFs: 2460-Myr BIFs from the Kuruman Iron Formation, Transvaal Supergroup of South Africa; 2480-Myr BIFs from the Dales Gorge Member of the Brockman Iron Formation, Western Australia; and 2728-Myr BIFs from the Hunter Mine Group, Abitibi Greenstone Belt, Canada. Observations made using scanning electron microscopy indicate that hematite and chert were syngenetic, and that there was a hiatus between their precipitation and the genesis of the remainder of the minerals containing structural Fe(II). Spindle-like grains of hematite, monocrystals of magnetite, and ferro-dolomite formed microbands of ∼30-70 μm in thickness, which appear cyclically in the matrix of the chert. Neither the band-bound magnetite and dolomite nor the linear formations of the hematite spindles represent annual depositions due to their diagenetic features. The thinnest microbands (∼3-∼12 μm) were observed in the chert and jasper, and indicate depositional rates of 6.6-22.2 m/Myr in the BIFs. These rates are consistent with the integrated deposition rates calculated by geochronologic methods for the BIFs, if annual deposition is assumed. The ∼26-nm nanobands observed only in hematite grains reflect an annual deposition of ∼18.6 μm, or ∼18.6 m/Myr, which is also consistent with the depositional rate calculated by geochronologic methods. It is tentatively suggested that these ∼26-nm nanobands were formed from the diurnal precipitation of Fe(III) resulting from the circadian metabolism of Fe(II)-oxidizing or oxygen-evolving photosynthetic microorganisms, which slowed down the rise of atmospheric oxygen. The diurnal precipitation of Fe(III) as hematite and the annual deposition of silica as chert/jasper in the BIFs provide internal clocks that may facilitate the examination of short-term processes, such as ecological, oceanographic and climatic cycles, that are recorded by the mineral or chemical compositions of BIFs.

  17. Pre-plate tectonics and structure of the Archean mantle lithosphere imaged by seismic anisotropy - inferences from the LAPNET array in northern Fennoscandia

    Science.gov (United States)

    Plomerova, Jaroslava; Vecsey, Ludek; Babuska, Vladislav; Lapnet Working Group

    2013-04-01

    Various studies of seismic anisotropy clearly demonstrate the Archean mantle lithosphere consists of domains with different fabrics reflecting fossil anisotropic structures. We detect anisotropic signal both in the P-wave travel-time deviations and shear-wave splitting recorded by the LAPNET array (2007-2009) in the Archean craton of Fennoscandia (Plomerova et al., 2011). The anisotropic parameters change across the array and stations with similar characteristics form groups. The geographical variations of seismic-wave anisotropy delimit individual sharply bounded domains of the mantle lithosphere, each of them having a consistent fabric. The domains can be modelled in 3D by peridotite aggregates with dipping lineation a, or foliation (a,c). Also radial anisotropy of the Archean lithosphere derived from surface waves indicates inclined structure of all the cratonic regions of the continents, though with less detailed lateral resolution in comparison with body-wave anisotropy. These findings allow us to interpret the domains as micro-plate fragments retaining fossil fabrics in the mantle lithosphere, reflecting thus an olivine LPO created before the micro-plates assembled. Successive subductions of oceanic lithosphere is a mechanism which can work in modern-style plate tectonics as we know it now, being considered as widespread since 2.7 Ga. Though the modern plate tectonics is the most distinct tectonic style acting up to now, we have to consider a mechanism creating oriented structures (fabrics) in a pre-plate-tectonic style. The early lithosphere formed in dynamic conditions far from simple cooling which would result in sub-horizontal layered structure of the lithosphere. Earlier tectonic modes in a hotter and more dynamic Earth might be similar in some respects to those of the modern-plate tectonics. Basaltic "rockbergs" on convecting magma ocean in the Hadean Earth are supposed to turn to either proto-plate tectonics with platelets and supercratonal, or, to

  18. OpenWeather: a peer-to-peer weather data transmission protocol

    CERN Document Server

    Yanes, Adrian

    2011-01-01

    The study of the weather is performed using instruments termed weather stations. These weather stations are distributed around the world, collecting the data from the different phenomena. Several weather organizations have been deploying thousands of these instruments, creating big networks to collect weather data. These instruments are collecting the weather data and delivering it for later processing in the collections points. Nevertheless, all the methodologies used to transmit the weather data are based in protocols non adapted for this purpose. Thus, the weather stations are limited by the data formats and protocols used in them, not taking advantage of the real-time data available on them. We research the weather instruments, their technology and their network capabilities, in order to provide a solution for the mentioned problem. OpenWeather is the protocol proposed to provide a more optimum and reliable way to transmit the weather data. We evaluate the environmental factors, such as location or bandwi...

  19. Personality in Late Midlife

    DEFF Research Database (Denmark)

    Mortensen, Erik Lykke; Flensborg-Madsen, Trine; Molbo, Drude

    2014-01-01

    To analyze associations in late midlife between sex, age, education and social class, and the Big Five personality traits; to analyze associations between personality traits and cognitive ability in late midlife; and to evaluate how these associations are influenced by demographic factors....

  20. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  1. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  2. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  3. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  4. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  5. Rainmakers: why bad weather means good productivity.

    Science.gov (United States)

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R

    2014-05-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research.

  6. National Weather Service County Warning Area Boundaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains polygons corresponding to the County Warning Areas (CWAs) of each Weather Forecast Office (WFO) in the National Weather Service (NWS).

  7. National Weather Service: Watch, Warning, Advisory Display

    Science.gov (United States)

    weather.gov Site Map News Organization Search for: SPC NCEP All NOAA Search by city or zip ... Fire Wx Outlooks RSS Feeds E-Mail Alerts Weather Information Storm Reports Storm Reports Dev. NWS Hazards ...

  8. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  9. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-03-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives ñ especially the financial derivatives based on different types of indexes ñ financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  10. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  11. Egeson's (George's transtridecadal weather cycling and sunspots

    Directory of Open Access Journals (Sweden)

    M. Sampson

    2010-09-01

    Full Text Available In the late 19th century, Charles Egeson, a map compiler at the Sydney Observatory, carried out some of the earliest research on climatic cycles, linking them to about 33-year cycles in solar activity, and predicted that a devastating drought would strike Australia at the turn of the 20th century. Eduard Brückner and William J. S. Lockyer, who, like Egeson, found similar cycles, with notable exceptions, are also, like the map compiler, mostly forgotten. But the transtridecadal cycles are important in human physiology, economics and other affairs and are particularly pertinent to ongoing discusions of climate change. Egeson's publication of daily weather reports preceded those officially recorded. Their publication led to clashes with his superiors and his personal life was marked by run-ins with the law and, possibly, an implied, but not proven, confinement in an insane asylum and premature death. We here track what little is known of Egeson's life and of his bucking of the conventional scientific wisdom of his time with tragic results.

  12. Using Archean and Paleoproterozoic Shales and Tillites as a Window into Crustal Evolution and Surface Conditions

    Science.gov (United States)

    Bindeman, I. N.; Bekker, A.; Zakharov, D. O.

    2014-12-01

    Precambrian shales and tillites have been insufficiently studied so far. We present oxygen and hydrogen isotope data for 103 bulk shale and tillites that were collected from drillholes on all continents from 3.2 to 1.4Ga. These samples have also been analyzed for total organic and inorganic carbon, total sulfur, δ13Corg values and by XRF for major and trace elements to calculate chemical index of alteration (CIA). Having uncompromised fresh samples from drillcores is a must for this kind of investigation. We have a particularly good coverage for the ca. 2.7-2.2 Ga time interval when Earth experienced 3-4 Snowball Earth glaciations associated with the rapid rise in atmospheric O2 and fluctuations in CO2, thus affecting weathering cycle and attainment of isotopic fractionation. All units have similar to Phanerozoic ranges in δ13Corg values (-23 to -33‰ PDB) and Corg content (0.1 to 10 wt. %). Compared to Phanerozoic shales, Precambrian shales have comparable ranges in δ18O values (+7 to +20‰), with slightly decreasing means with increasing age, and identical δ17O-δ18O slope (0.528). Shales in some drill holes display wide δ18O ranges over short stratigraphic intervals suggesting significant variability in the provenance. We however observe a significant, several permil downward shift and decrease in the range of δ18O values (7-9‰) in 2.2-2.5 Ga shales from several continents that are associated with the Paleoproterozoic glaciations. Scattered negative correlation of CIA with δ18O, for some of these shales broadly associated with the Paleoproterozoic glaciations suggest contact with glacial meltwater having ultra-low-δ18O values during deposition or diagenesis of these shales. The δD values of shales range from -50 to -75‰, and are comparable to Phanerozoic values, with the exception of the ~2.5-2.2 Ga shales that reach to -100‰. We also compare O isotope values of ultra-low-δ18O, +8 to -27‰ SMOW subglacial hydrothermal rocks recently discovered

  13. Decision Making Models Using Weather Forecast Information

    OpenAIRE

    Hiramatsu, Akio; Huynh, Van-Nam; Nakamori, Yoshiteru

    2007-01-01

    The quality of weather forecast has gradually improved, but weather information such as precipitation forecast is still uncertainty. Meteorologists have studied the use and economic value of weather information, and users have to translate weather information into their most desirable action. To maximize the economic value of users, the decision maker should select the optimum course of action for his company or project, based on an appropriate decision strategy under uncertain situations. In...

  14. Space Weather Receives First "Impact Rating"

    Science.gov (United States)

    Lanzerotti, Louis J.

    2007-08-01

    Journal Citation Reports, published by Thomson Scientific (http://scientific.thomson.com/isi/), has issued its first impact factor for Space Weather. It is 1.610. I consider this number to be very good, strongly validating the impact that Space Weather has already made in its short life within the community of space weather professionals.

