WorldWideScience

Sample records for lasl respirator research

  1. Publications of LASL research

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    LASL now devotes about one-half of its total effort to unclassified research exploring several peaceful applications of nuclear and other forms of energy. LASL research covers a broad spectrum, ranging from medium-energy, low-energy, and high-energy nuclear physics research to programs involving medical and biological effects of radiation and basic work in molecular and cellular biology. Major nonweapons research activities at Los Alamos involve energy research in fields such as superconducting electrical energy transmission and storage, solar and geothermal energy development, laser fusion research and laser isotope separation, and controlled thermonuclear research using magnetic confinement. Facilities used in such research at the Laboratory include specialized laboratories, a nuclear reactor designed for a variety of experiments, particle accelerators such as the 24-MeV Van de Graaff and LAMPF, Scyllac, and a central computing facility. LASL, as of 1977, employed about 6,000 persons, about one-third of whom are scientists and engineers. The total operating costs are about $250 million per year. (RWR)

  2. Publications of LASL research, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.K.; Salazar, C.A. (comps.)

    1980-04-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1978. Papers published in 1978 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. Publications by LASL authors that are not records of Laboratory-sponsored work are also included.

  3. Publications of LASL research, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.K.; Salazar, C.A. (comps.)

    1980-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1979. Papers published in 1979 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. The entries are arranged in sections by broad subject categories. (RWR)

  4. Publications of LASL research, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, A.K. (comp.)

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)

  5. Publications of LASL research, 1972--1976

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, L. (comp.)

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)

  6. LASL nuclear rocket propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.E.

    1956-04-01

    The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

  7. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  8. E-Division semiannual report, January 1--June 30, 1978. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-10-01

    The status of the programs and projects of the Electronics Division is reported for the period of January through June 1978. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to Los Alamos Scientific Laboratory (LASL) and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for LASL programs. Most of the individual reports are quite short; however, significant amounts of information are given in the area of detector research and development. 52 figures, 7 tables.

  9. Photoluminescent colloidal Cu@C-NPs suspensions synthesized by LASL

    Science.gov (United States)

    Reyes-Contreras, D.; González-Aguilar, M. A.; Camacho-López, M. A.; Vigueras-Santiago, E.; Camacho-López, M.

    2017-05-01

    In this work we report the synthesis of photoluminescent carbon-coated copper nanoparticles (Cu@C-NPs) based colloidal suspensions, using the laser ablation of solids in liquids technique (LASL). LASL experiments were carried out by ablating a Cu solid target immersed in acetone as the liquid medium with ns-laser pulses (1064 nm) of a Nd-YAG laser. In all experiments the per pulse laser fluence and the repetition rate frequency were kept constant and the ablation time was varied. The as obtained Cu@C-NPs suspensions were optically characterized with absorption and photoluminescence spectroscopies. Raman spectroscopy was used to give evidence of the carbon shell deposited around the Cu NPs. TEM results showed that 10 nm spheroids Cu@C-NPs were obtained. The as obtained Cu@C-NPs suspensions displayed out a PL emission band similar to that for carbon nanoparticles suspensions obtained by the same technique. We have found that the blue-green PL emission band intensity is mainly dependent on the ablation and aging time of the samples. The Cu@C-NPs-based colloidal suspensions can be proposed as multifunctional due to its absorbance and emission properties.

  10. Analysis on personality traits in patients undergoing LASlK%LASlK手术患者人格特征分析

    Institute of Scientific and Technical Information of China (English)

    王泳; 彭亮红; 邹秀兰; 韩苏宁

    2014-01-01

    AlM: To analyze personality traits in preoperative patients who undergolaser in situ keratomileusis ( LASlK) and to provide psychological basis for the selection of refractive surgery. METHODS: Eligible patientswere seeking customized LASlK (group A n=53), conventional LASlK(group B n=75)and non-operation patients with ametropia (group C n=71 ) , who completed 16 personality factor questionnaires (16PF). Statistical analyses were performed with one-way ANOVA by SPSS11. 0 software package. RESULTS: Compared to group C, patients in group A scored high on dominance and tension levels, and low on emotional stability level(P  方法:选择53例个体化LASIK手术患者( A组)、75例标准LASIK手术患者( B组)及71例屈光不正非手术患者(C组),采用卡特尔16种个性因素测验(16PF),对三组患者进行个体测试并运用SPSS 11.0统计软件对数据进行单向方差分析。  结果:与C组比较,A组患者持强性和紧张性因素的得分显著偏高,稳定性因素得分偏低,差异有统计学意义(P<0.05),而B组患者敢为性和实验性因素得分偏高,怀疑性因素得分偏低,差异显著(P<0.05)。 A,B两组比较,持强性、敢为性和怀疑性因素得分有显著差异(P<0.05)。结论:LASIK手术患者具有特殊人格特征,固执己见,遇事多疑的患者更趋于选择个体化手术方式,手术前应采用适当心理评估。

  11. Soil Respiration in Eddy Covariance Footprints: A Critical Look at Researcher Needs

    Science.gov (United States)

    Gabriel, Carrie-Ellen; Nickerson, Nick; Creelman, Chance

    2017-04-01

    Eddy covariance (EC) systems have been widely used across the globe for more than 20 years, offering researchers invaluable measurements of parameters including Net Ecosystem Exchange and ecosystem respiration. However, recent research suggests that EC assumptions and technical obstacles may cause biased gas exchange estimates. Measurements of soil respiration (RS) at the ground level may help alleviate these biases; for example, by allowing researchers to reconcile nocturnal EC flux data with soil respiration or by providing a means to inform gap-filling models. RS measurements have been used sparingly alongside EC towers because of the large cost required to scale chamber systems to the EC footprint, as well as data integration and processing burdens. Here we present how the Forced Diffusion (FD) method is ideal for the measurement of RS at EC sites. The FD method allows for inexpensive and autonomous measurements, providing a scalable approach to matching the EC footprint compared to other RS systems. Here, we briefly present the methodology and results from a pilot study at the Howland Forest AmeriFlux site (Maine), carried out during the summer and fall of 2016, measuring soil respiration using the FD chamber technique. The emphasis of the remainder of the research is on gathering, interpreting and actualizing feedback from soil scientists and eddy covariance researchers and technicians on aspects of the FD methodology, deployment style, integration with existing infrastructure and data quality. Our goal is to eventually provide a framework for "ideal soil respiration measurements" that can be used by researchers, engineers and companies to develop functional and reliable soil respiration data sets that are easily coupled with data measured by EC users, and larger EC networks such as AmeriFlux and EuroFlux.

  12. LASL thermochemical hydrogen status on September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1979-01-01

    The work described in this report was accomplished during the period October 1, 1978 to September 30, 1979. Most of the effort was applied to a study of the Los Alamos Scientific Laboratory (LASL) hybrid bismuth sulfate cycle. The work included a conceptual design of the cycle and experimental work to verify the design conditions. Key findings were: a 50.8% efficiency was obtained when an improved cycle design was coupled to a fusion energy source at 1500 K; experimental results showed an endothermic heat requirement of +172 kJ/mol for the decomposition of Bi/sub 2/O/sub 3/.2SO/sub 3/ to Bi/sub 2/O/sub 3/.SO/sub 3/, and SO/sub 3/; reaction times for bismuth sulfate decomposition were determined as a function of temperature. At 1240 K, < 1.5 min were required for the first two stages of decomposition from Bi/sub 2/O/sub 3/.3SO/sub 3/ to Bi/sub 2/O/sub 3/; tests made to determine the feasibility of decomposing Bi/sub 2/O/sub 3/.2SO/sub 3/ in a 1 inch diameter rotary kiln showed that Bi/sub 2/O/sub 3/.2SO/sub 3/ could be decomposed continuously. In related work, support was given to the DOE Thermochemical Cycle Evaluation Panel (Funk). The Second Annual International Energy Agency (IEA) Workshop on Thermochemical Hydrogen Production from Water met on September 24 to 27, 1979 at Los Alamos.

  13. Energy Research and Development Administration, Division of Safety, Standards, and Compliance respirator manual

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.D.; Hack, A.L.; Held, B.J.; Revoir, W.H.

    1976-05-01

    The manual has been prepared to provide technical information for contractors of the Energy Research and Development Administration (ERDA) on the application of respiratory protective devices for protection against airborne contaminants, both radioactive and nonradioactive. The various elements of a respirator program including selection and maintenance of equipment and training of personnel are described to assist in establishing adequate programs.

  14. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  15. Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site

    Science.gov (United States)

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.

    2015-01-01

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site. PMID:25874721

  16. Systems, Analysis, and Assessment. Progress report, April--June 1978. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Ronquillo, E.A. (comp.)

    1978-10-01

    On April 1, 1978, Group Q12 became S Division: Systems, Analysis, and Assessment. The new division was formed to provide a division-level focal point for interdisciplinary systems, analysis, and assessment activities at LASL. It is chartered to conduct both qualitative and quantitative analysis and assessment, and its capabilities are being broadened to include technology assessment and environmental assessment functions. Initially, the new division has two groups: S-1, Statistics; and S-2, Energy Systems and Economic Analysis. This report synopsizes the activities of the new division, by group, for the April--June 1978 period. The S-1 group continued in its numerous statistical activities, which included applying principal component analysis to both the Lubbock and Plainview, Texas, quadrangles; completing the second phase of a study comparing sensitivity measures for the Transient Reactor Analysis Code; delving into ways of reducing the number of computer runs required for sensitivity analysis; completing the LASL equipment and utilities survey; and initiating the sensitivity analysis of large, energy-related computer models. Group S-2 endeavored to analyze the environmental and economic impacts of various energy technologies. A major highlight of the quarter was the release of the preliminary findings of the comparative study of large versus small power plants in the West. The S Division staff also was called upon this quarter to format and publish a newsletter for the Western Information Network on Energy.

  17. Research by NIOSH for controlling respirable dust and methane gas on continuous miner faces

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, G.V.R.; Taylor, C.D.; Colinet, J.F.; Thimons, E.D. [National Institute for Occupational Safety and Health, Pittsburgh, PA (USA). Pittsburgh Research Laboratory, Dust and Toxic Substances Control Branch

    2001-07-01

    The importance of controlling respirable dust and methane gas levels in underground coal mining cannot be underestimated. While respirable dust can significantly affect the occupational health of underground coal miners, methane gas accumulations pose significant safety concerns for these same workers. Water sprays and machine mounted dust scrubbers offer effective control of respirable dust exposures and methane gas accumulations. Water must not only be applied carefully to avoid dust rollback to the machine operator but must create sufficient turbulence to remove dead zones that could contain high concentrations of methane gas. While the flooded-bed dust scrubber has been generally responsible for decreased worker exposures to respirable dusts, this device has proved effective in controlling methane levels at the face. This paper reviews practical applications of water sprays and dust scrubbers to control respirable dust and methane gas on continuous miner faces. 15 refs., 6 figs.

  18. Research of the diurnal soil respiration dynamic in two typical vegetation communities in Tianjin estuarine wetland

    Science.gov (United States)

    Zhang, Q.; Meng, W. Q.; Li, H. Y.

    2016-08-01

    Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.

  19. Summary documentation of LASL nuclear data evaluations for ENDF/B-V

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G. (comp.)

    1979-01-01

    Summaries are presented of nuclear data evaluations performed at Los Alamos Scientific Laboratory (LASL) that will comprise part of Version V of the Evaluated Nuclear Data File, ENDF/B. A total of 18 general purpose evaluations of neutron-induced data are summarized, together with 6 summaries directed specifically at covariance data evaluations. The general purpose evaluation summaries cover the following isotopes: /sup 1 -3/H, /sup 3/ /sup 4/He, /sup 6/ /sup 7/Li, /sup 10/B, /sup 14/ /sup 15/N, /sup 16/O, /sup 27/Al, /sup 182/ /sup 183/ /sup 184/ /sup 186/W, /sup 233/U, and /sup 242/Pu. The covariance data summaries are given for /sup 1/H, /sup 6/Li, /sup 10/B, /sup 14/N, /sup 16/O, and /sup 27/Al. 28 figures.

  20. Lessons Learned From Recent Research on Internal CO2 Transport in Trees. Part II, Recycling of Respired CO2

    Science.gov (United States)

    McGuire, M. A.; Bloemen, J.; Aubrey, D. P.; Steppe, K.; Teskey, R. O.

    2016-12-01

    It has long been known that photosynthesis in woody tissues can provide substantial contributions to tree carbon economy in species with green bark, for example in the high-latitude species Populus tremuloides and the desert genus Cercidium. In addition, in the last half of the prior century, the capacity to re-assimilate xylem-transported CO2 was shown in leaves and small stems of trees, although little research has been conducted until recently. It is likely that recycling of respired CO2 occurs in leaves and branches of all woody plants and also in large stems of many species. Re-assimilation of respired CO2 may be especially important to the carbon economy of trees during periods of stress because some constraints to carbon gain from the atmosphere are absent in recycling processes; most importantly, acquisition of CO2 is not limited by leaf abscission or stomatal closure as long as respiration continues. The ability to quantify the re-assimilation of xylem-transported CO2 has emerged only in the last decade. Here, we will review newly developed measurement techniques and recent data from several research groups. Factors affecting the re-assimilation capacity of woody plant tissues will be discussed, including light environment, light penetration, chlorophyll content, xylem CO2 concentration, transpiration rate, tissue age, and species. Two main research paths have emerged for measuring re-assimilation of respired CO2: the first involves measuring the fate of isotope-labeled dissolved CO2 in the transpiration stream and the second compares growth of shaded vs. non-shaded woody tissues. Gas exchange measurements have been used to verify both techniques. In experiments on multiple species, isotope labeling has shown that up to 35% of transported CO2 was re-assimilated and shading has shown that up to 30% of carbon needed for stem growth can be provided by woody tissue photosynthesis. We suggest that the role of recycling of xylem-transported respired CO2 in plant

  1. Differences between LASL- and ANL-processed cross sections. [MINX/1DX vs ETOE-2/MC/sup 2/-2

    Energy Technology Data Exchange (ETDEWEB)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC/sup 2/-2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis.

  2. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott D [Mississippi State Univ., Mississippi State, MS (United States)

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  3. LASL Controlled Thermonuclear Research Program. Progress report, January--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.S. (comp.)

    1978-03-01

    This annual progress report is divided into the following sections: (1) Scyllac feedback sector experiments, (2) staged theta-pinch program, (3) toroidal reverse-field pinch, (4) Scylla IV-P linear theta-pinch experiments, (5) gun injection experiment, (6) Scylla I-C, laser-plasma interaction studies, (7) field reversal theta pinch, (8) Implosion Heating Experiment, (9) experimental plasma physics, (10) plasma diagnostics, (11) high-beta tokamak, (12) theory, (13) computers, (14) engineering, (15) magnetic energy transfer and storage, (16) magnetic confinement systems studies, and (17) intense neutron source facility. (MOW)

  4. LASL: controlled thermonuclear research program. Progress report, January--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.S.; Sawyer, G.A.

    1979-02-01

    Information is included for each of the following sections: (1) reversed-field pinch program, (2) Scyllac feedback stabilization experiments, (3) Scylla IV-P linear theta pinch experiments, (4) staged theta pinch, (5) field-reversal experiment, (6) implosion heating experiment, (7) fast liner experiment, (8) gun injection experiment, (9) experimental plasma physics, (10) high-density z-pinch, (11) plasma diagnostics, (12) theory, (13) computers, (14) magnetic energy transfer and storage, (15) systems studies, (16) engineering, and (17) tritium systems test assembly. (MOW)

  5. 氮素添加对土壤呼吸影响的研究进展%Research progress and prospect of nitrogen fertilization on soil respiration

    Institute of Scientific and Technical Information of China (English)

    陈骥; 曹军骥; 刘玉; 张宝成; 魏永林; 马宗泰; 朱宝文

    2013-01-01

    As two of the substantial processes of terrestrial ecosystem,carbon cycle and nitrogen cycle are closely related.Soil respiration is an important indicator of terrestrial ecosystem carbon cycle,it is also a major exchange channel between terrestrial ecosystem and atmosphere.The use of fossil fuels and fertilizers has in-creased the amount of biological reactive nitrogen in the atmosphere in recent decades.As a consequence,differ-ent terrestrial ecosystems make various response to this enhanced nitrogen addition.This paper synthesized the effects of nitrogen addition on soil respiration in different terrestrial ecosystems,and analyzed the uncertainties of soil respiration in response to nitrogen addition,and then explored the focus of future researches.%碳、氮循环是陆地生态系统化学循环和能量流动的两大重要过程,二者紧密相连;土壤呼吸是陆地碳循环的重要过程,也是陆地生态系统与大气之间进行交换的主要途径。由于施肥等人为因素导致了陆地生态系统氮素的增加。不同陆地生态系统对这一过程做出了不同的响应。综述了不同生态系统土壤呼吸对模拟氮沉降的响应方式和机理,分析了氮素添加对土壤呼吸影响的不确定性,并在此基础上对未来研究方向进行了探讨和展望。

  6. Nuclear safeguards research and development program. Status report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, J.L. (comp.)

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer.

  7. E-Division semiannual report. Progress report, December 1, 1976--May 30, 1977. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1977-11-01

    Detector research and development are described first. Then, briefer reports are given on research on the following topics: electronic temperature monitoring and identification for livestock, electromagnetic probing (for fracture mapping), fiber optics for downhole instrumentation (for weapons testing), adaptive control applied to HVAC systems, energy environmental simulator, and high-temperature electronics. Engineering support (development projects, program support, instrumentation support) and technical services (general group activities, recharge programs, research and development programs, minicomputer maintenance, information and training services) are sketched. The report is basically administrative in nature, with a minimum of technical material. 47 figures, 10 tables. (RWR)

  8. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  9. Rapid excavation by rock melting (LASL Subterrene Program). Status report, September 1973--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hanold, R.J. (comp.)

    1977-02-01

    Research was directed at establishing the technical and economic feasibility of excavation systems based upon the rock-melting (Subterrene) concept. A series of electrically powered, small-diameter prototype melting penetrators was developed and tested. Research activities include optimizing penetrator configurations, designing high-performance heater systems, and improving refractory metals technology. The properties of the glass linings that are automatically formed on the melted holes have been investigated for a variety of rocks and soils. Thermal and fluid-mechanics analyses of the melt flows were conducted with the objective of optimizing penetrator designs. Field tests and demonstrations of the prototype devices continue to be performed in a wide range of rock and soil types. Primary emphasis was placed on the development of a penetrator designed for more economical extraction of geothermal energy and of small-diameter penetrators which can be utilized in support of geothermal energy exploration programs. Optimization of well design, the trade-off of advance rate with operating life, the advantages of using the melt-glass hole casing for well-bore seal-off, rig automation, and the benefits which result from the insensitivity of rock melting to formation temperatures and geologic variations were also studied. Subsystem hardware development was directed toward resolution of critical technical questions related to penetrators for dense rock, debris handling, electrical heater configuration, and establishing penetrator life. Laboratory experiments and field tests provide data for final system design optimizations and indicate proof of applicability of the concept to a geothermal well hole-forming system. A field test unit to form relatively shallow vertical holes for heat flow surveys in support of geothermal exploration studies has been designed, fabricated, and field tested.

  10. Toward a general evaluation model for soil respiration (GEMSR)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil respiration is an important component of terrestrial carbon budget. Its accurate evaluation is es- sential to the study of terrestrial carbon source/sink. Studies on soil respiration at present mostly focus on the temporal variations and the controlling factors of soil respiration, but its spatial variations and controlling factors draw less attention. Moreover, the evaluation models for soil respiration at present include only the effects of water and heat factors, while the biological and soil factors controlling soil respiration and their interactions with water and heat factors have not been considered yet. These models are not able to accurately evaluate soil respiration in different vegetation/terrestrial ecosystems at different temporal and spatial scales. Thus, a general evaluation model for soil respiration (GEMSR) including the interacting meteorological (water and heat factors), soil nutrient and biological factors is suggested in this paper, and the basic procedure developing GEMSR and the research tasks of soil respiration in the future are also discussed.

  11. Toward a general evaluation model for soil respiration (GEMSR)

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangSheng; JIA BingRui; HAN GuangXuan; ZHOU Li

    2008-01-01

    Soil respiration is an important component of terrestrial carbon budget. Its accurate evaluation is essential to the study of terrestrial carbon source/sink. Studies on soil respiration at present mostly focus on the temporal variations and the controlling factors of soil respiration, but its spatial variations and controlling factors draw less attention. Moreover, the evaluation models for soil respiration at present include only the effects of water and heat factors, while the biological and soil factors controlling soil respiration and their interactions with water and heat factors have not been considered yet. These models are not able to accurately evaluate soil respiration in different vegetation/terrestrial ecosystems at different temporal and spatial scales. Thus, a general evaluation model for soil respiration (GEMSR)including the interacting meteorological (water and heat factors), soil nutrient and biological factors is suggested in this paper, and the basic procedure developing GEMSR and the research tasks of soil respiration in the future are also discussed.

  12. Laser fusion program at LASL. Progress report, January 1--June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Stark, E.

    1976-11-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. The Single-Beam System continued to be used in target experiments at a peak intensity of 7 x 10/sup 14/ W/cm/sup 2/, and the system was improved. The status of the Two-Beam System, on which target experiments have begun with 300-J, 1-ns pulses in one beam, is described. Construction and checkout of the Eight-Beam System are continuing. Further design studies for the High-Energy Gas Laser Facility and the initiation of a prototype program are reported. The rare-gas oxides and dimeric mercury were emphasized in investigations into new lasers for fusion research. Experimental kinetics studies, a study of heat-pipe containment of metal vapors, theoretical support, and optical-damage investigations are described. Significant experimental and theoretical results are reported on the question of wavelength-scaling in laser-plasma interaction physics. Studies of vacuum insulation as a means of preventing target preheat by hot electrons are also summarized. Analyses of the ponderomotive force in laser-plasma interactions and of the relationship between x-ray spectrum and suprathermal electron distribution are described. Improvements to the MCRAD and LASNEX design codes are outlined, and a LASNEX analysis of a target heated by laser-generated fast ions is discussed. Improved methods of screening, characterizing, and fabricating microballoons and more complex targets are described, and progress in applying uniform layers of DT ice on the inside of a microballoon is reported. Improvements in diagnostics include x-ray streak photographs, the fabrication of x-ray microscope systems, and x-ray film imaging. New results in our feasibility and systems studies are presented, including the wetted-wall and magnetically protected reactor concepts, the effect of ionized debris on cavity walls, the fusion-fission breeder concept, and the production of synthetic fuels by fusion

  13. Laser Fusion Program at LASL. Progress report, July 1--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Skoberne, F. (comp.)

    1978-12-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Among the achievements discussed are an increase in on-target energy of the Two-Beam System to 375 J per beam; operation of one Eight-Beam System module at the design point of 1.2 kJ at a power of > 2 TW; and the on-schedule development of our 100- to 200-TW laser Antares. Target designs based on the LASNEX code incorporating new theoretical insights are described, culminating in a double-shell exploding-pusher target that attains a high degree of symmetry through hot-electron transport in an exploding outer shell. Studies of laser light absorption are outlined, which confirmed that the values for CO/sub 2/ are nearly identical to those obtained with Nd:glass lasers. Unique diagnostics are described, which allow one to measure properties of x-ray emission not previously accessible, and which provide absorption data of sufficient accuracy for direct comparison with theory. Finally, various feasibility and systems studies are summarized, such as the successful modeling of short-pulse amplification in large three-pass CO/sub 2/ laser amplifiers, as verified experimentally.

  14. Laser fusion program at LASL. Progress report, January 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Skoberne, F.; Stark, E. (comp.)

    1978-04-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Experiments, which led to the generation of approximately 5 x 10/sup 5/ fusion neutron on our Two-Beam System in early 1977, with laser output powers of 0.16 to 0.4 TW, are described. These significant results and recent theoretical advancements indicate that the CO/sub 2/ laser is the driver of greatest promise for commercial laser fusion application. Initial test runs on the Eight-Beam System achieved an output energy of approximately 850 J with one beam of less than 1-ns duration, which makes us certain that the design goal of the system will be met on time. Antares, our 100- to 200-TW target irradiation system, is progressing on schedule. Very promising test results obtained on the prototype, as well as encouraging progress in optics development, are summarized. Modifications to the LASNEX code are described. Further progress in various target fabrication and nondestructive fuel-assay techniques is reported, and the development of new diagnostic tools is described. Among new tools are single-channel and four-channel x-ray diode assemblies, both using aluminum cathodes, to study the time history of soft x-ray emission; and a 10-..mu..m microscope, developed in-house, which aids us in verifying optimum target alignment and laser focusing. A design modification of the magnetically protected reactor cavity concept is being investigated.

  15. Synchronization of respiration

    NARCIS (Netherlands)

    Garssen, B.

    In order to study synchronization of respiration, three different videofragments were presented to 21 normal subjects. Each fragment showed a ‘therapeutic interview’ specially performed for this purpose, with a ‘patient’ breathing in a particular way. The respiration of model 1 was deep, slow and

  16. Research progress of the measurement technology for respiration signal%呼吸信号检测技术研究现状

    Institute of Scientific and Technical Information of China (English)

    张鹏飞; 张华; 拜军; 李岩峰; 荆西京; 路国华; 王健琪

    2012-01-01

    呼吸检测方法主要分为接触式和非接触式2大类.接触式检测方法包括容积式呼吸检测法、速度式呼吸检测法、温度检测法、位移检测法、阻抗检测法、可穿戴技术和睡眠床垫等.这些方法属于无创检测且技术成熟,但都需要电极或传感器直接或间接接触人体,使人体受到一定的约束或限制,不适合用于严重烧伤患者和新生儿的呼吸监测.非接触式检测利用电磁波、光等媒介,使用无需与人体接触的电极或传感器,可在人体自然状态下对呼吸信号进行非接触检测,特别是基于红外线和生物雷达的非接触检测方法,已成为国内外研究的热点,可用于临床、社区医疗及家庭监护.%The measurement methods of respiration can be mainly divided into contact and non-contact.Contact detection methods include volumetric flowmeter,velocity flowmeter,temperature detection,displacement detection,impedance detection,wearable technology and sleep mattress,etc.Although these methods are noninvasive and mature,they all require electrodes or sensors to touch the body of human subjects,which limit the users’ freedom and are not suitable for severely bumed patients and newborns.In non-contact monitoring,the respiration is measured by using the media such as electromagnetic waves,optical media,etc,and without any electrodes or sensors to touch the body whiles the human subject keeping natural status.Non-contact detection method using infrared and biological radar has been a research focus both at home and abroad,which can be used for clinical,community and family care.

  17. Respirator Fact Sheet

    Science.gov (United States)

    ... have expiration dates that should be checked before purchase. Also, over time your mask can get old ... Respirator Fact Sheet [PDF - 706 KB] Follow NIOSH Facebook Flickr Pinterest Twitter YouTube NIOSH Homepage NIOSH A- ...

  18. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  19. Impact of human activities on soil respiration:A review

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Soil respiration is one of the primary fluxes of carbon between soils and the atmosphere.It is produced by rhizosphere respiration and soil microbial respiration.Soil respiration is not only affected by environmental factors,but also changes with the hu-man-induced disturbances of ecosystems.Land-use,the measures of land management,the pollution of soil,and so on can affect soil respiration and change the soil efflux.According to some research,the authors summed up their impacts on soil respiration by human activities through land-use changes and land-management measures among agroecosystem,grassland ecosystem,and for-est ecosystem.The results showed that (1) when adding fertilization to farmland,the soil respiration will increase;(2) fenced land can decrease soil respiration,while soil respiration in the grazed land at a grassland ecosystem will decline with the increasing of grazing intensity;(3) with grassland fertilization;farmland cultivation;fire,fertilization,and cutting of forest,conflicting results were found in the changes of soil respiration.Perhaps plant species,site condition,and measurement season can lead to different results on soil respiration.

  20. Respiration the forgotten flux: new insights on ecosystem respiration and its global significance

    Science.gov (United States)

    Ballantyne, Ashley

    2017-04-01

    There is strong evidence that most of the variability in the global carbon cycle is due to processes occurring in the terrestrial biosphere; however, identifying these processes is extremely challenging. The two largest fluxes in the global carbon cycle are gross primary productivity and total respiration of the terrestrial biosphere. Considerable research has focused on factors controlling primary productivity, but total respiration has received much less attention. Here results are shared indicating that much of the previously identified variability in the global carbon cycle is due to the temperature sensitivity of respiration in the tropics. Furthermore, the recent acceleration in net terrestrial carbon uptake is due to diminished respiration during the recent warming hiatus. Lastly, total soil respiration at the global scale is sensitive to precipitation and soil moisture. I hypothesize that this reflects the sensitivity of autotrophic respiration to precipitation and the sensitivity of heterotrophic respiration to soil moisture. I am seeking creative ways in which to experimentally test this hypothesis through experimental manipulation or model simulation.

  1. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  2. Plankton respiration in the Eastern Atlantic Ocean

    Science.gov (United States)

    Robinson, Carol; Serret, Pablo; Tilstone, Gavin; Teira, Eva; Zubkov, Mikhail V.; Rees, Andrew P.; Woodward, E. Malcolm S.

    2002-05-01

    Concurrent measurements of dark community respiration (DCR), gross production (GP), size fractionated primary production ( 14C PP), nitrogen uptake, nutrients, chlorophyll a concentration, and heterotrophic and autotrophic bacterial abundance were collected from the upper 200 m of a latitudinal (32°S-48°N) transect in the Eastern Atlantic Ocean during May/June 1998. The mean mixed layer respiration rate was 2.5±2.1 mmol O 2 m -3 d -1 ( n=119) for the whole transect, 2.2±1.1 mmol O 2 m -3 d -1 ( n=32) in areas where chlorophyll a was dissolved oxygen consumption, was 0.8 ( n=11). At the time of the study, plankton community respiration exceeded GP in the picoautotroph dominated oligotrophic regions (Eastern Tropical Atlantic [15.5°S-14.2°N] and North Atlantic Subtropical Gyre [21.5-42.5°N]), which amounted to 50% of the stations sampled along the 12,100 km transect. These regions also exhibited high heterotrophic: autotrophic biomass ratios, higher turnover rates of phytoplankton than of bacteria and low f ratios. However, the carbon supply mechanisms required to sustain the rates of respiration higher than GP could not be fully quantified. Future research should aim to determine the temporal balance of respiration and GP together with substrate supply mechanisms in these ocean regions.

  3. The contribution of root respiration of Pinus koraiensis seedlings to total soil respiration under elevated CO2 concentrations

    Institute of Scientific and Technical Information of China (English)

    LIUYing; HANShi-jie; LIXue-feng; ZHOUYu-mei; ZHANGJun-hui; JIAXia

    2004-01-01

    The impacts of elevated atmospheric CO2 concentrations (500 IJmol.mol-land 700 μmol.mo1-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm laggedb ehind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol .m-2.s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8. respectivelv.

  4. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    Science.gov (United States)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  5. 冶金工厂呼吸性粉尘危害分布的研究%Research about harm distribution of respirable dust in metallurgy industry

    Institute of Scientific and Technical Information of China (English)

    康淑慧; 吴银林; 沈国强

    2001-01-01

    对7个钢铁公司25个工厂1 390个测点呼吸性粉尘最高容许浓度测定和游离二氧化硅含量进行分析,将呼吸性粉尘浓度分布分为三类,得出各类浓度分布柱状图和累积分布曲线,一、二、三类的呼吸性粉尘平均浓度分别为2.49 mg/m3、7.14 mg/m3和22.1 mg/m3。SiO2[F]含量的分布规律是<10%占73%,10%~50%占25.5%,>50%占1.5%。%Determining the highest permitted concentration of respirable dust and analyzing content of silicon dioxide in 1 390 determination spots in 25 plants in seven iron and steel corporations. Respirable dust density distribution is divided into 3 kinds,which can be draw various density distribution column charts and collective distribution charts,the first,second,third kind of average density distribution of respirable dust is 2.49 mg/m3,7.14 mg/m3,22.1 mg/m3.Distribution law of SiO2[F] content is less than 10%,73%;10%~50%,25.5%;more than 50%,1.5%.

  6. REGULATORY MECHANISMS OF CELLULAR RESPIRATION

    Science.gov (United States)

    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel

    1948-01-01

    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  7. Respiration in ocean margin sediments

    OpenAIRE

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data. In this thesis the depth dependence of respiration patterns was modelled using a compiled data set of sediment oxygen consumption rates. We showed that the depth relationship can best be described by a do...

  8. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan;

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still...... use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data...... use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration...

  9. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  10. Respiration in ocean margin sediments

    NARCIS (Netherlands)

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data. In this

  11. Respiration in ocean margin sediments

    NARCIS (Netherlands)

    Andersson, J.H.

