WorldWideScience

Sample records for lasl respirator research

  1. Acceptable respiratory protection program and LASL respirator research

    International Nuclear Information System (INIS)

    Skaggs, B.J.

    1979-01-01

    A short history is presented on the LASL Respiratory Protection Training Programs. Then a discussion is given on the major points of an acceptable respiratory protection program utilizing the points required by the Occupational, Safety, and Health Administration (OSHA) Regulation 29 CFR 1910.134. Contributions to respirator research are reviewed. Discussion is presented under the following section headings: program administration; respirator selection; respirator use; fitting and training; respirator maintenance; medical clearance and surveillance; special problems; program evaluation; and documentation

  2. Publications of LASL research

    International Nuclear Information System (INIS)

    1977-01-01

    LASL now devotes about one-half of its total effort to unclassified research exploring several peaceful applications of nuclear and other forms of energy. LASL research covers a broad spectrum, ranging from medium-energy, low-energy, and high-energy nuclear physics research to programs involving medical and biological effects of radiation and basic work in molecular and cellular biology. Major nonweapons research activities at Los Alamos involve energy research in fields such as superconducting electrical energy transmission and storage, solar and geothermal energy development, laser fusion research and laser isotope separation, and controlled thermonuclear research using magnetic confinement. Facilities used in such research at the Laboratory include specialized laboratories, a nuclear reactor designed for a variety of experiments, particle accelerators such as the 24-MeV Van de Graaff and LAMPF, Scyllac, and a central computing facility. LASL, as of 1977, employed about 6,000 persons, about one-third of whom are scientists and engineers. The total operating costs are about $250 million per year

  3. Publications of LASL research

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    LASL now devotes about one-half of its total effort to unclassified research exploring several peaceful applications of nuclear and other forms of energy. LASL research covers a broad spectrum, ranging from medium-energy, low-energy, and high-energy nuclear physics research to programs involving medical and biological effects of radiation and basic work in molecular and cellular biology. Major nonweapons research activities at Los Alamos involve energy research in fields such as superconducting electrical energy transmission and storage, solar and geothermal energy development, laser fusion research and laser isotope separation, and controlled thermonuclear research using magnetic confinement. Facilities used in such research at the Laboratory include specialized laboratories, a nuclear reactor designed for a variety of experiments, particle accelerators such as the 24-MeV Van de Graaff and LAMPF, Scyllac, and a central computing facility. LASL, as of 1977, employed about 6,000 persons, about one-third of whom are scientists and engineers. The total operating costs are about $250 million per year. (RWR)

  4. Publications of LASL research, 1978

    International Nuclear Information System (INIS)

    Willis, J.K.; Salazar, C.A.

    1980-04-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1978. Papers published in 1978 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. Publications by LASL authors that are not records of Laboratory-sponsored work are also included

  5. Publications of LASL research, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.K.; Salazar, C.A. (comps.)

    1980-04-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1978. Papers published in 1978 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. Publications by LASL authors that are not records of Laboratory-sponsored work are also included.

  6. Publications of LASL research, 1979

    International Nuclear Information System (INIS)

    Willis, J.K.; Salazar, C.A.

    1980-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1979. Papers published in 1979 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. The entries are arranged in sections by broad subject categories

  7. Publications of LASL research, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.K.; Salazar, C.A. (comps.)

    1980-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1979. Papers published in 1979 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and US patents. The entries are arranged in sections by broad subject categories. (RWR)

  8. Publications of LASL research, 1974

    International Nuclear Information System (INIS)

    Kerr, A.K.

    1975-05-01

    This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included

  9. Publications of LASL research, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, A.K. (comp.)

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)

  10. Publications of LASL research, 1975

    International Nuclear Information System (INIS)

    Kerr, A.K.

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included

  11. Publications of LASL research, 1972--1976

    International Nuclear Information System (INIS)

    Petersen, L.

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover)

  12. Publications of LASL research, 1972--1976

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, L. (comp.)

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)

  13. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    Endebrock, M.

    1978-11-01

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  14. LASL's FY 1978 supporting research program

    International Nuclear Information System (INIS)

    Hammel, E.F.; Merlan, S.J.; Freiwald, D.A.

    1978-09-01

    This report gives a brief overview of Los Alamos Scientific Laboratory's supporting research program, including philosophy, management and program analysis, funding, and a brief description of the kinds of work currently supported. 10 figures

  15. Nuclear safeguards research with the LASL 3. 75-MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Evans, A.E.

    1976-01-01

    The continued use of the Los Alamos Scientific Laboratory (LASL) 3.75-MV Van de Graaff accelerator for the nondestructive assay of nuclear material in support of nuclear safeguards is reviewed. A brief description of the accelerator facility and the small-sample assay station (SSAS) is provided. Factors affecting high-accuracy assay of small samples are outlined. Examples are provided for the assay of uranium--thorium mixtures, low-level uranium samples, and high-temperature gas-cooled reactor (HTGR) fuel rods. Research on delayed-neutron energy spectra, radiation damage to /sup 3/He proportional counters, and /sup 4/He gas scintillators is summarized.