  15. Space Weather Effects on Range Operations

    Science.gov (United States)

    2013-02-01

    www.windows2universe.org/space_weather/space_weather.html What are scientists talking about when they say “space weather”? How is it like weather on...particle events observed by ground level, high latitude neutron monitors and the Concorde observations are summarised in Table 1 (Refs. 12 & 13), which

  16. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are cou

  17. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  18. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  19. The Early Years: The Wonders of Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  20. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are cou

  1. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  2. Weather based risks and insurances for crop production in Belgium

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  3. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: is this really Archean crust? REPLY

    Science.gov (United States)

    Premo, Wayne R.

    2010-01-01

    The comments from McGrew and Snoke are well received and their concerns for the interpretations in our paper (Premo et al., 2008), which questions the original contention that the Angel Lake orthogneiss is an Archean rock, are many and varied—all of which we will attempt to address. As they point out, this issue is an important one as this particular crustal exposure may delimit the southwestern extent of the Archean Wyoming province (Foster et al., 2006; Mueller and Frost, 2006), which has implications for the true crustal evolution of this region of the Great Basin and perhaps more importantly its relationship (if any) to the location of the world-class gold deposits of north-central Nevada (e.g., Howard, 2003).

  4. Simulator Of A "Weather" Cloud

    OpenAIRE

    Khramenkova, Ksenia; Hermant, Olivier; Pawlak, Renaud

    2012-01-01

    International audience; In this article a cloud simulator for the "weather" cloud is considered. The purpose of such a simulator is evaluating different cloud architectures and algorithms before implementation. The main idea is to analyze the performance beforehand, in order to avoid unsuitable algorithms being implemented in a real cloud. Two methods of request allocation policies to the nodes are considered. Their behavior in terms of interaction with nodes' cachememory is compared. Finally...

  5. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton

    Science.gov (United States)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.

    2012-12-01

    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  6. Weather, Climate and Food Security

    Science.gov (United States)

    Beer, T.

    2016-12-01

    To climatologists food security is dominated by the impacts of weather and climate on food systems. But the link between the atmosphere and food security is more complex. Extreme weather events such as tropical cyclones impact directly on agriculture, but they also impact on the logistical distribution of food and can thus disrupt the food supply chain, especially in urban areas. Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that it is important "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." This talk will review the historical link between weather, climate, drought and food supplies; examine the international situation; and summarise the response of the scientific community

  7. The Weather and Climate Toolkit

    Science.gov (United States)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  8. Positive lightning and severe weather

    Science.gov (United States)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  9. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaoning Province, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Archean atmospheric oxygen concentration and sulfur cycle was long debated. The banded iron formation (BIF) is a special type of the sedimentary formation, which has truly recorded the atmospheric and oceanic conditions at that time. In this study, the composition of multiple sulfur isotope (δ34S/δ33S/δ32S) for sulfides bedded in the Archean (~2.7 Ga) BIFs, in Anshan-Benxi area of Liaoning Province has been measured. The value of △33S varies from -0.89‰ to +1.21‰, which shows very obvious mass-independent fractionation (MIF) signatures. These non-zero △33S values indicate that the Archean sulfur cycles are different from what it is today, which have been deeply influenced by gas phase photochemical reactions. Algoma-type BIFs which are closely related to the volcanic activity have negative △33S value, however, Superior-type BIFs which are far away from the volcanic center have positive △33S value. The δ34S varies in a large range from -22.0‰ to +11.8‰, which indicates that the bacteria reduction activity has already existed at that time, and that the oceanic sulfate concentration has at least reached 1 mmol/L in local areas. Combined with the contemporaneous existence of the hematite, magnetite and the occurrence and preservation of the sulfur MIF, it can be inferred that the Archean atmospheric oxygen level must be at 10-2―10-3 of the present atmospheric level (PAL).

  10. Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada

    Science.gov (United States)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Francis, Don; Gariépy, Clément

    2002-04-01

    A knowledge of the Hf isotopic composition of the subcontinental lithosphere beneath Archean cratons is essential to constrain the Hf isotope budget of the Earth's mantle. Hf isotopic measurements were obtained by MC-ICP-MS for a suite of refractory peridotite xenoliths and constituent garnets from the Nikos kimberlite (100 Ma) on Somerset Island in order to constrain the isotopic composition and age of the lithosphere beneath the northern Canadian craton. The low-temperature Nikos peridotites (Somerset lithosphere, are characterized by higher 176Lu/ 177Hf ratios (0.03-0.05) and Hf isotopic values ( 176Hf/ 177Hf (0.1Ga)=0.28296-0.28419) than the deep-seated high-temperature peridotites (>1100°C; 0.004-0.03, 0.28265-0.28333, respectively). These differences in Hf isotope signatures suggest that shallow and deep subcontinental lithosphere beneath Somerset Island represent isotopically distinct domains and do not share a common petrogenetic history. The Lu-Hf isotope systematics of the shallow low-temperature peridotites define a positively sloped line that plot along a 2.8 Ga reference isochron. A number of these peridotites are characterized by highly radiogenic Hf isotopic compositions suggestive of long-term radiogenic ingrowth (billions of years). These findings are consistent with an interpretation that the shallow Somerset lithosphere (to depths of ˜150 km) stabilized in the Archean. The majority of the high-temperature peridotites plot closer to the composition of the host kimberlite. Although the observed isotopic variation may be attributed in part to kimberlite-related Hf addition, it is possible that these deep-seated xenoliths represent younger mantle. The superchondritic 176Lu/ 177Hf ratios observed for a number of the shallow low-temperature peridotites indicate strong fractionation of Lu and Hf, suggesting mantle root formation in the garnet stability field (depths >80 km). The Hf isotope compositions for the Somerset low-temperature peridotites

  11. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia

    Science.gov (United States)

    Morris, P. A.; Kirkland, C. L.

    2014-03-01

    Subduction processes on early earth are controversial, with some suggestions that tectonics did not operate until the earth cooled to a sufficient point around the Archean-Proterozoic boundary. One way of addressing this issue is to examine well-preserved successions of Archean supracrustal rocks. Here we discuss petrography, whole-rock chemical and isotopic data combined with zircon Hf isotopes from andesites, high-magnesium andesites (HMA), dacites, high-magnesium dacites (HMD), rhyolites and coeval felsic intrusive rocks of the c. 2730 Ma Marda Volcanic Complex (MVC) in the central Yilgarn Craton of Western Australia. We demonstrate that these rocks result from melting of a metasomatized mantle source, followed by fractional crystallization in a crustal magma chamber. Contamination of komatiite by Archean crust, to produce the Marda Volcanic Complex andesites, is not feasible, as most of these crustal sources are too radiogenic to act as viable contaminants. The ɛNd(2730) of MVC andesites can be produced by mixing 10% Narryer semi-pelite with komatiite, consistent with modelling using Hf isotopes, but to achieve the required trace element concentrations, the mixture needs to be melted by about 25%. The most likely scenario is the modification of a mantle wedge above a subducting plate, coeval with partial melting, producing volcanic rocks with subduction signatures and variable Mg, Cr and Ni contents. Subsequent fractionation of cognate phases can account for the chemistry of dacites and rhyolites.

  12. Geological features and the Paleoproterozoic collision of four Archean crustal segments of the São Francisco Craton, Bahia, Brazil: a synthesis

    Directory of Open Access Journals (Sweden)

    BARBOSA JOHILDO S.F.

    2002-01-01

    Full Text Available Recent geological, geochronological and isotopic research has identified four important Archean crustal segments in the basement of the São Francisco Craton in the State of Bahia. The oldest Gavião Block occurs in the WSW part, composed essentially of granitic, granodioritic and migmatitic rocks. It includes remnants of TTG suites, considered to represent the oldest rocks in the South American continent (~ 3,4Ga and associated Archean greenstone belt sequences. The youngest segment, termed the Itabuna-Salvador-Curaçá Belt is exposed along the Atlantic Coast, from the SE part of Bahia up to Salvador and then along a NE trend. It is mainly composed of tonalite/trondhjemites, but also includes stripes of intercalated metasediments and ocean-floor/back-arc gabbros and basalts. The Jequié Block, the third segment, is exposed in the SE-SSW area, being characterized by Archean granulitic migmatites with supracrustal inclusions and several charnockitic intrusions. The Serrinha Block (fourth segment occurs to the NE, composed of orthogneisses and migmatites, which represent the basement of Paleoproterozoic greenstone belts sequences. During the Paleoproterozoic Transamazonian Orogeny, these four crustal segments collided, resulting in the formation of an important mountain belt. Geochronological constrains indicate that the regional metamorphism resulting from crustal thickening associated with the collision process took place around 2.0 Ga.

  13. Late-Stage Caregiving

    Science.gov (United States)

    ... resources, care and ways to engage in meaningful connections. During the late stages, your role as a ... drinks. This will help you track the person's natural routine, and then you can plan a schedule. ...

  14. Suicides in late life.

    Science.gov (United States)

    Van Orden, Kimberly; Conwell, Yeates

    2011-06-01

    Suicide in late life is an enormous public health problem that will likely increase in severity as adults of the baby boom generation age. Data from psychological autopsy studies supplemented with recent studies of suicidal ideation and attempts point to a consistent set of risk factors for the spectrum of suicidal behaviors in late life (suicide ideation, attempts, and deaths). Clinicians should be vigilant for psychiatric illness (especially depression), physical illness, pain, functional impairment, and social disconnectedness. Recent advances in late-life suicide prevention have in common collaborative, multifaceted intervention designs. We suggest that one mechanism shared by all preventive interventions shown to reduce the incidence of late-life suicide is the promotion of connectedness. For the clinician working with older adults, our recommendation is to not only consider risk factors, such as depression, and implement appropriate treatments but to enhance social connectedness as well.

  15. Operational Space Weather Activities in the US

    Science.gov (United States)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  16. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A. [Aspen Systems Corp., Oak Ridge, TN (United States). Applied Management Sciences Div.; Brown, M.A. [Oak Ridge National Lab., TN (United States); Beschen, D.A. Jr. [Department of Energy, Washington, DC (United States). Office of Weatherization Assistance Programs

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  17. Magnetotelluric survey to locate the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada, Utah, and Idaho

    Science.gov (United States)

    Sampson, Jay A.; Rodriguez, Brian D.