    2007-01-01

    The aim of this thesis was the study of respiration in ocean margin sediments and the assessments of tools needed for this purpose. The first study was on the biological pump and global respiration patterns in the deep ocean using an empirical model based on sediment oxygen consumption data.

  12. Light respiration in Chlorella sorokiniana

    NARCIS (Netherlands)

    Kliphuis, A.M.J.; Janssen, M.G.J.; End, van den E.J.; Martens, D.E.; Wijffels, R.H.

    2011-01-01

    Respiration and photosynthesis are two important processes in microalgal growth that occur simultaneously in the light. To know the rates of both processes, at least one of them has to be measured. To be able to measure the rate of light respiration of Chlorella sorokiniana, the measurement of oxyge

  13. EarIy changes of anterior chamber parameters after FS-LASIK%飞秒 LASlK 术后早期前房参数的变化研究

    Institute of Scientific and Technical Information of China (English)

    程蕾; 朱冉; 王丹梅; 魏梅

    2015-01-01

      结论:飞秒LASIK术后早期引起前房参数变化,包括ACD变浅,ACV变小,但对周边前房角无明显影响,对屈光手术后行内眼手术患者有进一步指导作用。%· AlM: To investigate the changes of early anterior chamber parameters after femtosecond laser in -situ keratomileusis ( FS-LASlK) . ·METHODS:A total of 90 patients (90 eyes) in routine operation indications received FS-LASlK operation from January to June 2014 in our hospital were collected, including 47 males (47 eyes) , 43 females (43 eyes) , aged 18-33 years old (mean age 22.38±3.96 years).According to the diopter, the patients were divided into three groups:30 cases ( 30 eyes ) were in mild myopia group (group A) with diopter≤3D;30 cases (30 eyes) were in moderate myopia group ( group B) with diopter >3D and≤6D; 30 cases ( 30 eyes) were in high myopia group (group C) with diopter >6D.Pentacam measurements were used to measure the anterior chamber parameters including the changes of anterior chamber depth ( ACD) , anterior chamber volume ( ACV) , anterior chamber angle ( ACA ) before surgery and at 1, 3mo after surgery respectively. · RESULTS: All surgical procedures were performed successfully without complications. Compared with the value of ACD and ACV at pre-operation and 1, 3mo post-operation among groups A, B, C, there was statistically significant difference ( P0.05).However, in groups A, B and C, the value of ACA had no statistically significant difference ( P>0.05).Diopter had no obvious relevance with the changes of ACD, ACV, ACA values. · CONCLUSlON:The early changes of anterior chamber parameters after FS-LASlK, including that ACD become shallow, ACV become smaller, but there was no obvious effect on the peripheral anterior chamber angle.There will be a further instruction for those people who want to perform intraocular surgery after ocular refractive surgery.

  14. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  15. Do Tree Stems Recapture Respired CO2?

    Science.gov (United States)

    Hilman, B.; Angert, A.

    2016-12-01

    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  16. Respirable dust meter locates super polluters in traffic

    OpenAIRE

    Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows that some 5% of the seven or so million motor vehicles currently on the road in the Netherlands are responsible for over 40% of all respirable dust emitted by traffic. Although most of these super ...

  17. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  18. From breathing to respiration.

    Science.gov (United States)

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  19. Continuous respirable mine dust monitor development

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, B.K.; Williams, K.L.; Stein, S.W. [and others

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  20. Fundamental Medical and Engineering Investigations on Protective Artificial Respiration

    CERN Document Server

    Klaas, Michael; Schroder, Wolfgang

    2011-01-01

    This volume contains a collection of papers from the research program 'Protective Artificial Respiration (PAR)'. In 2005 the German Research Association DFG launched the research program PAR which is a joint initiative of medicine and fluid mechanics. The main long-term objective of this program is the development of a more protective artificial respiratory system to reduce the physical stress of patients undergoing artificial respiration. To satisfy this goal 11 projects have been defined. In each of these projects scientists from medicine and fluid mechanics do collaborate in several experim

  1. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  2. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  3. Soil Respiration: Concept and Measurement Methods

    Directory of Open Access Journals (Sweden)

    SANDOR M.

    2010-08-01

    Full Text Available Soil respiration is the main element in the carbon cycle that makes possible for plants carbon plants to return inthe atmosphere. The objective of this work was to present and discuss some aspects of the soil CO2 efflux. We definedherein, some terms associated to the soil respiration concept, we tackled some aspects regarding the influence oftemperature, humidity and soil pH on soil respiration and we presented the principle of soil respiration measurement byusing dynamic closed chamber system.

  4. 30 CFR 57.5044 - Respirators.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirators. 57.5044 Section 57.5044 Mineral... Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5044 Respirators. In environments exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10,...

  5. The Midbrain Periaqueductal Gray Control of Respiration

    NARCIS (Netherlands)

    Subramanian, Hari H.; Balnave, Ron J.; Holstege, Gert

    2008-01-01

    The midbrain periaqueductal gray (PAG) organizes basic survival behavior, which includes respiration. How the PAG controls respiration is not known. We studied the PAG control of respiration by injecting D,L-homocysteic acid in the PAG in unanesthetized precollicularly decerebrated cats. Injections

  6. Development of a portable non-invasive swallowing and respiration assessment device

    National Research Council Canada - National Science Library

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo

    2015-01-01

    .... Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend...

  7. Coupled Stochastic Time-Inverted Lagrangian Transport/Weather Forecast and Research/Vegetation Photosynthesis and Respiration Model. Part II; Simulations of Tower-Based and Airborne CO2 Measurements

    Science.gov (United States)

    Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter

    2007-01-01

    This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.

  8. Assessment of respiration activity and ecotoxicity of composts containing biopolymers.

    Science.gov (United States)

    Kopeć, Michał; Gondek, Krzysztof; Baran, Agnieszka

    2013-03-01

    The research was conducted to determine if introducing biodegradable polymer materials to the composting process would affect selected biological properties of mature compost. Determination of biological properties of composts composed of testing their respiration activity and toxicity. Respiration activity was measured in material from the composting process by means of OxiTop Control measuring system. The ecotoxicity of composts was estimated by means of a set of biotests composed of three microbiotests using five test organisms. Introduction of polymer materials caused a decrease in respiration activity of mature compost. Similar dependencies as in the case of mass loss were registered. Compost to which a biodegradable polymer with the highest content of starch was added revealed the smallest difference in comparison with organic material composted without polymers. Lower content of starch in a polymer caused lower respiration activity of composts, whereas microorganism vaccine might have accelerated maturing of composts, thus contributing to the smallest respiration of compost. In composts containing biopolymers the following were observed: an increase in germination inhibition--2.5 times, roots growth inhibition--1.8 times, growth inhibition of Heterocypris incongruens--four times and luminescence inhibition of Vibrio fischeri--1.6 times in comparison with the control (compost K1). Composts containing biopolymers were classified as toxicity class III, whereas the compost without polymer addition as class II.

  9. [Action of a dental anesthetic on cell respiration].

    Science.gov (United States)

    di Jeso, F; Truscello, A; Martinotti, G; Colli, S

    1987-01-01

    It is often required to employ local anesthetics in practising dentistry, particularly when children have to be treated. Our researches on neurotropic drugs in the last years follow our hypothesis that the strong effects on nervous system have always hidden more widespread effects on all tissues and cells. In vitro essays carried out on rat liver mitochondria show that a dental anesthetic, lidocaine, depress respiration coupled to phosphorylation in mitochondria having a good respiratory control; so respiratory control too is depressed, but P/O ratio is unaffected; also respiration uncoupled by 2,4-dinitrophenol is depressed. Depressing respiration cooperates with anesthesia; unchanging P/O is good for the health of the cells and tissues treated by the lidocaine.

  10. Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems

    Science.gov (United States)

    White, Joshua S.; Maskiewicz, April C.

    2014-01-01

    Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that…

  11. Power Cell: Teacher's Guide to Respiration. Occasional Paper No. 113.

    Science.gov (United States)

    Anderson, Charles W.; And Others

    This document contains a set of instructional materials about cellular respiration that were used in a research study of middle school science teaching during 1985-86. The Middle School Science Project investigated ways to help middle school science teachers use teaching strategies that were identified in earlier studies as particularly effective…

  12. Respirable dust meter locates super polluters in traffic

    NARCIS (Netherlands)

    Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows

  13. Mesoporous silica nanoparticles inhibit cellular respiration.

    Science.gov (United States)

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  14. Plastron Respiration Using Commercial Fabrics

    OpenAIRE

    2014-01-01

    A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer...

  15. Evaluation of five decontamination methods for filtering facepiece respirators.

    Science.gov (United States)

    Viscusi, Dennis J; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2009-11-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  16. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  17. [Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season].

    Science.gov (United States)

    Zhang, Fang; Guo, Sheng-Li; Zou, Jun-Liang; Li, Ze; Zhang, Yan-Jun

    2011-11-01

    On the loess plateau, summer fallow season is a hot rainy time with intensive soil microbe activities. To evaluate the response of soil respiration to soil moisture, temperature, and N fertilization during this period is helpful for a deep understanding about the temporal and spatial variability of soil respiration and its impact factors, then a field experiment was conducted in the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. The experiment included five N application rates: unfertilized 0 (N0), 45 (N45), 90 (N90), 135(N135), and 180 (N180) kg x hm(-2). The results showed that at the fallow stage, soil respiration rate significantly enhanced from 1.24 to 1.91 micromol x (m2 x s)(-1) and the average of soil respiration during this period [6.20 g x (m2 x d)(-1)] was close to the growing season [6.95 g x (m2 x d)(-1)]. The bivariate model of soil respiration with soil water and soil temperature was better than the single-variable model, but not so well as the three-factor model when explaining the actual changes of soil respiration. Nitrogen fertilization alone accounted for 8% of the variation soil respiration. Unlike the single-variable model, the results could provide crucial information for further research of multiple factors on soil respiration and its simulation.

  18. Plastron Respiration Using Commercial Fabrics

    Directory of Open Access Journals (Sweden)

    Shaun Atherton

    2014-01-01

    Full Text Available A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container.

  19. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped... commercial designation of the respirator it contains and all appropriate approval labels....

  20. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped... commercial designation of the respirator it contains, and all appropriate approval labels....

  1. 42 CFR 84.190 - Chemical cartridge respirators: description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators: description. 84.190... Cartridge Respirators § 84.190 Chemical cartridge respirators: description. (a) Chemical cartridge respirators including all completely assembled respirators which are designed for use as...

  2. 42 CFR 84.130 - Supplied-air respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Supplied-air respirators; description. 84.130... Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all completely assembled respirators designed for use as respiratory protection during entry into and escape...

  3. Influence of continuous mining arrangements on respirable dust exposures

    Science.gov (United States)

    Beck, T. W.; Organiscak, J. A.; Pollock, D. E.; Potts, J. D.; Reed, W. R.

    2017-01-01

    In underground continuous mining operations, ventilation, water sprays and machine-mounted flooded-bed scrubbers are the primary means of controlling respirable dust exposures at the working face. Changes in mining arrangements — such as face ventilation configuration, orientation of crosscuts mined in relation to the section ventilation and equipment operator positioning — can have impacts on the ability of dust controls to reduce occupational respirable dust exposures. This study reports and analyzes dust concentrations measured by the Pittsburgh Mining Research Division for remote-controlled continuous mining machine operators as well as haulage operators at 10 U.S. underground mines. The results of these respirable dust surveys show that continuous miner exposures varied little with depth of cut but are significantly higher with exhaust ventilation. Haulage operators experienced elevated concentrations with blowing face ventilation. Elevated dust concentrations were observed for both continuous miner operators and haulage operators when working in crosscuts driven into or counter to the section airflow. Individual cuts are highlighted to demonstrate instances of minimal and excessive dust exposures attributable to particular mining configurations. These findings form the basis for recommendations for lowering face worker respirable dust exposures. PMID:28529441

  4. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  5. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ....\\4\\ A summary of market segmentation, by respirator type, is offered in Table 1, below. \\4\\ Frost... be determined on a case-by-case basis; considerations will include an assessment of the manufacturer... and paint applications and hazardous materials management. Of the U.S. respirator market of...

  6. Variations of the Respiration Signals for Respiratory-Gated Radiotherapy Using the Video Coached Respiration Guiding System

    CERN Document Server

    Lee, Hyun Jeong; Oh, Se An

    2015-01-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT using a video coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by a real-time position management (RPM) Respiratory Gating System (Varian, USA) and the patients were trained using the video coached respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and displacement. The standard deviation of the guided breathing decreased to 65.14% in the inhale peak and 71.04% in the exhale peak compared with the...

  7. Contribution of root respiration to soil respiration in a C3/C4 mixed grassland

    Indian Academy of Sciences (India)

    Wei Wang; Kenji Ohse; Jianjun Liu; Wenhong Mo; Takehisa Oikawa

    2005-09-01

    The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11.54 mol m–2 s–1 was found in August 2004 and the lowest soil respiration rate of 4.99 mol m–2 s–1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m–2 in August 2004 to 1.02 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 mol m–2 s–1) and lowest in October 2004 (1.7 mol m–2 s–1). Microbial respiration rate was highest in August 2004 (5.8 mol m–2 s–1) and lowest in April 2005 (2.59 mol m–2 s–1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.

  8. RESEARCH ON CHANGE OF CO2 PRODUCED BY RESPIRATION OF WHEAT STORED UNDER PULSED MAGNETIC FIELD%脉冲磁场下储藏小麦自身呼吸CO2变化分析研究

    Institute of Scientific and Technical Information of China (English)

    蒋华伟; 李战升

    2013-01-01

    储粮自身呼吸是陈化和霉变的重要原因之一,为动态了解储藏期间粮食呼吸的效应,开展了小麦自身所产生CO2浓度变化的研究工作.对常规条件下小麦自身呼吸CO2浓度与脉冲磁场中不同强度和脉冲数所对应的试验数据进行分析研究,结果表明:低水分储藏小麦的CO2浓度呈线性恒稳变化,脉冲磁场能抑制小麦的后期呼吸从而延缓小麦的陈化变质进程;而中、高水分的数据严重偏离线性关系,变化幅度较大,在高强度和大脉冲数的磁场中,出现曲线变化的拐点(阈值),其对小麦呼吸作用中CO2浓度变化发生窗口效应,在小麦存储中具有促进作用.%The respiration of storage food is one of the important reasons causing aging and mildewing.In this paper,we studied the concentration change of CO2 produced by respiration of wheat in order to dynamically study the grain respiration effect during storage.We analyzed the CO2 concentration of wheat under the conventional condition as well as the test data corresponding to different strengths and pulse numbers in a pulsed magnetic field.The results showed that the CO2 concentration of low-moisture stored wheat had a linear constant change; the pulsed magnetic filed could inhibit the respiration effect of wheat at the later stage so as to postpone aging and deterioration of wheat.However,the data of medium and high-moisture stored wheat deviated from the linear relationship severely,and had large change; and an inflection point (threshold) occurred in the curve in a magnetic field with high strength and large pulse number,so that the pulsed magnetic filed had a window effect on the change of CO2 concentration caused by respiration of the wheat so as to facilitate wheat storage.

  9. In situ respiration measurements of megafauna in the Kermadec Trench

    Science.gov (United States)

    Nunnally, Clifton C.; Friedman, Jason R.; Drazen, Jeffrey C.

    2016-12-01

    The aim of this paper is to measure metabolic rates of megafauna living in depths greater than 6000 m. Echinoderms, actinarians and a polychaete were captured by remotely operated vehicle (ROV) and inserted into respiration chambers in situ at depths of 4049 m, 7140 m and 8074 m in the region of the Kermadec Trench SW Pacific Ocean. Hadal research has moved into a new frontier as technological improvements now allow for a meticulous investigation of trench ecology in depths greater than 6000 m. The development of an in situ respirometer for use in these studies was deployed in the Kermadec Trench to obtain the first ever rates of basal metabolic rates of hadal megafauna. Typical deep-sea experiments of individual animal physiology must deal with covarying factors of pressure, temperature, light and food supply in this study investigated the effects of pressure and increased food supply on overall animal metabolism. In the Kermadec Trench, holothurian respiration rates (n=4), 0.079±0.011 (mean±SE) μmol-O2 g-1 h-1, were higher than those captured at abyssal depths (n=2), 0.018±0.002 μmol-O2 g-1h-1, in the same region (p<0.001). When Q10 adjusted to a common temperature of 2.5 °C trench holothurian respiration rates ranged between 0.068 and 0.119 μmol-O2 g-1 h-1. Anemone respiration rates were remarkably similar between abyssal and hadal specimens, 0.110 and 0.111 μmol-O2 g-1 h-1, respectively. Our results on echinoderm respiration when corrected for temperature and mass fall below the slope regression when compared with other in situ measurements at shallower ocean depths.

  10. Data Fusion for Improved Respiration Rate Estimation

    Directory of Open Access Journals (Sweden)

    Gari D. Clifford

    2010-01-01

    Full Text Available We present an application of a modified Kalman-Filter (KF framework for data fusion to the estimation of respiratory rate from multiple physiological sources which is robust to background noise. A novel index of the underlying signal quality of respiratory signals is presented and then used to modify the noise covariance matrix of the KF which discounts the effect of noisy data. The signal quality index, together with the KF innovation sequence, is also used to weight multiple independent estimates of the respiratory rate from independent KFs. The approach is evaluated both on a realistic artificial ECG model (with real additive noise and on real data taken from 30 subjects with overnight polysomnograms, containing ECG, respiration, and peripheral tonometry waveforms from which respiration rates were estimated. Results indicate that our automated voting system can out-perform any individual respiration rate estimation technique at all levels of noise and respiration rates exhibited in our data. We also demonstrate that even the addition of a noisier extra signal leads to an improved estimate using our framework. Moreover, our simulations demonstrate that different ECG respiration extraction techniques have different error profiles with respect to the respiration rate, and therefore a respiration rate-related modification of any fusion algorithm may be appropriate.

  11. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    Science.gov (United States)

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  12. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    Science.gov (United States)

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  13. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma.

    Science.gov (United States)

    Higgins, S C; Pilkington, G J

    2010-02-01

    In this investigation the effects of tricyclic drugs on cellular respiration were studied using the anaplastic astrocytoma cell line IPSB-18 by use of a Clark-type oxygen electrode which measured changes in cellular respiration rate (oxygen consumption), in a dose-response assay. The drugs investigated were clomipramine, norclomipramine, amitriptyline and doxepin. In addition, the combined effects of dexamethasone and clomipramine on cellular respiration were investigated. It was established that at lower concentrations (0.14 mM-0.5 mM) amitriptyline was the most potent inhibitor of cellular respiration. Previous studies have indicated that inhibition of cellular respiration is considered an indicator of apoptosis. Overall, it appeared that clomipramine and its metabolite norclomipramine were the most potent inhibitors of cellular respiration in glioma cells over the concentration range 0.5-0.9 mM. Dexamethasone was able to induce inhibition of cellular respiration both alone in glioma cells, and in combination with clomipramine, where it had an additive or synergistic effect, thereby increasing cell death. The extensive research currently ongoing and previously reported regarding the use of clomipramine as a potential antineoplastic agent aimed at targeting the mitochondria of gliomas is promising.

  14. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips, H

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... Related Projects: Health 607, Sim 02-06-03 Category: Occupational Health Applied Research Occupational Hygiene Summary Project SIM020604 was formulated to determine the Inherent Respirable Dust Generation Potential (IRDGP) of various South...

  15. The effect of gender and respirator brand on the association of respirator fit with facial dimensions.

    Science.gov (United States)

    Oestenstad, R Kent; Elliott, Leshan J; Beasley, T Mark

    2007-12-01

    This study examined the association of facial dimensions with respirator fit considering the effect of gender and respirator brand. Forty-one subjects (20 white females and 21 white males) participated in the study. Each subject was measured for 12 facial dimensions using anthropometric sliding and spreading calipers and a steel measuring tape. Three quantitative fit tests were conducted with the same subject wearing one size of three different brands of half-mask respirators resulting in a total of nine fit tests. Linear mixed model analysis was used to model respirator fit as a function of gender and respirator brand while controlling for facial dimensions. Results indicated that the gender by respirator brand interaction was not statistically significant (p = 0.794), and there was no significant difference in respirator fit between males and females (p = 0.356). There was a significant difference in respirator fit among respirator brands (p brand, six separate linear mixed models were fit to assess which facial dimensions most strongly relate to respirator fit using a "one variable at a step" backward elimination procedure. None of the 12 facial dimensions were significantly associated with respirator fit in all six models. However, bigonial breadth and menton-nasion length were significantly associated with respirator fit in five of the six models, and biectoorbitale breadth, bizygomatic breadth, and lip width were significantly associated with respirator fit in four of the six models. Although this study resulted in significant findings related to the correlation of respirator fit with menton-nasion length and lip width (the dimensions currently used to define the half-mask respirator test panel), other facial dimensions were also shown to be significantly associated with respirator fit. Based on these findings and findings from previous studies, it is suggested that other facial dimensions including bigonial breadth, biectoorbitale breadth, and bizygomatic

  16. Aerobic respiration in the Archaean?

    Science.gov (United States)

    Towe, K M

    1990-11-01

    The Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10(-12) times the present value. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would also be removed by the oxidation of biogenic methane. But even very low estimates of global primary productivity, obtained from the amounts of organic carbon preserved in Archaean rocks, seem to require the sedimentation of an unrealistically large amount of iron and the oxidation of too much methane if global anoxia was to be maintained. I therefore suggest that aerobic respiration must have developed early in the Archaean to prevent a build-up of atmospheric oxygen before the Proterozoic. An atmosphere that contained a low (0.2-0.4%) but stable proportion of oxygen is required.

  17. Probing soil respiration process of grasslands

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Soil respiration, which is primarily the only output approach for CO2 exchanges in soils between the global terrestrial ecosystem and the atmosphere,exerts a direct influence on the speed of carbon turnover rate of the soil.

  18. Research on effect of Solid detergent on cleaning and disinfection of infant respirator%固体清洗剂对小儿呼吸机管路的清洗消毒效果调查分析

    Institute of Scientific and Technical Information of China (English)

    王瑾

    2012-01-01

    目的 探讨奥普涤固体清洗剂对小儿呼吸机管路的清洗消毒效果;了解固体清洗剂对小儿呼吸机管路的化学相容性.方法 将临床使用后的可拆卸小儿呼吸机管路使用奥普涤固体清洁剂在全自动清洗机中进行清洗消毒,消毒后随机抽取集水罐、湿化罐、三通管、螺纹管各40件共160个部件进行采样,做ATP生物荧光检测,残留蛋白检测和细菌学检测.结果 采用细菌学方法检测使用奥普涤固体清洗剂清洗消毒小儿呼吸机管路的集水罐内表面,湿化罐金属芯表面,三通管内表面及螺纹管内表面后的细菌总数≤5 CFU/cm2,且未检出致病菌;清洗消毒前后各个部件的ATP含量下降率>90.0%;同时,对使用奥普涤固体清洗剂清洗消毒小儿呼吸机管路后的集水罐内表面、湿化罐金属芯表面、三通管内表面及螺纹管内表面进行了5μg残留蛋白检测,各个部件的清洗合格率为100.0%.结论 奥普涤固体清洗剂是清洗消毒小儿呼吸机管路比较理想的清洗剂之一.%OBJECTIVE To evaluate the effect of OptiPro solid detergent on cleaning and disinfection of the infant respirators, and to determine the chemical compatibility of OptiPro solid detergent with infant respirators. METHODS The infant respirators after clinical use were disassembled into small parts and loaded in automatic washer to clean and disinfect according to the cleaning procedure. After cleaning and disinfection, the samples, which were collected from 160 parts of the collection tank, humidification tank, tee pipe,and threaded pipe, were conducted for the ATP bioluminescence assay, residual protein assay and bacteriological assay. RESULTS The bacterial colony count was less than ^5CFU/cm2 after the cleaning of the inner surface of the collection tank, mental core surface of humidification tank, the inner surface of the tee pipe, and the inner surface of the threaded pipe with OptiPro solid

  19. Effect of Music on Emotions and Respiration

    OpenAIRE

    NOGUCHI Kengo:筆頭著者; MASAOKA Yuri; SATOH Kanako; Kato, Nobumasa; Homma, Ikuo

    2012-01-01

    In the present study we investigated whether the emotional state induced by music can change respiratory rate (RR), tidal volume (VT), minute ventilation (VE), and end-tidal CO2concentration (ETCO2). In a pioneering study investigating the effect of music on respiration, the music of Stockhausen and Chopin was used. In the present study, we examined the effects of the same musical stimuli used in that study on respiration. Each stimulus (Stockhausen, Chopin, and silence) was delivered for 30 ...

  20. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. 78 FR 18601 - Respirator Certification Fees; Public Meeting

    Science.gov (United States)

    2013-03-27

    ... HUMAN SERVICES Centers for Disease Control and Prevention Respirator Certification Fees; Public Meeting... stakeholders to present information the impact of an increase on respirator fees on individual respirator manufacturers, the respirator market, or on those industries that rely on NIOSH approved respiratory...

  3. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a...

  4. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are...

  5. A Novel Method for Extracting Respiration Rate and Relative Tidal Volume from Infrared Thermography

    Science.gov (United States)

    Lewis, Gregory F.; Gatto, Rodolfo G.; Porges, Stephen W.

    2010-01-01

    In psychophysiological research, measurement of respiration has been dependent on transducers having direct contact with the participant. The current study provides empirical data demonstrating that a noncontact technology, infrared video thermography, can accurately estimate breathing rate and relative tidal volume across a range of breathing patterns. Video tracking algorithms were applied to frame-by-frame thermal images of the face to extract time series of nostril temperature and to generate breath-by-breath measures of respiration rate and relative tidal volume. The thermal indices of respiration were contrasted with criterion measures collected with inductance plethysmography. The strong correlations observed between the technologies demonstrate the potential use of facial video thermography as a noncontact technology to monitor respiration. PMID:21214587

  6. Heterotrophic components of soil respiration in pastures and forests in southwestern Amazonia, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Eric Atlas Davidson

    2008-12-01

    Full Text Available In this paper we present data on soil microbial biomass and heterotrophic respiration in pastures, mature and secondary forests, in order to elucidate their contribution to total CO2 flux from soil to atmosphere. The research was conducted in Southwestern Amazonia, Acre State, Brazil. Microbial biomass was estimated using a variation of the traditional fumigation-extraction method and heterotrophic respiration was measured using respirometry flasks attached to an infrared gas analyzer. Soil microbial biomass and heterotrophic respiration did not differ statistically among pastures, mature and secondary forests. These laboratory results indicate that higher CO2 fluxes from pasture soils measured in situ are probably due to higher root respiration by pasture grasses.

  7. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  8. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO2 differential (ΔCO2) increased two-fold with no change in apparent Rd, when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO2. Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Respiration rate in human pituitary tumor explants.

    Science.gov (United States)

    Anniko, M; Bagger-Sjöbäck, D; Hultborn, R

    1982-01-01

    Studies on the respiration rate of human pituitary tumor tissue have so far been lacking in the literature. This study presents the results from four adenomas causing acromegaly, all with different clinical degrees of the disease. Determination of oxygen uptake was performed in vitro with a spectrophotorespirometric system. Pieces of the tumors were explanted to an organ culture system with a high degree of stability. The secretion rate of growth hormone (GH) and prolactin (PRL) was determined. After 4-8 days in vitro, specimens were analyzed for respiration rate. This was approximately 1-1.5 microliters O2/h/micrograms dry weight. The activity of the pituitary tumor tissue was characterized by both the hormone secretion rate and the respiration rate. Particularly active foci were found to occur in the adenoma tissue. Depending on the individual tumor, the GH secretion rate was approximately 0.1-100 pmol/micrograms dry weight/h and PRL secretion rate approximately 0.4-18 micrograms/micrograms dry weight/h. The respiration rate--as is also the hormone secretion rate--is dependent on the time in vitro prior to analysis. The respiration rate in individual tumors is a parameter which does not reflect GH or PRL serum levels or clinical activity of the disease.

  10. THE RELATION OF PHOTOSYNTHESIS TO RESPIRATION

    Energy Technology Data Exchange (ETDEWEB)

    Weigl, J.W.; Warrington, P.M.; Calvin, M.

    1950-07-20

    The gas exchange by barley leaves of oxygen, carbon dioxide, and added radiocarbon dioxide has been measured in a closed system, with the following results: 1. Carbon dioxide follows different but not necessarily independent paths in photosynthesis and light respiration. 2. The carbon of newly formed photosynthetic intermediates is not available for respiration while the light is on, but becomes immediately respirable in the dark, The enhancement of dark respiration after a light period is largely due to built-up ''photosynthates.'' 3. Photosynthesis proceeds at a measurable rate even at the lowest CO{sub 2} pressures observed (0.03 mm Hg). There is no evidence for a ''threshold'' concentration of carbon dioxide for the reaction; at the lowest concentrations reached, respiration exactly equals assimilation, 4. The mean rate of respiratory CO{sub 2} evolution in strong light was found to be less than that in the dark. Internal re-photosynthesis of respiratory carbon may have been sufficient to account for this effect. 5. The assimilation of C{sup 14}O{sub 2} is about 17% slower than that of C{sup 12}O{sub 2}.

  11. Comparison of two quantitative fit-test methods using N95 filtering facepiece respirators.

    Science.gov (United States)

    Sietsema, Margaret; Brosseau, Lisa M

    2016-08-01

    Current regulations require annual fit testing before an employee can wear a respirator during work activities. The goal of this research is to determine whether respirator fit measured with two TSI Portacount instruments simultaneously sampling ambient particle concentrations inside and outside of the respirator facepiece is similar to fit measured during an ambient aerosol condensation nuclei counter quantitative fit test. Sixteen subjects (ten female; six male) were recruited for a range of facial sizes. Each subject donned an N95 filtering facepiece respirator, completed two fit tests in random order (ambient aerosol condensation nuclei counter quantitative fit test and two-instrument real-time fit test) without removing or adjusting the respirator between tests. Fit tests were compared using Spearman's rank correlation coefficients. The real-time two-instrument method fit factors were similar to those measured with the single-instrument quantitative fit test. The first four exercises were highly correlated (r > 0.7) between the two protocols. Respirator fit was altered during the talking or grimace exercise, both of which involve facial movements that could dislodge the facepiece. Our analyses suggest that the new real-time two-instrument methodology can be used in future studies to evaluate fit before and during work activities.

  12. Impact of mixtures of different fresh-cut fruits on respiration and ethylene production rates.

    Science.gov (United States)

    Mahajan, Pramod V; Luca, Alexandru; Edelenbos, Merete

    2014-07-01

    Packaging and storage of fresh-cut fruits and vegetables are a challenging task, since fresh produce continue to respire and senesce after harvest and processing accelerates the physiological processes. The response on respiration and ethylene production rates of fresh produce to changes in O2 and CO2 concentrations and temperature has been extensively studied for whole fruits but literature is limited on processed and mixed fresh-cut fruits. This study aimed to investigate the effects of mixing various proportions of fresh-cut fruits (melon chunks, apple slices, and pineapples cubes) on respiration and ethylene production rates and to develop predictive models for modified atmosphere packaging. The experiment was designed according to a simplex lattice method and respiration and ethylene production rates were measured at 10 °C. Results showed that single component pineapple cubes, apple slices, and melon chunks, in this order, had significant constant coefficients (P = 0.05) and the greatest impact on respiration rate while the interactive binary and tertiary coefficients were insignificant. For ethylene production rates, single component apple slices, melon chunks, and pineapple cubes, and their 3-component mixtures, in this order, had significant constant coefficients (P = 0.05) while binary coefficients were insignificant. Mathematical models were developed and validated; the cubical model was the best to describe the influence of proportion of fruit on respiration and ethylene production rates, however, considering simplicity the linear part of the model is recommended to quantify respiration and ethylene production rates of mixed fresh-cut fruits. This research helps to quantify the ethylene production and respiration rates of multicomponent mixed fresh-cut fruit, which then can be used for packaging design of fresh-cut produce. © 2014 Institute of Food Technologists®

  13. Experimental study on soil respiration of temperate grassland in China

    Institute of Scientific and Technical Information of China (English)

    WANG Gengchen; DU Rui; KONG Qinxin; L(U) Daren

    2004-01-01

    Experimental study on soil respiration of typical temperate grassland in Inner Mongolia was conducted in the period of 1998-2000. Closed chamber and GC/FID techniques were used for measurements of soil and plant respiration. Data analysis of three-year measurements show that temperate grassland soil respiration varied in the range of 390-866 gC/m2·a-1 and underwent evident seasonal and annual variations. On average, the soil respiration accounts for 70%-88% of the grassland total respiration. Results also show a stronger relation between the soil respiration and soil temperature in water abundant years. Increased rainfall in 1998 made soil respiration increased, while in the dry years, the relation between soil respiration and soil temperature weakened remarkably. Soit water content plays an important controlling role in soil respiration-temperature interrelation for semiarid grassland.