  16. NBS-LASL racetrack microtron

    International Nuclear Information System (INIS)

    Penner, S.; Debenham, P.H.; Green, D.C.

    1980-01-01

    The NBS-LASL racetrack microtron (RTM) is a joint project of the National Bureau of Standards (NBS) and the Los Alamos Scientific Laboratory (LASL). This is a new accelerator research project whose goal is to determine the feasibility of building a high-energy, high-current, cw electron accelerator using beam recirculation and room-temperature rf acceleration structures. The NBS-LASL RTM is being designed and built to develop the required technology for a large national 1 to 2 GeV cw accelerator for nuclear physics research and to prove experimentally that high currents can be accelerated successfully in an RTM. Some of the parameters of the NBS-LASL RTM are 185 MeV final energy, 550 μA maximum current, 15 passes, 12 MeV one-pass energy gain, and 2380 MHz frequency. One 450 kW cw klystron will supply rf power to both the 5 MeV injector and the 12 MeV linac in the RTM

  17. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  18. NBS-LASL cw microtron

    International Nuclear Information System (INIS)

    Penner, S.; Cutler, R.I.; Debenham, D.H.

    1980-01-01

    The NBS-LASL racetrack microtron (RIM) is a joint research project of the National Bureau of Standards and the Los Alamos Scientific Laboratory. The project goals are to determine the feasibility of, and develop the necessary technology for building high-energy, high-current, continuous-beam (cw) electron accelerators using beam recirculation and room-temperature rf accelerating structures. To achieve these goals, a demonstration accelerator will be designed, constructed, and tested. Parameters of the demonstration RIM are: injection energy - 5 MEV; energy gain per pass -12 MeV; number of passes - 15; final beam energy - 185 MeV; maximum current 550 μA. One 450 kW cw klystron operating at 2380 MHz will supply rf power to both the injector linac and the main accelerating section of the RTM. The disk and washer standing wave rf structure being developed at LASL will be used. SUPERFISH calculations indicate that an effective shunt impedance (ZT) of about 100 MΩ/m can be obtained. Thus, rf power dissipation of 25 kW/m results in an energy gain of more than 1.5 MeV/m. Accelerators of this type should be attractive for many applications. At beam energies above about 50 MeV, an RTM should be considerably cheaper to build and operate than a conventional pulsed rf linac of the same maximum energy and time-average beam power. In addition, the RTM provides superior beam quality and a continuous beam which is essential for nuclear physics experiments requiring time-coincidence measurements between emitted particles

  19. Applied nuclear data research and development. Progress report, January 1--March 31, 1976. [Activities of LASL Nuclear Data Group

    Energy Technology Data Exchange (ETDEWEB)

    Baxman, C.I.; Hale, G.M.; Young, P.G. (comps.)

    1976-08-01

    This report describes the activities of the Los Alamos Nuclear Data Group for the period January 1 to March 31, 1976. The following areas are discussed: Theory and evaluation of nuclear cross sections, including calculations of neutron cross sections; Nuclear cross-section processing, including developments concerning the computer codes used; Cross sections for HTGR safety research; Effect of dispersion matrix structure on a data adjustment and consistency analysis; Fission product and decay data studies; and Medium-energy library. 20 figures, 18 tables. (RWR)

  20. Theoretical Division annual report, FY 1975. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.A.

    1976-02-01

    This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

  1. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    Ahlquist, A.J.

    1979-01-01

    Since 1972 the Los Alamos Scientific Laboratory (LASL) has been actively involved in land area surveys for radioactive contamination and has gained considerable experience in cleanup of lands considered to have unacceptable levels of radioactive contamination. Experience and means of arriving at recommendations for decontamination at levels as low as reasonably achievable

  2. Plans for miniature machining at LASL

    International Nuclear Information System (INIS)

    Rhorer, R.L.

    1979-01-01

    A special shop for making miniature or very small parts is being established within the LASL Shop Department, and one of the machine tools for this shop is a high precision lathe. The report describes a method based on scale modeling analysis which was used to define the specific requirements for this lathe

  3. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    Ahlquist, A.J.