    2013-01-01

    North-central Nevada contains a large amount of gold in linear belts, the origin of which is not fully understood. During July 2008, September 2009, and August 2010, the U.S. Geological Survey, as part of the Assessment Techniques for Concealed Mineral Resources project, collected twenty-three magnetotelluric soundings along two profiles in Box Elder County, Utah; Elko County, Nevada; and Cassia, Minidoka, and Blaine Counties, Idaho. The main twenty-sounding north-south magnetotelluric profile begins south of Wendover, Nev., but north of the Deep Creek Range. It continues north of Wendover and crosses into Utah, with the north profile terminus in the Snake River Plain, Idaho. A short, three-sounding east-west segment crosses the main north-south profile near the northern terminus of the profile. The magnetotelluric data collected in this study will be used to better constrain the location and strike of the concealed suture zone between the Archean crust and the Paleoproterozoic Mojave province. This report releases the magnetotelluric sounding data that was collected. No interpretation of the data is included.

  18. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM

    CERN Document Server

    Charnay, Benjamin; Wordsworth, Robin; Leconte, Jérémy; Millour, Ehouarn; Codron, Francis; Spiga, Aymeric

    2013-01-01

    Different solutions have been proposed to solve the "faint young Sun problem", defined by the fact that the Earth was not fully frozen during the Archean despite the fainter Sun. Most previous studies were performed with simple 1-D radiative convective models and did not account well for the clouds and ice-albedo feedback or the atmospheric and oceanic transport of energy. We apply a global climate model (GCM) to test the different solutions to the faint young Sun problem. We explore the effect of greenhouse gases (CO2 and CH4), atmospheric pressure, cloud droplet size, land distribution, and Earth's rotation rate. We show that neglecting organic haze, 100 mbar of CO2 with 2 mbar of CH4 at 3.8 Ga and 10 mbar of CO2 with 2 mbar of CH4 at 2.5 Ga allow a temperate climate (mean surface temperature between 10{\\deg}C and 20{\\deg}C). Such amounts of greenhouse gases remain consistent with the geological data. Removing continents produces a warming lower than +4{\\deg}C. The effect of rotation rate is even more limit...

  19. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  20. Phlogopite compositions as an indicator of both the geodynamic context of granitoids and the metallogeny aspect in Memve'ele Archean area, northwestern Congo craton

    Science.gov (United States)

    Ntomba, Sylvestre M.; Bidzang, François Ndong; Ottou, José Eric Messi; Goussi Ngalamo, François Jeannot; Bisso, Dieudonné; Magnekou Takamte, Christelle Rufine; Ondoa, Joseph Mvondo

    2016-06-01

    A barium bearing phlogopite (celsian) has been found for the first time within the charnockitic and tonalitic suites that compose Archean mineral belt in Cameroon. Electron microprobe analyses of these phlogopites are reported and contain moderate contents of BaO (0.42-1.26 wt. %) and up to 5.95 wt. % TiO2. Micas are Mg-rich and their compositions indicate phlogopites rich-meroxenes. Phlogopites from Memve'ele are characterized by a nearly horizontal trend of increasing total aluminium (2.494-2.931 a.p.f.u.) and relatively constant Fe/(Fe + Mg) suggesting contributions of aluminous supracrustal material to the magmas by anatexis or assimilation. Compositions of the barium titanium bearing phlogopite vary systematically according to rock types. It seems that the substitution scheme include Ba + Al + VI (Mg, Fe)2+ + 2 IVSi = K + Si + VITi + 2IVAl was dominant in the Memve'ele area thus, this scheme has made easy incorporation of Ba into phlogopite structure. The binary diagram of aluminium vs. titanium shows that phlogopites from the Memve'ele area have been formed by the same metasomatic mechanism as phlogopites from Canary Island xenoliths and Mezitler andesites but Ba enrichment of phlogopites from the Memve'ele area implies an early Ba-metasomatism contrary to those from Mezitler. The estimated temperature of the studied phlogopites indicated mainly two groups: (1) temperature range from 662 to 688 °C (average 676 °C) for phlogopite grains with High Mg# in the trondhjemite sample and (2) temperatures with interval limits from 757 to 800 °C (average 777.07 °C) for remnant phlogopites; reflecting primary and late crystallization respectively from slightly to highly oxidized magma (-17.30 to -13.87 Kbars). The geothermal gradient with average temperatures are 35.57-53.360 °C/Km and 30.95-46.42 °C/Km corresponding to 14.56-21.84 Km and 14.56-30.58 Km depth of below crust respectively. The crystallizing melt is enriched in Ba emanated from sea water at medium

  1. Evolution of Oxidative Continental Weathering

    Science.gov (United States)

    Konhauser, Kurt; Lalonde, Stefan

    2014-05-01

    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen levels increased above 10-5 times the present atmospheric level. This value is based on the loss of sulphur isotope mass independent fractionation (S-MIF) from the rock record, beginning at 2.45 Ga and disappearing by 2.32 Ga. However, a number of recent papers have pushed back the timing for oxidative continental weathering, and by extension, the onset of atmospheric oxygenation several hundreds of million years earlier despite the presence of S-MIF (e.g., Crowe et al., 2013). This apparent discrepancy can, in part, be resolved by the suggestion that recycling of older sedimentary sulphur bearing S-MIF might have led to this signal's persistence in the rock record for some time after atmospheric oxygenation (Reinhard et al., 2013). Here we suggest another possibility, that the earliest oxidative weathering reactions occurred in environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts, riverbed and estuarine sediments, and lacustrine microbial mats. We calculate that the rate of O2 production via oxygenic photosynthesis in these terrestrial microbial ecosystems provides largely sufficient oxidizing potential to mobilise sulphate and a number of redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. These findings reconcile geochemical signatures in the rock record for the earliest oxidative continental weathering with the history of atmospheric sulphur chemistry, and demonstrate the plausible antiquity of a terrestrial biosphere populated by cyanobacteria. Crowe, S.A., Dossing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R. & Canfield, D.E. Atmospheric oxygenation three billion years ago. Nature 501, 535-539 (2013). Reinhard, C.T., Planavsky, N.J. & Lyons, T.W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497

  2. Reported weather events in medieval Hungary: the 11th-15th centuries

    Science.gov (United States)

    Kiss, Andrea

    2017-04-01

    In the presentation an overview of weather events, documented in contemporary written sources - available both in private and institutional evidence -, is provided: geographically the study covers the Hungarian kingdom (occasionally also with sources from the medieval Croatian kingdoms) that included most parts of the Carpathian Basin. Even if the temporal coverage extends the high and late medieval period between 1000 to 1500, most of the data comes from the late medieval times, with special emphasis on the 15th century. Most of the information is available regarding cold spells (e.g. early and late frosts), but especially cold winter periods. Nevertheless, contemporary documentary evidence - mainly legal documentation (charters), official and private correspondence, partly narratives and town accounts - also consists of evidence concerning other, weather-related extreme events such as (thunder)storms, floods and droughts. Apart from the discussion of the availability and type of these events, based on the relative frequency of occurrence we can define periods when a higher frequency and magnitude of weather-related events were reported that is mainly not dependent on changing source densities. These detectable periods (e.g. the early and mid-14th, early and late 15th centuries) are also a further, separate topic of discussion in the presentation.

  3. Insurance adaptation to extreme weather

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, C. [Institute for Catastrophic Loss Reduction, Toronto, ON (Canada)

    2005-07-01

    This paper examined the role of climate change as a catalyst for specific changes in insurance practices. The presentation addressed how insurance companies are adapting behaviours in response to increasing climate variability and growth in severe weather damage. It discussed ancient examples of insurance as well as more modern insurance practices. Statistics on the number of disasters, global natural disaster economic and insured losses and infrastructure spending are presented. Internal adaptation such as prospective underwriting and incentives and external adaptation such as working with governments and organizations and individuals were also discussed. It was concluded that directions for the future include continued research, heightened awareness and more resilient communities. 3 tabs.

  4. Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale

    Science.gov (United States)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs; Jull, A. J. Timothy

    2016-09-01

    We have investigated 128 14C-dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section-based weathering degrees, and for chemical weathering parameters as analyzed with handheld X-ray fluorescence. These 128 14C-dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age-frequency distribution for the whole meteorite population.

  5. Flat world versus real world : where is weathering the most important ?

    Science.gov (United States)

    Godderis, Yves; Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-04-01

    Mountain ranges are a key driver of the Earth climates. Acting on a large range of timescales, they modulate the atmospheric and oceanic circulations but also plays a crucial role in regulating the geological carbon cycle through their impacts on erosion and continental weathering. Since the 90's, there is an ongoing debate about the role of the mountain uplift on the long term global cooling of the Earth climate. Mountain ranges are thought to enhance silicate weathering and the associated CO2 consumption. But this has been repeatedly questioned in the recent years. Here we present a new method for modeling the spatial distribution of both physical erosion and coupled chemical weathering. The IPSL ocean-atmosphere model calculates the continental climate, which is used to force the erosion/weathering model. We first compare the global silicate weathering for two geographical configurations: the present-day world with mountain ranges, and a world where all mountains have been removed. Depending on the chosen formalism for silicate weathering and on the climate changes linked to the removal of mountains, it can be higher in the flat world than in the real world, or up to 5 times weaker. In the second part of the talk, we will explore the role of the Hercynian mountain range on the onset and demise of the late Paleozoic ice age, within the context of the Pangea assembly.