  14. Soil Respiration During a Soybean-Growing Season

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally,rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P < 0.01), the pod stage (P < 0.01), and the seed-filling stage(P < 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soil respiration rate.

  15. Soil respiration partition and its components in the total agro-ecosystem respiration

    Science.gov (United States)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  16. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, W.; Moffat, A.; Ceschia, E.

    2010-01-01

    findings are based on all available CarboEurope IP eddy covariance flux measurements during a 4-year period (2004-2007). Detailed management information was available for 15 out of the 22 sites that contributed flux data, from which we compiled 30 types of management for European-scale comparison...... factors other than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account......Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our...

  17. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    In activated sludge processes an increased sludge age is associated with a decreased sludge production. This phenomenon is generally interpreted as a result of endogenous respiration processes. In the activated sludge models cell lysis (or decay) is incorporated. The lysis is modelled...... mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... and maintenance processes. This conversion will in general be denoted as endogenous respiration. Based on the literature review the phenomena are discussed and organised, in order to create a working platform for discussing more detailed activated sludge models, one of which is being sketched. (C) 1999 IAWQ...

  18. A global database of soil respiration data

    Science.gov (United States)

    Bond-Lamberty, B.; Thomson, A.

    2010-06-01

    Soil respiration - RS, the flux of CO2 from the soil to the atmosphere - is probably the least well constrained component of the terrestrial carbon cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that may be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory): annual RS, mean seasonal RS, a seasonal or annual partitioning of RS into its sources fluxes, RS temperature response (Q10), or RS at 10 °C. Its orientation is thus to seasonal and annual fluxes, not shorter-term or chamber-specific measurements. To date, data from 818 studies have been entered into the database, constituting 3379 records. The data span the measurement years 1961-2007 and are dominated by temperate, well-drained forests. We briefly examine some aspects of the SRDB data - its climate space coverage, mean annual RS fluxes and their correlation with other carbon fluxes, RS variability, temperature sensitivities, and the partitioning of RS source flux - and suggest some potential lines of research that could be explored using these data. The SRDB database is available online in a permanent archive as well as via a project-hosting repository; the latter source leverages open-source software technologies to encourage wider participation in the database's future development. Ultimately, we hope that the updating of, and corrections to, the SRDB will become a shared project, managed by the users of these data in the scientific community.

  19. Mitochondrial ultrastructure and tissue respiration of pea leaves under clinorotation

    Science.gov (United States)

    Brykov, Vasyl

    2016-07-01

    % mitochondria have a similar size under clinorotation. Described changes in the mitochondrion ultrastructure under clinorotation were accompanied with rising of mitochondrial respiration on 17%. These data indicate that mitochondria in both root and leaf cells are sensitive to the simulated microgravity influence. That is why, a further research of plant energetic metabolism during plant growth in real and simulated microgravity has to be in progress.

  20. On the Concept of "Respiration": Biology Student Teachers' Cognitive Structures and Alternative Conceptions

    Science.gov (United States)

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem

    2013-01-01

    In researches, the subject of respiration has been determined to be among subjects about whom participants from all educational levels struggle to form their cognitive structures and have many alternative conceptions. This research was carried out in order to determine biology student teachers' cognitive structures and alternative conceptions…

  1. Computing partial-shift respirator use periods

    Energy Technology Data Exchange (ETDEWEB)

    Shotwell, H.P.; Caporossi, J.C.

    1983-02-01

    Airborne contaminant concentrations cannot always be reduced to desired levels even after the installation of feasible engineering controls. The industrial hygienist may have to recommend full-shift or partial-shift use of appropriate respirators to reduce exposures. The method described allows a recommendation to be made of the minimum period of time an exposed employee needs to use a repirator in order to reach the desired exposure level. The procedure is based on the calculation of time-weighted averages, using the upper confidence levels of air sampling data, and the respirator protection factors.

  2. BOREAS TE-2 Wood Respiration Data

    Science.gov (United States)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. BOREAS TE-2 Foliage Respiration Data

    Science.gov (United States)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. BOREAS TE-2 Root Respiration Data

    Science.gov (United States)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. BOREAS TE-2 Continuous Wood Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Contribution of Root Respiration to Total Soil Respiration in a Cotton Field of Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-Min; ZHAO Cheng-Yi; Y.YILIHAMU; LI Ju-Yan; LI Jun

    2013-01-01

    To measure the contribution of root respiration (Rr) to total soil respiration (Rt) in arid cotton fields,eighteen plots,nine for girdling and nine control,were built in an arid cotton field in the Aksu National Experimental Station of Oasis Farmland Ecosystem,Xinjiang of China.Given the difference of soil respiration between girdled plots and non-girdled control plots,the components of soil respiration,root respiration (Rr) and respiration originating from decomposition (Rd) were divided.The temperature sensitivities of Rr and Rd were analyzed,respectively.The results showed that the average contribution of Rr to Rt in arid cotton field was about 32% during the study period.The temperature-response curve of Rr differed from that of Rd.The dynamic variation of Rd was more related to the change of soil temperature as compared to Rr.Rr and Rd had different responses to the variation of environment,and thus new models capable of differentiating between Rr and Rd are needed for evaluating the different factors controlling these two components of soil respiration in arid cotton field.

  7. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (pgrowth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall temporal variation. Soil respiration was related with season variation in research site. Soil temperature and

  8. LAMPF: the meson factory. A LASL monograph

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.

    1977-08-01

    A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group. (PMA)

  9. Respiration in Heterotrophic Unicellular Eukaryotic Organisms

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2014-01-01

    about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2...

  10. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  11. Respiration patterns of resting wasps (Vespula sp.).

    Science.gov (United States)

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.

  12. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...

  13. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (pnegative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  14. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    Science.gov (United States)

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  15. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84..., Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  16. 75 FR 20546 - Total Inward Leakage Requirements for Respirators

    Science.gov (United States)

    2010-04-20

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA33 Total Inward Leakage Requirements for Respirators AGENCY... Respirators,'' published in the Federal Register on October 30, 2009 (74 FR 56141). The comment period on this... total inward leakage (TIL) requirements for half-mask air-purifying particulate respirators approved...

  17. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Science.gov (United States)

    2010-10-01

    ... resistance will be measured in the facepiece, mouthpiece, hood, or helmet of a pesticide respirator mounted... allowable resistance requirements for pesticide respirators are as follows: Maximum Resistance Type of... 42 Public Health 1 2010-10-01 2010-10-01 false Pesticide respirators; performance...

  18. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  19. Quantifying soil respiration at landscape scales. Chapter 11

    Science.gov (United States)

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  20. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  1. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  2. Temporal and Spatial Distribution of Respirable Dust After Blasting of Coal Roadway Driving Faces: A Case Study

    Directory of Open Access Journals (Sweden)

    Shengyong Hu

    2015-10-01

    Full Text Available Coal roadway driving is an important part of the underground mining system, and very common in Chinese coal mines. However, the high concentration of respirable dust produced in the blasting operation poses a great hazard to miners’ health as well as the underground environment. In this paper, based on the direct simulation Monte Carlo method, the gas–solid two-phase flow model of particle movement is established to study the respirable dust distribution in blasting driving face. The results show that there is an obvious vortex region in which airflow velocity is lower than that close to the roadway wall and driving face. After blasting, respirable dust in the front of the dust group jet from the driving face cannot be discharged timely, with the result that its concentration is higher than the critical value until it is expelled from the roadway, whereas respirable dust concentration at the back of the dust group is gradually diluted and exhibits an alternate thin dense phase distribution. Meanwhile, respirable dust concentration in the breathing zone is relatively higher than that at the top and bottom of roadway. The accuracy of numerical simulation results is verified by field measurements. The research results are helpful for further understanding the evolution of respirable dust distribution after blasting, and are good for providing guidance for efficient controlling of respirable dust and improving the working environment for underground miners.

  3. Contribution of Root Respiration to Total Soil Respiration in a Leymus chinensis (Trin.) Tzvel. Grassland of Northeast China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The loss of carbon through root respiration is an important component of grassland carbon budgets. However,few data are available concerning the contribution of root respiration to total soil respiration in grasslands in China. We investigated seasonal variations of soil respiration rate, root biomass, microbial biomass C and organic C content of the soil in a semi-arid Leymus chinensis (Trin.) Tzvel. grassland of northeast China during the 2002 growing season (from May to September). The linear regression relationship between soil respiration rate and root biomass was used to determine the contribution of root respiration to total soil respiration. Soil respiration rate ranged from 2.5 to 11.9 g C/m2 per d with the maximum in late June and minimum in September.The microbial biomass C and organic C content of the soil ranged from 0.3 to 1.5 g C/m2 and from 29 to 34 g C/kg respectively. Root biomass had two peaks, in early June (1.80 kg/m2) and mid-August (1.73 kg/m2). Root respiration rate peaked in mid-August (6.26 g C/m2 per d), whereas microbial respiration rate peaked in late June (7.43 g C/m2 per d). We estimated that the contribution of root respiration to total soil respiration during the growing season ranged from 38% to 76%.

  4. A global database of soil respiration data

    Directory of Open Access Journals (Sweden)

    B. Bond-Lamberty

    2010-06-01

    Full Text Available Soil respirationRS, the flux of CO2 from the soil to the atmosphere – is probably the least well constrained component of the terrestrial carbon cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that may be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory: annual RS, mean seasonal RS, a seasonal or annual partitioning of RS into its sources fluxes, RS temperature response (Q10, or RS at 10 °C. Its orientation is thus to seasonal and annual fluxes, not shorter-term or chamber-specific measurements. To date, data from 818 studies have been entered into the database, constituting 3379 records. The data span the measurement years 1961–2007 and are dominated by temperate, well-drained forests. We briefly examine some aspects of the SRDB data – its climate space coverage, mean annual RS fluxes and their correlation with other carbon fluxes, RS variability, temperature sensitivities, and the partitioning of RS source flux – and suggest some potential lines of research that could be explored using these data. The SRDB database is available online in a permanent archive as well as via a project-hosting repository; the latter source leverages open-source software technologies to encourage wider participation in the database's future development. Ultimately, we hope that the updating of, and corrections to, the SRDB will become a shared project, managed by the users of these data in the scientific community.

  5. A global database of soil respiration data

    Directory of Open Access Journals (Sweden)

    B. Bond-Lamberty

    2010-02-01

    Full Text Available Soil respirationRS, the flux of autotropically- and heterotrophically-generated CO2 from the soil to the atmosphere – remains the least well-constrained component of the terrestrial C cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that will be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory: annual RS, mean seasonal RS, a seasonal or annual partitioning of RS into its sources fluxes, RS temperature response (Q10, or RS at 10 °C. Its orientation is thus to seasonal and annual fluxes, not shorter-term or chamber-specific measurements. To date, data from 818 studies have been entered into the database, constituting 3379 records. The data span the measurement years 1961–2007 and are dominated by temperate, well-drained forests. We briefly examine some aspects of the SRDB data – mean annual RS fluxes and their correlation with other carbon fluxes, RS variability, temperature sensitivities, and the partitioning of RS source flux – and suggest some potential lines of research that could be explored using these data. The SRDB database described here is available online in a permanent archive as well as via a project-hosting repository; the latter source leverages open-source software technologies to encourage wider participation in the database's future development. Ultimately, we hope that the updating of, and corrections to, the SRDB will become a shared project, managed by the users of these data in the scientific community.

  6. Carbon dioxide fixation and respiration relationships observed during closure experiments in Biosphere 2

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Allen, John P.

    Biosphere 2 enclosed several ecosystems - ones analogous to rainforest, tropical savannah, thornscrub, desert, marsh and coral reef - and a diverse agro-ecology, with dozens of food crops, in virtual material isolation from Earth's environment. This permits a detailed examination of fixation and respiration from the continuous record of carbon dioxide concentration from sensors inside the facility. Unlike the Earth, all the ecosystems were active during sunlight hours, while phyto and soil respiration dominated nighttime hours. This resulted in fluctuations of as much as 600-700 ppm CO2 daily during days of high sunlight input. We examine the relationships between daytime fixation as driven by photosynthesis to nighttime respiration and also fixation and respiration as related to carbon dioxide concentration. Since carbon dioxide concentrations varied from near Earth ambient levels to over 3000 ppm (during low-light winter months), the response of the plant communities and impact on phytorespiration and soil respiration may be of relevance to the global climate change research community. An investigation of these dynamics will also allow the testing of models predicting the response of community metabolism to variations in sunlight and degree of previous net carbon fixation.

  7. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  8. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  9. Insights on nitrate respiration by Shewanella

    Directory of Open Access Journals (Sweden)

    Fengping eWang

    2015-01-01

    Full Text Available Shewanellae are well known for their ability to utilize a number of electron acceptors and are therefore considered to have important roles in element cycling in the environment, such as nitrogen cycling through dissimilatory nitrate reduction to ammonia (DNRA and denitrification. Possessing two periplasmic nitrate reductase systems (NAP-α and NAP-β is a special trait of the Shewanella genus, and both enzymes are likely to provide selective advantage to the host. This review relates the current knowledge and aspects of the nitrate respiration system of Shewanella. Specifically, the potential physiological functions and regulation mechanisms of the duo-NAP system are discussed in addition to the evolution of anaerobic respiration systems of Shewanella.

  10. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  11. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac......, skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), psmooth muscle (222±13; 115±2; 48±2 umol•g(-1)•min(-1), p

  12. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  13. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  14. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  15. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  16. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  17. Geochemical Investigations of Respirable Particulate Matter

    OpenAIRE

    Jurinski, Joseph Bernard Jr.

    1998-01-01

    GEOCHEMICAL INVESTIGATIONS OF RESPIRABLE PARTICULATE MATTER Joseph Bernard Jurinski (Abstract) Over the course of our lives we are exposed to airborne particulate matter in the workplace, home, and environment that results in the deposition of millions of particles in the lung. These exposures may result in disease if they are significant enough. The potential for harmful exposure depends in part on the dust's biodurability and the bioavailability of harmful constituents d...

  18. New respirator fit test panels representing the current U.S. civilian work force.

    Science.gov (United States)

    Zhuang, Ziqing; Bradtmiller, Bruce; Shaffer, Ronald E

    2007-09-01

    The fit test panels currently used for respirator research, design, and certification are 25-subject panels developed by Los Alamos National Laboratory (LANL) and are based on data from the 1967 and 1968 anthropometric surveys of U.S. Air Force personnel. Military data do not represent the great diversity in face size and shape seen in civilian populations. In addition, the demographics of the U.S. population have changed over the last 30 years. Thus, it is necessary to assess and refine the LANL fit test panels. This paper presents the development of new respirator fit test panels representative of current U.S. civilian workers based on an anthropometric survey of 3,997 respirator users conducted in 2003. One panel was developed using face length and face width (bivariate approach) and weighting subjects to match the age and race distribution of the U.S. population as determined from the 2000 census. Another panel was developed using the first two principal components obtained from a set of 10 facial dimensions (age and race adjusted). These 10 dimensions are associated with respirator fit and leakage and can predict the remaining face dimensions well. Respirators designed to fit these panels are expected to accommodate more than 95% of the current U.S. civilian workers. Both panels are more representative of the U.S. population than the existing LANL panel and may be appropriate for testing both half-masks and full-face piece respirators. Respirator manufacturers, standards development organizations, and government respirator certification bodies need to select the appropriate fit test panel for their particular needs. The bivariate panel is simpler to use than the principal component analysis (PCA) panel and is most similar to the LANL panel currently used. The inclusion of the eight additional facial measurements allows the PCA panel to provide better criteria for excluding extreme face sizes from being used. Because the boundaries of the two new panels are

  19. Effects of elevated CO2 concentrations on soil microbial respiration and root/rhizosphere respiration in-forest soils

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The two main components of soil respiration,i.e.,root/rhizosphere and microbial respiration,respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter,respectively.To model the carbon cycle and predict the carbon source/sink of forest ecosystems,we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations.Root/rhizosphere and soil microbial respiration have been shown to increase,decrease and remain unchanged under elevated CO2 concentrations.A significantly positive relationship between root biomass and root/rhizosphere respiration has been found.Fine roots respond more strongly to elevated CO2 concentrations than coarse roots.Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations.Microbial biomass and activity are related or unrelated to rates of microbial respiration.Because substrate availability drives microbial metabolism in soils,it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production.Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration.

  20. Soil Respiration in Eddy Covariance Footprints using Forced Diffusion

    Science.gov (United States)

    Nickerson, N.; Gabriel, C. E.; Creelman, C.

    2016-12-01

    Eddy covariance (EC) has been widely used across the globe for more than 20 years, offering researchers invaluable measurements of parameters including Net Ecosystem Exchange and ecosystem respiration. However, research suggests that EC assumptions and technical obstacles can cause biased gas exchange estimates. Measurements of soil respiration (RS) at the ground level may help alleviate these biases; for example, by allowing researchers to reconcile nocturnal EC flux data with RS or by providing a means to inform gap-filling models. RS measurements have been used sparingly alongside EC towers because of the large cost required to scale chamber systems to the EC footprint and data integration and processing burdens. Here we present the Forced Diffusion (FD) method for the measurement of RS at EC sites. The FD method allows for inexpensive and autonomous measurements, providing a scalable approach to matching the EC footprint compared to other RS systems. A pilot study at the Howland Forest AmeriFlux site was carried out from July 15, 2016 to Dec., 2016 using EC, custom-made automated chambers, and FD chambers in tandem. These results emphasize how RS measurements, like those from the eosFD, can identify decoupling of above and below canopy air masses and assist in informing and parameterizing gap-filling techniques. Uncertainty in nocturnal EC fluxes has been extensively characterized at Howland Forest with EC measurements spanning more than 20 years. Similarly, long term automated measurements of RS are also made at Howland, and have already been used to inform EC gap-filling models, making Howland the ideal site for such a study. This study has been designed to reproduce previous findings from Howland using the FD approach, aiming to demonstrate that the measurements taken using the eosFD correlate well with the existing chamber systems and can be used with equal efficacy to inform gap filling models or for other other eddy covariance QA/QC procedures, including

  1. Adjustment of Forest Ecosystem Root Respiration as Temperature Warms

    Institute of Scientific and Technical Information of China (English)

    Andrew J. Burton; Jerry M. Melillo; Serita D. Frey

    2008-01-01

    Adjustment of ecosystem root respiration to warmer climatic conditions can alter the autotrophic portion of soil respiration and influence the amount of carbon available for biomass production. We examined 44 published values of annual forest root respiration and found an increase in ecosystem root respiration with increasing mean annual temperature (MAT),but the rate of this cross-ecosystem increase (Q10 = 1.6) is less than published values for short-term responses of root respiration to temperature within ecosystems (Q10 = 2-3). When specific root respiration rates and root biomass values were examined, there was a clear trend for decreasing root metabolic capacity (respiration rate at a standard temperature) with increasing MAT. There also were tradeoffs between root metabolic capacity and root system biomass, such that there were no instances of high growing season respiration rates and high root biomass occurring together. We also examined specific root respiration rates at three soil warming experiments at Harvard Forest, USA, and found decreases in metabolic capacity for roots from the heated plots. This decline could be due to either physiological acclimation or to the effects of co-occurring drier soils on the measurement date. Regardless of the cause, these findings clearly suggest that modeling efforts that allow root respiration to increase exponentially with temperature, with Qt0 values of 2 or more, may over-predict root contributions to ecosystem CO2 efflux for future climates and underestimate the amount of C available for other uses,including net primary productivity.

  2. New respirator fit test panels representing the current Chinese civilian workers.

    Science.gov (United States)

    Chen, Weihong; Zhuang, Ziqing; Benson, Stacey; Du, Lili; Yu, Dan; Landsittel, Douglas; Wang, Limin; Viscusi, Dennis; Shaffer, Ronald E

    2009-04-01

    Respirator fit test panels provide an objective tool for selecting representative human test subjects based upon their facial characteristics for use in research, product development, testing and certification. Fit test panels were typically based upon anthropometric data such as the 1967-1968 survey of American military personnel. In this study, the objectives were to: (i) evaluate the applicability of the recently developed National Institute for Occupational Safety and Health (NIOSH) respirator fit test panels for Chinese workers and (ii) develop new respirator fit test panels using the Chinese survey data. Overall, 95% of the workers in the Chinese survey fall within the NIOSH bivariate and principal component analysis (PCA) panels, suggesting that these panels would also be appropriate for the Chinese population. However, distribution of the subject across the panels was not uniform; only 6.3% of survey participants fell into five cells of the bivariate panel and only 7.2% were found within three cells of the PCA panel. Therefore, new respirator fit test panels with subject dimensions and distributions specific to Chinese workers may be beneficial for certain applications. Two new respirator fit test panels were developed with the same techniques used to create the NIOSH panels. All measurements were weighted to match age and gender distributions of the Chinese population from the 2005 census. The bivariate approach used face length and face width measurements, and the PCA panel was developed using the first two principal components obtained from a set of 10 facial dimensions. Respirators designed to fit these Chinese worker-specific panels are also likely to accommodate >95% of Chinese workers.

  3. Can soil respiration estimate neglect the contribution of abiotic exchange?

    Institute of Scientific and Technical Information of China (English)

    Xi CHEN; WenFeng WANG; GePing LUO; Hui YE

    2014-01-01

    This study examines the hypothesis that soil respiration can always be interpreted purely in terms of biotic processes, neglecting the contribution of abiotic exchange to CO2 fluxes in alkaline soils of arid areas that characterize 5%of the Earth’s total land surface. Analyses on flux data collected from previous studies suggested reconciling soil respiration as organic (root/microbial respiration) and inorganic (abiotic CO2 exchange) respiration, whose contributions in the total CO2 flux were determined by soil alkaline content. On the basis of utilizing mete-orological and soil data collected from the Xinjiang and Central Asia Scientific Data Sharing Platform, an incorpo-rated model indicated that inorganic respiration represents almost half of the total CO2 flux. Neglecting the abiotic module may result in overestimates of soil respiration in arid alkaline lands, which partly explains the long-sought“missing carbon sink”.

  4. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  5. Filter casing for respirators. Filtergehaeuse fuer Atemschutzmasken

    Energy Technology Data Exchange (ETDEWEB)

    Pantaleon-Stemberg, G.

    1987-12-16

    A filter casing for respirators, in which filter inserts are held exchangeably by means of a holder engaging into the wall of the casing, is improved in that filter inserts of different height and in various combinations can be fixed in it with the same holder. For that purpose the holder is designed as a socket which is open at both ends and can be fixed to the inside wall of the filter casing and is axially displaceable and envelops the filter insert, the end circumference of said socket having a fixing device projecting inwards.

  6. Bicarbonate alters cellular responses in respiration assays.

    Science.gov (United States)

    Krycer, James R; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Muoio, Deborah M; James, David E

    2017-08-05

    Metabolic assay buffers often omit bicarbonate, which is susceptible to alkalinisation in an open environment. Here, we assessed the effect of including bicarbonate in respirometry experiments. By supplementing HEPES-buffered media with low concentrations of bicarbonate, we found increased respiration in adipocytes and hepatocytes, but not myotubes. This was observed across multiple respirometry platforms and was independent of effects on enhanced insulin sensitivity, pH drift, or mitochondrial function. Permeabilised cell experiments suggest that bicarbonate increases substrate availability, likely by acting as a cofactor for carboxylase enzymes. This emphasises the importance of buffer choice in experimental biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Remote measurements of heart and respiration rates for telemedicine.

    Directory of Open Access Journals (Sweden)

    Fang Zhao

    Full Text Available Non-contact and low-cost measurements of heart and respiration rates are highly desirable for telemedicine. Here, we describe a novel technique to extract blood volume pulse and respiratory wave from a single channel images captured by a video camera for both day and night conditions. The principle of our technique is to uncover the temporal dynamics of heart beat and breathing rate through delay-coordinate transformation and independent component analysis-based deconstruction of the single channel images. Our method further achieves robust elimination of false positives via applying ratio-variation probability distributions filtering approaches. Moreover, it enables a much needed low-cost means for preventing sudden infant death syndrome in new born infants and detecting stroke and heart attack in elderly population in home environments. This noncontact-based method can also be applied to a variety of animal model organisms for biomedical research.

  8. Remote measurements of heart and respiration rates for telemedicine.

    Science.gov (United States)

    Zhao, Fang; Li, Meng; Qian, Yi; Tsien, Joe Z

    2013-01-01

    Non-contact and low-cost measurements of heart and respiration rates are highly desirable for telemedicine. Here, we describe a novel technique to extract blood volume pulse and respiratory wave from a single channel images captured by a video camera for both day and night conditions. The principle of our technique is to uncover the temporal dynamics of heart beat and breathing rate through delay-coordinate transformation and independent component analysis-based deconstruction of the single channel images. Our method further achieves robust elimination of false positives via applying ratio-variation probability distributions filtering approaches. Moreover, it enables a much needed low-cost means for preventing sudden infant death syndrome in new born infants and detecting stroke and heart attack in elderly population in home environments. This noncontact-based method can also be applied to a variety of animal model organisms for biomedical research.

  9. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    OpenAIRE

    Viscusi, Dennis J.; Bergman, Michael S.; Eimer, Benjamin C.; Ronald E. Shaffer

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study eval...

  10. A survey of respirators usage for airborne chemicals in Korea.

    Science.gov (United States)

    Han, Don-Hee; Kang, Min-Sun

    2009-10-01

    A questionnaire survey was undertaken to identify the current status of respirator usage in manufacturing work environments subject to gas/vapor chemicals exposure in Korea and to suggest improvements to enhance the effectiveness of respirator usage. The number of target companies included 17 big companies, 110 small & mid-size companies, and 5 foreign companies, and the number of respondents included 601 workers and 69 persons in charge of respirators (PCR). The results explained clearly that respirator programs in practice were extremely poor in small & mid-sized companies. The findings indicated that the selection of respirators was not appropriate. Quarter mask including filtering facepiece was the most common facepiece form for respirator and was worn by sixty-four percent. Not a little proportion of respondents (33%) complained about the fit: faceseal leakage between the face and facepiece. A filtering facepiece with carbon fiber filter was used as a substitution for a gas/vapor respirator. Another result was that the PCR respondents' perception of the administration of respirators was very low. The results of this survey suggest that regal enforcement of respiratory protection programs should be established in Korea. On the basis of these findings, respiratory protection programs should include respirator selection, maintenance, training, and fit testing.

  11. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  12. respiration and transpiration characteristics of selected fresh fruits ...

    African Journals Online (AJOL)

    AISA

    Key words : packaging, respiration, transpiration, temperature, relative humidity. RESUME ... microbial attack. Shelf life is inversely ... of relative humidity. MATERIALS AND METHODS ..... physiology and crop preservation. (M.) Lieberman ed.

  13. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  14. Central cholinergic regulation of respiration: nicotinic receptors

    Institute of Scientific and Technical Information of China (English)

    Xuesi M SHAO; Jack L FELDMAN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of a4* nAChRs in the preBotzinger Complex (preBotC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBotC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic a4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.

  15. Underwater breathing: the mechanics of plastron respiration

    Science.gov (United States)

    Flynn, M. R.; Bush, John W. M.

    The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or , and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

  16. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  17. Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM

    Directory of Open Access Journals (Sweden)

    B. Badawy

    2013-10-01

    Full Text Available We present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM that has been developed based on pre-existing formulations. The photosynthesis model is based on the light use efficiency logic for calculating the gross primary production (GPP, while the ecosystem respiration (Reco is a modified version of an Arrhenius-type equation. SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed Photosynthetically Active Radiation and climate data from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR. The model estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation is to provide a priori fields of surface CO2 fluxes with fine temporal and spatial scales for atmospheric CO2 inversions. The estimated fluxes from SDPRM showed that the model is capable of producing flux estimates consistent with the ones inferred from atmospheric CO2 inversion or simulated from process-based models. In this Technical Note, different analyses were carried out to test the sensitivity of the estimated fluxes of GPP and CO2 to their driving forces. The spatial patterns of the climatic controls (temperature, precipitation, water on the interannual variability of GPP are consistent with previous studies, even though SDPRM has a very simple structure and few adjustable parameters and hence it is much easier to modify in an inversion than more sophisticated process-based models. In SDPRM, temperature is a limiting factor for the interannual variability of Reco over cold boreal forest, while precipitation is the main limiting factor of Reco over the tropics and the southern hemisphere, consistent with previous regional studies.

  18. Lymphocyte respiration in children with Trisomy 21

    Directory of Open Access Journals (Sweden)

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  19. Observing Mean Annual Mediterranean Maquis Ecosystem Respiration

    Science.gov (United States)

    Marras, S.; Bellucco, V.; Mereu, S.; Sirca, C.; Spano, D.

    2014-12-01

    In semi arid ecosystems, extremely low Soil Water Content (SWC) values may limit ecosystem respiration (Reco) to the point of hiding the typical exponential response of respiration to temperature. This work is aimed to understand and model the Reco of an evergreen Mediterranean maquis ecosystem and to estimate the contribution of soil CO2 efflux to Reco. The selected site is located in the center of the Mediterranean sea in Sardinia (Italy). Mean annual precipitation is 588 mm and mean annual temperature is 15.9 °C. Vegetation cover is heterogeneous: 70% covered by shrubs and 30% of bare soil. Net Ecosystem Exchange (NEE) is monitored with an Eddy Covariance (EC) tower since April 2004. Soil collars were placed underneath the dominant species (Juniperus phoenicea and Pistacia lentiscus) and over the bare soil. Soil CO2 efflux was measured once a month since April 2012. Soil temperature and SWC were monitored continuously at 5 cm depth in 4 different positions close to the soil collars. Six years of EC measurements (2005-2010) and two years of soil CO2 efflux (2012-2013) measurements were analysed. Reco was estimated from the measured EC fluxes at night after filtering for adequate turbulence (u* > 1.5). Reco measurements were then binned into 1°C intervals and median values were first fitted using the Locally Estimated Scatterplot Smoothing (LOESS) method (to determine the dominant trend of the experimental curve) Reco shows an exponential increase with air and soil temperature, until SWC measured at 0.2 m depth remains above 19% vol. Secondly, the coefficients of the selected Lloyd and Taylor (1994) were estimated through the nonlinear least square (nls) method: Rref (ecosystem respiration rate at a reference temperature of 10 °C was equal to 1.65 μmol m-2 s-1 and E0 (activation energy parameter that determines the temperature sensitivity) was equal to 322.46. In addition, bare and drier soils show a reduced response of measured CO2 efflux to increasing

  20. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  1. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  2. Differential soil respiration responses to changing hydrologic regimes

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  3. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  4. Prokaryotic respiration and production in the open ocean

    NARCIS (Netherlands)

    Reinthaler, Thomas

    2006-01-01

    The aim of this thesis was to advance our knowledge on the dynamics of bacterial production and bacterial respiration in the open ocean and linking microbial activity to the physico-chemical environment. Although the currency in carbon cycling measurements is logically carbon, respiration in water i

  5. Antibiotic efficacy is linked to bacterial cellular respiration.

    Science.gov (United States)

    Lobritz, Michael A; Belenky, Peter; Porter, Caroline B M; Gutierrez, Arnaud; Yang, Jason H; Schwarz, Eric G; Dwyer, Daniel J; Khalil, Ahmad S; Collins, James J

    2015-07-07

    Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.

  6. Molecular AND logic gate based on bacterial anaerobic respiration.

    Science.gov (United States)

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  7. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  8. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... light intensities. Areal respiration, calculated from the difference between areal gross and areal net photosynthesis, increased from 3.9 to 14.4 nmol O-2 cm(2) min(-1) with increasing surface irradiance. This light-enhanced areal respiration was related to an increase in oxygen penetration depth from 0.......2 to 2.0 mm, thus expanding the volume of sediment involved in oxygen respiration beneath the mat surface. The mean rate of oxygen respiration per volume of mat remained constant at a rate of similar to 100 nmol O-2 cm(-3) min(-1). Oxygen profiles for the intertidal sediment were recorded in situ during...

  9. CO(2) Inhibits Respiration in Leaves of Rumex crispus L.

    Science.gov (United States)

    Amthor, J S; Koch, G W; Bloom, A J

    1992-02-01

    Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO(2) partial pressure of about 35 pascals. Apparent respiration rate (CO(2) efflux in the dark) of expanded leaves was then measured at ambient CO(2) partial pressure of 5 to 95 pascals. Calculated intercellular CO(2) partial pressure was proportional to ambient CO(2) partial pressure in these short-term experiments. The CO(2) level strongly affected apparent respiration rate: a doubling of the partial pressure of CO(2) typically inhibited respiration by 25 to 30%, whereas a decrease in CO(2) elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO(2) (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated.