  6. Automatic Weather Station (AWS) Lidar

    Science.gov (United States)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  7. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  8. Prediction Techniques in Operational Space Weather Forecasting

    Science.gov (United States)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  9. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  10. Late Sovereign Diplomacy

    DEFF Research Database (Denmark)

    Adler-Nissen, Rebecca

    2009-01-01

    the promotion of national interests with those of the Union. In this late sovereign phase of diplomacy, political and legal authorities overlap, territorial exclusivity is replaced with functional boundaries, and states begin to speak with one voice. The article explores three interlinked aspects of late...... sovereign diplomacy: the teleological interpretation of the EC and EU treaties; the intense socialization of state representatives; and the negotiation process, which promotes national positions as part of a European cause, thereby delocalizing the national interest. While the EU has not rendered national...... diplomacy obsolete, it has profoundly changed its meaning and consequences....

  11. Early and late motherhood

    DEFF Research Database (Denmark)

    Christoffersen, Mogens; Lausten, Mette

    2009-01-01

    The study investigates parental child rearing methods, structural factors relating to the family during adolescence geographic segregation, individual resource deficits and social background of first time late live births among 32 to 37 years old women and compare to teenagers before becoming...... teenage mothers. The purpose is to study if results will be consistent with the hypotheses that poverty, social deprivation during adolescence and low education are causes of teen childbearing but also childlessness among elder women in the age group 32 to 37 years old. Could childlessness as well...... pregnant teenagers who had an induced abortion. Quite the opposite pattern is disclosed for late motherhood....

  12. Space Weather and Real-Time Monitoring

    OpenAIRE

    2009-01-01

    Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES) in association with the International Geophysical Year (IGY) and importance of real-time monitoring in space weather.

  13. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    McMichael, Anthony J.

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  14. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  15. Traffic Control Under Complex Weather Conditions in Suining Airport

    Institute of Scientific and Technical Information of China (English)

    吕维峰

    2014-01-01

    Complex weather conditions is meaning thunderstorm freezing turbulence wind-shear low visibility weather affect the flight safety. When confronted with complex weather conditions,the controllers should know the weather condition and trend weather,and notify the aircraft under your control zone.The controllers provide the required services to the pilots,help the pilots to avoid the complex weather.In this paper, through different complex weathers under different control command,get the different methods of control.

  16. Teaching weather and climate science in primary schools - a pilot project from the UK Met Office

    Science.gov (United States)

    Orrell, Richard; Liggins, Felicity; Challenger, Lesley; Lethem, Dom; Campbell, Katy

    2017-04-01

    Wow Schools is a pilot project from the Met Office with an aim to inspire and educate the next generation of scientists and, uniquely, use the data collected by schools to improve weather forecasts and warnings across the UK. Wow Schools was launched in late 2015 with a competition open to primary schools across the UK. 74 schools entered the draw, all hoping to be picked as one of the ten lucky schools taking part in the pilot scheme. Each winning school received a fully automatic weather station (AWS), enabling them to transmit real-time local weather observations to the Met Office's Weather Observation Website (WOW - wow.metoffice.gov.uk), an award winning web portal for uploading and sharing a range of environmental observations. They were also given a package of materials designed to get students out of the classroom to observe the weather, get hands-on with the science underpinning weather forecasting, and analyse the data they are collecting. The curriculum-relevant materials were designed with the age group 7 to 11 in mind, but could be extended to support other age groups. Each school was offered a visit by a Wow Schools Ambassador (a Met Office employee) to bring the students' learning to life, and access to a dedicated forecast for its location generated by our new supercomputer. These forecasts are improved by the school's onsite AWS reinforcing the link between observations and forecast production. The Wow Schools pilot ran throughout 2016. Here, we present the initial findings of the project, examining the potential benefits and challenges of working with schools across the UK to: enrich students' understanding of the science of weather forecasting; to source an ongoing supply of weather observations and discover how these might be used in the forecasting process; and explore what materials and business model(s) would be most useful and affordable if a wider roll-out of the initiative was undertaken.

  17. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    Science.gov (United States)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  18. Late Embryogenesis Abundant Proteins

    NARCIS (Netherlands)

    Shih, M.D.; Hoekstra, F.A.; Hsing, Y.I.C.

    2008-01-01

    During the late maturation stage of seed development, water content decreases greatly. One of the most striking characteristics of mature orthodox seeds is their ability to withstand severe desiccation. Mechanisms of plant drought/desiccation tolerance have been studied by numerous groups, and a bro

  19. Never Too Late

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A historical issue is being raised on Capitol Hill.In late May,members of the U.S.Congress introduced bipartisan resolutions in both chambers,calling on the federal legislature to acknowledge formally and express regret for discriminatory legislation and how the country accordingly treated Chinese immigrants more than a century ago.

  20. Big Java late objects

    CERN Document Server

    Horstmann, Cay S

    2012-01-01

    Big Java: Late Objects is a comprehensive introduction to Java and computer programming, which focuses on the principles of programming, software engineering, and effective learning. It is designed for a two-semester first course in programming for computer science students.

  1. Was I Late

    Institute of Scientific and Technical Information of China (English)

    叶历来; 罗琪芳

    2011-01-01

    “Get up, Jane!” “Oh... Mom, let me sleep five more minutes. I'm so Ured ( 困的 ).” “It's 7:50. It's too late. ” “OK, three minutes then... Wait! What did you say? What time is it? It's 7:50.”

  2. Geology of the Early Archean Mid-Ocean Ridge Hydrothermal System in the North Pole Dome, Pilbara Craton, Western Australia

    Science.gov (United States)

    Kitajima, K.; Maruyama, S.

    2007-12-01

    An Archean hydrothermal system in the North Pole Dome, Pilbara Craton is associated with extensive fluid circulation driven by numerous extensional fracture systems and the underlying heat source. The fracture system is now occupied by abundant fine-grained quartz aggregate, hence we call this as silica dikes. Some of the fracture system extends deeper structural levels as listric normal faults down to 1000 m depth in the MORB crust. Barite-bearing fine-grained quartz predominant mineralogy indicates the extensive development of fracturing and quenching in a short time. Accompanying the fluid circulation, the extensive metasomatism proceeded to form the four different chemical courses, (1) silicification, (2) carbonation, (3) potassium-enrichment, and (4) Fe- enrichment. Silicification occurs along the silica dikes, carbonated greenstones are distributed relatively shallower level. Potassium-enriched (mica-rich) greenstones occur at the top of the greenstone sequence, and Fe-enriched (chlorite-rich) greenstones are distributed at lower part of the basaltic greenstones. The down going fluid precipitated carbonate-rich layer at shallow levels, whereas depleted in SiO2. Then, the fluid went down to more deeper level, and was dissolved SiO2 at high temperature (~350°C) and chlorite-rich greenstone was formed by water-rock interaction. The upwelling fluid precipitated dominantly SiO2 and formed silica dikes. Silica dikes cement the fractures formed by extensional faulting at earliest stage of development of oceanic crust. Therefore, the hydrothermal system must have related to normal fault system simultaneously with MORB volcanism. Particularly the greenish breccia with cherty matrix (oregano chert) was formed at positions by upwelling near ridge axis. After the horizontal removal of MORB crust from the ridge-axis with time, the propagating fracture into deeper levels, transports hydrothermal fluids into 500-1000 m depth range where metasomatic element exchange between

  3. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada

    Science.gov (United States)

    Mueller, W. U.; Corcoran, P. L.

    2001-06-01

    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  4. Weather Satellite Enterprise Information Chain

    Science.gov (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  5. Drifting on Alien Winds Exploring the Skies and Weather of Other Worlds

    CERN Document Server

    Carroll, Michael

    2011-01-01

    Drifting on Alien Winds explores the bizarre weather of alien worlds, from the blistering hurricane-force winds of Venus to the gentle methane rain showers of Saturn's giant moon Titan. Blinding bolts of lightning sizzle through Jupiter's skies, ammonia blizzards swirl through Saturnian clouds, and Earth-sized cyclones pinwheel across Uranus and Neptune. Late-breaking scientific discoveries from spacecraft, observatories, and laboratories reveal the mysteries of weather across the Solar System. Our knowledge of weather on other worlds has not come easily. Drifting on Alien Winds introduces the inventors, engineers, and scientists who struggled to launch the first probes that would help us to understand the atmospheres of other worlds. The untold stories of early engineering feats and failures, from small Soviet Venus balloons to advanced studies of blimps and airplanes for Mars and Titan, are showcased here, along with what we’ve learned and are still trying to learn about alien skies. Some of today’s mos...

  6. Weather pattern climatology of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Barchet, W.R.; Davis, W.E.

    1984-01-01

    In this study the geographic domain covered the 48 conterminous states of the United States. The daily synoptic weather pattern was classified into nine types for the 10-year period January 1, 1969 to December 31, 1978. Weather pattern types were defined relative to the classical polar front model of a mid-latitude cyclonic storm system and its associated air masses. Guidelines for classifying weather patterns on an operational basis were developed. These were applied to 3652 daily surface weather maps to produce a time series of weather pattern type at 120 grid points of a 160 point, 3/sup 0/ latitude by 4/sup 0/ longitude array over the United States. Statistics on the frequency of occurrence, persistence and alternation of weather patterns were calculated for each grid point. Summary statistics for the entire grid and for six regions were also presented. Frequency of occurrence and persistence were found to depend on the size and speed of movement of the weather pattern. Large, slow moving air masses had higher frequency of occurrence and longer persistence than small (fronts) or rapidly moving (or changing) features (fronts, storm centers). Some types showed distinct regional preferences. The subtropical maritime high occurred mainly in the south central and southeast. An indeterminate weather pattern type accounted for those weather patterns that did not fit the polar front model or were too disorganized to be classified. The intermountain thermal low of the desert southwest was one such feature that dominated both frequency of occurrence and persistence in this region. Alternation from one weather pattern to another followed the polar front model of a moving cyclonic storm. The tendency for anticyclonic weather patterns to become disorganized as they weakened was seen in the high percentage of these patterns that changed to an indeterminate pattern as they aged.

  7. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    Science.gov (United States)

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  8. Hedging Weather Risk for Corn Production in Northeastern China: The Efficiency of Weather-indexed Insurance

    NARCIS (Netherlands)

    Sun, Baojing; Guo, Changhao; Kooten, van G.C.