  10. 76 FR 3175 - Proposed Extension of Existing Information Collection; Respirator Program Records

    Science.gov (United States)

    2011-01-19

    ... Safety and Health Administration Proposed Extension of Existing Information Collection; Respirator... miners against hazards. Where protective equipment or respirators are required because of exposure to... respirators is essential for ensuring that workers are properly and effectively using the equipment. Title...

  11. 外循环式DSF综合传热系数的影响因素研究(I)——夏热冬冷地区夏季工况%INFLUENCE FACTORS RESEARCH ON COMPREHENSIVE COEFFICIENT OF HEAT TRANSFER OF EXTERNAL RESPIRATION DOUBLE-SKIN FACADE(I)-SUMMER WORKING CONDITION IN SUMMER HOT AND WINTER COLD AREAS

    Institute of Scientific and Technical Information of China (English)

    刘猛; 龙惟定

    2011-01-01

    针对夏热冬冷地区常用的外循环式双层皮玻璃幕墙(DSF),建立了箱体式"呼吸"单元物理模型,给出夏季工况综合传热系数的计算方法.在此基础上研究了夏季工况不同太阳辐射强度、通风腔宽度、通风腔高度以及遮阳装置在不同位置时的综合传热系数,分析了各因素变化时对综合传热系数造成影响的原因并给出了最佳值,为今后DSF的研究和优化设计提供参考和依据.%Models a trunk respiration DSF unit is applicable to be used in summer hot and winter cold areas. The mechanism of heat transfer and presents calculation method of comprehensive heat transfer was analyzed in summer condition.Sequentially, various comprehensive coefficient K of heat transfer under different solar radiant intensity, ventilation cavity width and height, location of sun-shading device conditions were obtained. Then an analysis about how these factors influence the K value and puts forward an optimal value for each influence factor was made. The paper will provide reference basis for further research and optimal design of DSF buildings.

  12. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    Directory of Open Access Journals (Sweden)

    Juan Fan

    Full Text Available Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT, only litter removal (LR, control (CK, only root trenching (RT and litter addition (LA. We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72 and LA (3.19 treatments relative to the control (2.51, but lower in the LRRT (1.52 and LR treatments (1.36. Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  13. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    Science.gov (United States)

    Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  14. Employing ensemble empirical mode decomposition for artifact removal: extracting accurate respiration rates from ECG data during ambulatory activity.

    Science.gov (United States)

    Sweeney, Kevin T; Kearney, Damien; Ward, Tomás E; Coyle, Shirley; Diamond, Dermot

    2013-01-01

    Observation of a patient's respiration signal can provide a clinician with the required information necessary to analyse a subject's wellbeing. Due to an increase in population number and the aging population demographic there is an increasing stress being placed on current healthcare systems. There is therefore a requirement for more of the rudimentary patient testing to be performed outside of the hospital environment. However due to the ambulatory nature of these recordings there is also a desire for a reduction in the number of sensors required to perform the required recording in order to be unobtrusive to the wearer, and also to use textile based systems for comfort. The extraction of a proxy for the respiration signal from a recorded electrocardiogram (ECG) signal has therefore received considerable interest from previous researchers. To allow for accurate measurements, currently employed methods rely on the availability of a clean artifact free ECG signal from which to extract the desired respiration signal. However, ambulatory recordings, made outside of the hospital-centric environment, are often corrupted with contaminating artifacts, the most degrading of which are due to subject motion. This paper presents the use of the ensemble empirical mode decomposition (EEMD) algorithm to aid in the extraction of the desired respiration signal. Two separate techniques are examined; 1) Extraction of the respiration signal directly from the noisy ECG 2) Removal of the artifact components relating to the subject movement allowing for the use of currently available respiration signal detection techniques. Results presented illustrate that the two proposed techniques provide significant improvements in the accuracy of the breaths per minute (BPM) metric when compared to the available true respiration signal. The error reduced from ± 5.9 BPM prior to the use of the two techniques to ± 2.9 and ± 3.3 BPM post processing using the EEMD algorithm techniques.

  15. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  16. Respiration and sodium transport in rabbit urinary bladder.

    Science.gov (United States)

    Silverthorn, S U; Eaton, D C

    1982-07-28

    Respiration of rabbit urinary bladder was measured in free-floating pieces and in short-circuited pieces mounted in an Ussing chamber. Ouabain, amiloride, and potassium-free saline inhibited respiration approx. 20%; sodium-free saline depressed respiration approx. 40-50%. The coupling ratio between respiration and transport in short-circuited tissues was about two sodium ions per molecule O2. Chloride-free saline depressed mean oxygen consumption 21% in free-floating tissue pieces; 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and furosemide had no effect. The effect of chloride-free saline in short-circuited tissues was variable; in tissues with low transport rates, respiration was stimulated about 21% while in tissue with high transport rates respiration was reduced about 24%. Nystatin and monensin, both of which markedly increase the conductance of cell membranes with a concomitant increase in sodium entry, stimulated respiration. These data indicate that 50-60% of the total oxygen consumption is not influenced by sodium, 20-25% is linked to (Na+ +K+)-ATPase transport, while the remaining 25-30% is sodium-dependent but not ouabain-inhibitable.

  17. Plankton Respiration from the Cellular to the Basin Scale

    Science.gov (United States)

    Robinson, C.; Garcia-Martin, E. E.; Hull, T.; Kitidis, V. A.; Ostle, C.; Serret, P.; Tilstone, G.

    2016-02-01

    Estimates of marine plankton respiration provide an important constraint on the magnitude of the biological carbon pump and global elemental nutrient cycles, yet respiration remains one of the least constrained terms in models of metabolism, gas exchange and carbon mass balance. This is due in part to the difficulty in measuring both total oceanic respiration and that attributable to specific plankton groups or size classes and the resulting lack of earth observation algorithms. Respiration in the surface layer of the ocean is usually estimated from either the consumption of dissolved oxygen in a contained sample volume or from enzymatic proxies such as INT, and is less frequently determined from mixed layer oxygen utilisation, allometric equations or biomass / abundance spectra.As part of a tracer release (SF6) experiment in the Mauritanian upwelling and a seasonal study of UK shelf sea biogeochemistry, we measured plankton respiration using a range of methods which span time and space scales from cells to the mixed layer and hours to years. This presentation will compare and contrast these concurrent measurements with a view to assessing the range of variability in respiration relative to that in primary production alongside measures of parameters such as plankton community structure and organic carbon availability which may lead to this variability. In addition, by comparing between systems and between seasons in the same system, and utilising the available global dataset, we aim to test predictive empirical models of respiration in an attempt to extrapolate to the basin scale.

  18. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  19. Alternative respiration and fumaric acid production of Rhizopus oryzae.

    Science.gov (United States)

    Gu, Shuai; Xu, Qing; Huang, He; Li, Shuang

    2014-06-01

    Under the conditions of fumaric acid fermentation, Rhizopus oryzae ME-F14 possessed at least two respiratory systems. The respiration of mycelia was partially inhibited by the cytochrome respiration inhibitor antimycin A or the alternative respiration inhibitor salicylhydroxamic acid and was completely inhibited in the presence of both antimycin A and salicylhydroxamic acid. During fumaric acid fermentation process, the activity of alternative respiration had a great correlation with fumaric acid productivity; both of them reached peak at the same time. The alternative oxidase gene, which encoded the mitochondrial alternative oxidase responsible for alternative respiration in R. oryzae ME-F14, was cloned and characterized in Escherichia coli. The activity of alternative respiration, the alternative oxidase gene transcription level, as well as the fumaric acid titer were measured under different carbon sources and different carbon-nitrogen ratios. The activity of alternative respiration was found to be comparable to the transcription level of the alternative oxidase gene and the fumaric acid titer. These results indicated that the activity of the alternative oxidase was regulated at the transcription stage under the conditions tested for R. oryzae ME-F14.

  20. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  1. Temperature response of soil respiration largely unaltered with experimental warming.

    Science.gov (United States)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  2. The cytological implications of primary respiration.

    Science.gov (United States)

    Crisera, P N

    2001-01-01

    Observing the macroscopic complexities of evolved species, the exceptional continuity that occurs among different cells, tissues and organs to respond coherently to the proper set of stimuli as a function of self/species survival is appreciable. Accordingly, it alludes to a central rhythm that resonates throughout the cell; nominated here as primary respiration (PR), which is capable of binding and synchronizing a diversity of physiological processes into a functional biological unity. Phylogenetically, it was conserved as an indispensable element in the makeup of the subkingdom Metazoa, since these species require a high degree of coordination among the different cells that form their body. However, it does not preclude the possibility of a basal rhythm to orchestrate the intricacies of cellular dynamics of both prokaryotic and eukaryotic cells. In all probability, PR emerges within the crucial organelles, with special emphasis on the DNA (5), and propagated and transduced within the infrastructure of the cytoskeleton as wave harmonics (49). Collectively, this equivalent vibration for the subphylum Vertebrata emanates as craniosacral respiration (CSR), though its expression is more elaborate depending on the development of the CNS. Furthermore, the author suggests that the phenomenon of PR or CSR be intimately associated to the basic rest/activity cycle (BRAC), generated by concentrically localized neurons that possess auto-oscillatory properties and assembled into a vital network (39). Historically, during Protochordate-Vertebrate transition, this area circumscribes an archaic region of the brain in which many vital biological rhythms have their source, called hindbrain rhombomeres. Bass and Baker (2) propose that pattern-generating circuits of more recent innovations, such as vocal, electromotor, extensor muscle tonicity, locomotion and the extraocular system, have their origin from the same Hox gene-specified compartments of the embryonic hindbrain (rhombomeres

  3. Wood and foliar respiration of tropical wet forest environment

    Science.gov (United States)

    Asao, S.; Bedoya Arrieta, R.; Ryan, M. G.

    2011-12-01

    Wood and foliar respiration from tropical forests constitute major components of ecosystem respiration that may control their productivity and carbon storage. However, few estimates on tropical forests vary greatly. Furthermore, the trees in these forests respire great amounts of carbon, but impacts of individual tree species on respiration is not well known. We examined wood and foliar respiration in this environment in relation to individual tree species. The objectives of this study were to: 1) identify how respiration rates relate to scaling variables for wood and foliage, 2) examine the effects of individual tree species on these relationships, 3) extrapolate the rates to the annual fluxes of the whole stands, and 4) determine if tree species differed in these fluxes. Established on an abandoned pasture in 1988 at La Selva Biological Station in Costa Rica, the monodominant stands contained four native species in a complete randomized block design. Respiration rates based on tissue surface area ranged among dominant tree species from 0.6 to 1.0 μg C m^-2 s^-1 for small diameter wood (<10cm), 1.0 to 1.8 μg C m^-2 s^-1 for large diameter wood, and 0.7 to 0.8 μg C m^-2 s^-1 for foliage. Understory species had similar wood respiration rates, but foliage respiration rates were about half of those for canopy leaves. Among surface area, volume, or biomass, respiration rates scaled best with surface area for wood with small diameter, volume or biomass for large diameter wood, and leaf area for foliage. These relationships differed slightly among tree species and between canopy trees and understory species. Foliar respiration rate was generally related to leaf nitrogen content, and this relationship differed among dominant tree species. Temperature response of foliar respiration also differed among tree species and canopy class. However, daily and annual temperature fluctuations had less than 3% effect on annual flux. Annual respiratory fluxes from wood and foliage

  4. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...... the method with field data and provide a discussion of the limitations of the method....

  5. Ecosystem Respiration Rates of Arctic Tundra Mesocosms in Response to Cold-Season Temperatures

    Science.gov (United States)

    Oberbauer, S. F.; Moser, J. G.; Olivas, P. C.; Starr, G.; Mortazavi, B.

    2013-12-01

    The cold season in the Arctic extends over 8 to 9 mo, during which air temperatures often reach as low as -40 °C. However, as a result of the insulating layer created by snow cover, temperatures seldom fall below -15 °C, and are likely warm enough to support some metabolism. Little research has been conducted on arctic plants and tundra during the cold season, despite its length and the fact that warming is predicted to be greatest during this period. The primary focus of cold-season research has been on rates of winter ecosystem respiration (ER) for estimates of annual carbon balance. The majority of these measurements during the winter or at winter temperatures indicate that some respiration is occurring. Although rates are low, they may contribute substantially to the annual carbon balance because of the length of the cold season. However, estimates of respiration at low temperatures differ substantially, have been taken at different temperatures using different methodologies, and importantly almost none provide quantitative relationships across a range of temperatures. We measured respiration rates of intact arctic tundra monoliths from 15 to -15 °C at 5 °C steps to facilitate improved model estimates of tundra respiration. Six tundra monoliths (~900 cm2) taken from Toolik Field Station, Alaska were conditioned for the cold season in growth chambers at shortened photoperiods and low, but above-freezing temperatures. Desired temperatures were obtained with a combination of growth chambers and a modified freezer. The average of five samplings of [CO2] at each temperature step was used to estimate the ER rates. Measurements were conducted with a closed system using incubation periods of 30 to 180 min, depending on the temperature. Carbon dioxide concentrations were measured by syringe samples injected into a N2 gas stream flowing through an infrared gas analyzer. Rates of ER calculated on an area basis were close to zero at -15 °C, but increased steadily with

  6. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE...

  7. 42 CFR 84.161 - Man test for gases and vapors; Type B and Type BE respirators; test requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type B and Type BE respirators; test requirements. 84.161 Section 84.161 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  8. 42 CFR 84.160 - Man test for gases and vapors; Type A and Type AE respirators; test requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type A and Type AE respirators; test requirements. 84.160 Section 84.160 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  9. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device

    Directory of Open Access Journals (Sweden)

    Wann-Yun Shieh

    2015-05-01

    Full Text Available Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  10. Development of a portable non-invasive swallowing and respiration assessment device.

    Science.gov (United States)

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo

    2015-05-27

    Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR) to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG) to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  11. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device †

    Science.gov (United States)

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo

    2015-01-01

    Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR) to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG) to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders. PMID:26024414

  12. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  13. Thoracic and respirable particle definitions for human health risk assessment

    Science.gov (United States)

    Provides estimates of the thoracic and respirable fractions, for adults and children during typical activities during both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of evidence of health effects.

  14. Cellular respiration: the nexus of stress, condition, and ornamentation

    National Research Council Canada - National Science Library

    Hill, Geoffrey E

    2014-01-01

    .... Here, I propose that efficiency of cellular respiration, as a product of mitochondrial function, underlies the associations between ornamentation and performance for a broad range of traits across taxa...

  15. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic......The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies...

  16. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction.

  17. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein....

  18. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-02-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats" formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in Western Oregon to investigate whether there was an incremental increase in respiration from mat soils, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the incremental increase in respiration averaging 16 % across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When air-filled pore space was low (high soil moisture, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This suggests that the elevated activity of fungal mats may be related to consumption or turnover of chitinous fungal cell-wall materials. We found Piloderma mats present across 57 % of the soil surface in the study area, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9 % of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, was estimated to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  19. Small ecosystem engineers as important regulators of lake's sediment respiration.

    Science.gov (United States)

    Baranov, Victor; Lewandowski, Joerg; Krause, Stefan; Romeijn, Paul

    2016-04-01

    Although shallow lakes are covering only about 1.5% of the land surface of the Earth, they are responsible for sequestration of carbon amounts similar or even larger than those sequestered in all marine sediments. One of the most important drivers of the carbon sequestration in lakes is sediment respiration. Especially in shallow lakes, bioturbation, i.e. the biogenic reworking of the sediment matrix and the transport of fluids within the sediment, severely impacts on sediment respiration. Widespread freshwater bioturbators such as chironomid larvae (Diptera, Chironomidae) are building tubes in the sediment and actively pump water through their burrows (ventilation). In the present work we study how different organism densities and temperatures (5-30°C) impact on respiration rates. In a microcosm experiment the bioreactive resazurin/resorufin smart tracer system was applied for quantifying the impacts of different densities of Chironomidae (Diptera) larvae (0, 1000, 2000 larvae/m2) on sediment respiration. Tracer transformation rates (and sediment respiration) were correlated with larval densities with highest transformation rates occurring in microcosms with highest larval densities. Respiration differences between defaunated sediment and sediment with 1000 and 2000 larvae per m2 was insignificant at 5 °C, and was progressively increasing with rising temperatures. At 30 °C respiration rates of sediment with 2000 larvae per m2 was 4.8 times higher than those of defaunated sediment. We interpret this as an effect of temperature on larval metabolic and locomotory activity. Furthermore, bacterial communities are benefiting from the combination of the high water temperatures and bioirrigation as bacterial community are able to maintain high metabolic rates due to oxygen supplied by bioirrigation. In the context of global climate change that means that chironomid ecosystem engineering activity will have a profound and increasing impact on lake sediment respiration

  20. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  1. Development of a Molecular System for Studying Microbial Arsenate Respiration

    Science.gov (United States)

    Saltikov, C. W.; Newman, D. K.

    2002-12-01

    The toxic element arsenic is a major contaminant of many groundwaters and surface waters throughout the world. Arsenic enrichment is primarily of geological origin resulting from weathering processes and geothermal activity. Not surprisingly, microorganisms inhabiting anoxic arsenic-contaminated environments have evolved to exploit arsenate during respiration. Numerous bacteria have been isolated that use arsenate as a terminal electron acceptor for respiratory growth. The diversity of this metabolism appears to be widespread throughout the microbial tree of life, suggesting respiratory arsenate reduction is ancient in origin. Yet little is known about the molecular mechanisms for how these organisms respire arsenate. We have developed a model system in Shewanella trabarsenatis, strain ANA-3, a facultative anaerobe that respires arsenate and tolerates high concentrations of arsenite (10 mM). Through loss-of-function studies, we have identified genes involved in both arsenic resistance and arsenate respiration. The genes that confer resistance to arsenic are homologous to the well-characterized ars operon of E. coli. However, the respiratory arsenate reductase is predicted to encode a novel protein that shares homologous regions (~ 40 % similarity) to molybdopterin anaerobic reductases specific for DMSO, thiosulfate, nitrate, and polysulfide. I will discuss our emerging model for how strain ANA-3 respires arsenate and the relationship between arsenite resistance and arsenate respiration. I will also highlight the relevance of this type of analysis for biogeochemical studies.

  2. Respiration during Postharvest Development of Soursop Fruit, Annona muricata L.

    Science.gov (United States)

    Bruinsma, J; Paull, R E

    1984-09-01

    Fruit of soursop, Annona muricata L., showed increased CO(2) production 2 days after harvest, preceding the respiratory increase that coincided with autocatalytic ethylene evolution and other ripening phenomena. Experiments to alter gas exchange patterns of postharvest fruit parts and tissue cylinders had little success.The respiratory quotient of tissue discs was near unity throughout development. 2,4-Dinitrophenol uncoupled respiration more effectively than carbonylcyanide m-chlorophenylhydrazone; 0.4 millimolar KCN stimulated, 4 millimolar salicylhydroxamic acid slightly inhibited, and their combination strongly inhibited respiration, as did 10 millimolar NaN(3). Tricarboxylic acid cycle members and ascorbate were more effective substrates than sugars, but acetate and glutarate strongly inhibited.Disc respiration showed the same early peak as whole fruit respiration; this peak is thus an inherent characteristic of postharvest development and cannot be ascribed to differences between ovaries of the aggregatetype fruit. The capacity of the respiratory apparatus did not change during this preclimacteric peak, but the contents of rate-limiting malate and citrate increased after harvest.It is concluded that the preclimacteric rise in CO(2) evolution reflects increased mitochondrial respiration because of enhanced supply of carboxylates as a substrate, probably induced by detachment from the tree. The second rise corresponds with the respiration during ripening of other climacteric fruits.

  3. Powered, air-purifying particulate respirator filter penetration by a DOP aerosol.

    Science.gov (United States)

    Martin, Stephen; Moyer, Ernest; Jensen, Paul

    2006-11-01

    In 1995, new certification requirements for all nonpowered, air-purifying particulate filter respirators were put in place when 42 CFR 84 replaced 30 CFR 11. However, the certification requirements for all other classes of respirators, including powered air-purifying respirators (PAPRs), were transferred to 42 CFR 84 from 30 CFR 11 without major changes. Since the inception of 42 CFR 84, researchers have learned that the efficiency of electrostatic filter media, in contrast with mechanical filter media, can be rapidly degraded by oil aerosols. Further, confusion may exist among respirator users, since electrostatic PAPR filters have the same magenta color assigned to high-efficiency filters for nonpowered particulate respirators that have been tested and certified for use against oil aerosols (i.e., P100 filters). Users may expect that the magenta color of certified PAPR filters indicates suitability for use against oil aerosols. This may not be the case. To illustrate the potential degradation of electrostatic PAPR filters, new filters certified under 42 CFR 84 were tested using a TSI model 8122 Automated Respirator Tester against charged and neutralized DOP aerosols with intermittent loading schedules. The performance of a magenta-colored electrostatic PAPR filter--one for which the manufacturer's user instructions appropriately indicates is not suitable for use in oily environments--was compared with the performance of several mechanical PAPR filters. In tests against both DOP aerosols, the electrostatic PAPR filter showed a significant decrease in performance at DOP loadings exceeding 400 mg, whereas mechanical filters showed no significant change in the performance except at extremely high loadings. The decreased performance of the electrostatic PAPR filter was found to be significantly greater when tested against a neutralized DOP aerosol when compared with a charged DOP aerosol. While laboratory tests show that the filtration efficiency of this electrostatic

  4. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  5. 42 CFR 84.254 - Powered air-purifying respirators; requirements and tests.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Powered air-purifying respirators; requirements and... DEVICES Special Use Respirators § 84.254 Powered air-purifying respirators; requirements and tests. (a... air-purifying respirators prescribed in subpart L of this part are applicable to vinyl...

  6. 42 CFR 84.1147 - Silica mist test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... respirators; minimum requirements. 84.1147 Section 84.1147 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1147 Silica mist test for dust, fume, and mist respirators; minimum requirements. (a) Three non-powered respirators will be tested for a period of...

  7. 42 CFR 84.50 - Types of respirators to be approved; scope of approval.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Types of respirators to be approved; scope of... Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.50 Types of respirators to be approved; scope of approval. Approvals shall be issued for the types of respirators...

  8. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Lead fume test for dust, fume, and mist respirators... Efficiency Respirators and Combination Gas Masks § 84.1146 Lead fume test for dust, fume, and mist respirators; minimum requirements. (a) Three non-powered respirators will be tested for a period of...

  9. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  10. 42 CFR 84.131 - Supplied-air respirators; required components.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Supplied-air respirators; required components. 84... Supplied-Air Respirators § 84.131 Supplied-air respirators; required components. (a) Each supplied-air respirator described in § 84.130 shall, where its design requires, contain the following component parts:...

  11. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist respirators; performance... Respirators and Combination Gas Masks § 84.1140 Dust, fume, and mist respirators; performance requirements; general. Dust, fume, and mist respirators and the individual components of each such device shall,...

  12. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered air-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of...

  13. 42 CFR 84.147 - Type B supplied-air respirator; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type B supplied-air respirator; minimum... DEVICES Supplied-Air Respirators § 84.147 Type B supplied-air respirator; minimum requirements. No Type B supplied-air respirator shall be approved for use with a blower or with connection to an air supply...

  14. 42 CFR 84.253 - Chemical-cartridge respirators; requirements and tests.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical-cartridge respirators; requirements and... DEVICES Special Use Respirators § 84.253 Chemical-cartridge respirators; requirements and tests. (a... for chemical-cartridge respirators prescribed in Subpart L of this part are applicable to...

  15. 42 CFR 84.206 - Particulate tests; respirators with filters; minimum requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Particulate tests; respirators with filters... RESPIRATORY PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.206 Particulate tests; respirators with filters; minimum requirements; general. (a) Three respirators with cartridges containing, or...

  16. 42 CFR 84.139 - Head and neck protection; supplied-air respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Head and neck protection; supplied-air respirators... PROTECTIVE DEVICES Supplied-Air Respirators § 84.139 Head and neck protection; supplied-air respirators; minimum requirements. Type AE, BE, and CE supplied-air respirators shall be designed and constructed...

  17. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist tests; respirators with...-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1158 Dust, fume, and mist tests; respirators with filters; minimum requirements; general. (a) Three respirators with cartridges containing,...

  18. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.148 Type C supplied-air respirator, continuous flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  19. Surfactants and the Mechanics of Respiration

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  20. [Factors influencing the spatial variability in soil respiration under different land use regimes].

    Science.gov (United States)

    Chen, Shu-Tao; Liu, Qiao-Hui; Hu, Zheng-Hua; Liu, Yan; Ren, Jing-Quan; Xie, Wei

    2013-03-01

    In order to investigate the factors influencing the spatial variability in soil respiration under different land use regimes, field experiments were performed. Soil respiration and relevant environment, vegetation and soil factors were measured. The spatial variability in soil respiration and the relationship between soil respiration and these measured factors were investigated. Results indicated that land use regimes had significant effects on soil respiration. Soil respiration varied significantly (P DBH) of trees can be explained by a natural logarithmic function. A model composed of soil organic carbon (C, %), available phosphorous (AP, g x kg(-1)) and diameter at breast height (DBH, cm) explained 92.8% spatial variability in soil respiration for forest ecosystems.

  1. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  2. Respirator studies for the ERDA Division of Safety, Standards, and Compliance, July 1, 1975--June 30, 1976. [Physiological effects of wearing respirators

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T.O.; Raven, P.B.; Shafer, C.L.; Linnebur, A.C.; Bustos, J.M.; Wheat, L.D.; Douglas, D.D.

    1977-03-01

    Results of a study to determine what effect wearing a respirator has on worker performance, and which physiological parameters an industrial physician should consider when examining an employee who will be wearing a respirator while working are presented. (TFD)

  3. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations.

    Science.gov (United States)

    Balleza, M.; Vargas, M.; Kashina, S.; Huerta, M. R.; Delgadillo, I.; Moreno, G.

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration.

  4. A novel through-wall respiration detection algorithm using UWB radar.

    Science.gov (United States)

    Li, Xin; Qiao, Dengyu; Li, Ye; Dai, Huhe

    2013-01-01

    Through-wall respiration detection using Ultra-wideband (UWB) impulse radar can be applied to the post-disaster rescue, e.g., searching living persons trapped in ruined buildings after an earthquake. Since strong interference signals always exist in the real-life scenarios, such as static clutter, noise, etc., while the respiratory signal is very weak, the signal to noise and clutter ratio (SNCR) is quite low. Therefore, through-wall respiration detection using UWB impulse radar under low SNCR is a challenging work in the research field of searching survivors after disaster. In this paper, an improved UWB respiratory signal model is built up based on an even power of cosine function for the first time. This model is used to reveal the harmonic structure of respiratory signal, based on which a novel high-performance respiration detection algorithm is proposed. This novel algorithm is assessed by experimental verification and simulation and shows about a 1.5dB improvement of SNR and SNCR.

  5. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  6. Novel Wireless Sensor System for Monitoring Oxygen, Temperature and Respiration Rate of Horticultural Crops Post Harvest

    Directory of Open Access Journals (Sweden)

    Ole Green

    2011-08-01

    Full Text Available In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2 is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs were used to determine RRO2 continuously in plant material (fresh cut broccoli florets at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels. Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products.

  7. Seasonality of temperate forest photosynthesis and daytime respiration

    Science.gov (United States)

    Wehr, R.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-06-01

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  8. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  9. Fit testing respirators for public health medical emergencies.

    Science.gov (United States)

    Brosseau, Lisa M

    2010-11-01

    Concerns about limiting pandemic infectious disease transmission when vaccines are not yet available prompted the Food and Drug Administration (FDA) to develop guidance for marketing respirators for use in public health medical emergencies. This project describes the results of filtering facepiece fit tests using 35 untrained, inexperienced subjects meeting the face size criteria of the National Institute for Occupational Safety and Health bivariate panel, in preparation for an FDA 510(k) application. Quantitative fit factors were measured for each subject on two replicates of each of two N95 filtering facepiece respirators (A and B) using the TSI Portacount Plus with N95 Companion. Subjects received no training or assistance with donning and had no prior experience with wearing respirators. The panel consisted of 20 females and 15 males; 80% were between 18 and 34 years of age. Almost all subjects properly placed the respirator on the face and formed the nose clip. Straps were improperly placed 25% of the time. Users reviewed the donning instructions 73% of the time and performed a seal check 80% of the time. Leaks were observed during 80% of the fit tests, most frequently at the chin during the head up and down exercise. For Respirator A, all but one subject had a 95% fit factor greater than 2 (the minimum required by FDA); one subject had a 95% fit factor of 1.5. All subjects had a 95% fit factor greater than 2.5 for Respirator B. Geometric mean fit factors ranged from 19-28 for these two respirators, and a majority of subjects were able to achieve a fit factor of 10 most of the time. However, fewer than 25% of subjects received the fit factor of 100 expected in workplace settings.

  10. Pyrogenic effect of respirable road dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, Umesh; Tollemark, Linda; Tagesson, Christer; Leanderson, Per, E-mail: per.leanderson@lio.s [Occupational and Environmental Medicine, University Hospital, S-581 85 Linkoeping (Sweden)

    2009-02-01

    Because pyrogenic (fever-inducing) compounds on ambient particles may play an important role for particle toxicity, simple methods to measure pyrogens on particles are needed. Here we have used a modified in vitro pyrogen test (IPT) to study the release of interleukin 1beta (IL-1beta) in whole human blood exposed to respirable road-dust particles (RRDP). Road dusts were collected from the roadside at six different streets in three Swedish cities and particles with a diameter less than 10 mum (RRDP) were prepared by a water sedimentation procedure followed by lyophilisation. RRDP (200 mul of 1 - 10{sup 6} ng/ml) were mixed with 50 mul whole blood and incubated at 37 deg. C overnight before IL-1beta was analysed with chemiluminescence ELISA in 384-well plates. Endotoxin (lipopolysaccharide from Salmonella minnesota), zymosan B and Curdlan (P-1,3-glucan) were used as positive controls. All RRDP samples had a pyrogenic effect and the most active sample produced 1.6 times more IL-1beta than the least active. This formation was of the same magnitude as in samples with 10 ng LPS/ml and was larger than that evoked by zymosan B and Curdlan (by mass basis). The method was sensitive enough to determine formation of IL-1beta in mixtures with 10 ng RRDP/ml or 0.01 ng LPS/ml. The endotoxin inhibitor, polymyxin B (10 mug/ml), strongly reduced the RRDP-induced formation of IL-1beta at 1mug RRDP/ml (around 80 % inhibition), but had only marginal or no effects at higher RRDP-concentrations (10 and 100 mug /ml). In summary, all RRDP tested had a clear pyrogen effect in this in vitro model. Endotoxin on the particles but also other factors contributed to the pyrogenic effect. As opposed to the limulus amebocyte lysate (LAL) assay (which measures endotoxin alone), IPT measures a broad range of pyrogens that may be present on particulate matter. The IPT method thus affords a simple, sensitive and quantitative determination of the total pyrogenic potential of ambient particles.

  11. Respirable crystalline silica: Analysis methodologies; Silice cristalina respirable: Metodologias de analisis

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Tena, M. P.; Zumaquero, E.; Ibanez, M. J.; Machi, C.; Escric, A.

    2012-07-01

    This paper describes different analysis methodologies in occupational environments and raw materials. A review is presented of the existing methodologies, the approximations made, some of the constraints involved, as well as the best measurement options for the different raw materials. In addition, the different factors that might affect the precision and accuracy of the results are examined. With regard to the methodologies used for the quantitative analysis of any of the polymorph s, particularly of quartz, the study centres particularly on the analytical X-ray diffraction method. Simplified methods of calculation and experimental separation are evaluated for the estimation of this fraction in the raw materials, such as separation methods by centrifugation, sedimentation, and dust generation in controlled environments. In addition, a review is presented of the methodologies used for the collection of respirable crystalline silica in environmental dust. (Author)

  12. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  13. Bundvands respiration i Kattegat og Bælthavet

    DEFF Research Database (Denmark)

    Hansen, Jørgen L. S.; Bendtsen, Jørgen

    Der findes generelt meget få direkte målinger af den pelagiske respiration, og det har ikke været muligt at finde repræsentative målinger af den pelagiske respiration for de åbne danske farvande. Her præsenteres et sæsonstudie af bundvandets respiration fra 5 stationer i et transekt gående fra det....... Temperaturfølsomheden af respirationsraten udtrykt som en Q10 var 3,01 ± 1.07 for alle forsøg og uafhængigt af om prøverne blev kølet eller opvarmet under inkubationerne. Den labile pulje af organisk stof blev bestemt og de observerede respirations rater svarede til specifikke kulstof omsætningsrater på mellem 0...... målbar reduktion i det partikulære materiale under inkubationerne, tyder overraskende på,at opløst organisk materiale (DOM) er den vigtigste kulstofkilde for bundvandet respiration....