    2014-01-01

    Purpose – The paper analyzes the hedging efficiency of weather-indexed insurance for corn production in Northeast of China. The purpose of this paper is to identify the potential weather variables that impact corn yields and to analyze the efficiency of weather-indexed insurance under varying

  9. Paleomagnetic dating of paleo-weathering surfaces, North America and Scotland

    Science.gov (United States)

    Dulin, S. A.; Elmore, R. D.; Parnell, J.

    2013-12-01

    Permian-Triassic chemical remanent magnetizations (CRMs) have been reported in basement rocks below weathering surfaces in continental Europe and North America, and are attributed to weathering fluids which caused precipitation of authigenic hematite. Identification and dating of these paleotopographic surfaces can have implications for climatic conditions during the weathering event. In this study we report paleomagnetic and petrographic results from unconformity surfaces in North America and Scotland to determine the characteristics and extent of this weathering event. Red granites from the Wichita Mountains in southern Oklahoma hold a CRM in hematite that is late Permian in age. The red granites represent a weathering profile that is seen in the upper 200m of the granites, and is present throughout the Wichita Mountains. On the Kintyre peninsula in Scotland, reddened Dalradian schist below an unconformity overlain by Permian-Triassic sandstones contains a late Permian-early Triassic CRM with southwesterly declinations and up inclinations (D = 184.6°, I = -33.3°). The CRM resides in hematite that is intergrown with dolomite. The overlying red sandstone has a similar CRM. Grey Dalradian schist contains magnetite but does not contain a stable magnetization. At another locality, reddened and dolomitized Dalradian schist below an unconformity overlain by the Devonian Old Red Sandstone contains a CRM with northeasterly declinations and down inclinations. The Devonian sandstones contain a CRM with southwesterly declinations and moderate up inclinations that are approximately antipodal to the CRM in the schist. The CRMs in the schist and sandstones reside in hematite. The fluids which caused remagnetization must have penetrated below the Permian unconformity into the Devonian unconformity. Other unconformity surfaces in Scotland (Cambrian-Lewisian; Triassic-Torridonian; Torridonian-Lewisian) are also being investigated as part of this study to determine if similar

  10. Weathering Pathways and Limitations in Biogeochemical Models: Application to Earth System Evolution

    OpenAIRE

    Mills, Benjamin

    2012-01-01

    Current biogeochemical box models for Phanerozoic climate are reviewed and reduced to a robust, modular system, allowing application to the Precambrian. It is shown that stabilisation of climate following a Neoproterozoic snowball Earth should take more than 10(7) years, due to long-term geological limitation of global weathering rates. The timescale matches the observed gaps between extreme glaciations at this time, suggesting that the late Neoproterozoic system was oscillating around a s...

  11. Medium-range fire weather forecasts

    Science.gov (United States)

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  12. Uncertainty analysis of weather controlled systems

    NARCIS (Netherlands)

    Keesman, K.J.; Doeswijk, T.G.

    2010-01-01

    The indoor climate of many storage facilities for agricultural produce is controlled by mixing ambient air with the air flow through the store room. Hence, the indoor climate is affected by the ambient weather conditions. Given hourly fluctuating energy tariffs, weather forecasts over some days are

  13. Uncertainty analysis of weather controlled systems

    NARCIS (Netherlands)

    Keesman, K.J.; Doeswijk, T.G.

    2010-01-01

    The indoor climate of many storage facilities for agricultural produce is controlled by mixing ambient air with the air flow through the store room. Hence, the indoor climate is affected by the ambient weather conditions. Given hourly fluctuating energy tariffs, weather forecasts over some days are

  14. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to uncertain

  15. The Early Years: About the Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2015-01-01

    Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…

  16. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  17. AWE: Aviation Weather Data Visualization Environment

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  18. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny

    OpenAIRE

    Susmita Gupta; Jayananda, M.; Fareeduddin

    2014-01-01

    Tourmaline occurs as a minor but important mineral in the alteration zone of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenstone belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli gold deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the matrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). The vein...

  19. High-grade metamorphism during Archean-Paleoproterozoic transition associated with microblock amalgamation in the North China Craton: Mineral phase equilibria and zircon geochronology

    Science.gov (United States)

    Yang, Qiong-Yan; Santosh, M.; Tsunogae, Toshiaki

    2016-10-01

    Metamorphic regimes in Archean terranes provide important keys to the plate tectonic processes in early Earth. The North China Craton (NCC) is one of the ancient continental nuclei in Asia and recent models propose that the cratonic architecture was built through the assembly of several Archean microcontinental blocks into larger crustal blocks. Here we investigate garnet- and pyroxene-bearing granulite facies rocks along the periphery of the Jiaoliao microcontinental block in the NCC. The garnet-bearing granulites contain peak mineral assemblage of garnet + clinopyroxene + orthopyroxene + magnetite + plagioclase + quartz ± biotite ± ilmenite. Mineral phase equilibria computations using pseudosection and geothermobarometry suggest peak P-T condition of 800-830 °C and 7-8 kbar for metamorphism. Isopleths using XMg of orthopyroxene and XCa of garnet in another sample containing the peak mineral assemblage of garnet + orthopyroxene + quartz + magnetite ± fluid yield peak P-T conditions of 860-920 °C and 11-14 kbar. Geochemical data show tonalitic to granodioritic composition and arc-related tectonic setting for the magmatic protoliths of these rocks. Zircon LA-ICP-MS analyses yield well-defined discordia with upper intercept ages of 2562 ± 20 Ma (MSWD = 0.94) and 2539 ± 21 Ma (MSWD = 0.59) which is correlated with the timing of emplacement of the magmatic protolith. A younger group of zircons with upper intercept ages of 2449 ± 41 Ma (MSWD = 0.83); N = 6 as 2449 ± 41 Ma (MSWD = 0.83; N = 6) and 2480 ± 44 Ma (MSWD = 1.2; N = 9) constrains the timing of metamorphism. Zircon Lu-Hf data show dominantly positive εHf(t) values (up to 8.5), and yield crustal residence ages (TDMC) in the range of 2529 to 2884 Ma, suggesting magma sources from Meso-Neoarchean juvenile components. The high temperature and medium to high pressure metamorphism is considered to have resulted from the subduction-collision tectonics associated with microblock amalgamation in the NCC at

  20. Learn about Earth Science: Weather. [CD-ROM].

    Science.gov (United States)

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of weather. Students investigate weather to learn about climate and the seasons, how animals adapt to weather changes, how clouds tell us about conditions, and how weather plays a part in our everyday lives. The weather calendar lets students record and write about conditions…

  1. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  2. Space weather: European Space Agency perspectives

    Science.gov (United States)

    Daly, E. J.; Hilgers, A.

    Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.

  3. Weatherization works: Final report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1994-09-01

    In 1990, the U.S. Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation`s largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year (supplemented by data from 1991-92). The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it (1) saves energy, (2) lowers fuel bills, and (3) improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years.

  4. Using Music to Communicate Weather and Climate

    Science.gov (United States)

    Williams, P.; Aplin, K. L.; Brown, S.; Jenkins, K.; Mander, S.; Walsh, C.

    2016-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  5. Late-Onset Asthma

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli

    2017-01-01

    Late-onset asthma is common, associated with poor outcome, underdiagnosed and undertreated, possibly due to the modifying effect of ageing on disease expression. Although the diagnostic work-up in elderly individuals suspected of having asthma follows the same steps as in younger individuals (case......, to objectively confirm asthma. If necessary, a trial of oral or inhaled corticosteroid might be necessary. Asthma can be diagnosed when increased airflow variability is identified in a symptomatic patient, and if the patient does not have a history of exposure, primarily smoking, known to cause chronic...... obstructive pulmonary disease, the diagnosis is asthma even if the patient does not have fully reversible airflow obstruction. Pharmacological therapy in patients with late-onset asthma follows international guidelines, including treatment with the lowest effective dose of inhaled corticosteroid to minimize...

  6. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from th

  7. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from

  8. Recent (Late Amazonian) enhanced backweathering rates on Mars : Paracratering evidence from gully alcoves

    NARCIS (Netherlands)

    De Haas, Tjalling; Conway, Susan J.; Krautblatter, Michael

    2015-01-01

    Mars is believed to have been exposed to low planet-wide weathering and denudation since the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates from th

  9. Late Babylonian Astrology

    Science.gov (United States)

    Steele, John M.

    The last five centuries BC saw the development of several new forms of astrology in Babylonia. Key to these new astrological techniques was the invention of the zodiac in about 400 BC. These new forms of astrology include personal horoscopes, astral medicine, and the exploitation of geometrical relationships between the position of heavenly bodies. Several Late Babylonian astrological doctrines were later adopted within Greek astrology.

  10. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    Energy Technology Data Exchange (ETDEWEB)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  11. A Century of Monitoring Weather and Crops: The Weekly Weather and Crop Bulletin.

    Science.gov (United States)

    Heddinghaus, Thomas R.; Le Comte, Douglas M.

    1992-02-01

    Publication of a national weekly weather summary called the Weekly Weather Chronicle began in 1872. This summary was the precursor of today's Weekly Weather and Crop Bulletin (WWCB), a publication that reports global weather and climate conditions relevant to agricultural interests, as well as current national activities and assessments of crop and livestock conditions. The WWCB is produced by the Joint Agricultural Weather Facility (JAWF), a world agricultural weather information center located in the U.S. Department of Agriculture (USDA) headquarters in Washington, D.C., and jointly staffed by units of the National Oceanic and Atmospheric Administration's Climats. Analysis Center and USDA's World Agricultural Outlook Board and National Agricultural Statistics Service. Besides featuring charts and tables (e.g., temperature and precipitation maps and crop progress and condition tables), the WWCB contains summaries and special stories highlighting significant weather events affecting agriculture, such as droughts, torrential rains, floods, unusual warmth, heat waves, severe freezes, heavy snowfall, blizzards, damaging storms, and hurricanes.

  12. Forecasting Space Weather from Magnetograms

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). For each type of event, the expected rate is readily converted to the chance that the active region will produce such an event in any given forward time window of a day or so. If the chance is small enough (e.g. <5%), the forecast is All Clear for that type of event. We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare

  13. Weather Station and Sensor Locations, MDTA Roadway weather station, weather stations, weather sensors, Roadway weather sensors, RWIS, MDTA weather sensors, Published in 2009, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Weather Station and Sensor Locations dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2009. It...

  14. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    Science.gov (United States)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  15. Geomorphic controls on mineral weathering, elemental transport, and production of mineral surface area in a schist bedrock weathering profile, Piedmont Pennsylvania

    Science.gov (United States)

    Wenell, B.; Yoo, K.; Aufdenkampe, A. K.; Mahoney, J. B.; Lepak, L.

    2013-12-01

    We assess a deep chemical weathering profile in the context of geomorphic evolution in the Laurels Schist, a late proterozoic greenschist formation in the Christina River Basin Critical Zone Observatory located in the Piedmont region in southeastern Pennsylvania. Two 21-meter deep rotosonic drill cores were sampled at the ridge top and footslope positions in a first-order, forested watershed. The top meter was sampled at high-resolution in a soil pit adjacent to each drill core and along a hillslope transect to assess geomorphic controls on the weathering profile. Weathering processes in soil and saprolite were examined by observing changes in mineralogy, including the emergence of secondary phyllosilicate and oxide minerals; measuring specific surface area of bulk soil and saprolite; and by quantifying elemental mass changes of major and minor rock-forming elements. Mineral profiles were assessed using clay and bulk XRD, and reveal that kaolinite, a common secondary phyllosilicate, is present above 1.5 meters in the weathering profile. Specific surface area (SSA) values decrease with increasing depth to a critical depth around 2 meters, where the values of untreated (carbon-loaded) and muffled (carbon removed by heating) mineral grains converge to baseline SSA values below 10 m2g-1, indicating that carbon is sorbed with mineral surface area in the upper 2 meters. Immobile element concentrations decrease with increasing depth up to 3 meters, indicating that the preferential removal of mobile elements extends beyond the depth of C-mineral adsorption. Variability of immobile elements in the deep weathering profile reveal variations that could be the result of weathering in fractures but are more likely inherited by the rock composition and particle size of pre-metamorphosed parent rock.

  16. Coping – Late Side Effects

    Science.gov (United States)

    Cancer treatment can cause late side effects that may not show up for months or years after treatment. These late effects may include heart and lung problems, bone loss, eye and hearing changes, lymphedema, and other problems

  17. On-line data acquisition system for Aanderaa weather station

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Aanderaa Weather Station can be installed at unattended remote places for collection of various weather parameters at regular preselected intervals. The weather parameters are recorded on the magnetic spool inside a battery operated datalogger which...

  18. Operational, regional-scale, chemical weather forecasting models in Europe

    NARCIS (Netherlands)

    Kukkonen, J.; Balk, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; Peuch, V.H.; Poupkou, A.; Kioutsioukis, I.; Finardi, S.; Sofiev, M.; Sokhi, R.; Lehtinen, K.; Karatzas, K.; San José, R.; Astitha, M.; Kallos, G.; Schaap, M.; Reimer, E.; Jakobs, H.; Eben, K.

    2011-01-01

    Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed

  19. Using weather indices to predict survival of winter wheat in a cool temperate environment

    Science.gov (United States)

    Hayhoe, H. N.; Lapen, D. R.; Andrews, C. J.

    2002-10-01

    Seven years of winter survival data for winter wheat (Triticum aestivum L.) were collected on a loam soil located on the Central Experimental Farm at Ottawa, Ontario (45°23'N, 75°43'W). The site was low-lying and subject to frequent winter flooding and ice-sheet formation. Two cultivars, a soft white and a hard red winter wheat, were planted in September. Crop establishment was measured in late fall and the percentage survival was measured in April of the following year. Meteorological data, which were available from the nearby weather site, were used to develop a large set of monthly weather indices that were felt to be important for winter survival. The objective of the study was to use genetic selection algorithms and artificial neural networks to select a subset of critical weather factors and topographic features and to model winter survival. The six weather indices selected were the total rain depth for December (mm), the total rain depth for February (mm), the number of days of the month with snow on the ground for January, the extreme minimum observed daily air temperature for March (°C), the number of days of the month with snow on the ground for March, and the number of days of April with a daily maximum air temperature greater than 0 °C. It was found 89% of the variation in winter survival could be explained by these six weather indices, the cultivar, elevation and plot location.

  20. Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Jeffrey L., E-mail: jhoward@wayne.edu [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Olszewska, Dorota [Department of Geology, Wayne State University, Detroit, MI 48202 (United States)

    2011-03-15

    An urban soil chronosequence in downtown Detroit, MI was studied to determine the effects of time on pedogenesis and heavy metal sequestration. The soils developed in fill derived from mixed sandy and clayey diamicton parent materials on a level late Pleistocene lakebed plain under grass vegetation in a humid-temperate (mesic) climate. The chronosequence is comprised of soils in vacant lots (12 and 44 years old) and parks (96 and 120 years old), all located within 100 m of a roadway. An A-horizon 16 cm thick with 2% organic matter has developed after only 12 years of pedogenesis. The 12 year-old soil shows accelerated weathering of iron (e.g. nails) and cement artifacts attributed to corrosion by excess soluble salts of uncertain origin. Carbonate and Fe-oxide are immobilizing agents for heavy metals, hence it is recommended that drywall, plaster, cement and iron artifacts be left in soils at brownfield sites for their ameliorating effects. - Research highlights: > An A horizon has developed in these urban soils after only 12 years of pedogenesis. > Iron and cement artifacts have undergone accelerated weathering due to deicing salts. > One soil is contaminated by lead derived from weathered paint. > Artifact weathering can have ameliorating effects on urban soils contaminated by heavy metals. - Weathering of artifacts can have ameliorating effects on heavy metal-polluted soils at brownfield sites.

  1. Weatherization Works: Final Report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    2001-02-01

    In 1990, the US Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation's largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year. The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it saves energy, lowers fuel bills, and improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years. The Program's mission is to reduce the heating and cooling costs for low-income families--particularly the elderly, persons with disabilities, and children by improving the energy efficiency of their homes and ensuring their health and safety. Substantial progress has been made, but the job is far from over. The Department of Health and Human Services (HHS) reports that the average low-income family spends 12 percent of its income on residential energy, compared to only 3% for the average-income family. Homes where low-income families live also have a greater need for energy efficiency improvements, but less money to pay for them.

  2. MEASURING SYSTEM OF ADVERSE WEATHER PHENOMENA

    Directory of Open Access Journals (Sweden)

    M. Ćurić

    2012-03-01

    Full Text Available Measuring system of adverse weather phenomena. The adverse weather phenomena in nowadays are becoming an extraordinary problem in human life and human activity. Therefore, it seems very important to know the thresholds of adverse weather phenomena. These thresholds can be calculated in different ways, but some experience has shown that for weather elements which departures from normal follow the normal distribution suits to use the Gaussian curve of frequency distribution (temperature and pressure. For such weather elements the normal curve of frequency distribution may be used for classification of thresholds. For weather elements which departures do not depend on such a frequency distribution configuration (precipitation amounts may be used a decile method. For wind speed thresholds, the Beaufort scale units can be used for calculation. In this paper the threshold scales for four basic weather elemnts are presented. All these scales contain four steps each. They are defined: normal, above normal, much above normal and extraordinary above normal or normal, below normal, much below normal and extraordinary below normal. The examples by observations of Meteorological Observatory in Belgrade are presented.

  3. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China

    Science.gov (United States)

    Li, Y.; Zheng, J.; Wang, W.; Xiong, Q.

    2015-12-01

    The Archean Kongling Complex in the northern Yangtze Craton is an ideal target to investigate the Precambrian accretion and evolution of continental crust in South China. This study aims to unravel the crustal evolution and tectonic setting of the Yangtze Craton during the Paleoproterozoic time, using integrated studies of petrography, zircon U-Pb and Hf isotopes and whole-rock geochemistry of Paleoproterozoic metapelitic rocks in the Kongling Complex. These rocks contain garnet, sillimanite, biotite, plagioclase, minor graphite and ilmenite. Zircons from the samples show nebulous sector-zoning and rim-core structure, suggesting both metamorphic origin and detrital origin with metamorphic overprints. The metamorphic zircons and metamorphic overprints have concordant 207Pb/206Pb age at ~2.0 Ga, while detrital grains yield three distinct concordant-age populations of >2.5 Ga, 2.4-2.2 Ga and 2.2-2.1 Ga. The age patterns indicate that the depositional age of the metasedimentary rocks was 2.1-2.0 Ga. Those 2.2-2.1 Ga detrital zircons with variable ɛHf(t) values (-7.28 to 2.97) suggest the addition of juvenile materials from depleted mantle to the crust during 2.2-2.1 Ga. The 2.4-2.2 Ga zircons have Hf model ages (TDM2) of ~2.6-3.5 Ga and >2.5 Ga zircons have TDM2 ages varying from 2.9 Ga to 3.3 Ga. The new data suggest that the Kongling Complex was originally a Paleoarchean (old up to 3.5 Ga) continental nucleus, which experienced multiple episodes of growth and reworking events at 3.3-3.2 Ga, 2.9 Ga, 2.7-2.6 Ga, 2.4-2.2 Ga and 2.2-2.1 Ga. In combination with available data, the new results in this study suggest a continent-arc-continent evolution model to explain the tectonic evolution of the Yangtze Craton during the Paleoproterozoic time: the western margin of Yangtze Craton was originally an individual continent, which underwent a reworking event during 2.4-2.2 Ga and a crust growth event caused by continent-arc collision during 2.2-2.1 Ga; it subsequently collided

  4. The Integrated Space Weather Analysis System

    Science.gov (United States)

    Maddox, M. M.; Hesse, M.; Kuznetsova, M.; Rastaetter, L.; MacNeice, P. J.; Jain, P.; Garneau, J. W.; Berrios, D. H.; Pulkinnen, A.; Rowland, D.