  14. Cannabinoid-induced changes in respiration of brain mitochondria.

    Science.gov (United States)

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.

  15. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  16. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Breathing simulator of workers for respirator performance test.

    Science.gov (United States)

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  18. The effects of wearing respirators on human fine motor, visual, and cognitive performance.

    Science.gov (United States)

    AlGhamri, Anas A; Murray, Susan L; Samaranayake, V A

    2013-01-01

    When selecting a respirator, it is important to understand how employees' motor, visual and cognitive abilities are impacted by the personal protective equipment. This study compares dust, powered-air-purifying and full-face, negative-pressure respirators. Thirty participants performed three varied tasks. Each participant performed each task without a respirator and while wearing the three respirator types. The tasks included a hand tool dexterity test, the Motor-Free Visual Perception Test and the Serial Sevens Test to evaluate fine motor, visual and cognitive performance, respectively. The time required for task completion and the errors made were measured. Analysis showed no significant effect due to respirator use on the task completion time. A significant increase was found in the error rate when participants performed the cognitive test wearing the full-face, negative-pressure respirator. Participants had varying respirator preferences. They indicated a potential for full-face, negative-pressure respirators to negatively affect jobs demanding high cognitive skills such as problem solving and decision-making. while respirators are life-saving personal protective equipment (PPE), they can unintentionally reduce human performance, especially if job characteristics are not considered during PPE selection. An experiment was conducted to compare three respirators (dust respirator, powered-air-purifying respirators and full-face respirator) for varying task types. The full-face respirator was found to affect human cognitive performance negatively.

  19. Growth and respiration of regenerating tissues of the axolotl tail.

    Science.gov (United States)

    Vladimirova, I G

    1975-01-01

    Changes in the weight and oxygen consumption were studied during regeneration of the tail in adult axolotls and larvae. The curve of the increase in weight of the regenerating tail in both age groups is S-shaped. The intensity of respiration of the regenerating tail increases in adult axolotls and in larvae at the blastema stage; in adult axolotls there is also a second increase in the intensity of respiration of the regenerating tail during differentiation of the muscles. The relationship between weight and the rate of respiration was compared during regeneration of the tail in axolotl and the normal growth of the animals. Whereas growth of the animals was characterized by the relationship QO2 equals aPk with a constant value of k, during regeneration the various stages of this process have their own corresponding values of k.

  20. Inhibition of mouse liver respiration by Chelidonium majus isoquinoline alkaloids.

    Science.gov (United States)

    Barreto, M Carmo; Pinto, Ruy E; Arrabaça, João D; Pavão, M Leonor

    2003-12-15

    The alkaloids from Chelidonium majus L. which had a significant inhibitory effect in mitochondrial respiration were those which contain a positive charge due to a quaternary nitrogen atom, i.e., chelerythrine, sanguinarine, berberine and coptisine, both with malate+glutamate or with succinate as substrates. When malate+glutamate was used as substrate, chelerythrine and berberine, which contain methoxy groups, were particularly more active, since they had a strong effect even at low concentrations. In submitochondrial particles, berberine and coptisine had a marked inhibitory effect on NADH dehydrogenase activity but practically no effect on succinate dehydrogenase activity, whereas chelerythrine and sanguinarine inhibited more strongly succinate dehydrogenase than NADH dehydrogenase, which is in agreement with the results found for mitochondrial respiration. Protopine and allocryptopine, which did not inhibit mitochondrial respiration, strongly inhibited NADH dehydrogenase in submitochondrial particles, but had no effect on succinate dehydrogenase activity.

  1. Indoor-outdoor relationships of respirable sulfates and particles

    Science.gov (United States)

    Dockery, Douglas W.; Spengler, John D.

    Indoor and outdoor concentrations of respirable particulates and sulfates have been measured in 68 homes in six cities for at least 1 yr. A conservation of mass model was derived describing indoor concentrations in terms of outdoor concentrations, infiltration and indoor sources. The measured data were analysed to identify important building characteristics and to quantify their effect. The mean infiltration rate of outdoor fine particulates was found to be approximately 70%. Cigarette smoking was found to be the dominant indoor source of respirable particulates. Increased indoor concentrations of sulfates were found to be associated with smoking and also with gas stoves. The effect of full air conditioning of the building was to reduce infiltration of outdoor fine particulates by about one half, while preventing dilution and purging of internally generated pollutants. The model for indoor respirable particulate and sulfate levels was found to compare well with measurements.

  2. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  3. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Directory of Open Access Journals (Sweden)

    Matthew Fechser

    2014-01-01

    Full Text Available Air concentrations of respirable crystalline silica were measured in eleven (11 high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44. Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%.

  4. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Science.gov (United States)

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-01-01

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235

  5. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    Science.gov (United States)

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  6. Pulse wave transit time for monitoring respiration rate.

    Science.gov (United States)

    Johansson, A; Ahlstrom, C; Lanne, T; Ask, P

    2006-06-01

    In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.

  7. Cyanide-insensitive respiration in Acanthamoeba castellanii. Changes in sensitivity of whole cell respiration during exponential growth

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.W.; Lloyd, D.

    1977-01-01

    Respiration of Acanthamoeba castellanii shows varying sensitivity to cyanide during exponential growth in a medium containing proteose peptone, glucose and yeast extract. After 20 h growth, respiration was stimulated up to 40% by I mM-cyanide; sensitivity to cyanide then gradually increased until 90% inhibition of respiration was attained in late exponential phase cultures. Salicyl hydroxamic acid alone never stimulated or inhibited respiration by more than 20% but, when added together with cyanide, inhibition was always 70 to 100% from 3 h onward. Sensitivity to antimycin A was similar, but not identical to that shown to cyanide; when antimycin A was added together with salicyl hydroxamic acid, the inhibition was greater. Increased sensitivities to arsenite and malonate were also observed in late-exponential phase cultures. These changes in sensitivities were not associated with alterations in the growth medium since similar changes in sensitivity to inhibitors were observed during growth in conditioned medium. A rotenone-sensitive site is associated with cyanide-stimulated respiration and the results suggest that A. castellanii possesses a branched electron transport system.

  8. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    Science.gov (United States)

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  9. Antoine Lavoisier and the study of respiration: 200 years old.

    Science.gov (United States)

    Stokes, M A

    1991-03-01

    Antoine Lavoisier has been called the father of modern chemistry. From a medical point of view, he introduced the study of respiration and metabolism and so founded biochemistry. With his experiments, our knowledge of how the body works made immense strides forward. Two hundred years ago, he wrote his last authentic and untouched account of his views on respiration, in a letter to Joseph Black in Edinburgh. This opportunity has been taken to briefly review this work and the life of a man who did much to improve our understanding of ourselves.

  10. Determination of pressure drop across activated carbon fiber respirator cartridges.

    Science.gov (United States)

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by

  11. Agriculture intensification decreases soil C content and respiration activity in a Mediterranean Vertisol

    Science.gov (United States)

    Farina, Roberta; Francaviglia, Rosa; Felici, Barbara; Renzi, Gianluca; Troccoli, Antonio

    2016-04-01

    Adoption of intensive and non-conservative farming practices in Mediterranean areas, often causes a strong reduction of soil organic C, with major side effects on soil functioning and CO2 emissions to atmosphere. The purpose of our research was to evaluate the effect of durum wheat-(Triticum durum Desf.) (DW) based rotations, common in Southern Italy, on soil organic C content and soil potential respiration, after 19 years of cultivation. The rotation experiment was carried out since 1992 in Foggia (Apulia, Italy) at the experimental farm of the Cereal Research Centre in a clayey vertisol. Here we report results concerning two rotations, among seven: continuous durum wheat (CDW) and bare fallow-durum wheat-durum wheat- (BF-DW-DW) compared with an adjoining soil, covered with permanent grassland undisturbed, since 1972, considered at steady state. Results showed a negative trend of soil C in both rotations. The C reduction respect to the undisturbed soil (14.5 g C kg-1 of soil) were 0.15 and 0.13% for CDW and BF-DW-DW, respectively. Daily soil potential respiration was always higher in the undisturbed soil: it was 13.65, 10.46 and 8.64 mg C-CO2/kg soil day-1, for undisturbed soil, BF-DW-DW and DWC respectively. The cumulative respiration in 28 days for CDW and BF-DW-DW rotations compared with undisturbed soil was lower by 23 and 32%, respectively. Among the two rotations compared, BF-DW-DW showed to be slightly more conservative than the DWC rotation for soil C, even though none of the two rotations was able to keep the soil C level at values comparable to steady state, due both to soil disturbance and to lower C inputs respect to the permanent cover.

  12. ChillFish: A Respiration Game for Children with ADHD

    DEFF Research Database (Denmark)

    Sonne, Tobias; Jensen, Mads Møller

    and challenges of creating a tangible respiration-based controller and use it as a core game mechanic. Finally, we discuss the challenge of balancing engagement and relaxation in physically controlled games for children with ADHD in order to make a game that can be calming and still sustain their attention....

  13. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  14. Ecophysiology and environmental distribution of organohalide-respiring bacteria

    NARCIS (Netherlands)

    Lu, Y.

    2016-01-01

    Organohalide-respiring bacteria (OHRB) are able to breathe natural and anthropogenically  produced organohalides persistent in a broad range of oxygen-depleted environments. Therefore, these microorganisms are of high interest for organohalide-contaminated site bioremediation and natural haloge

  15. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  16. Soil respiration in Mexico: Advances and future directions

    Directory of Open Access Journals (Sweden)

    Alejandro Cueva

    2016-07-01

    Full Text Available Soil respiration (RS is a CO2 efflux from the soil to the atmosphere defined as the sum of autotrophic (respiration by roots and mycorrhizae, and heterotrophic (respiration of microorganisms that decompose fractions of organic matter and of soil fauna respiration. Globally, RS is considered to be the second largest flux of C to the atmosphere. From published literature it is clear that its main controls are soil temperature, soil moisture, photosynthesis, organic matter inputs and soil biota composition. Despite its relevance in C cycle science, there have been only twenty eight studies in Mexico in the last decade where direct measurement of gas exchange was conducted in the field. These studies were held mostly in agricultural and forest ecosystems, in Central and Southern Mexico where mild subtropical conditions prevail. However, arid, semi-arid, tropical and wetland ecosystems may have an important role in Mexico’s CO2 emissions because of their extent and extensive land use changes. From the twenty eight studies, only two provided continuous measurements of RS with high temporal resolution, highlighting the need for long-term studies to evaluate the complex biophysical controls of this flux and associated processes over different ecological succession stages. We conclude that Mexico represents an important opportunity to understand its complex dynamics, in national and global context, as ecosystems in the country cover a wide range of climatic conditions. This is particularly important because deforestation and degradation of Mexican ecosystems is rapidly increasing along with expected changes in climate.

  17. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  18. Teaching Aerobic Cell Respiration Using the 5Es

    Science.gov (United States)

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  19. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  20. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  1. Quantitative change of EEG and respiration signals during mindfulness meditation.

    Science.gov (United States)

    Ahani, Asieh; Wahbeh, Helane; Nezamfar, Hooman; Miller, Meghan; Erdogmus, Deniz; Oken, Barry

    2014-05-14

    This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies.

  2. 20 CFR 410.462 - Presumption relating to respirable disease.

    Science.gov (United States)

    2010-04-01

    ... AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to... will be presumed, in the absence of evidence to the contrary, that his death was due to pneumoconiosis arising out of employment in a coal mine. (b) Death will be found due to a respirable disease when...

  3. Differential ventilation with spontaneous respiration for bilateral emphysema.

    Science.gov (United States)

    Chakravarthy, Murali; Jawali, Vivek

    2007-06-01

    In patients with bilateral bullous disease and empyema in one lung, controlled ventilation may be hazardous and result in severe hypoxia. A 50-year-old man with bullous disease and thoracic empyema on the left side was operated on under general anesthesia with spontaneous respiration using differential lung ventilation.

  4. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  5. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  6. Evaluation of respiration-correlated digital tomosynthesis in lung1

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D. Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I.; Mageras, Gig S.

    2010-01-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30° gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2–3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method’s applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients. PMID:20384261

  7. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    OpenAIRE

    Juan Fan; Jinsong Wang; Bo Zhao; Lianhai Wu; Chunyu Zhang; Xiuhai Zhao; Gadow, Klaus V.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter a...

  8. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage.

  9. [Effects of nitrogen fertilization on soil respiration during maize growth season].

    Science.gov (United States)

    Li, Jian-Min; Ding, Wei-Xin; Cai, Zu-Cong

    2010-08-01

    In order to understand how nitrogen (N) fertilization affects soil respiration, a pot experiment with splitting-root compartment and by root-cutting was conducted in a greenhouse. The experiment had four treatments, i. e., unplanted and N-unfertilized (CKO), unplanted but fertilized with 150 mg N x kg(-1) CKN), planted maize (Zea mays L.) but N-unfertilized (MO), and planted maize and fertilized with 150 mg N x kg(-1) (MN). Soil respiration, soil basal respiration, root respiration, and rhizospheric microbial respiration were measured simultaneously. In unplanted soils (treatments CKO and CKN), soil respiration rate (soil basal respiration) ranged from 13.41 to 77.27 mg C x m(-2) x h(-1), and N fertilization had less effect; while in planted soils, the averaged soil respiration rate in treatment MN amounted to 138.54 mg C x m(-2) x h(-1), and was 17.7% higher (P < 0.05) than that in treatment MO. This increment mainly occurred at tasselling and flowering stages. During maize growth season, the contribution of soil basal respiration, root respiration, and rhizospheric microbial respiration to soil respiration in treatments MN and MO was 36.2%, 45.9%, and 17.9%, and 35.5%, 36.9%, and 37.6%, respectively.

  10. 42 CFR 84.1142 - Isoamyl acetate tightness test; respirators designed for respiratory protection against dusts...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Isoamyl acetate tightness test; respirators... Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1142 Isoamyl acetate tightness test; respirators designed for respiratory protection...

  11. 76 FR 28811 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirator...

    Science.gov (United States)

    2011-05-18

    ...; Respirator Program Records ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine..., ``Respirator Program Records,'' to the Office of Management and Budget (OMB) for review and approval for... equipment is used, metal and nonmetal mine operators institute a respirator program governing...

  12. 42 CFR 84.36 - Delivery of changed or modified approved respirator.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Delivery of changed or modified approved respirator... Approval and Disapproval § 84.36 Delivery of changed or modified approved respirator. An approved respirator for which a formal certificate of modification has been issued shall be delivered, with...

  13. 42 CFR 84.1102 - Examination, inspection and testing of complete respirator assemblies; fees.

    Science.gov (United States)

    2010-10-01

    ... respirator assemblies; fees. 84.1102 Section 84.1102 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1102 Examination, inspection and testing of complete respirator assemblies; fees. The following fees shall be charged by the Institute for the...

  14. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  15. 42 CFR 84.3 - Respirators for mine rescue or other emergency use in mines.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirators for mine rescue or other emergency use... DEVICES General Provisions § 84.3 Respirators for mine rescue or other emergency use in mines. (a)(1... review and issue certifications for respirators used for mine emergencies and mine rescue, including...

  16. 42 CFR 84.12 - Delivery of respirators and components by applicant; requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Delivery of respirators and components by applicant... Application for Approval § 84.12 Delivery of respirators and components by applicant; requirements. (a) Each... number of respirators and component parts required for testing. (b) The applicant shall deliver, at...

  17. 42 CFR 84.20 - Examination, inspection, and testing of complete respirator assemblies; fees.

    Science.gov (United States)

    2010-10-01

    ... respirator assemblies; fees. 84.20 Section 84.20 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... RESPIRATORY PROTECTIVE DEVICES Fees § 84.20 Examination, inspection, and testing of complete respirator... examination, inspection and testing of complete respirator assemblies: Self-contained breathing...

  18. 30 CFR 72.710 - Selection, fit, use, and maintenance of approved respirators.

    Science.gov (United States)

    2010-07-01

    ... approved respirators. 72.710 Section 72.710 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Selection, fit, use, and maintenance of approved respirators. In order to ensure the maximum amount of respiratory protection, approved respirators shall be selected, fitted, used, and maintained in...

  19. 10 CFR Appendix A to Part 20 - Assigned Protection Factors for Respirators a

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Assigned Protection Factors for Respirators a A Appendix A..., App. A Appendix A to Part 20—Assigned Protection Factors for Respirators a Operating mode AssignedProtection Factors I. Air Purifying Respirators c: Filtering facepiece disposable d Negative Pressure...

  20. [Variation characteristic in soil respiration of apple orchard and its biotic and abiotic influencing factors].

    Science.gov (United States)

    Wang, Rui; Guo, Sheng-Li; Liu, Qing-Fang; Zhang, Yan-Jun; Jiang, Ji-Shao; Guo, Hui-Min; Li, Ru-Jian

    2014-05-01

    To evaluate the orchard variability of soil respiration and the response of soil respiration to its influencing factors is helpful for a deep understanding about the effects of converting cropland to apple orchard. A field experiment was conducted in the Changwu State Key Agro-Ecological Station. Soil respiration, soil temperature, soil moisture and roots biomasses were periodically measured in a mature apple orchard during 2011 and 2012. Soil respiration decreased as the distance from the trunk increased. The cumulative soil respiration in the 0.5 m-distance from the trunk was 20% and 31% higher than that in the 2 m-distance from the trunk, respectively in 2011 and 2012. The temperature sensitivity of soil respiration (Q10) was relatively lower in the 2 m-distance than that in the 0. 5 m-distance in both years. Soil temperature and soil moisture were slightly higher in the 2 m-distance, but there was no significant difference between the 2 m-distance and the 0. 5 m-distance. Soil respiration and soil temperature showed a significant exponential relationship, but there was no positive correlation between soil moisture and soil respiration. Soil temperature changes can explain seasonal variation of soil respiration well, but it could not explain its spatial variability. Root density was an important factor for the spatial variability of soil respiration and Q15. Variation of soil respiration coefficient was 23% -31%. Therefore, the distance from the trunk should be considered when estimating orchards soil respiration.

  1. 30 CFR 71.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust standard when quartz is present... UNDERGROUND COAL MINES Dust Standards § 71.101 Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz,...

  2. 30 CFR 70.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust standard when quartz is present... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the...

  3. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Science.gov (United States)

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  4. Glycolysis is dynamic and relates closely to respiration rate in stored sugarbeet roots

    Science.gov (United States)

    Although respiration is the principal cause of postharvest sugarbeet (Beta vulgaris L.) sucrose loss, the internal mechanisms that control sugarbeet root respiration have not been established. Available evidence, however, indicates that respiration is likely to be controlled by the availability of r...

  5. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  6. 北方农牧交错带不同土地利用方式土壤呼吸速率探究%Research of Variations of Soil Respiration Rate among Different Land Use Types in the Agro-pastoral Ecotone of North China

    Institute of Scientific and Technical Information of China (English)

    刘季骢; 李志刚; 李兴

    2014-01-01

    The land use patterns was changeable in the agro-pastoral ecotone , and Artificial changes of land use pat-terns could affect the rate of CO2 released from the soil. the soil temporature, soil organic carbon content and soil respi-ration rate of four different soil type(new farmland, operated farmland of years, the grassland which has returned farm-land to grassland and the grassland growed for many years)were monitored and contrasted ,The result showed that diur-nal variation images of soil respiration rate of four different soil type was a single apex, and average respiration quantity of grassland reached the maximum for 0.85g·m-2·d-1.With the increase in soil temperature, soil respiration rate of four kinds of land-use types also immediately increase, Soil temperature and soil respiration rate was positively correlated for four different soil type, Among these,the newly opened farmland changed significantly, K value up to 0.045.From the point of view throughout the growing season, average soil respiration rate of different soil type were:farmland>grassland>also hastily>farmland,andrespectively0.97g·m-2·d-1,0.85g·m-2·d-1,0.77g·m-2·d-1 and 0.56g·m-2·d-1. The change trends of soil organic carbon content in 0-10cm and 10-20cm soil layers was similar to soil respiration rate. which showed it could increase the soil CO2 release by returned farmland to grassland and the grassland growed for many years.%农牧交错带地区土地利用方式多变,人为的改变土地利用方式会影响土壤释放CO2的速率.分别对新开垦农田、多年耕种农田、退耕还草草地、多年生草地4种利用类型的土壤温度、土壤有机碳含量、土壤呼吸速率进行监测和研究,结果表明:4种土地利用类型土壤呼吸速率的日变化图像呈单峰性曲线,其中草地平均呼吸速率最大,为0.85g·m-2·d-1.4种土地利用类型土壤温度与土壤呼吸速率呈正相关关系,其中新开垦农田变

  7. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  8. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    Science.gov (United States)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  9. Contribution of Root Respiration to Total Soil Respiration in a Betula ermanii-Dark Coniferous Forest Ecotone of the Changbai Mountains, China

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; HAN Shi-Jie; ZHOU Yu-Mei; ZHANG Jun-Hui

    2005-01-01

    Total and root-severed soil respiration rates for five plots set up 50 m apart in a Betula ermanii Cham.-dark coniferous forest ecotone on a north-facing slope of the Changbai Mountains, China, were measured to evaluate the seasonal variations of soil respiration, to assess the effect of soil temperature and water content on soil respiration, and to estimate the relative contributions of root respiration to the total soil respiration. PVC cylinders in each of 5 forest types of a B. ermanii-dark coniferous forest ecotone were used to measure soil respirations both inside and outside of the cylinders. The contribution of roots to the total soil respiration rates ranged from 12.5% to 54.6%. The mean contribution of roots for the different plots varied with the season, increasing from 32.5% on June 26 to 36.6% on August 3 and to 41.8% on October 14.In addition, there existed a significant (P < 0.01) logarithmic relationship between total soil respiration rate and soil temperature at 5 cm soil depth. Also, a similar trend was observed for the soil respiration and soil water content at the surface (0-5 cm) during the same period of time.

  10. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Sahlin, Kent; Fernström, Maria

    2007-01-01

    -Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria...... no differences in respiration with palmitoyl-l-carnitine plus malate, citrate synthase activity, HAD activity, UCP3 content, or oxidative stress measured as HNE between the groups. In the whole group, state 3 respiration with pyruvate plus malate and respiration through ETC were negatively associated with A1C......, and the proportion of type 2X fibers correlated with markers of insulin resistance (P

  11. Reverse Methanogenesis and Respiration in Methanotrophic Archaea

    Directory of Open Access Journals (Sweden)

    Peer H. A. Timmers

    2017-01-01

    Full Text Available Anaerobic oxidation of methane (AOM is catalyzed by anaerobic methane-oxidizing archaea (ANME via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”. In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux. Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3, nitrate (ANME-2d, or metal (oxides. In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (metagenome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.

  12. Diurnal respiration of a termite mound

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  13. Reverse Methanogenesis and Respiration in Methanotrophic Archaea

    Science.gov (United States)

    Koehorst, Jasper J.; Jetten, Mike S. M.; Stams, Alfons J. M.

    2017-01-01

    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types. PMID:28154498

  14. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  15. Respirable crystalline silica - a failure to control exposureexclamation

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J R, E-mail: john.cain@hse.gsi.gov.u [HM Regional Specialist Inspector (Occupational Hygiene), Health and Safety Executive, Marshalls Mill, Marshall Street, Leeds LS11 9YJ (United Kingdom)

    2009-02-01

    Several sites were visited to monitor stonemason exposure to respirable crystalline silica (RCS), inhalable dust and respirable dust. At all sites, exposure to RCS exceeded the Workplace Exposure Limit of 0.1 mg/m{sup 3} 8-hour TWA. There was therefore a continuing high risk of workers developing silicosis unless the appropriate measures were instigated to prevent or control exposure. Exposure control was ineffective at all sites e.g. water wall extraction systems were not well designed. There was evidence that foreign workers were at a greater exposure risk. But even with appropriate controls to mitigate exposure to RCS it may not be possible to sustain exposure to below 0.1 mg/m{sup 3} 8-hour TWA without on-going HSE intervention.

  16. Novel method for detection of Sleep Apnoea using respiration signals

    DEFF Research Database (Denmark)

    Nielsen, Kristine Carmes; Kempfner, Lykke; Sørensen, Helge Bjarup Dissing

    2014-01-01

    Polysomnography (PSG) studies are considered the “gold standard” for the diagnosis of Sleep Apnoea (SA). Identifying cessations of breathing from long-lasting PSG recordings manually is a labour-intensive and time-consuming task for sleep specialist, associated with inter-scorer variability...... desaturations > 3%, extracted from the thorax and abdomen respiration effort belts, and the oxyhemoglobin saturation (SaO2), fed to an Elastic Net classifier and validated according to American Academy of Sleep Medicine (AASM) using the patients' AHI value. The method was applied to 109 patient recordings...... and resulted in a very high SA classification with accuracy of 97.9%. The proposed method reduce the time spent on manual analysis of respiration stoppages and the inter- and intra-scorer variability, and may serve as an alternative screening method for SA....

  17. Nursing diagnoses identified in children with acute respiration infection

    Directory of Open Access Journals (Sweden)

    Flávia Paula Magalhães Monteiro

    2006-08-01

    Full Text Available A cross-sectional study developed with 78 children with until five years old, bearers of acute respiration infection interned in pediatric hospital of the periphery of a great city, with the purpose to identify the nursing diagnoses presented by these children. The number of nursing diagnoses, defining characteristics, related factors and risk factors identified and other numerical variables were analyzed based in theirs central tendency and dispersion measures. It was identified a total of 26 nursing diagnoses, 43 related factors, 14 risk factors e 67 defining characteristics. In average, It was found 5,32 nursing diagnoses; 4,10 related factors; 2,03 risk factors and 7,33 defining characteristics. The nursing diagnoses with the biggest proportion were: Ineffective Breathing Pattern, Risk for delayed growth, Ineffective protection and Altered oral mucous membrane. We concluded that children with acute respiration infection present a complex diagnostic frame including human responses of multiples domains.

  18. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9......Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0......, 10, 25, 50, 100, 200, and 500 mu E m(-2) s(-1) using the light-dark shift technique to measure gross photos synthesis rates. Areal gross photosynthesis increased from 0 to 31.3 nmol O-2 cm(-2) min(-1) and areal net photosynthesis increased from -3.9 to 16.7 nmol O-2 cm(-2) min(-1) with increasing...

  19. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    Science.gov (United States)

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  20. Fish optimize sensing and respiration during undulatory swimming.

    Science.gov (United States)

    Akanyeti, O; Thornycroft, P J M; Lauder, G V; Yanagitsuru, Y R; Peterson, A N; Liao, J C

    2016-03-24

    Previous work in fishes considers undulation as a means of propulsion without addressing how it may affect other functions such as sensing and respiration. Here we show that undulation can optimize propulsion, flow sensing and respiration concurrently without any apparent tradeoffs when head movements are coupled correctly with the movements of the body. This finding challenges a long-held assumption that head movements are simply an unintended consequence of undulation, existing only because of the recoil of an oscillating tail. We use a combination of theoretical, biological and physical experiments to reveal the hydrodynamic mechanisms underlying this concerted optimization. Based on our results we develop a parsimonious control architecture that can be used by both undulatory animals and machines in dynamic environments.

  1. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respira

  2. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  3. Facial anthropometric dimensions of Koreans and their associations with fit of quarter-mask respirators.

    Science.gov (United States)

    Kim, Hyunwook; Han, Don-Hee; Roh, Young-Man; Kim, Kangyoon; Park, Yong-Gyu

    2003-01-01

    Past studies on respirator fit or performance have mostly been done for Whites or male subjects, and little attention has been paid to minorities and Asians. To fill this gap, this study was designed to provide facial anthropometric data for Koreans and to analyze the association between facial dimensions and respirator fit factors for three brands of quarter-mask respirators, two domestic and one imported brand, using a Portacount 8020. A total of 110 university student subjects, 70 males and 40 females volunteered for participation in the study. The results of this study showed that Korean males and females have different facial dimensions as compared with those of White males and females. Unexpectedly, the imported respirator performed better than the domestic respirators. Males were found to achieve better respirator fit than females regardless of respirator brands tested. The regression analysis found no common prognostic variables with the three respirator brands studied. A stepwise logistic regression analysis was conducted to find predictive facial dimensions with respirator fits. Some facial dimensions were found to be statistically significant, but these dimensions are different from the traditionally recommended facial dimensions of face length and lip width for quarter mask. To improve respirator fit for Koreans, these different facial characteristics need to be considered in the design of quarter mask respirators.

  4. Measuring priming using 14C of respired CO2: effects on respiration source pools and interactions with warming

    Science.gov (United States)

    Hopkins, F. M.; Trumbore, S.

    2011-12-01

    The role of substrate availability on soil carbon turnover is a critical unknown in predicting future soil carbon stocks. Substrate composition and availability can be altered by land cover change, warming, and nitrogen deposition, which can in turn affect soil carbon stocks through the priming effect. In particular, little is understood about the interaction between warming and changing substrate concentration. We examined the interactions between global change factors and the priming effect using sucrose addition to incubations of soils from two forest Free Air CO2 Enrichment (FACE) sites (Duke and Aspen). In addition to the in situ global change manipulations conducted at these sites, the CO2 fertilization procedure over the decade-long experiment labeled soil carbon pools with fossil-derived carbon (depleted in 14C relative to the background isotope content of soil carbon), allowing us to determine the effect of priming on respiration of soil carbon substrates of different ages. Thus, we used the carbon-13 signature of sucrose-derived CO2 to account for losses of substrate C, and the carbon-14 signature to partition fluxes of soil-derived CO2 between pre-FACE (> 10 y) and FACE derived (positive priming effect-an increase in the rate of soil carbon derived respiration due to sucrose addition. However, the effect of substrate addition on respiratory source pools, as measured by 14C of respiration, varied greatly. At Duke FACE, we observed an increase in 14C content of CO2 of primed soil carbon, whereas at Aspen, we observed no difference. The amount of CO2 released by priming increased with temperature, but was proportionally similar to the amount of increase in basal respiration rates (no differences in Q10). At Duke, both warming and priming served to increase the 14C of respiration, whereas only warming changed 14C of respiration at Aspen. Despite similar overall carbon stocks, differences in the source of the priming effect between the two sites may be due to

  5. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    Science.gov (United States)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  6. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  8. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  9. The effect of age on mitochondrial enzymes and respiration.

    Science.gov (United States)

    Wilson, P D; Hill, B T; Franks, L M

    1975-01-01

    There was no significant difference between the levels of cytochrome oxidase and malate dehydrogenase in whole liver homogenates or in mitochondria isolated from the livers of 6-month-old and 30-month-old C57/BL mice. Little change with age was found in the cytochemical localisation of either enzyme. There were no significant changes in endogenous, state III or state IV respiration of mitochondria isolated from the livers of young and old mice.

  10. Effects of the M40 Respirator on Pulmonary Function Measurements

    Science.gov (United States)

    1990-05-01

    into a Med-Science Model 3000 Pulmonizer . Each set of measurements made on each volunteer was randomized for the four test conditions. 2.2 Test...was screened for any respiratory problem before being accepted for testing. All testing was performed on a Med-Science Model 3000 Pulmonizer . The...Personal Corputer. The Pulmonizer is a standard diagnostic machine used in hospitals for pulmonary function testing. The M40 respirator was interfaced with

  11. Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment

    Science.gov (United States)

    Spilling, Kristian; Paul, Allanah J.; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai G.; Ludwig, Andrea; Riebesell, Ulf

    2016-08-01

    Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms ( ˜ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient ( ˜ 240 µatm), used as control, to high CO2 (up to ˜ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high-CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC), decreased from ˜ 26 % at t0 to ˜ 8 % at t31, probably driven by a shift towards smaller plankton (export, and consequently did not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

  12. [External respiration parameters in workers engaged in synthetic detergents production].

    Science.gov (United States)

    Makhon'ko, M N; Trubetskov, A D

    2005-01-01

    The study covers results of thorough clinical and functional examination of workers engaged into contemporary chemical production. The authors studied effects caused in immunity parameters, respiratory organs and skin by sensitizing and irritating chemicals. Findings are that the most significant changes in external respiration parameters and high predisposition to respiratory diseases are associated with specific sensitizing to industrial allergen and with higher IgE levels.

  13. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  14. Infrared imaging based hyperventilation monitoring through respiration rate estimation

    Science.gov (United States)

    Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna

    2016-07-01

    A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.