    2008-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions is therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products, along with the lack of single-portal access, renders its practical use for space weather analysis and forecasting unfeasible. There exists a compelling need for accurate real-time forecasting of both large-scale and local space environments - and their probable impacts for missions. A vital design driver for any system that is created to solve this problem lies in the fact that information needs to be presented in a form that is useful and as such, must be both easily accessible and understandable. The Integrated Space Weather Analysis System is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system will be a turnkey, web-based dissemination system for NASA-relevant space weather information that combines forecasts based on the most advanced space weather models with concurrent space environment information. It will be customer configurable and adaptable for use as a powerful decision making tool offering an unprecedented ability to analyze the present and expected future space weather impacts on virtually all NASA human and robotic missions. We will discuss some of the key design considerations for the system and present some of the initial space weather analysis products that have been created to date.

  5. Projected Influences of Changes in Weather Severity on Autumn-Winter Distributions of Dabbling Ducks in the Mississippi and Atlantic Flyways during the Twenty-First Century

    OpenAIRE

    Notaro, Michael; Schummer, Michael; Zhong, Yafang; Vavrus, Stephen; Van Den Elsen, Lena; Coluccy, John; Hoving, Christopher

    2016-01-01

    Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a o...

  6. Provenance of Greenland Ice Sheet icebergs constrained by Ar-Ar radioisotope data from late glacial-early Holocene records

    Science.gov (United States)

    Knutz, P. C.; Storey, M.; Kuijpers, A.

    2009-12-01

    Radiogenic Ar-Ar dating of hornblende has been used to constrain the sources of ice-rafted detritus on the southwest Greenland margin and central Davis Strait. Single hornblende grains (total of 248) were picked from sand-size fractions of two marine cores, DA04-31P and TTR462G, covering the early Holocene to late glacial interval including Heinrich events (HE) 1-3. Paleoceanographic analyses of DA04-31P have indicated that the last deglaciation of the southern Greenland Ice Sheet occurred in multiple steps during the early deglacial/HE1, Allerød and early Holocene intervals (Knutz et al., in review). Each of these collapse stages were preceded by upper ocean warming related to enhanced Irminger Current activity. Pre-HE1, Allerød and Holocene hornblende samples show a bimodal signature of late Archean (2.5-3.0 Ga) and early Proterozoic (1.6-2.2 Ga) ages consistent with southern Greenland bedrock sources. In contrast hornblende grains from detrital carbonate HE layers and within the Younger Dryas interval show a dominant early Proterozoic spectrum that is similar to results obtained from the central North Atlantic IRD belt. The early Proterozoic age of Younger Dryas samples from the Davis Strait site and the high amounts of basalt in this core, presumably derived from the Disko-Nussuaq province, suggests that icebergs carrying Archean material from southern Greenland did not enter the Baffin Bay or at least not for this specific time interval. The conclusion of our study is that the Greenland Ice Sheet appears to have been a much larger contributor to non-Heinrich IRD in the North Atlantic than thought previously. P. C. Knutz, H. Ebbesen, S. Christiansen, M.-A. Sicre and A. Kuijpers. Multiple deglaciation steps of the southern Greenland Ice Sheet driven by vigorous Irminger Current: Significance for the Younger Dryas cooling. Submitted to Quaternary Science Reviews.

  7. Weather station with a web server

    OpenAIRE

    Repinc, Matej

    2013-01-01

    In this diploma thesis we present the process of making a cheap weather station using Arduino prototyping platform and its functionality. The weather station monitors current temperature, humidity of air and air pressure. The station has its own simple HTTP server that is used to relay current data in two different formats: JSON encoded data and simple HTML website. The weather station can also send data to a pre-defined server used for data collection. We implemented a web site where data an...

  8. The quiet revolution of numerical weather prediction

    Science.gov (United States)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  9. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  10. PRESIDENT MUSHARRAF: All Weather Friendship Keeps Rising

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Tangible Suggestions on Promoting All Weather Bilateral Trade I would first of all like to extend warm greetings from the people of Pakistan to the people of China on the 55th year of all weather friendship between our two countries and this all weather friendship will keep rising. Succeeding generations in both countries have ever since carefully nurtured this friendship which has blossomed into beautiful and all comprehensive partnership for peace and development. Pakistan China friendship is rooted in the ethos of our peoples.It evokes spontaneous love, respect, admiration and touches a receptive cord in every heart that resonates and energizes this unique relationship.

  11. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  12. Paleoproterozoic magmatism across the Archean-Proterozoic boundary in central Fennoscandia: Geochronology, geochemistry and isotopic data (Sm-Nd, Lu-Hf, O)

    Science.gov (United States)

    Lahtinen, Raimo; Huhma, Hannu; Lahaye, Yann; Lode, Stefanie; Heinonen, Suvi; Sayab, Mohammad; Whitehouse, Martin J.

    2016-10-01

    The central Fennoscandia is characterized by the Archean-Proterozoic (AP) boundary and the Central Finland Granitoid Complex (CFGC), a roundish area of approximately 40,000 km2 surrounded by supracrustal belts. Deep seismic reflection profile FIRE 3A runs across these units, and we have re-interpreted the profile and crustal evolution along the profile using 1.92-1.85 Ga plutonic rocks as lithospheric probes. The surface part of the profile has been divided into five subareas: Archean continent (AC) in the east, AP, CFGC, boundary zone (BZ) and the Bothnian Belt (BB) in the west. There are 12 key samples from which zircons were studied for inclusions and analyzed (core-rim) by ion probe for U-Pb dating and oxygen isotopes, followed by analyzes for Lu-Hf by LA-MC-ICP-MS. The AC plutonic rocks (1.87-1.85 Ga) form a bimodal suite, where the proposed mantle source for the mafic rocks is 2.1-2.0 Ga metasomatized lower part of the Archean subcontinental lithospheric mantle (SCLM) and the source for the felsic melts is related plume-derived underplated mafic material in the lower crust. Variable degrees of contamination of the Archean lower crust have produced "subduction-like" Nb-Ta anomalies in spidergrams and negative εNd (T) values in the mafic-intermediate rocks. The felsic AC granitoids originate from a low degree melting of eclogitic or garnet-bearing amphibolites with titanite ± rutile partly prevailing in the residue (Nb-Ta fractionation) followed by variable degree of assimilation/melting of the Archean lower crust. The AP plutonic rocks (ca. 1.88 Ga) can be divided into I-type and A-type granitoids (AP/A), where the latter follow the sediment assimilation trend in ASI diagram, have high δ18O values (up to 8‰) in zircons and exhibit negative Ba anomalies (Rb-Ba-Th in spidergram), as found in sedimentary rocks. A mixing/assimilation of enriched mantle-derived melts with melts from already migmatized sedimentary rocks ± amphibolites is proposed. The CFGC is

  13. Late-modern hipsters

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2014-01-01

    The article deals with the cultural significance of a new figure in late-modern Western culture: the hipster. The current hipster culture, so I argue, can be used as a magnifying glass that makes impending changes to our conception of culture and of cultural development visible. It ushers in broa...... redemptive gesture toward the objects of the recent past and its predilection for irony. The article seeks to unfold hipster culture and sociality in an ongoing dialogue with sociological theory in general and conventional ways of thinking subculture in particular....

  14. Late-onset hypogonadism

    Directory of Open Access Journals (Sweden)

    Piotr Dudek

    2017-06-01

    Full Text Available In Poland, the number of men over the age of 50 years exceeds 6 million. It is estimated that about 2-6% of this population develops symptoms of late-onset hypogonadism (LOH. In men, testosterone deficiency increases slightly with age. LOH is a clinically and biochemically defined disease of older men with serum testosterone level below the reference parameters of younger healthy men and with symptoms of testosterone deficiency, manifested by pronounced disturbances of quality of life and harmful effects on multiple organ systems. Testosterone replacement therapy may give several benefits regarding body composition, metabolic control, and psychological and sexual parameters.

  15. Powernext weather, benchmark indices for effective weather risk management; Powernext Weather, des indices de reference pour gerer le risque meteo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  16. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  17. The effect of weathering on U-Th-Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia

    Science.gov (United States)

    Pidgeon, R. T.; Nemchin, A. A.; Whitehouse, M. J.

    2017-01-01

    We report the result of a SIMS U-Th-Pb and O-OH study of 44 ancient zircons from the Jack Hills in Western Australia with ages ranging from 4.3 Ga to 3.3 Ga. We have investigated the behaviour of oxygen isotopes and water in the grains by determining δ18O and OH values at a number of locations on the polished surfaces of each grain. We have divided the zircons into five groups on the basis of their U-Th-Pb and OH-oxygen isotopic behaviour. The first group has concordant U-Th-Pb ages, minimal common Pb, δ18O values consistent with zircons derived from mantle source rocks and no detectable OH content. U-Th-Pb systems in zircons from Groups 2, 3 and 4 vary from concordant to extremely discordant where influenced by cracks. Discordia intercepts with concordia at approximately zero Ma age are interpreted as disturbance of the zircon U-Th-Pb systems by weathering solutions during the extensive, deep weathering that has affected the Archean Yilgarn Craton of Western Australia since at least the Permian. Weathering solutions entering cracks have resulted in an influx of Th and U. δ18O values of Group 2 grains fall approximately within the "mantle" range and OH is within background levels or slightly elevated. δ18O values of Group 3 grains are characterised by an initial trend of decreasing δ18O with increasing OH content. With further increase in OH this trend reverses and δ18O becomes heavier with increasing OH. Group 4 grains have a distinct trend of increasing δ18O with increasing OH. These trends are explained in terms of the reaction of percolating water with the metamict zircon structure and appear to be independent of analytical overlap with cracks. Group five zircons are characterised by U-Pb systems that appear to consist of more than one age but show only minor U-Pb discordance. Nevertheless trends in δ18O versus OH in this group of grains resemble trends seen in the other groups. The observed trends of δ18O with OH in the Jack Hills zircons are similar

  18. Improving Local Weather Forecasts for Agricultural Applications

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    For controlling agricultural systems, weather forecasts can be of substantial importance. Studies have shown that forecast errors can be reduced in terms of bias and standard deviation using forecasts and meteorological measurements from one specific meteorological station. For agricultural systems

  19. Space weather research and forecast in USA

    CERN Document Server

    Pevtsov, Alexei A

    2016-01-01

    In the United States, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For commercial purposes, space weather forecast is made by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observations come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in the framework of individual research projects. Later, the most promising models are selected for additional testing at SWPC. In order to increase the application of models in research and education, NASA in collaboration with other agencies created Community Coordinated Modeling Center (CCMC). In mid-1990, US scientific community presented compelling evidence for developing the National Program on Space Weather, and in 1995, such program has been formally created...