  15. Organization of prefrontal network activity by respiration-related oscillations

    Science.gov (United States)

    Biskamp, Jonatan; Bartos, Marlene; Sauer, Jonas-Frederic

    2017-01-01

    The medial prefrontal cortex (mPFC) integrates information from cortical and sub-cortical areas and contributes to the planning and initiation of behaviour. A potential mechanism for signal integration in the mPFC lies in the synchronization of neuronal discharges by theta (6–12 Hz) activity patterns. Here we show, using in vivo local field potential (LFP) and single-unit recordings from awake mice, that prominent oscillations in the sub-theta frequency band (1–5 Hz) emerge during awake immobility in the mPFC. These oscillation patterns are distinct from but phase-locked to hippocampal theta activity and occur synchronized with nasal respiration (hence termed prefrontal respiration rhythm [PRR]). PRR activity modulates the amplitude of prefrontal gamma rhythms with greater efficacy than theta oscillations. Furthermore, single-unit discharges of putative pyramidal cells and GABAergic interneurons are entrained by prefrontal PRR and nasal respiration. Our data thus suggest that PRR activity contributes to information processing in the prefrontal neuronal network. PMID:28349959

  16. Automatic respiration monitoring system; Shushin jotai no jido monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is a system to recognize automatically status of a person in sleep including respiration stop, toss about in bed, and departure from the bed by performing animated image processing on images of the person in sleep as photographed by a camera, and by obtaining respiration waveforms from changes in the images of the breast. The system has been developed jointly by the Medical Department of Ehime University and Toshiba Engineering Company when commissioned from the Silver Service Promotion Association as a two-year project. The system requires no operation by an operator, can monitor the respiration during sleep on a real time basis from a completely non-restraint condition, and can be utilized for early discovery of crib death and/or apneic syndrome of aged persons and infants. Its effectiveness was verified by the field tests at a special facility for physically and mentally handicapped aged persons. The system was awarded with the first grand prize for an image recognition system from the Japan Automatic Recognition System Association. (translated by NEDO)

  17. [The knowledge of animal respiration as a combustion phenomenon].

    Science.gov (United States)

    de Micheli, Alfredo

    2014-01-01

    The different stages leading to knowledge of the phenomenon of animal breathing are going from some writings in Corpus Hippocraticum to Aristoteles' and Galen's works, who considered the heart as the source of the animal heat. Later, Miguel Servet suggested that the inspired air can achieve other functions besides cooling the blood. After that, different explications of the animal heat were raised. About 1770, due to progress of knowledge in the chemistry field, first Mayow and later Black began to consider the animal respiration as a combustion. The important treatise Méthode de nomenclature chimique, published by Guyton de Morveau et al. in 1787 and soon after the Traité élémentaire de chimie de Lavoisier (1789) provided a solid support to Lavoisier's thought. This way on arrived to consider analogous the respiration and combustion phenomena. Studies on the animal respiration phenomenon continued in xix century and in the following century it was possible to apply thermodynamic principles to biology: "generalized thermodynamics". Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  18. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  19. A New Compendium of Soil Respiration Data for Africa

    Directory of Open Access Journals (Sweden)

    Terence Epule Epule

    2015-04-01

    Full Text Available The objective of this paper is to present to the scientific community a new dataset derived from existing literature on soil respiration in Africa. The data has thus been obtained by searching for records in peer review papers and grey literature. The main search engines used are: Scientific Citation Index (SCI database, ISI Science web and Google scholar. This data description paper has greatly advanced the number of data points on soil respiration in Africa from 4 in 2010 to 62 in 2014. The new data points are culled from 47 peer review publications and grey literature reports. The data lends its self to a lot of possible analytical methods such as correlation analysis, multiple linear regressions, artificial neural network analysis and process base modeling. The overall conclusion that can be drawn here is that this paper has greatly advanced the availability of soil respiration data in Africa by presenting all the available records that before now were only reported in different studies.

  20. Cannabinoids inhibit cellular respiration of human oral cancer cells.

    Science.gov (United States)

    Whyte, Donna A; Al-Hammadi, Suleiman; Balhaj, Ghazala; Brown, Oliver M; Penefsky, Harvey S; Souid, Abdul-Kader

    2010-01-01

    The primary cannabinoids, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and Delta(8)-tetrahydrocannabinol (Delta(8)-THC) are known to disturb the mitochondrial function and possess antitumor activities. These observations prompted us to investigate their effects on the mitochondrial O(2) consumption in human oral cancer cells (Tu183). This epithelial cell line overexpresses bcl-2 and is highly resistant to anticancer drugs. A phosphorescence analyzer that measures the time-dependence of O(2) concentration in cellular or mitochondrial suspensions was used for this purpose. A rapid decline in the rate of respiration was observed when Delta(9)-THC or Delta(8)-THC was added to the cells. The inhibition was concentration-dependent, and Delta(9)-THC was the more potent of the two compounds. Anandamide (an endocannabinoid) was ineffective; suggesting the effects of Delta(9)-THC and Delta(8)-THC were not mediated by the cannabinoidreceptors. Inhibition of O(2) consumption by cyanide confirmed the oxidations occurred in the mitochondrial respiratory chain. Delta(9)-THC inhibited the respiration of isolated mitochondria from beef heart. These results show the cannabinoids are potent inhibitors of Tu183 cellular respiration and are toxic to this highly malignant tumor.

  1. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Santhipriya Inapurapu

    2017-01-01

    Full Text Available Objective(s: To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM, although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient.

  2. Effect of phosphogypsum on respiration and methane emissions in sediment.

    Science.gov (United States)

    DeLaune, R D; Porthouse, J D; Patrick, W H

    2006-05-01

    The impact of adding phosphogypsum (PG) to freshwater wetland areas, and potential effect on methane production and respiration in sediment was studied in the laboratory. Two organic matter levels (native and enriched with 0.5% by weight ground dry plant material) were studied using five sediment treatments each: (1) no PG added, (2) 4% PG by dry weight (homogenized), (3) 20% PG by dry weight (homogenized), (4) 2000 kg ha(-1) (surface applied), and (5) 5000 kg ha (surface applied), and the experiment was run in triplicate. There was a net flux of methane into sediment for all treatments that were maintained at the native organic matter level, indicating net methane oxidation. In the organic-enriched cores, both of the homogenized treatments exhibited no methane emissions, while the surface applied treatments retained the potential for high emissions. Soil respiration was depressed in all treatments when compared to controls, especially in the organic-enriched cores. The results conclude that it may be possible to add PG to non-vegetated areas with few observable effects on sediment respiration, but organic matter content and method of application are critical concerns.

  3. Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative

    Science.gov (United States)

    Thornley, John H. M.

    2011-01-01

    Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose

  4. Moisture Limitations Dominate the Seasonality of Heterotrophic Respiration in the Southern Hemisphere

    Science.gov (United States)

    Konings, A. G.; Bloom, A. A.; Liu, J.; Parazoo, N.; Schimel, D.; Bowman, K. W.

    2016-12-01

    Heterotrophic respiration is the dominant process causing the loss of soil organic carbon, the largest stock of carbon on earth. Temperature, soil moisture, substrate availability, and soil microbial composition can all affect the rate of heterotrophic respiration. Without isotopic or root-specific measurements, it can be difficult to separate the total soil respiration into autotrophic and heterotrophic respiration. As a result, the large-scale variability and seasonality of heterotrophic respiration remains unknown, especially outside the mid-latitudes. In this study, we use remote-sensing based observational constraints to estimate heterotrophic respiration at large scales. We combine net ecosystem exchange estimates from atmospheric inversions of the Carbon Monitoring System-Flux project (CMS-Flux) with a recently derived optimally-scaled GPP dataset based on satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a spatially-varying carbon use efficiency retrieved in a model-data fusion framework (CARDAMOM). The three datasets are combined into a Bayesian framework to derive the uncertainty distribution of global heterotrophic respiration allowing only physically realistic solutions (appropriate signs for all fluxes), In most Southern Hemisphere regions where precipitation and temperature are anti-correlated (e.g. dry African woodlands, Sahel, Southern India, etc..), the seasonality of heterotrophic respiration follows precipitation, not temperature. This results in an apparent anti-correlation between heterotrophic respiration and temperature. By comparison, a data-constrained terrestrial ecosystem model that does not simulate an effect of soil moisture on heterotrophic respiration did not show this anti-correlation. Data-driven heterotrophic respiration estimates such as those presented here may be used to benchmark

  5. The Analysis of the Influence of Odorant’s Complexity on Fractal Dynamics of Human Respiration

    Science.gov (United States)

    Namazi, Hamidreza; Akrami, Amin; Kulish, Vladimir V.

    2016-05-01

    One of the major challenges in olfaction research is to relate the structural features of the odorants to different features of olfactory system. However, no relationship has been yet discovered between the structure of the olfactory stimulus, and the structure of respiratory signal. This study reveals the plasticity of human respiratory signal in relation to ‘complex’ olfactory stimulus (odorant). We demonstrated that fractal temporal structure of respiration dynamics shifts towards the properties of the odorants used. The results show for the first time that more structurally complex a monomolecular odorant will result in less fractal respiratory signal. On the other hand, odorant with higher entropy will result the respiratory signal with lower entropy. The capability observed in this research can be further investigated and applied for treatment of patients with different respiratory diseases.

  6. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  7. Analysis of forces generated by n95 filtering facepiece respirator tethering devices: a pilot study.

    Science.gov (United States)

    Roberge, Raymond; Niezgoda, George; Benson, Stacey

    2012-01-01

    The restorative forces of elasticized tethering devices on N95 filtering facepiece respirators (N95 FFR), that occur in response to the application of a load (applied force) during donning, create the requisite pressure to effectively seal the respirator against the face and prevent excessive inward migration of harmful elements. Many workers don and doff the same N95 FFR multiple times in the course of a single workday, yet little is known regarding the possible degradation of these restorative loads and, by implication, protection with multiple donnings. This laboratory pilot study evaluated the degradation in loads of tethering devices of three models of N95 FFRs subjected to the strain of five wear periods of 15 min interspersed with 15-min periods without wear. Data indicate that there were load degradations at each donning that differed significantly with the FFR model (p = model with the lowest restorative loads was able to pass fit testing in a previous study, indicating that lower loads, perhaps coupled with FFR model-specific features, are sufficient to provide an adequate face/FFR interface seal. Tethering devices are importantly related to issues of comfort and protection afforded by N95 FFR and additional research is warranted.

  8. Progress of the LASL dry hot rock geothermal energy project

    Science.gov (United States)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  9. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... CE supplied-air respirator; minimum requirements. The resistance to air flowing from the respirator...

  10. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator, demand and pressure demand class; minimum requirements. (a) Respirators tested under this section...

  11. 42 CFR 84.1145 - Silica dust test; non-powered single-use dust respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... respirators; minimum requirements. 84.1145 Section 84.1145 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... Efficiency Respirators and Combination Gas Masks § 84.1145 Silica dust test; non-powered single-use dust respirators; minimum requirements. (a) Three respirators will be tested. (b) As described in §...

  12. Effect of rain enrichment on soil respiration of Nitraria sphaerocarpa community in a hyperarid area

    Institute of Scientific and Technical Information of China (English)

    DianJun Liu; Bo Wu; YongHua Li; GuangHui Lin; ShiPing Chen; YaJuan Zhu; Qi Lu; Bin Yao

    2013-01-01

    In order to analyze the effect of rain enrichment on soil respiration rate of a Nitraria sphaerocarpa community, we measured soil respiration rate in bare and vegetated areas in a hyperarid area (Dunhuang) during the growing season. Results show that rain enrichment can increase bare and vegetated soil respiration rates. The more rainfall enrichment, the greater the increment and the longer duration time effect for soil respiration rate. 200%(16 mm) and 300%(24 mm) of rain enrichment can significantly increase bare soil respiration rates by 90%and 106%(P<0.01), respectively. By contrast, areas with 100%(8 mm), 200%(16 mm) and 300% (24 mm) of rain enrichment can significantly increase shrub area respiration rates by 68%, 157%and 205%(P<0.01), respectively. The response time of bare and vegetated soil respiration to rainfall enrichment is asynchronous. Response variable of soil respiration in vegetated soil is higher (118%) than in bare soil. There was significant positive correlation between soil respiration rate and soil water content during the growing season (P<0.01). For every 1 mm increment of precipitation, soil respiration rate increased by 0.01 and 0.04μmol/(m2·s), respectively in vegetated and bare soils.

  13. Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians.

    Science.gov (United States)

    Bolstad; Mitchell; Vose

    1999-11-01

    We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ and on detached branches for Acer pensylvanicum L., A. rubrum L., Betula spp. (B. alleghaniensis Britt. and B. lenta L.), Carya glabra (Mill.) Sweet, Cornus florida L., Fraxinus spp. (primarily F. americana L.), Liriodendron tulipifera L., Magnolia fraseri Walt., Nyssa sylvatica Marsh., Oxydendrum arboreum L., Platanus occidentalis L., Quercus alba L., Q. coccinea Muenchh., Q. prinus L., Q. rubra L., Rhododendron maximum L., Robinia psuedoacacia L., and Tilia americana L. in the southern Appalachian Mountains, USA. Dark respiration was measured on fully expanded leaves at 10, 15, 20, 25, and 30 degrees C with an infrared gas analyzer equipped with a temperature-controlled cuvette. Temperature-respiration response functions were fit for each leaf. There were significant differences in response functions among species and by canopy position within species. These differences were observed when respiration was expressed on a mass, nitrogen, or area basis. Cumulative nighttime leaf respiration was calculated and averaged over ten randomly selected nights for each leaf. Differences in mean cumulative nighttime respiration were statistically significant among canopy positions and species. We conclude that effects of canopy position and species on temperature-respiration response functions may need to be considered when making estimates of whole-tree or canopy respiration.

  14. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  15. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  16. Evaluation of workers' exposure to total, respirable and silica dust and the related health symptoms in Senjedak stone quarry, Iran.

    Science.gov (United States)

    Golbabaei, Farideh; Barghi, Mohammad-Ali; Sakhaei, Manouchehr

    2004-01-01

    The present research was conducted in a stone quarry of marble located in northeast of Iran. Time weighted average of total dust, respirable dust, and crystalline silica (alpha-quartz) concentration in workers' breathing zone were monitored by using both gravimetric and XRD methods. The results showed that the employees working in hammer drill process had the highest exposure to the total and respirable dust: 107.9 +/- 8.0 mg/m3, 11.2 +/- 0.77 mg/m3 respectively, while the cutting machine workers had the lowest exposure (9.3 +/- 3.0 mg/m3, 1.8 +/- 0.82 mg/m3). The maximum concentration of a-quartz in total and respirable dust were detected equal to 0.670 +/- 8.49 x 10(-2) and 5.7 x 10(-2) +/- 1.6 x 10(-2) mg/m3 respectively, which belonged to the exposure of the workers of hammer drill process. The prevalence of skin and respiratory symptoms were higher in hammer drill workers, however, respiratory symptoms showed no significant prevalence. Regarding the average age of workers (31.6 +/- 1.9 yr) and average of their work history (3.8 +/- 1.0 yr), these results were predictable.

  17. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2016-05-01

    Full Text Available Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS, Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2 were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK and pyruvate dehydrogenase (PDH were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial

  18. Non-contact Laser-based Human Respiration Rate Measurement

    Science.gov (United States)

    Scalise, L.; Marchionni, P.; Ercoli, I.

    2011-08-01

    At present the majority of the instrumentation, used in clinical environments, to measure human respiration rate are based on invasive and contact devices. The gold standard instrument is considered the spirometer which is largely used; it needs a direct contact and requires a collaboration by the patient. Laser Doppler Vibrometer (LDVi) is an optical, non-contact measurement system for the assessment of a surface velocity and displacement. LDVi has already been used for the measurement of the cardiac activity and for the measurement of the chest-wall displacements. The aims of this work are to select the best measurement point on the thoracic surface for LDVi monitoring of the respiration rate (RR) and to compare measured data with the RR valued provided by the spirometer. The measurement system is composed by a LDV system and a data acquisition board installed on a PC. Tests were made on 10 different point of the thorax for each patient. Patients population was composed by 33 subjects (17 male and 16 female). The optimal measurement point was chosen considering the maximum peak-to-peak value of the displacement measured by LDV. Before extracting RR we have used a special wavelet decomposition for better selection of the expiration peaks. A standard spirometer was used for the validation of the data. From tests it results that the optimal measurement point, namely is located on the inferior part of the thoracic region (left, front side). From our tests we have obtained a close correlation between the RR values measured by the spirometer and those measured by the proposed method: a difference of 14±211 ms on the RR value is reported for the entire population of 33 subjects. Our method allows a no-contact measurement of lungs activity (respiration period), reducing the electric and biological risks. Moreover it allows to measure in critical environment like in RMN or in burned skin where is difficult or impossible to apply electrodes.

  19. Fruit removal increases root-zone respiration in cucumber

    Science.gov (United States)

    Kläring, H.-P.; Hauschild, I.; Heißner, A.

    2014-01-01

    Background and Aims Many attempts have been made to avoid the commonly observed fluctuations in fruit initiation and fruit growth in crop plants, particularly in cucumber (Cucumis sativus). Weak sinks of the fruit have been assumed to result in low sink/source ratios for carbohydrates, which may inhibit photosynthesis. This study focuses on the effects of low sink–source ratios on photosynthesis and respiration, and in particular root-zone respiration. Methods Mature fruit-bearing cucumber plants were grown in an aerated nutrient solution. The root containers were designed as open chambers to allow measurement of CO2 gas exchange in the root zone. A similar arrangement in a gas-exchange cuvette enabled simultaneous measurements of CO2 exchange in the shoot and root zones. Key Results Reducing the sinks for carbohydrates by removing all fruit from the plants always resulted in a doubling of CO2 exchange in the root zone within a few hours. However, respiration of the shoot remained unaffected and photosynthesis was only marginally reduced, if at all. Conclusions The results suggest that the increased level of CO2 gas exchange in the root zone after removing the carbon sinks in the shoot is due primarily to the exudation of organic compounds by the roots and their decomposition by micro-organisms. This hypothesis must be tested in further experiments, but if proved correct it would make sense to include carbon leakage by root exudation in cucumber production models. In contrast, inhibition of photosynthesis was measurable only at zero fruit load, a situation that does not occur in cucumber production systems, and models that estimate production can therefore ignore (end-product) inhibition of photosynthesis. PMID:25301817

  20. A comparison of facemask and respirator filtration test methods.

    Science.gov (United States)

    Rengasamy, Samy; Shaffer, Ronald; Williams, Brandon; Smit, Sarah

    2017-02-01

    NIOSH published a Federal Register Notice to explore the possibility of incorporating FDA required filtration tests for surgical masks (SMs) in the 42 CFR Part 84 respirator certification process. There have been no published studies comparing the filtration efficiency test methods used for NIOSH certification of N95 filtering facepiece respirators (N95 FFRs) with those used by the FDA for clearance of SMs. To address this issue, filtration efficiencies of "N95 FFRs" including six N95 FFR models and three surgical N95 FFR models, and three SM models were measured using the NIOSH NaCl aerosol test method, and FDA required particulate filtration efficiency (PFE) and bacterial filtration efficiency (BFE) methods, and viral filtration efficiency (VFE) method. Five samples of each model were tested using each method. Both PFE and BFE tests were done using unneutralized particles as per FDA guidance document. PFE was measured using 0.1 µm size polystyrene latex particles and BFE with ∼3.0 µm size particles containing Staphylococcus aureus bacteria. VFE was obtained using ∼3.0 µm size particles containing phiX 174 as the challenge virus and Escherichia coli as the host. Results showed that the efficiencies measured by the NIOSH NaCl method for "N95 FFRs" were from 98.15-99.68% compared to 99.74-99.99% for PFE, 99.62-99.9% for BFE, and 99.8-99.9% for VFE methods. Efficiencies by the NIOSH NaCl method were significantly (p = PFE, BFE, and VFE methods produced no significant difference. The above results show that the NIOSH NaCl method is relatively conservative and is able to identify poorly performing filtration devices. The higher efficiencies obtained using PFE, BFE and VFE methods show that adding these supplemental particle penetration methods will not improve respirator certification.

  1. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    Science.gov (United States)

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  2. Respiration rate of stream insects measured in situ along a large altitude range

    DEFF Research Database (Denmark)

    Rostgaard, S.; Jacobsen, D.

    2005-01-01

    Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field...... at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q...... conditions in streams from 400 to 3800 m above sea level in tropical Ecuador. Mean active respiration rates of the animals at 3800 m were approximately half of those at 400 m. Trichoptera showed a slightly larger difference in respiration with altitude than Ephemeroptera. Comparative respiration measurements...

  3. Relationship between respiration rate and weight of loach oocytes.

    Science.gov (United States)

    Ozernyuk, N D; Zotin, A I

    1975-01-01

    It is shown that the constant k in the equation QO2 equals apk and the constant b in the equation qo2 equals aP-b change during the oogenesis of the loach. Hence, the growth of oocytes differs considerably from the growth of animals, where the constants k and b do not change with increase in weight. It is suggested that the relationship between the respiration rate and weight of the oocytes is due to the change in the amount of mitochondria in the oocytes.

  4. Technical note: A facility for respiration measurements in cattle.

    Science.gov (United States)

    Machado, F S; Tomich, T R; Ferreira, A L; Cavalcanti, L F L; Campos, M M; Paiva, C A V; Ribas, M N; Pereira, L G R

    2016-06-01

    A respiration system consisting of 4 climate-controlled chambers and 1 set of flowmeters and analyzers was constructed and validated. Each chamber had volume of 21.10m(3) (3.68×2.56×2.24m) and was made from steel with double-glazed windows on either side enabling visual contact between animals. The chambers are independently climate-controlled and can maintain temperature and relative humidity in a range from 5 to 45°C and 30 to 80%, respectively. A flow generator and mass flowmeter continuously pull air from each chamber and a slight negative pressure inside the chamber is ensured. Air from all chambers and ambient air share a common gas analysis and data acquisition system for monitoring O2, CO2, and CH4 concentrations over the measurement period, with the cycle time set to 20min. Analyzers are regularly calibrated and the chambers have mean recoveries of 99.0 and 98.0% for CO2 and CH4, respectively. The chambers are equipped with infrared cameras and electronic feed and water bins for intake measurements, as well as sensors for monitoring animal position and heart rate. Data acquisition and analysis software is used to calculate the rate of consumption of O2 and production of CO2 and CH4. The dynamic respiration measurements are integrated with feed intake data and other sensors. The daily gas exchanges are estimated by integration to determine methane emission and heat production. We conducted a trial with 12 lactating 3/4 Holstein × 1/4 Gyr crossbred dairy cows (6 multiparous and 6 primiparous) under 2 feeding regimens (ad libitum or restricted) to validate the system. Two 22-h respiration measurements were obtained from each cow. Restricted-fed cows showed lower values for milk yield, methane emission, and heat production compared with ad libitum-fed animals. We found no difference between groups for CH4 produced per kilogram of dry matter intake. Repeatability for CH4 emission and heat production was high (0.97 and 0.92, respectively). The respiration

  5. Apparatus and method for the characterization of respirable aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  6. Research

    African Journals Online (AJOL)

    A possible strategy to influence students' understanding and perception ... researcher in higher education teaching and learning facilitated the data- ..... B. Qualitative content analysis in nursing research: Concepts, procedures and measures.

  7. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines.

    Science.gov (United States)

    Joy, Gerald J

    2012-01-01

    Occupational exposure to high levels of respirable quartz can result in respiratory and other diseases in humans. The Mine Safety and Health Adminstration (MSHA) regulates exposure to respirable quartz in coal mines indirectly through reductions in the respirable coal mine dust exposure limit based on the content of quartz in the airborne respirable dust. This reduction is implemented when the quartz content of airborne respirable dust exceeds 5% by weight. The intent of this dust standard reduction is to restrict miners' exposure to respirable quartz to a time-weighted average concentration of 100 μg/m(3). The effectiveness of this indirect approach to control quartz exposure was evaluated by analyzing respirable dust samples collected by MSHA inspectors from 1995 through 2008. The performance of the current regulatory approach was found to be lacking due to the use of a variable property-quartz content in airborne dust-to establish a standard for subsequent exposures. In one situation, 11.7% (4370/37,346) of samples that were below the applicable respirable coal mine dust exposure limit exceeded 100 μg/m(3) quartz. In a second situation, 4.4% (895/20,560) of samples with 5% or less quartz content in the airborne respirable dust exceeded 100 μg/m(3) quartz. In these two situations, the samples exceeding 100 μg/m(3) quartz were not subject to any potential compliance action. Therefore, the current respirable quartz exposure control approach does not reliably maintain miner exposure below 100 μg/m(3) quartz. A separate and specific respirable quartz exposure standard may improve control of coal miners' occupational exposure to respirable quartz.

  8. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  9. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells.

    Science.gov (United States)

    Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M; Sullivan, Laura A; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  10. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    Science.gov (United States)

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.

  11. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment-A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability.

    Science.gov (United States)

    Maretti, Eleonora; Rustichelli, Cecilia; Romagnoli, Marcello; Balducci, Anna Giulia; Buttini, Francesca; Sacchetti, Francesca; Leo, Eliana; Iannuccelli, Valentina

    2016-09-10

    For direct intramacrophagic antitubercular therapy, pulmonary administration through Dry Powder Inhaler (DPI) devices is a reasonable option. For the achievement of efficacious aerosolisation, rifampicin-loaded Solid Lipid Nanoparticle assemblies (SLNas) were developed using the melt emulsifying technique followed by freeze-drying. Indeed, this drying method can cause freezing or drying stresses compromising powder respirability. It is the aim of this research to offer novel information regarding pre-freezing variables. These included type and concentration of cryoprotectants, pre-freezing temperature, and nanoparticle concentration in the suspension. In particular, the effects of such variables were observed at two main levels. First of all, on SLNas characteristics - i.e., size, polydispersity index, zeta-potential, circularity, density, and drug loading. Secondly, on powder respirability, taking into account aerodynamic diameter, emitted dose, and respirable fraction. Considering the complexity of the factors involved in a successful respirable powder, a Design of Experiments (DoE) approach was adopted as a statistical tool for evaluating the effect of pre-freezing conditions. Interestingly, the most favourable impact on powder respirability was exerted by quick-freezing combined with a certain grade of sample dilution before the pre-freezing step without the use of cryoprotectants. In such conditions, a very high SLNas respirable fraction (>50%) was achieved, along with acceptable yields in the final dry powder as well as a reduction of powder mass to be introduced into DPI capsules with benefits in terms of administered drug dose feasibility.

  12. [Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest].

    Science.gov (United States)

    Hu, Zheng-hua; Li, Han-mao; Yang, Yan-ping; Chen, Shu-tao; Li, Cen-zi; Shen, Shuang-he

    2010-08-01

    To investigate the effects of elevated nitrogen deposition on forest soil respiration, a simulated nitrogen deposition field experiment was conducted in northern subtropical deciduous broad-leave forest from April 2008 to April 2009. Nitrogen treatments included the control (no N addition, CK), low-N [50 kg x (hm2 x a)(-1), T(L)], medium-N [100 kg x (hm2 x a)(-1), T(M)], and high-N [150 kg x (hm2 x a)(-1), T(H)]. The respiration rates were measured by a static chamber-gas chromatograph method. Results showed that nitrogen deposition did not change the seasonal and daily variation patterns of soil respiration. Compared to the control, T(L), T(M) and T(H) treatments reduced soil annual average respiration rates by 8.51%, 9.74% and 11.24%, respectively. Meanwhile, T(L), T(M) and T(H) treatments decreased daily average soil respiration rates by 4.42%, 11.09% and 12.17%, respectively. Significant relationship was found between soil respiration rate and soil temperature. The Q10 (temperature sensitivity coefficients) for soil respiration of CK, T(L), T(M), and T(H) treatments were 2.53, 3.22, 2.64 and 2.92, respectively. Our findings suggested that nitrogen deposition reduced soil respiration, and increased soil respiration temperature sensitivity in northern subtropical deciduous broad-leave forest.

  13. Global spatiotemporal distribution of soil respiration modeled using a global database

    Directory of Open Access Journals (Sweden)

    S. Hashimoto

    2015-03-01

    3.3 Pg C yr-1 °C−1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. Our results, including the modeled spatiotemporal distribution of global soil respiration, are based on a semi-empirical model parameterized with over one thousand data points. We expect that these spatiotemporal estimates will provide a benchmark for future studies and also help to constrain process-oriented models.

  14. Riparian land-use and rehabilitation: impact on organic matter input and soil respiration.

    Science.gov (United States)

    Oelbermann, Maren; Raimbault, Beverly A; Gordon, A M

    2015-02-01

    Rehabilitated riparian zones in agricultural landscapes enhance environmental integrity and provide environmental services such as carbon (C) sequestration. This study quantified differences in organic matter input, soil biochemical characteristics, and soil respiration in a 25-year-old rehabilitated (RH), grass (GRS), and undisturbed natural forest (UNF) riparian zone. Input from herbaceous vegetation was significantly greater (P Soil bulk density was significantly greater (P soil chemical characteristics were significantly lower. Soil respiration rates were lowest (P Soil respiration rates were significantly different (P soil moisture (P soil temperature (P Soil potential microbial activity indicated a significantly different (P soil organic C and lower soil respiration rates.

  15. Effects of assimilate supply on root and microbial components of soil respiration in a mountain grassland.

    Science.gov (United States)

    Schmitt, M.; Siegwolf, R.; Ekblad, A.; Pfahringer, N.; Bahn, M.

    2012-04-01

    Soil respiration is the main source of carbon emitted from terrestrial ecosystems. Soil CO2 originates from multiple processes, comprising respiration by plant roots, mycorrhizae and microbes in the rhizosphere, as well as respiration due to soil organic matter (SOM) decomposition. Thus, components of soil respiration have different controls and show varying responses to changing environmental conditions and to the supply of fresh assimilates from photosynthesis. For grasslands there is still little information available as to what extent root and microbial respiration respond to reduced or enhanced assimilate supply. The aim of this study was to assess effects of assimilate supply on root and microbial components of soil respiration in a temperate mountain grassland. Root and microbial components were separated and quantified by applying the Substrate Induced Respiration method (SIR) in situ using a δ13C labelled sucrose solution, and analysing δ13C of the subsequently respired CO2. Assimilate supply was modified by clipping and shading treatments, which strongly reduced photosynthetic C supply, and by applying a sucrose solution 8 days after clipping and shading. We tested the hypotheses that (1) due to a reduction of assimilate supply, soil respiration would be lower in the clipped and shaded than in the control treatment, that (2) the microbial contribution to soil respiration would be lower in the assimilate-limited than in the control treatments, and that (3) priming effects following the addition of sucrose would be stronger in shaded and mowed treatments than in control plots. Our results showed that clipping and shading reduced soil respiration significantly. Whilst the microbial contribution to soil respiration was 61% in control plots, it amounted to only 50-48% in clipped and shaded plots, respectively. Sucrose application did not affect root respiration in any of the plots, but generally stimulated microbial respiration. The measured priming effect

  16. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman

    2014-11-01

    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  17. Is the normal heart rate "chaotic" due to respiration?

    Science.gov (United States)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate 'chaotic' due to respiration?"

  18. Cyclical Modulation of Human Ventricular Repolarization by Respiration

    Directory of Open Access Journals (Sweden)

    Ben eHanson

    2012-09-01

    Full Text Available Background: Respiratory modulation of autonomic input to the sinus node results in cyclical modulation of heart rate, known as respiratory sinus arrhythmia. We hypothesized that the respiratory cycle may also exert cyclical modulation on ventricular repolarization, which may be separately measurable using local endocardial recordings.Methods and Results: The study included 16 subjects with normal ventricles undergoing routine clinical electrophysiological procedures for supraventricular arrhythmias. Unipolar electrograms were recorded from 10 right and 10 left ventricular endocardial sites. Breathing was voluntarily regulated at 5 fixed frequencies (6, 9, 12, 15 and 30 breaths per minute and heart rate was clamped by RV pacing. Activation-recovery intervals (ARI: a surrogate for APD exhibited significant (p<0.025 cyclical variation at the respiratory frequency in all subjects; ARI shortened with inspiration and lengthened with expiration. Peak-to-peak ARI variation ranged from 0-26 ms; the spatial pattern varied with subject. Arterial blood pressure also oscillated at the respiratory frequency (p<0.025 and lagged behind respiration by between 1.5 s and 0.65s from slowest to fastest breathing rates respectively. Systolic oscillation amplitude was significantly greater than diastolic (14±5 vs. 8±4 mmHg ± SD, p<0.001. Conclusions: Observations in humans with healthy ventricles using multiple left and right ventricular endocardial recordings showed that ARI (APD varied cyclically with respiration.

  19. Betaine is a positive regulator of mitochondrial respiration.

    Science.gov (United States)

    Lee, Icksoo

    2015-01-09

    Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  20. A Robust Electrode Configuration for Bioimpedance Measurement of Respiration

    Directory of Open Access Journals (Sweden)

    Hong-bin Wang

    2014-01-01

    Full Text Available Electrode configuration is an important issue in the continuous measurement of respiration using impedance pneumography (IP. The robust configuration is usually confirmed by comparing the amplitude of the IP signals acquired with different electrode configurations, while the relative change in waveform and the effects of body posture and respiratory pattern are ignored. In this study, the IP signals and respiratory volume are simultaneously acquired from 8 healthy subjects in supine, left lying, right lying and prone postures, and the subjects are asked to perform four respiratory patterns including free breathing, thoracic breathing, abdominal breathing and apnea. The IP signals are acquired with four different chest electrode configurations, and the volume are measured using pneumotachograph (PNT. Differences in correlation and absolute deviation between the IP-derived and PNT-derived respiratory volume are assessed. The influences of noise, respiratory pattern and body posture on the IP signals of different configurations have significant difference (p < 0.05. The robust electrode configuration is found on the axillary midline, which is suitable for long term respiration monitoring.

  1. A robust electrode configuration for bioimpedance measurement of respiration.

    Science.gov (United States)

    Wang, Hong-Bin; Yen, Chen-Wen; Liang, Jing-Tao; Wang, Qian; Liu, Guan-Zheng; Song, Rong

    2014-01-01

    Electrode configuration is an important issue in the continuous measurement of respiration using impedance pneumography (IP). The robust configuration is usually confirmed by comparing the amplitude of the IP signals acquired with different electrode configurations, while the relative change in waveform and the effects of body posture and respiratory pattern are ignored. In this study, the IP signals and respiratory volume are simultaneously acquired from 8 healthy subjects in supine, left lying, right lying and prone postures, and the subjects are asked to perform four respiratory patterns including free breathing, thoracic breathing, abdominal breathing and apnea. The IP signals are acquired with four different chest electrode configurations, and the volume are measured using pneumotachograph (PNT). Differences in correlation and absolute deviation between the IP-derived and PNT-derived respiratory volume are assessed. The influences of noise, respiratory pattern and body posture on the IP signals of different configurations have significant difference (p < 0.05). The robust electrode configuration is found on the axillary midline, which is suitable for long term respiration monitoring.

  2. Exposure to respirable crystalline silica in South African farm workers

    Energy Technology Data Exchange (ETDEWEB)

    Swanepoel, Andrew; Rees, David [University of the Witwatersrand, School of Public Health, Johannesburg (South Africa); Renton, Kevin [National Institute for Occupational Health, Johannesburg (South Africa); Kromhout, Hans, E-mail: andrew.swanepoel@wits.ac.z [Environmental Epidemiology Division, Institute for Risk Assessment Sciences, University of Utrecht (Netherlands)

    2009-02-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  3. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Science.gov (United States)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  4. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100% in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  5. Heavy metal in inhalable and respirable particles in urban atmosphere

    Directory of Open Access Journals (Sweden)

    T.F. Ediagbonya

    2013-09-01

    Full Text Available Human activities in Sapele are veritable sources of particulate pollution which are exuded into the atmosphere. These activities include bush burning which is one of the pre-planting activities, transportation, gas flaring, incineration of wastes refuse disposal and the use of wood as a source of fuel. The objective of this study is to determine the concentration of the trace metal in particulate matter captured in glass fibre filter paper. High volume sampler was used to collect the respirable and inhalable suspended particulate matter at ten different sites located in Sapele, from December 2010 to April 2011. The foam and the glass fibre filter were analysed for nine (Mn, Ni, Cr, Cd, Zn, Cu, Co, Fe, and Pb respectively by Flame Atomic Absorption Spectrophotometer (FAAS. The concentration of the respirable particle ranged from 104.17 to 145.83ug/cubic meter while the inhalable concentration ranged from 166.67 to 812.50ug/cubic meter. From the analysis the element Cd was moderately enriched.

  6. Persistence of the 2009 pandemic influenza A (H1N1) virus on N95 respirators.

    Science.gov (United States)

    Coulliette, A D; Perry, K A; Edwards, J R; Noble-Wang, J A

    2013-04-01

    In the United States, the 2009 pandemic influenza A (H1N1) virus (pH1N1) infected almost 20% of the population and caused >200,000 hospitalizations and >10,000 deaths from April 2009 to April 2010. On 24 April 2009, the CDC posted interim guidance on infection control measures in health care settings explicitly for pH1N1 and recommended using filtering face respirators (FFRs) when in close contact with a suspected- or confirmed-to-be-infected individual, particularly when performing aerosol-generating procedures. The persistence and infectivity of pH1N1 were evaluated on FFRs, specifically N95 respirators, under various conditions of absolute humidity (AH) (4.1 × 10(5) mPa, 6.5 × 10(5) mPa, and 14.6 × 10(5) mPa), sample matrices (2% fetal bovine serum [FBS], 5 mg/ml mucin, and viral medium), and times (4, 12, 24, 48, 72, and 144 h). pH1N1 was distributed onto N95 coupons (3.8 to 4.2 cm(2)) and extracted by a vortex-centrifugation-filtration process, and the ability of the remaining virus to replicate was quantified using an enzyme-linked immunosorbent assay (ELISA) to determine the log10 concentration of the infectious virus per coupon. Overall, pH1N1 remained infectious for 6 days, with an approximately 1-log10 loss of virus concentrations over this time period. Time and AH both affected virus survival. We found significantly higher (P ≤ 0.01) reductions in virus concentrations at time points beyond 24 to 72 h (-0.52-log10 reduction) and 144 h (-0.74) at AHs of 6.5 × 10(5) mPa (-0.53) and 14.6 × 10(5) mPa (-0.47). This research supports discarding respirators after close contact with a person with suspected or confirmed influenza infection due to the virus's demonstrated ability to persist and remain infectious.

  7. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Claire L.; Bond-Lamberty, Ben; Desai, Ankur R.; Lavoie, Martin; Risk, Dave; Tang, Jianwu; Todd-Brown, Katherine; Vargas, Rodrigo

    2016-11-16

    A recent acceleration of model-data synthesis activities has leveraged many terrestrial carbon (C) datasets, but utilization of soil respiration (RS) data has not kept pace with other types such as eddy covariance (EC) fluxes and soil C stocks. Here we argue that RS data, including non-continuous measurements from survey sampling campaigns, have unrealized value and should be utilized more extensively and creatively in data synthesis and modeling activities. We identify three major challenges in interpreting RS data, and discuss opportunities to address them. The first challenge is that when RS is compared to ecosystem respiration (RECO) measured from EC towers, it is not uncommon to find substantial mismatch, indicating one or both flux methodologies are unreliable. We argue the most likely cause of mismatch is unreliable EC data, and there is an unrecognized opportunity to utilize RS for EC quality control. The second challenge is that RS integrates belowground heterotrophic (RH) and autotrophic (RA) activity, whereas modelers generally prefer partitioned fluxes, and few models include an explicit RS output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Pushing for more experiments that not only partition RS but also monitor the age of RA and RH, as well as for the development of belowground RA components in models, would allow for more direct comparison between measured and modeled values. The third challenge is that soil respiration is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Measuring soil fluxes with finer spatial resolution and more extensive coverage, and downscaling EC fluxes to match the scale of RS, will improve chamber and tower comparisons. Opportunities also exist to estimate RH at regional scales by implementing decomposition functional types, akin to plant functional

  8. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  9. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  10. Research

    African Journals Online (AJOL)

    A sequential mixed-methods research design was chosen. This research ... development of the questionnaire used in the second phase of the survey. Quantitative data ... Microsoft Office Excel 2010 spreadsheet, descriptive data analysis was applied .... undergraduate curriculum, and implementation and evaluation thereof,.

  11. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-03-02

    Mar 2, 2015 ... Shared and mutually beneficial resources within international research ... organizations[1-9]. ... facilitate research career paths, but few career models exist in Africa ..... international and local resources to clinical studies locally. The ability of ... investigators were seen as an important asset for the transfer of.

  12. The effects of exposure to diesel fumes, low-level radiation and respirable dust and quartz on cancer mortality in coalminers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Buchanan, D.; Hurley, J.F.; Robertson, A.; Hutchison, P.A.; Kidd, M.W.; Pilkington, A.; Soutar, C.A.

    1997-07-01

    Following findings of the British National Coal Board's Pneumoconiosis Field Research (PFR) major research programme into the health effects of respirable coal mine dust, a new programme was set up to identify and quantify any relationships between mortality from lung, stomach and other cancers, and exposure to respirable dust and quartz, diesel exhaust particulates from underground vehicles, and radon and thoron daughters. The cohort for analysis was 18,166 men, entering follow-up at various surveys from the 2nd to 6th round of the PFR programme. These contributed over 408,000 person-years at risk up to the end of 1992, and 7002 deaths. Investigations of exposure-response relationships for specific causes of death were based on comparisons within the cohort, using the general framework of Cox's proportional hazard regression models to adjust for age, smoking hazards, periods of cohort entry etc. Mortality from pneumoconiosis showed a clear relationship with exposure to respirable dust, which was a better predictor of risk than respirable quartz. Neither bladder cancer or leukaemia showed a significant relationship with any of the exposures. Stomach cancer risks were not related to dust or quartz exposure, nor to time spent in the industry, suggesting that the explanation for the raised Standardised Mortality Ratio lies elsewhere than in the conditions of work. In most of the analyses of lung cancer, there was no strong evidence of exposure effects. In one series of analyses, exposure to respirable quartz was related to lung cancer mortality at conventional levels of statistical significance, but the effect was strongly confounded with pit differences. A similar but weaker effect was observed with radiation exposures. These findings could be artefacts of other factors which differed between the working practices or surrounding environments of the collieries involved.

  13. Quartz in coal dust deposited on internal surface of respirable size selective samplers.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Taekhee; Kashon, Michael; Kusti, Mohannad; Harper, Martin

    2014-01-01

    The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch.

  14. An autotuning respiration compensation system based on ultrasound image tracking.

    Science.gov (United States)

    Kuo, Chia-Chun; Chuang, Ho-Chiao; Teng, Kuan-Ting; Hsu, Hsiao-Yu; Tien, Der-Chi; Wu, Chih-Jen; Jeng, Shiu-Chen; Chiou, Jeng-Fong

    2016-11-22

    The purpose of this study was to develop an ultrasound image tracking algorithm (UITA) for extracting the exact displacement of internal organs caused by respiratory motion. The program can track organ displacements in real time, and analyze the displacement signals associated with organ displacements via a respiration compensating system (RCS). The ultrasound imaging system is noninvasive and has a high spatial resolution and a high frame rate (around 32 frames/s), which reduces the radiation doses that patients receive during computed tomography and X-ray observations. This allows for the continuous noninvasive observation and compensation of organ displacements simultaneously during a radiation therapy session.This study designed a UITA for tracking the motion of a specific target, such as the human diaphragm. Simulated diaphragm motion driven by a respiration simulation system was observed with an ultrasound imaging system, and then the induced diaphragm displacements were calculated by our proposed UITA. These signals were used to adjust the gain of the RCS so that the amplitudes of the compensation signals were close to the target movements. The inclination angle of the ultrasound probe with respect to the surface of the abdomen affects the results of ultrasound image displacement tracking. Therefore, the displacement of the phantom was verified by a LINAC with different inclination-angle settings of the ultrasound probe. The experimental results indicate that the best inclination angle of the ultrasound probe is 40 degrees, since this results in the target displacement of the ultrasound images being close to the actual target motion. The displacement signals of the tracking phantom and the opposing displacement signals created by the RCS were compared to assess the positioning accuracy of our proposed ultrasound image tracking technique combined with the RCS.When the ultrasound probe was inclined by 40 degrees in simulated respiration experiments using sine

  15. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  16. Research

    African Journals Online (AJOL)

    raoul

    2012-02-17

    Feb 17, 2012 ... This is an Open Access article distributed under the terms of the Creative ..... However, this system has great potential to negatively affect access to ... Dr. Samuel Yaw Opoku: Defining the Concept and Research Design; ...

  17. Research

    African Journals Online (AJOL)

    abp

    2016-04-26

    Apr 26, 2016 ... Management of biomedical waste in two medical laboratories in Bangui, Central ... Research .... Central African Republic Ministry of Health and corresponding ethics ..... In CAR, the management of BW remains embryonic. It is.

  18. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-08-28

    Aug 28, 2015 ... Ethiopia, 2Bahir Dar Regional Health Research Laboratory Center, Department ... of Public Health, 4Institute of Medical Microbiology and Epidemiology of Infectious .... active ingredient x 10,000 dilution rate of product): 0.1%.

  19. Research

    African Journals Online (AJOL)

    raoul

    2011-03-11

    Mar 11, 2011 ... ... to General Organization of Teaching Hospitals and Institutes, Egypt, 2Department of .... Ethiopia at Max-Burger Research Institute, Leipzig, Germany ... [22] than Croatia (50%), Australia (53%), Thailand (41%), Italy (32.6%), ...

  20. Research

    African Journals Online (AJOL)

    7, No. 1 AJHPE. Research. A comprehensive approach to curriculum evaluation is deemed ... While evaluators are guided by the experiences of using different methods, ..... provided a follow-up in-depth exploration of the quantitative results.

  1. Research

    African Journals Online (AJOL)

    ... community in the design, conduct and/or evaluation of these activities. ... During Phase I of the mixed-methods research design, data were collected by ... A questionnaire survey was administered to all students registered for ... Data analysis.

  2. Research

    African Journals Online (AJOL)

    ebutamanya

    2016-02-03

    Feb 3, 2016 ... Published in partnership with the African Field Epidemiology Network (AFENET). (www.afenet.net) .... What is known about this topic ... India Co-ordinated Research Project. Ministry .... African Journal of Biotechnology. 2005 ...

  3. Research

    African Journals Online (AJOL)

    raoul

    2011-12-06

    Dec 6, 2011 ... Asia indicate a high incidence of Kikuchi lymphadenitis [6]. However ... It is believed that information derived from this study will be of immense value to the attending physician and also form a baseline data for future research.

  4. Research

    African Journals Online (AJOL)

    judicious use of current best evidence in making decisions about the care of individual ... [5] This highlights that teaching research methodology is inclined ... to evidence-based practice in final-year undergraduate physiotherapy students.

  5. Research

    African Journals Online (AJOL)

    curricula to address health systems changes and challenges .... Likert scale questions were used, along with open-ended qualitative questions. ... Clear communicator: Able to communicate important aspects of theory, research findings clearly ...

  6. researchers

    African Journals Online (AJOL)

    levels who is fluent in only Afrikaans and English. Differences in race .... The lack of knowledge of a particular vernacular often places a researcher firmly as an ..... discourse of African American women', Black women in the academy. Promises.

  7. Research

    African Journals Online (AJOL)

    2014-05-06

    May 6, 2014 ... Methods. The researchers used an exploratory, sequential mixed-method design, ... This design is useful to explore a topic, using qualitative ... interview a Delphi questionnaire was used to gather additional quantitative.

  8. Research

    African Journals Online (AJOL)

    Research. Clinical teaching is a technique used in the education of nurses. It ... learnt in a contextualised learning environment, which should support them in their ..... development of continuing professional development strategies. This study ...

  9. Research

    African Journals Online (AJOL)

    ebutamanya

    2016-03-03

    Mar 3, 2016 ... radiation therapy [9, 10]. The signs of obstructive ... year's undergraduate medical student: socio-demographic including age (in years), sex. .... awareness and enhance further research in this domain. Conclusion. Patients ...

  10. Research

    Science.gov (United States)

    Mathematics Teaching, 1973

    1973-01-01

    Implications for teachers from Piagetian-oriented piagetian-oriented research on problem solving reported in an article by Eleanor Duckworth are presented. Edward de Bono's Children Solve Problems,'' a collection of examples, is also discussed. (MS)

  11. Research

    African Journals Online (AJOL)

    abp

    2016-04-29

    Apr 29, 2016 ... performance hence workplace training is tied to achieving organizational aims and objectives. .... Ethical consideration: Permission to conduct research was sought from the County ..... Everybody Business: Strengthening.

  12. 76 FR 33188 - Quality Assurance Requirements for Respirators; Notice of Withdrawal

    Science.gov (United States)

    2011-06-08

    ... HUMAN SERVICES 42 CFR Part 84 RIN 0920-AA04 Quality Assurance Requirements for Respirators; Notice of... for the manufacture of respirators approved under 42 CFR Part 84 by the National Institute for... intended to update the quality assurance and control requirements for the manufacture of...

  13. Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China

    Institute of Scientific and Technical Information of China (English)

    YU; Guirui; WEN; Xuefa; LI; Qingkang; ZHANG; Leiming; REN

    2005-01-01

    Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique was made at two ChinaFLUX forest sites including the young subtropical Pinus plantation (Qianyanzhou) and old temperate broad-leaved Korean pine mixed forest (Changbai Mountains) as part of the ChinaFLUX network. Seasonal patterns and environmental control of ecosystem respiration in the subtropical and temperate forests were evaluated by the often-used multiplicative model and Q10 model as a function of temperature and soil water content. The resuits suggested that ( i ) temperature was found to be a dominant factor in the ecosystem respiration, and most of the temporal variability of ecosystem respiration was explained by temperature. However, in the drought-stressed ecosystem, soil water content controlled the temporal variability of ecosystem respiration other than temperature effects, and soil water content became a dominat factor when severe drought affected the ecosystem respiration; (ii) the regression models analysis revealed that in the drier soil, ecosystem respiration was more sensitive to soil moisture than was expressed by the often-used multiplicative model. It was possible to accurately estimate the seasonal variation of ecosystem respiration based on the Q10 model; and (iii)annual ecosystem respiration derived from the often-used multiplicative model was 1209 g C m-2and 1303 g C m-2, and was consistently a little higher than the Q10 model estimates of 1197 g C m-2 and 1268 g C m-2 for Qianyanzhou and Changbai Mountains, respectively.

  14. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine;

    2006-01-01

    densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  15. 30 CFR 90.101 - Respirable dust standard when quartz is present.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respirable dust standard when quartz is present... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part 90 miner is exposed contains more than 5 percent quartz, the operator shall continuously maintain...

  16. Design of climate respiration chambers, adjustable to the metabolic mass of subjects

    NARCIS (Netherlands)

    Heetkamp, M.J.W.; Alferink, S.J.J.; Zandstra, T.; Hendriks, P.; Brand, van den H.; Gerrits, W.J.J.

    2015-01-01

    Open-circuit respiration chambers can be used to measure gas exchange and to calculate heat production (Q) of humans and animals. When studying short-term changes in Q, the size of the respiration chamber in relation to the subject of study is a point of concern. The washout time of a chamber, defin

  17. Lung function interpolation by analysis of means of neural-network-supported respiration sounds

    NARCIS (Netherlands)

    Oud, M

    2003-01-01

    Respiration sounds of individual asthmatic patients were analysed in the scope of the development of a method for computerised recognition of the degree of airways obstruction. Respiration sounds were recorded during laboratory sessions of allergen provoked airways obstruction, during several stages

  18. Age related reference ranges for respiration rate and heart rate from 4 to 16 years

    OpenAIRE

    Wallis, L; Healy, M.; Undy, M; Maconochie, I

    2005-01-01

    Background: Clinical vital signs in children (temperature, heart rate, respiration rate, and blood pressure) are an integral part of clinical assessment of degree of illness or normality. Despite this, only blood pressure and temperature have a reliable evidence base. The accepted ranges of heart and respiration rate vary widely.

  19. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  20. Responses of switchgrass soil respiration and its components to precipitation gradient in a mescocosm study

    Science.gov (United States)

    The objectives of this study were to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature. A mesocosm experiment was conducted with five prec...

  1. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  2. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    Science.gov (United States)

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  3. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (respiration in a sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  4. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    Science.gov (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  5. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... the CMDPSU or CPDM and the sampled work shift is less than 8 hours, the value of t used for... Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors; Proposed Rule #0;#0;Federal Register... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors AGENCY: Mine Safety and...

  6. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    Science.gov (United States)

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  7. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    Science.gov (United States)

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  8. An Evaluation of the Efficacy of a Laboratory Exercise on Cellular Respiration

    Science.gov (United States)

    Scholer, Anne-Marie; Hatton, Mary

    2008-01-01

    This study is an analysis of the effectiveness of a faculty-designed laboratory experience about a difficult topic, cellular respiration. The activity involves a hands-on model of the cellular-respiration process, making use of wooden ball-and-stick chemistry models and small toy trucks on a table top model of the mitochondrion. Students…

  9. Winter soil respiration from different vegetation patches in the Yellow River Delta, China.

    Science.gov (United States)

    Han, Guangxuan; Yu, Junbao; Li, Huabing; Yang, Liqiong; Wang, Guangmei; Mao, Peili; Gao, Yongjun

    2012-07-01

    Vegetation type and density exhibited a considerable patchy distribution at very local scales in the Yellow River Delta, due to the spatial variation of soil salinity and water scarcity. We proposed that soil respiration is affected by the spatial variations in vegetation type and soil chemical properties and tested this hypothesis in three different vegetation patches (Phragmites australis, Suaeda heteroptera and bare soil) in winter (from November 2010 to April 2011). At diurnal scale, soil respiration all displayed single-peak curves and asymmetric patterns in the three vegetation patches; At seasonal scale, soil respiration all declined steadily until February, and then increased to a peak in next April. But, the magnitude of soil respiration showed significant differences among the three sites. Mean soil respiration rates in winter were 0.60, 0.45 and 0.17 μmol CO(2) m(-2) s(-1) for the Phragmites australis, Suaeda heteroptera and bare soil, respectively. The combined effect of soil temperature and soil moisture accounted for 58-68 % of the seasonal variation of winter soil respiration. The mean soil respiration revealed positive and linear correlations with total N, total N and SOC storages at 0-20 cm depth, and plant biomass among the three sites. We conclude that the patchy distribution of plant biomass and soil chemical properties (total C, total N and SOC) may affect decomposition rate of soil organic matter in winter, thereby leading to spatial variations in soil respiration.

  10. Soil respiration across a permafrost transition zone: spatial structure and environmental correlates

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Benjamin; Crump, Alex R.; Chen, Xingyuan; Hess, Nancy J.

    2017-09-28

    Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active layer depths greater than 140cm. We also find that within each season tree basal area is a dominant driver of soil respiration regardless of spatial scale, but only in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation and scaling of soil respiration—in our boreal system—are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally-stable features such as tree stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Combining such an approach with broader knowledge of thresholding behavior—here related to active layer depth—would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.

  11. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air samp

  12. Evaluation of breathing patterns for respiratory-gated radiation therapy using the respiration regularity index

    Science.gov (United States)

    Cheong, Kwang-Ho; Lee, MeYeon; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, SoAh; Hwang, Taejin; Kim, Haeyoung; Kim, KyoungJu; Han, Tae Jin; Bae, Hoonsik

    2015-01-01

    Despite the considerable importance of accurately estimating the respiration regularity of a patient in motion compensation treatment, not to mention the necessity of maintaining that regularity through the following sessions, an effective and simply applicable method by which those goals can be accomplished has rarely been reported. The authors herein propose a simple respiration regularity index based on parameters derived from a correspondingly simplified respiration model. In order to simplify a patient's breathing pattern while preserving the data's intrinsic properties, we defined a respiration model as a cos4( ω( t) · t) wave form with a baseline drift. According to this respiration formula, breathing-pattern fluctuation could be explained using four factors: the sample standard deviation of respiration period ( s f ), the sample standard deviation of amplitude ( s a ) and the results of a simple regression of the baseline drift (slope as β, and standard deviation of residuals as σ r ) of a respiration signal. The overall irregularity ( δ) was defined as , where is a variable newly-derived by using principal component analysis (PCA) for the four fluctuation parameters and has two principal components ( ω 1, ω 2). The proposed respiration regularity index was defined as ρ = ln(1 + (1/ δ))/2, a higher ρ indicating a more regular breathing pattern. We investigated its clinical relevance by comparing it with other known parameters. Subsequently, we applied it to 110 respiration signals acquired from five liver and five lung cancer patients by using real-time position management (RPM; Varian Medical Systems, Palo Alto, CA). Correlations between the regularity of the first session and the remaining fractions were investigated using Pearson's correlation coefficient. Additionally, the respiration regularity was compared between the liver and lung cancer patient groups. The respiration regularity was determined based on ρ; patients with ρ 0.7 was

  13. The external respiration and gas exchange in space missions

    Science.gov (United States)

    Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.

    Literature data and results of our own studies into an effect of micro- and macro-gravity on an external respiration function of man are presented. It is found that in cosmonauts following the 7-366 day space missions there is an enhanced tendency associated with an increased flight duration toward a decrease in the lung volume and breathing mechanics parameters: forced vital capacity of the lungs (FVC) by 5-25 percent, peak inspiratory and expiratory (air) flows (PIF, PEF) by 5-40 percent. A decrease in FVC appears to be explained by a new balance of elastic forces of the lungs, chest and abdomen occuring in microgravity as well as by an increased blood filling and pulmonary hydration. A decline of PIF and PEF is probalbly resulted from antigravitational deconditioning of the respiratory muscles with which a postflight decreased physical performance can in part be associated. The ventilation/perfusion ratios during orthostasis and +G Z and +G X accelerations are estimated. The biophysical nature of developing the absorption atelectases on a combined exposure to accelerations and 100% oxygen breathing is confirmed. A hypothesis that hypervolemia and pulmonary congestion can increase the tendency toward the development of atelectases in space in particular during pure oxygen breathing is suggested. Respiratory physiology problem area which is of interest for space medicine is defined. It is well known that due to present-day technologic progress and accomplishments in applied physiology including applied respiration physiology there currently exist sophisticated technical facilities in operation maintaining the life and professional working capacity of a man in various natural environments: on Earth, under water and in space. By the way, the biomedical involvement in developing and constructing such facilities has enabled an accumulation of a great body of information from experimental studies and full-scale trails to examine the effects of the changed environments

  14. Relationship between central sleep apnea and Cheyne-Stokes Respiration.

    Science.gov (United States)

    Flinta, Irena; Ponikowski, Piotr

    2016-03-01

    Central sleep apnea (CSA) in patients with heart failure (HF) occurs frequently and shows a serious influence on prognosis in this population. The key elements in the pathophysiology of CSA are respiratory instability with chronic hyperventilation, changes of arterial carbon dioxide pressure (pCO2) and elongated circulation time. The main manifestation of CSA in patients with HF is Cheyne-Stokes Respiration (CSR). The initial treatment is the optimization of HF therapy. However, many other options of the therapeutic management have been studied, particularly those based on positive airway pressure methods. In patients with heart failure we often can observe the overlap of CSA and CSR; we will discuss the differences between these forms of breathing disorders during sleep. We will also discuss when CSA and CSR occur independently of each other and the importance of CSR occurring during the daytime in context of CSA during the nighttime.

  15. Models of Cheyne-Stokes respiration with cardiovascular pathologies.

    Science.gov (United States)

    Dong, Fang; Langford, William F

    2008-10-01

    Cheyne-Stokes respiration (CSR) is a periodic breathing pattern, characterized by short intervals of very little or no breathing (apnea), each followed by an interval of very heavy breathing (hyperpnea). This work presents a new compartmental model of the human cardio-respiratory system, simulating the factors that determine the concentrations of carbon dioxide in the compartments of the cardiovascular system and the lungs. The parameter set on which a Hopf bifurcation gives birth to stable CSR oscillations has been determined. The model predicts that the onset of CSR oscillations may result from an increase in any of: ventilation-perfusion ratio, feedback control gain, transport delay, left heart volume, lung congestion, or cardiovascular efficiency. The model is employed to investigate the relationship between CSR and serious cardiovascular pathologies, such as congestive heart failure and encephalitis, as well as the effects of acclimatization to higher altitudes. In all cases, the model is consistent with medical observations.

  16. New Respirable Dust Suppression Systems for Coal Mines

    Institute of Scientific and Technical Information of China (English)

    XIE Yao-she; FAN Gao-xian; DAI Jun-wei; SONG Xiao-bo

    2007-01-01

    Dust suppression in coal mines is a worldwide problem which has not been solved effectively. The application of negative pressure secondary dust removal (NPSDR) is a breakthrough in the coal mine safety field. In this paper, NPSDR technology and ultrasonic dust suppression systems are introduced. High pressure water is supplied to the NPSDR device which is mounted on the shearer. A negative pressure field is formed in the device. At the same time, the dusty air around the shearer drum will be sucked into, and purged from, the NPSDR device by the negative pressure field. An ultrasonic dust suppression system uses water and compressed air to produce micron sized droplets which suppress respirable coal dust effectively. The NPSDR technology can be used for shearer dust suppression while ultrasonic dust suppression can be applied in areas such as the transportation positions. These dust suppression methods have the following advantages: high efficiency, wide applicability, simple structure, high reliability and low cost.

  17. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    Science.gov (United States)

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.

  18. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  19. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark

    2015-01-01

    denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...

  20. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E;

    1997-01-01

    of this study was to test whether the known nonlinear input from spontaneous respiration is a source for the nonlinearities in heart rate variability. Twelve healthy subjects were examined in supine position with 3-h electrocardiogram recordings during both spontaneous and forced respiration in accordance...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...... oscillator. Additional studies are needed to elucidate the mechanisms behind the nonlinear dynamics in heart rate variability....

  1. CO2 Inhibits Respiration in Leaves of Rumex crispus L. 1

    Science.gov (United States)

    Amthor, Jeffrey S.; Koch, George W.; Bloom, Arnold J.

    1992-01-01

    Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO2 partial pressure of about 35 pascals. Apparent respiration rate (CO2 efflux in the dark) of expanded leaves was then measured at ambient CO2 partial pressure of 5 to 95 pascals. Calculated intercellular CO2 partial pressure was proportional to ambient CO2 partial pressure in these short-term experiments. The CO2 level strongly affected apparent respiration rate: a doubling of the partial pressure of CO2 typically inhibited respiration by 25 to 30%, whereas a decrease in CO2 elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO2 (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated. PMID:16668707

  2. [Chacterization of human reticulocytes: respiration, Pasteur effect, and electron microscopic findings on mitochondria].

    Science.gov (United States)

    Richter-Rapoport, S K; Dumdey, R; Hiebsch, C; Thamm, R; Uerlings, I; Rapoport, S

    1977-01-01

    On 5 blood samples of newborns, whose reticulocytes had been enriched by density gradient centrifugation, and on 25 blood samples of different reticulocytoses of man were determined: the extent of intra- and extramitochondrial respiration, coupling of the electron transfer with the oxidative phosphorylation and the electronmicroscopic appearance, and the number of mitochondria. The reticulocytes occurring in the flowing human blood are in general relatively stiff and are characterized by the following properties:--low respiration--low capacity of the respiratory chain enzymes--weakened Pasteur effect --varying proportion of intramitochondrial respiration and total respiration--decoupling of a major part of the intramitochondrial respiration--low number of mitochondria--qualitative changes of mitochondria. However, there are situations of erythropoiesis where immature reticulocytes are discharged in man (similar to the socalled "stress reticulocytes" of rabbits). On the other hand, it could be shown that the reticulocytes of rabbits are mature in the normal state.

  3. Technical Note: The Simple Diagnostic Photosynthesis and Respiration Model (SDPRM

    Directory of Open Access Journals (Sweden)

    B. Badawy

    2012-10-01

    Full Text Available We present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM that has been developed based on pre-existing formulations. The photosynthesis model is based on the light use efficiency logic, suggested by Monteith1977, for calculating the Gross Primary Production (GPP while the ecosystem respiration (Reco model is based on the formulations introduced by Lloyd1994 and modified by Reichstein2003. SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed Photosynthetically Active Radiation and climate data from NCEP/NCAR. The model estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation is to provide a-priori fields of surface CO2 fluxes with fine temporal and spatial scales, and their derivatives with respect to adjustable model parameters, for atmospheric CO2 inversions. The estimated fluxes from SDPRM showed that the model is capable of producing flux estimates consistent with the ones inferred from atmospheric CO2 inversion or simulated from process-based models. In this Technical Note, different analyses were carried out to test the sensitivity of the estimated fluxes of GPP and Reco to their driving forces. The spatial patterns of the climatic controls (temperature, precipitation, water on the interannual variability of GPP are consistent with previous studies even though SDPRM has a very simple structure and few adjustable parameters, and hence it is much easier to modify than more sophisticated process-based models used in these previous studies. According to SDPRM, the results show that temperature is a limiting factor for the interannual variability of Reco over the cold boreal forest, while precipitation is the main limiting factor of Reco over the tropics and the southern hemisphere, consistent with previous regional studies.