  20. Improving Local Weather Forecasts for Agricultural Applications

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    For controlling agricultural systems, weather forecasts can be of substantial importance. Studies have shown that forecast errors can be reduced in terms of bias and standard deviation using forecasts and meteorological measurements from one specific meteorological station. For agricultural systems

  1. Europe's First Space Weather Think Tank

    Science.gov (United States)

    Lilensten, Jean; Clark, Toby; Belehaki, Anna

    2004-04-01

    A new European intergovernmental action devoted to space weather has been recently approved. This paper describes the political and scientific context in which this action takes place, and the goals of this action, called COST 724.

  2. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    . The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence......We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile...

  3. CRADE OF SAND AND DUST STORM WEATHER

    Institute of Scientific and Technical Information of China (English)

    Niu Ruoyun; Tian Cuiying; Bi Baogui; Yang Keming; Wang Youheng; Tuo Ya; Ding Haifang; Zhang Tairen

    2011-01-01

    Background Sand and dust storm,as one of the main disastrous weathers that affect northern China,not only affect the people health and normal life,but cause the short-term climatic changes due to the direct and indirect radiation of the earth-atmosphere system through the dust floating in the sky.The sand end dust weather and its potential harm on the national economy,ecological environment,social activities and other aspects have aroused worldwide concern.

  4. Space Weather Gets Real—on Smartphones

    Science.gov (United States)

    Tobiska, W. Kent; Crowley, Geoff; Oh, Seung Jun; Guhathakurta, Madhulika

    2010-10-01

    True to the saying that "a picture is worth a thousand words," society's affinity for visual images has driven innovative efforts to see space weather as it happens. The newest frontiers of these efforts involve applications, or apps, on cellular phones, allowing space weather researchers, operators, and teachers, as well as other interested parties, to have the ability to monitor conditions in real time with just the touch of a button.

  5. Key findings of the national weatherization evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.

    1994-10-01

    In 1990, the U.S. Department of Energy sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation`s largest residential energy conservation program. The primary goal of the evaluation was to establish whether the Program meets the objectives of its enabling legislation and fulfills its mission statement, to reduce the heating and cooling costs for low-income families-particularly the elderly, persons with disabilities, and children by improving the energy-efficiency of their homes and ensuring their health and safety. Oak Ridge National Laboratory managed a five-part study which produced a series of documents evaluating the Program. The objective of this document is to summarize the findings of the five-part National Weatherization Evaluation. The five studies were as follows: (1) Network Study-this study characterized the weatherization network`s leveraging, capabilities, procedures, staff, technologies, and innovations; (2) Resources and Population Study-this study profiled low-income weatherization resources, the weatherized population, and the population remaining to be served; (3) Multifamily Study-this study described the nature and extent of weatherization activities in larger multifamily buildings; (4) Single-family Study-this study estimated the national savings and cost- effectiveness of weatherizing single-family and small multifamily dwellings that use natural gas or electricity for space heating; (5) Fuel-Oil Study-this study estimated the savings and cost-effectiveness of weatherizing single-family homes, located in nine northeastern states, that use fuel oil for space heating. This paper provides a brief overview of each study`s purposes, research methods and most important findings.

  6. Dew architectures - Dew annouces the good weather

    OpenAIRE

    Beysens, Daniel; Broggini, Filippo; Milimouk-Melnytchouk, Iryna; Ouazzani, Jalil; Tixier, Nicolas

    2012-01-01

    International audience; Dew is a natural phenomenon that occurs under particular weather conditions (clear nocturnal sky, humid air, low wind) and on a surface specially designed for this purpose (high radiative cooling properties, special architectural design). Depending on the weather conditions and the surface characteristics, the water yield can give up to 0.7 litres per square meter and per night. Although the collection of rain water on roof turns out to be relatively simple, dew harves...

  7. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    monsoon and b) tropical cyclones. Basically the climate of India is domi- nated by the south west monsoon season which accounts for about 75% of the annual rainfall. The extreme weather events occur over India are: Floods, Droughts, Tropical Cyclones..., Heat Waves and Cold Waves, Storms Surges, Hail Storms, Thunderstorms, Dust Storms. Floods, droughts and tropical cyclones have specific significance a far as India is concerned. Floods and droughts are the two sides of the weather phenomena...

  8. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  9. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  10. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  11. Development of a Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  12. Operational Space Weather in USAF Education

    Science.gov (United States)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  13. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  14. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  15. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. [Economic Opportunity Research Inst., Washington, DC (United States); Witherspoon, M.J. [National Association for State Community Service Programs, Washington, DC (United States); Brown, M.A. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    This study is one of five parts of the US Department of Energy`s national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  16. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. (Economic Opportunity Research Inst., Washington, DC (United States)); Witherspoon, M.J. (National Association for State Community Service Programs, Washington, DC (United States)); Brown, M.A. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    This study is one of five parts of the US Department of Energy's national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  17. Weather Regime-Dependent Predictability: Sequentially Linked High-Impact Weather Events over the United States during March 2016

    Science.gov (United States)

    Bosart, L. F.; Winters, A. C.; Keyser, D.

    2016-12-01

    High-impact weather events (HWEs), defined by episodes of excessive precipitation or periods of well above or well below normal temperatures, can pose important predictability challenges on medium-range (8-16 day) time scales. Furthermore, HWEs can contribute disproportionately to temperature and precipitation anomaly statistics for a particular season. This disproportionate contribution suggests that HWEs need to be considered in describing and understanding the dynamical and thermodynamic processes that operate at the weather-climate intersection. HWEs typically develop in conjunction with highly amplified flow patterns that permit an extensive latitudinal exchange of polar and tropical air masses. Highly amplified flow patterns over North America often occur in response to a reconfiguration of the large-scale upstream flow pattern over the North Pacific Ocean. The large-scale flow pattern over the North Pacific, North America, and western North Atlantic during the latter half of March 2016 was characterized by frequent cyclonic wave breaking (CWB). This large-scale flow pattern enabled three sequentially linked HWEs to develop over the continental United States. The first HWE was a challenging-to-predict cyclogenesis event on 23-24 March in the central Plains that resulted in both a major snowstorm along the Colorado Front Range and a severe weather outbreak over the central and southern Plains. The second HWE was a severe weather outbreak that occurred over the Tennessee and Ohio River Valleys on 27-28 March. The third HWE was the development of well below normal temperatures over the eastern United States that followed the formation of a high-latitude omega block over northwestern North America during 28 March-1 April. This study will examine (1) the role that CWB over the North Pacific and North America played in the evolution of the flow pattern during late-March 2016 and the development of the three HWEs and (2) the skill of GFS operational and ensemble

  18. The Late-Pleistocene sedimentation history in the Eastern Arabian Sea: Climate Weathering-Productivity linkage

    Digital Repository Service at National Institute of Oceanography (India)

    Chodankar, A.R.

    -interglacial climate cycles was extensive waxing and waning of the continental ice sheets resulting in fall and rise of the global sea level, which have further modified the continental and oceanic climate set-up. For instance, during the last glacial maximum (LGM... of planktonic foraminifera indicate the temperature of the seawater in which they lived. With each 1? C fall in ambient water temperature, the ? 18O of planktonic calcite was shown to increase by 0.2 ?. Fluctuations in the oxygen isotopic ratios and major...

  19. Never too late.

    Science.gov (United States)

    1996-11-01

    Motivated by the belief that education has been central to Japan's economic success, Japan International Cooperation Agency (JICA) promotes universal access to quality basic education. In developing countries, school children rarely learn science through experiments. A new JICA training course, the Science Experiment in Primary Education, involved teacher trainers from Bangladesh, Myanmar, Pakistan, and Sri Lanka. Physics, chemistry, biology, geology, and astronomy experiments that require simple, inexpensive materials were taught. Another JICA project in Satkhira, Bangladesh, sought to raise the economic status of women enrolled in a dressmaking program through a year-long evening literacy class at three sites. Elementary school diplomas (available with proof to a local teacher of basic literacy and minimal arithmetic skills) are required in Bangladesh to apply for nongovernmental organization-initiated vocational schools and loans to start businesses in areas such as dressmaking, agriculture, and livestock raising. By late 1993, the female literacy program had expanded to 18 villages.

  20. Late-Modern Symbolism

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2015-01-01

    Through analysis of key texts, I seek to demonstrate the explanative potential of Durkheim’s sociology of religion in the present context. I critically readdress the idea, found in his early work, that modernity is characterized by a rupture with pre-modern forms of solidarity. First, I investigate...... the ways in which Durkheim sets up a stark distinction between the pre-modern and the modern in his early work, and how this distinction is further cemented by his orthodox critique of the modern economy and its negative effects on social life. Second, I show how another timeless and positive understanding...... of “mechanical” solidarity is to be found behind the “symbolist” template crystalizing in Durkheim’s late work. Third, I develop this template for a modern context by critically addressing and removing other obstacles and prejudices on Durkheim’s part....