  4. Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain

    Directory of Open Access Journals (Sweden)

    Anne eSchwedt

    2012-01-01

    Full Text Available The chemolithoautotrophic strain Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen-sulfide interface. However, upon prolonged incubation, a subpopulation migrates actively downwards into the anoxic and sulfidic section of the medium, where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur- and PHA-depleted filaments return to the oxygen-sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of stored PHA under anoxic conditions. Until now, nitrate has always been assumed to be the alternative electron acceptor in chemolithoautotrophic Beggiatoa spp. under anoxic conditions. As the medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO2 fixed by the filaments while at the oxygen-sulfide interface. We propose that the directed migration of filaments into the anoxic section of an oxygen-sulfide gradient system is used as a last resort to preserve cell integrity, which would otherwise be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is still unknown.

  5. Quantifying soil CO2 respiration measurement error across instruments

    Science.gov (United States)

    Creelman, C. A.; Nickerson, N. R.; Risk, D. A.

    2010-12-01

    A variety of instrumental methodologies have been developed in an attempt to accurately measure the rate of soil CO2 respiration. Among the most commonly used are the static and dynamic chamber systems. The degree to which these methods misread or perturb the soil CO2 signal, however, is poorly understood. One source of error in particular is the introduction of lateral diffusion due to the disturbance of the steady-state CO2 concentrations. The addition of soil collars to the chamber system attempts to address this perturbation, but may induce additional errors from the increased physical disturbance. Using a numerical 3D soil-atmosphere diffusion model, we are undertaking a comprehensive comparative study of existing static and dynamic chambers, as well as a solid-state CTFD probe. Specifically, we are examining the 3D diffusion errors associated with each method and opportunities for correction. In this study, the impact of collar length, chamber geometry, chamber mixing and diffusion parameters on the magnitude of lateral diffusion around the instrument are quantified in order to provide insight into obtaining more accurate soil respiration estimates. Results suggest that while each method can approximate the true flux rate under idealized conditions, the associated errors can be of a high magnitude and may vary substantially in their sensitivity to these parameters. In some cases, factors such as the collar length and chamber exchange rate used are coupled in their effect on accuracy. Due to the widespread use of these instruments, it is critical that the nature of their biases and inaccuracies be understood in order to inform future development, ensure the accuracy of current measurements and to facilitate inter-comparison between existing datasets.

  6. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    Science.gov (United States)

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  7. Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.

    Science.gov (United States)

    Mason, Kelly; Oakley, Simon; Ostle, Nicholas; DeLuca, Thomas; Arróniz-Crespo, María; Jones, Davey

    2014-05-01

    Globally, boreal forests occupy 14% of total land surface and are important regions for biogeochemical cycling of carbon (C) and nitrogen (N)1. They are recognised as stores of terrestrial C and reservoirs of uniquely adapted biodiversity. Like many forest biomes, boreal forests are under pressure from climate change and growing populations. C and N cycling in the boreal region is strongly influenced by the occurrence of forest fires, which return large amounts of stored N back into an otherwise N limited system2. The frequency and intensity of boreal forest fires is expected to increase in the next century as the global atmosphere warms and N deposition continues to increase due to human activities3,4. Despite the importance of these ecosystems, there is limited knowledge of the effects of interactions between climate and N limitation on soil respiration and feedbacks of carbon dioxide (CO2) and other greenhouse gases (GHGs) to the atmosphere. In this research we aimed to improve understanding of how changes in the frequency and intensity of fires might alter N and C dynamics in the boreal region. Specifically, we examined the degree of N limitation and the temperature sensitivity of GHG (CO2, N2O and CH4) fluxes from soils underlying carpets of Pleurozium schreberi, a feather moss known to form important symbiotic relationships with N-fixing cyanobacteria1, from a fire chronosequence of Swedish boreal forest stands. We hypothesised that: (1) soil respiration in late succession ecosystems is most N limited due to high soil C:N ratios and high microbial biomass; and (2) early succession forest soil respiration is most temperature sensitive due to higher N availability and higher bacterial biomass. To test these hypotheses, we took soil cores from a chronosequence of six sites in the northern boreal region of Sweden, including two early, two mid, and two late succession stands. These sites are dominated by mixed Pinus sylvestris and Picea abies, with an understory

  8. Small scale spatial heterogeneity of soil respiration in an old growth temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    A. Jordan

    2009-10-01

    Full Text Available The large scale spatial heterogeneity of soil respiration caused by differences in site conditions is quite well understood. However, comparably little is known about the micro scale heterogeneity within forest ecosystems on homogeneous soils. Forest age, soil texture, topographic position, micro topography and stand structure may influence soil respiration considerably within short distance. In the present study within site spatial heterogeneity of soil respiration has been evaluated. To do so, an improvement of available techniques for interpolating soil respiration data via kriging was undertaken.

    Soil respiration was measured with closed chambers biweekly from April 2005 to April 2006 using a nested design (a set of stratified random plots, supplemented by 2 small and 2 large nested groupings in an unmanaged, beech dominated old growth forest in Central Germany (Hainich, Thuringia. A second exclusive randomized design was established in August 2005 and continually sampled biweekly until July 2007.

    The average soil respiration values from the random plots were standardized by modeling soil respiration data at defined soil temperature and soil moisture values. By comparing sampling points as well as by comparing kriging results based on various sampling point densities, we found that the exclusion of local outliers was of great importance for the reliability of the estimated fluxes. Most of this information would have been missed without the nested groupings. The extrapolation results slightly improved when additional parameters like soil temperature and soil moisture were included in the extrapolation procedure. Semivariograms solely calculated from soil respiration data show a broad variety of autocorrelation distances (ranges from a few centimeters up to a few tens of meters.

    The combination of randomly distributed plots with nested groupings plus the inclusion of additional relevant parameters like soil

  9. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  10. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Directory of Open Access Journals (Sweden)

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  11. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  12. [Performance evaluation of two N95 filtering-facepiece respirators on decomposition products of sulfur hexafluoride].

    Science.gov (United States)

    Zhu, X C; Lu, W; Nie, X Q; Zhou, M; Zhang, R B; Qin, S X; Chen, W H

    2016-05-20

    To assess the filtration efficiency of two N95 filtering-facepiece respirators (FFRs) for the decomposition products of sulfur hexafluoride (SF6). Two types of N95 FFRs (the particulate and the acid-proof respirators) were selected in this study. The decomposition products of SF6, including particles, hydrogen fluoride (HF) and sulfur dioxide (SO2) , were measured under experimental condition by using TSI PortaCount Plus, fluorine ion-selective electrodes and spectrophotometer separately. The filtration efficiency was then calculated and compared. Both two models of N95 respirators had lowest filtration efficiency larger than 95% for particles under airflow ranged from 10 to 95 L/min. When exposed to different concentrations of HF (low: 0.00~1.99 mg/m(3), middle: 2.00~3.99 mg/m(3), high: >4 mg/m(3)) , the acid-proof N95 respirator was more effective than the particulate respirator (P10.00 mg/m(3)) , the acid-proof respirator showed a high filtration efficiency within exposure to 1.5 hours: 95.73%, 98.67%, 98.14%, and 97.78%, respectively, when exposure duration extended to 4 hours, the filtration efficiency of the acid-proof respirator decreased to 91.97%, 82.28%, 70.12%, and 58.56%, respectively. Both the particulate and the acid-proof N95 FFRs met national standards on the particulate filtration efficiency. The acid-proof N95 respirator demonstrates to be more effective in filtering HF and SO2 than the particulate respirator. The filtration efficiency could decrease to an unsafe condition under longer exposure duration, timely replacement of respirator is recommended at the workplace.

  13. Research

    African Journals Online (AJOL)

    abp

    2013-02-25

    Feb 25, 2013 ... Of these 56 eyes, the visual acuity in 49 eyes (87.5%) improved with pinhole. Twenty seven pupils had ... (www.afenet.net). Research ... primary basic 1 to 6 and aged 5 to 15 years were included in the study. The United ...

  14. Research

    African Journals Online (AJOL)

    collaboration, but also in less tangible ways affecting quality of research.[5] ... Methods. A 40-hour workshop in biostatistical reasoning was conducted ... test median score was 68% (IQR 62 - 76%), with p<0.0001 for the overall comparison of pre- v. post-scores. ... limitations of a traditional lecture-based mode of instruction.

  15. Research

    African Journals Online (AJOL)

    abp

    2014-03-13

    Mar 13, 2014 ... &Corresponding author: Dr. Oliver Ezechi, Clinical Sciences Division, Nigerian Institute of Medical Research, ... with Hepatitis B and C Virus infection in pregnant HIV positive Nigerians. ... Whether or not HCV directly impacts HIV disease ..... natural history, fibrosis, and impact of antiretroviral treatment:.

  16. Research

    African Journals Online (AJOL)

    understood in the profession, evolved from therapeutic activity (within a medi- cal model ... facilitate students' ability to examine institutional systems that hinder ..... don't have connections with each other … we went to the schools and were told ... for change or conduct action research projects that deal with occupational.

  17. Research

    African Journals Online (AJOL)

    abp

    2015-12-11

    Dec 11, 2015 ... ... Dschang, Cameroon, 2Division of Health Operations Research, Ministry of Public ... This is an Open Access article distributed under the terms of the Creative Commons ... not yet been investigated but may can be explained by weakness of .... Cameroonian market and why not apply for surveillance of.

  18. Research

    African Journals Online (AJOL)

    by teaching them skills on how to acquire and appraise knowledge for a particular ... [3] Similarities have been noted in the roles of lecturers that facilitate learning rather than ..... Student feedback related to facilitators of and barriers to learning. Facilitators of ... 'Sometimes time (clinical, research, social, sport) was limited.'.

  19. Research

    African Journals Online (AJOL)

    raoul

    2011-08-25

    Aug 25, 2011 ... completely replaced animals with computer modeling, manikins and ... distribution, and reproduction in any medium, provided the original ... developed internal guidelines on the use of animals in research in 2004 [13]. ... Only one institution used human cell cultures as a replacement to live animal use.

  20. Research

    African Journals Online (AJOL)

    abp

    2013-08-05

    Aug 5, 2013 ... In 2007, The World Health Organization (WHO) recommended ... are taken nearer to the community through clinical outreach ... Sample size and Sampling procedure ... researchers shared and debated the way each of them understood .... this may involve selling off assets to get the money for transport.

  1. Research

    African Journals Online (AJOL)

    ebutamanya

    2016-04-20

    Apr 20, 2016 ... ... Journal - ISSN 1937-8688. This is an Open Access article distributed under the terms of the Creative ... diabetes mellitus, obesity, family history of premature CHD in a first ... was reviewed and approved by the Hospital's Research and Ethics .... apoptosis of peripheral adipocytes, decreased pre-adipocyte.

  2. Soil Drying Effects on the Carbon Isotope Composition of Soil Respiration

    Science.gov (United States)

    Phillips, C. L.; Nickerson, N.; Risk, D.; Kayler, Z. E.; Rugh, W.; Mix, A. C.; Bond, B. J.

    2008-12-01

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opportunity to distinguish fast- responding plant C from slower-responding soil C pools, which under steady-state conditions may be too similar isotopically to partition. Monitoring the isotopic composition of soil respiration over a period of changing moisture conditions is potentially a useful approach for characterizing plant contributions to soil respiration. But this partitioning hinges on the assumption that any change in the isotopic signature of soil respiration is solely due to recent photosynthetic discrimination, and that post-photosynthetic processes, such as microbial respiration, do not discriminate as moisture decreases. The purpose of the present study is to test the assumption that δ13CO2 from microbial respiration remains static as soil dries. We conducted a series of greenhouse experiments employing different techniques to isolate microbial respiration from root respiration. The first involves removing roots from soil, and showed that when roots are present, respiration from dry soil is enriched in 13C relative to moist soil, but when roots are absent, respiration is isotopically similar from moist and dry soils. This indicates that rhizospheric respiration changes isotopically with moisture whereas soil microbial respiration does not. In contrast, a second experiment in which soil columns without plants were monitored as they dried, showed respiration from very dry soil to be enriched by 8‰ relative to moist soil. However, simulations with an isotopologue-based soil gas diffusion model demonstrate that at least a portion of the apparent enrichment is due to non-steady state gas transport processes. Careful sampling methodologies which prevent or account for non

  3. Effects of maize (Zea mays L.) growth and photosynthesis on δ13C in soil respiration

    Institute of Scientific and Technical Information of China (English)

    YANG Lanfang; CAI Zucong; QI Shihua

    2007-01-01

    As a safe,stable and practical labeling method,the natural abundance of 13C has been widely used in a carbon cycle in the soil-plant system.In order to understand the effects of maize growth and photosynthesis on the value of δ13C in soil respiration,the value of δ13C in soil respiration was determined by mass spectrum after being trapped in a NaOH solution under a closed static chamber and then turned into barium carbonate in a pot experiment.The results showed that maize growth and photosynthesis significantly affected the value of δ13C in the soil respiration.In maize-planted soil,the value of δ13C in soil respiration had a clear seasonal variation.It changed with maize growth in the range of-14.57‰ to -12.3‰ and decreased during the period of trumpeting>ripening>flowering stages.The difference of δ13C in soil respiration during various maize growth stages added up to about 2.3‰.However,in bare soil,δ13C in soil respiration ranged from -19.34‰ to -19.13‰ and did not change significantly over time.The δ13C in soil respiration in the maize-planted soil was the lowest at flowering stage.This was mainly due to the decline of the input in assimilates into soil and the decrease in root activity.However,the δ13C increased at ripening stage,due to the decomposition and ingestion of senescent and died roots by soil microorganisms.In the planted soil,δ13C in soil respiration was significantly higher during daytime than at nighttime at flowering and ripening stages.The difference of δ13C in soil respiration between day and night periods added up to about 1.4‰ and 2.1‰ at flowering and ripening stages,respectively.Shading maize plants at the trumpeting stage decreased the value of δ13C in soil respiration significantly.The difference of δ13C in soil respiration between the treatment of non-shading and shading plants added up to 2.85‰.It was concluded that δ13C in soil respiration was remarkably controlled by the maize growth and

  4. 42 CFR 84.143 - Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... respirators; minimum requirements. 84.143 Section 84.143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.143 Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements. (a) Blowers or connections to air supplies...

  5. 42 CFR 84.1148 - Tests for respirators designed for respiratory protection against more than one type of...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Tests for respirators designed for respiratory...; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1148 Tests for respirators designed for respiratory protection against more than one type of dispersoid;...

  6. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as...; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1151 DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an...

  7. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  8. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Science.gov (United States)

    2010-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.157 Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The...

  9. 42 CFR 84.35 - Changes or modifications of approved respirators; issuance of modification of certificate of...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Changes or modifications of approved respirators... modifications of approved respirators; issuance of modification of certificate of approval. (a) Each applicant may, if he desires to change any feature of an approved respirator, request a modification of...

  10. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for...

  11. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... supplied-air respirators; minimum requirements. 84.154 Section 84.154 Public Health PUBLIC HEALTH SERVICE... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall...

  12. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... Particulate Respirators AGENCY: Centers for Disease Control and Prevention, HHS. ACTION: Reopening of comment... class of NIOSH-certified non-powered air-purifying particulate respirators approved as half-facepiece respirators for protection from particulate-only hazards. The purpose of this meeting was to share...

  13. 21 CFR 880.6260 - Filtering facepiece respirator for use by the general public in public health medical emergencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Filtering facepiece respirator for use by the... Filtering facepiece respirator for use by the general public in public health medical emergencies. (a) Identification. A filtering facepiece respirator for use by the general public in public health...

  14. 42 CFR 84.1152 - Silica dust loading test; respirators designed as protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Silica dust loading test; respirators designed as...; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1152 Silica dust loading test; respirators designed as protection against dusts, fumes, and mists having...

  15. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  16. In-pot evaluation of different composted and pelletized organic fertilizers on soil carbon dioxide efflux and basal respiration

    Science.gov (United States)

    Opsi, Francesca; Cavallo, Eugenio; Cocco, Stefania; Corti, Giuseppe

    2013-04-01

    Climate change is one of the most important environmental problems and it is closely related to concentration changes of greenhouse gases (GHG) in the atmosphere, mainly due to anthropogenic activities. As a consequence, measures have been taken to reduce GHG emissions, some of which are associated with agriculture, as well as to the enhancement of soil carbon storage. Modern intensive farming activities have also raised problems related to the safe disposal of large volume of animal waste, such as pig slurry, where the excessive land spreading can lead to water pollution and GHG evolution to the atmosphere. Composting is a great environmentally sustainable option for recycling agricultural by-products, and pelletisation is a promising technology to reduce the large volume of mature composted material in pelleted fertilizers, more suitable for long-distance transport. This study consisted of a pot-incubation experience carried out in a greenhouse of the National Research Council of Italy, under controlled conditions. The aim of the research was to investigate the effect of a composted swine solid fraction (CS, 13% w/w) and swine solid fraction blended with sawdust and composted (CSS, 9% w/w), both also as a result of pelletisation process (CSP, 12% w/w and CSSP, 8% w/w, respectively), on soil organic matter mineralization and basal respiration. Results were obtained by monitoring CO2 efflux, basal respiration and microbial biomass C on amended soil, freshly collected in a vineyard planted on a Typic Ustorthent, fine-loamy, mixed, calcareous, mesic. Samples, adjusted and maintained to about 50-60% of water holding capacity, were conditioned at 25±3 °C for 31 days of incubation. The CO2 fluxes showed a high production at the initial stage of incubation, where differences among treatments were well-rendered. CSSP produced the highest values, while CSS showed values as lower as about 45%. Intermediate values, and similar to those found in the soil sample used as

  17. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Zhang, Bin; Yang, Qihong; Chang, Jianguo; Hou, Ke

    2016-01-01

    The aim of this paper is to evaluate the diurnal variation in soil respiration under different land use types on Taihang Mountain, North China, and to understand its response to environmental factors (e.g., soil temperature and moisture) and forest management. Diurnal variations in soil respiration from plantations (Robinia pseudoacacia, Punica granatum, and Ziziphus jujuba), naturally regenerated forests (Vitex negundo var. heterophylla), grasslands (Bothriochloa ischaemum), and farmlands (winter wheat/summer maize) were measured using an LI-8100 automated soil CO2 flux system from May 2012 to April 2013. The results indicated that land use type had a significant effect on the diurnal variation of soil respiration. The diurnal soil respiration from farmlands was highest, followed by Ziziphus jujube, R. pseudoacacia, P. granatum, the lower soil CO2 efflux was found from B. ischaemum and V. negundo var. heterophylla. The diurnal soil respiration across different land use types was significantly affected by soil temperature and moisture, and their interaction. Precipitation-stimulated soil respiration increased more in soil with low water content and less in soil with high water content. The lower diurnal soil respiration from naturally regenerated forests suggests that naturally regenerated vegetation is the optimal vegetation type for reducing global warming.

  18. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  19. A STUDY OF THE CIRCULATION, BLOOD PRESSURE, AND RESPIRATION OF SHARKS.

    Science.gov (United States)

    Lyon, E P

    1926-01-04

    The average branchial blood pressure in sand sharks was 32 mm. of mercury. The highest recorded in a resting animal was 43 mm. The average dorsal or systemic pressure was 23.3 mm.; highest 30 mm. The ratio of branchial to systemic pressure is about 3 to 2. The pressure in both systems keeps up well under trauma; but under experimental conditions, with or without manipulation of viscera, slowly falls after several hours. It rises with muscular effort, and a long rise usually follows stoppage of struggling. It rises when sodium carbonate is injected. The adrenalin curve resembles that in a mammal. Spontaneous rises and falls not attributable to the heart occur. Light in some animals increases blood pressure. It is suspected that these fishes have a vasomotor apparatus. The heart rate except after trauma is practically always the same as the respiration rate, and there is some reason for believing that the heart rate is determined by the respiration rate. When not in step with respiration, the heart is slower and often in a simple ratio with respiration. The heart is inhibited by all sorts of stimuli applied practically anywhere (except to the liver?). This effect is abolished by atropin. Respiration is faster in small animals and averages 24 per minute. Respiration slowly decreases in strength with little change in rate. Usually respiration ceases long before the heart stops.

  20. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Science.gov (United States)

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  1. Soil respiration in apple orchards, poplar plantations and adjacent grasslands in Artvin, Turkey.

    Science.gov (United States)

    Tufekcioglu, Aydin; Ozbayram, Ali Kemal; Kucuk, Mehmet

    2009-09-01

    In this study influence of land-use type on soil respiration was investigated in poplar plantation, apple orchard (apple trees with understory grasses) and adjacent grassland sites in Seyitler Area, Artvin, Turkey. Soil respiration was measured approximately monthly in three sampling plots in each land use type from January 2005 to November 2005 using the soda-lime technique. Mean daily soil respiration ranged from 0.63-3.59 g Cm(-2) d(-1). Mean soil respiration in apple orchard, poplar plantation and grassland sites were 1.98, 1.45 and 1.12 g C m(-2) d(-1), respectively. Mean soil respiration was significantly greater in apple orchard than in poplar plantations and grasslands. Seasonal changes in soil respiration were related to soil moisture and temperature changes. Mean soil respiration rate correlated strongly with subsurface soil (15-35cm) pH (R = -0,73; p biomass. Overall, our results indicate that apple orchards with understory grasses have higher soil biological activity compared to poplar and grassland sites.

  2. Interaction between resource identity and bacterial community composition regulates bacterial respiration in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    A. P. F. Pires

    Full Text Available Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.

  3. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    Science.gov (United States)

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation.

  4. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  5. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  6. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zou, Dinghui; Gao, Kunshan

    2013-02-01

    The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high- and low-nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C-33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C-grown algae than 12°C- or 19°C-grown algae. Both respiration and photosynthesis acclimated to long-term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C-grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.

  8. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    Science.gov (United States)

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  9. Soil respiration in cucumber field under crop rotation in solar greenhouse

    Directory of Open Access Journals (Sweden)

    Yinli Liang

    2014-08-01

    Full Text Available Crop residues are the primary source of carbon input in the soil carbon pool. Crop rotation can impact the plant biomass returned to the soil, and influence soil respiration. To study the effect of previous crops on soil respiration in cucumber (Cucumis statirus L. fields in solar greenhouses, soil respiration, plant height, leaf area and yield were measured during the growing season (from the end of Sept to the beginning of Jun the following year from 2007 to 2010. The cucumber was grown following fallow (CK, kidney bean (KB, cowpea (CP, maize for green manure (MGM, black bean for green manure (BGM, tomato (TM, bok choy (BC. As compared with CK, KB, CP, MGM and BGM may increase soil respiration, while TM and BC may decrease soil respiration at full fruit stage in cucumber fields. Thus attention to the previous crop arrangement is a possible way of mitigating soil respiration in vegetable fields. Plant height, leaf area and yield had similar variation trends under seven previous crop treatments. The ratio of yield to soil respiration revealed that MGM is the crop of choice previous to cucumber when compared with CK, KB, CP, BGM, TM and BC.

  10. Rapid rebound of soil respiration following partial stand disturbance by tree girdling in a temperate deciduous forest.

    Science.gov (United States)

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2014-04-01

    Forests serve an essential role in climate change mitigation by removing CO2 from the atmosphere. Within a forest, disturbance events can greatly impact C cycling and subsequently influence the exchange of CO2 between forests and the atmosphere. This connection makes understanding the forest C cycle response to disturbance imperative for climate change research. The goal of this study was to examine the temporal response of soil respiration after differing levels of stand disturbance for 3 years at the Black Rock Forest (southeastern NY, USA; oaks comprise 67% of the stand). Tree girdling was used to mimic pathogen attack and create the following treatments: control, girdling all non-oaks (NOG), girdling half of the oak trees (O50), and girdling all the oaks (OG). Soil respiratory rates on OG plots declined for 2 years following girdling before attaining a full rebound of belowground activity in the third year. Soil respiration on NOG and O50 were statistically similar to the control for the duration of the study although a trend for a stronger decline in respiration on O50 relative to NOG occurred in the first 2 years. Respiratory responses among the various treatments were not proportional to the degree of disturbance and varied over time. The short-lived respiratory response on O50 and OG suggests that belowground activity is resilient to disturbance; however, sources of the recovered respiratory flux on these plots are likely different than they were pre-treatment. The differential taxon response between oaks and non-oaks suggests that after a defoliation or girdling event, the temporal response of the soil respiratory flux may be related to the C allocation pattern of the affected plant group.

  11. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    Science.gov (United States)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  12. Fitting characteristics of N95 filtering-facepiece respirators used widely in China.

    Directory of Open Access Journals (Sweden)

    Yanyan Yu

    Full Text Available BACKGROUND: Millions of people rely on N95 filtering facepiece respirators to reduce the risk of airborne particles and prevent them from respiratory infections. However, there are no respirator fit testing and training regulations in China. Meanwhile, no study has been conducted to investigate the fit of various respirators. The objective of this study was to investigate whether people obtained adequate fit when wearing N95 filtering facepiece respirators (FFRs used widely in China. METHODS: Fifty adult participants selected using the Chinese respirator fit test panel donned 10 common models of N95 FFRs. Fit factors (FF and inward leakage were measured using the TSI PortaCount Plus. Each subject was tested with three replications for each model. A subject was considered to pass the fit test when at least two of the three FFs were greater than 100. Two models were conducted fit tests before and after training to assess the role of training. RESULTS: The geometric mean FFs for each model and trained subjects ranged from <10 to 74.0. The fifth percentile FFs for only two individual respirator models were greater than 10 which is the expected level of performance for FFRs. The passing rates for these two models of FFRs were 44.7% and 20.0%. The passing rates were less than 10.0% for the other eight models. There were 27 (54% participants who passed none of the 10 FFRs. The geometric mean FFs for both models when the subjects received training (49.7 and 74.0 were significantly larger than those when the same group of subjects did not receive any training (29.0 and 30.9 (P<0.05. CONCLUSIONS: FFRs used widely in China should be improved according to Chinese facial dimensions. Respirator users could benefit from respirator training and fit testing before using respirators.

  13. Speech intelligibility while wearing full-facepiece air-purifying respirators.

    Science.gov (United States)

    Coyne, Karen M; Barker, Daniel J

    2014-01-01

    Intelligible speech communication while wearing air-purifying respirators is critical for law enforcement officers, particularly when they are communicating with each other or the public. The National Institute for Occupational Safety and Health (NIOSH) requires a 70% overall performance rating to pass speech intelligibility certification for commercial chemical, biological, radiological, and nuclear air-purifying respirators. However, the speech intelligibility of certified respirators is not reported and the impact on operational performance is unknown. The objective of this effort was to assess the speech intelligibility of 12 certified air-purifying respirators and to predict their impact on operational performance. The NIOSH respirator certification standard testing procedures were followed. Regression equations were fit to data from studies that examined the impact of degraded speech intelligibility on operational performance of simple and complex missions. The impact of the tested respirators on operational performance was estimated from these equations. Performance ratings observed for each respirator were: MSA Millennium (90%), 3M FR-M40 (88%), MSA Ultra Elite (87%), Scott M110 (86%), North 5400 (85%), Scott M120 (85%), Avon C50 (84%), Avon FM12 (84%), Survivair Optifit (81%), Drager CDR 4500 (81%), Peltor-AOSafety M-TAC (79%), and 3M FR-7800B (78%). The Millennium and FR-M40 had statistically significantly higher scores than the FR-7800B. The Millennium also scored significantly higher than the M-TAC. All of the tested respirators were predicted to have little impact on simple and complex mission performance times and on simple mission success rate. However, the regression equations showed that 75% of missions that require complex communications would be completed while wearing the Millennium, FR-M40, or Ultra Elite but that only 60% would be completed successfully while wearing the FR-7800B. These results suggest that some certified respirators may have

  14. An Evaluation of Thermal Imaging Based Respiration Rate Monitoring in Children

    Directory of Open Access Journals (Sweden)

    Farah AL-Khalidi

    2011-01-01

    Full Text Available Problem statement: An important indicator of an individual’s health is respiration rate. It is the average number of times air is inhaled and exhaled per minute. Existing respiration monitoring methods require an instrument to be attached to the patient’s body during the recording. This is a discomfort to the patient and the instrument can be dislodged from its position. Approach: In this study a novel noncontact, thermal imaging based respiration rate measurement method is developed and evaluated. Facial thermal videos of 16 children (age: Median = 6.5 years, minimum = 6 months, maximum = 17 years were processed in the study. The recordings were carried out while the children rested comfortably on a bed. The children’s respiration rates were also simultaneously measured using a number of conventional contact based methods. Results: This allowed comparisons with the thermal imaging method to be carried out. The image capture rate was 50 frames per second and the duration of a thermal video recording was 2 min per child. The thermal images were filtered and segmented to identify the nasal region. An algorithm was developed to automatically track the identified nasal area. This region was partitioned into eight equal concentric segments. The pixel values within each segment were averaged to produce a single thermal feature for that segment of the image. A respiration signal was obtained by plotting each segment��€™s feature against time. Conclusion: Respiration rate values were automatically calculated by determining the number of oscillations in the respiration signals per minute. A close correlation (coefficient = 0.994 was observed between the respiration rates measured using the thermal imaging method and those obtained using the most effective conventional contact based respiration method.

  15. Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes

    Science.gov (United States)

    Naughton, H.; Fendorf, S. E.

    2015-12-01

    Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical

  16. Endotracheal Intubation Using a Direct Laryngoscope and the Protective Performances of Respirators: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Taeho Lim

    2017-01-01

    Full Text Available Purpose. Emergency physicians are at risk for infection during invasive procedures, and the respirators can reduce this risk. This study aimed to determine whether endotracheal intubation using direct laryngoscopes affected protection performances of respirators. Methods. A randomized crossover study of 24 emergency physicians was performed. We performed quantitative fit tests using respirators (cup type, fold type without a valve, and fold type with a valve before and during intubation. The primary outcome was respirators’ fit factors (FF, and secondary outcomes were acceptable protection (percentage of scores above 100 FF [FF%]. Results. 24 pieces of data were analyzed. Compared to fold-type respirator without a valve, FF and FF% values were lower when participants wore a cup-type respirator (200 FF [200-200] versus 200 FF [102.75–200], 100% [78.61–100] versus 74.16% [36.1–98.9]; all P<0.05 or fold-type respirator with a valve (200 FF [200-200] versus 142.5 FF [63.50–200], 100% [76.10–100] versus 62.50% [8.13–100]; all P<0.05. There were no significant differences in intubation time and success rate according to respirator types. Conclusions. Motion during endotracheal intubation using direct laryngoscopes influenced the protective performance of some respirators. Therefore, emergency physicians should identify and wear respirators that provide the best personalized fit for intended tasks.

  17. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    Science.gov (United States)

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  18. Ecosystem Respiration in an Undisturbed, Old-Growth, Temperate Rain Forest

    Science.gov (United States)

    Hunt, J. E.; Walcroft, A. S.; McSeveny, T. M.; Rogers, G. N.; Whitehead, D.

    2008-12-01

    Old-growth forests are usually close to carbon neutral, and climate change may push them towards becoming net carbon sources. Ecosystem carbon exchange and its component fluxes, were measured in a temperate rainforest in South Westland, New Zealand. The forest, which receives over 3 m of rain a year, is dominated by 400 year-old podocarp trees, and is on a low nutrient, acidic, peat soil. Nighttime respiration measurements using eddy covariance were problematic due to katabatic induced CO2 drainage flows near the ground and low turbulence. Instead of the friction velocity filtering technique, we used the maximum eddy flux within a few hours of sunset to derive a function relating nighttime ecosystem respiration to soil temperature. The function was then used to calculate respiration for the nighttime periods. Soil respiration was measured at regular intervals during the growing season. Soil temperature was regulated by incoming radiation and changes in the soil heat capacity. The water table was typically only 160 mm below the ground surface. Soil respiration (mean = 2.9 μmol m-2 s-1) increased strongly with both an increase in soil temperature and an increase in the depth to the water table, and accounted for approximately 50% of ecosystem respiration. Changes in the water table depth caused by altered rainfall regime, evaporation and drainage are likely to have a significant effect on the soil respiration rate and carbon balance of this old-growth forest. Foliage and stem respiration were also measured and integrated to the canopy scale using a model. The model was then used to decompose ecosystem respiration measurements into its components. A combination of measured and modelled data indicates that the ecosystem is a net source for carbon (-0.34 kg C m&-2 yr-1).

  19. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.

  20. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    Science.gov (United States)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for