    1979-01-01

    Since 1972 the Los Alamos Scientific Laboratory (LASL) has been actively involved in land area surveys for radioactive contamination and has gained considerable experience in cleanup of lands considered to have unacceptable levels of radioactive contamination. This paper describes our experience and means of arriving at recommendations for ALARA

  4. Irradiation test OF-2: high-temperature irradiation behavior of LASL-made fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1977-10-01

    Three LASL-made, substoichiometric ZrC-coated particles with inert kernels, and two high-density molded graphite fuel rods that contained LASL-made, ZrC-coated fissile particles were irradiated in the Oak Ridge Research Reactor test OF-2. The severest test conditions were 8.36 x 10 21 nvt (E greater than 0.18 MeV) at 1350 0 C. The graphite matrix showed no effect of the irradiation. There was no interaction between the matrix and any of the particle coats. The loose ZrC coated particles with inert kernels showed no irradiation effects. The graded ZrC-C coats on the fissile particles were cracked. It is postulated that the cracking is associated with the low LTI deposition rate and is not related to the ZrC

  5. Time response measurements of LASL diagnostic detectors

    International Nuclear Information System (INIS)

    Hocker, L.P.

    1970-07-01

    The measurement and data analysis techniques developed under the Los Alamos Scientific Laboratory's detector improvement program were used to characterize the time and frequency response of selected LASL Compton, fluor-photodiode (NPD), and fluor-photomultiplier (NPM) diagnostic detectors. Data acquisition procedures and analysis methods presently in use are summarized, and detector time and frequency data obtained using the EG and G/AEC electron linear accelerator fast pulse (approximately 50 psec FWHM) as the incident radiation driving function are presented. (U.S.)

  6. E-Division semiannual report, January 1--June 30, 1978. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-10-01

    The status of the programs and projects of the Electronics Division is reported for the period of January through June 1978. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to Los Alamos Scientific Laboratory (LASL) and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for LASL programs. Most of the individual reports are quite short; however, significant amounts of information are given in the area of detector research and development. 52 figures, 7 tables.

  7. LASL approach to uranium geochemical reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described.

  8. LASL approach to uranium geochemical reconnaissance

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described

  9. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  10. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  11. CTR related tritium research at LASL

    International Nuclear Information System (INIS)

    Anderson, J.L.; Carstens, D.H.W.; Alire, R.M.

    1975-01-01

    The solubility and diffusion coefficients of H 2 in Li contained in a cylinder of Nb/1 percent Zr were measured in the temperature range 805-905 0 C at a pressure of 575 Pa. Appropriate corrections for the solubility of H 2 in Nb/1 percent Zr were made. As expected, a finite solid cylinder diffusion model adequately delineates the time-dependent consumption of H 2 in Li. The diffusion coefficient was found to vary from 3.88 x 10 -5 to 6.92 x 10 -5 cm 2 /sec and the activation energy was estimated to be 14.7 kcal/mole. The use of low melting eutectic mixtures containing Y, La, and Ce for extracting tritium from molten lithium is being investigated. Eutectic mixtures being investigated include the 16 percent in La, 12 percent Fe in Ce and 16 percent Co in Ce. At 875 0 K the molar distribution coefficients for tritium between these eutectic mixtures and lithium are less than or equal to 100. The temperature coefficients for these distributions are also being investigated. The pressure-composition-temperature diagram for the La 5 Ni-deuterium system is being studied. A ΔH of --39.7 kcal/mole D 2 was measured for the composition D/La 1.5. (auth)

  12. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  13. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  14. Energy Research and Development Administration, Division of Safety, Standards, and Compliance respirator manual

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Held, B.J.; Revoir, W.H.

    1976-05-01

    The manual has been prepared to provide technical information for contractors of the Energy Research and Development Administration (ERDA) on the application of respiratory protective devices for protection against airborne contaminants, both radioactive and nonradioactive. The various elements of a respirator program including selection and maintenance of equipment and training of personnel are described to assist in establishing adequate programs

  15. Energy Research and Development Administration, Division of Safety, Standards, and Compliance respirator manual

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.D.; Hack, A.L.; Held, B.J.; Revoir, W.H.

    1976-05-01

    The manual has been prepared to provide technical information for contractors of the Energy Research and Development Administration (ERDA) on the application of respiratory protective devices for protection against airborne contaminants, both radioactive and nonradioactive. The various elements of a respirator program including selection and maintenance of equipment and training of personnel are described to assist in establishing adequate programs.

  16. MOVIE.LASL version 1.0 user's manual

    International Nuclear Information System (INIS)

    Brown, B.E.

    1976-09-01

    MOVIE.LASL is an interactive Fortran program for display and animation both of finite-element models and of the results of their analysis. The program runs on the Los Alamos Scientific Laboratory's LTSS system. The user may manipulate the model (rotate, translate, zoom in, etc.), specify colors for the background and the different element groups, and select various display devices. Both line drawings and continuous-tone color images can be produced. Single frames or animated movie sequences are also available and can be displayed on any of the output devices

  17. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site.

    Directory of Open Access Journals (Sweden)

    Nicole M Koribanics

    Full Text Available The Department of Energy's Integrated Field-Scale Subsurface Research Challenge Site (IFRC at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.

  18. Gasdynamic measurements for the LASL intense neutron source

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1978-02-01

    Measurements made on a two-dimensional simulation of the Los Alamos Scientific Laboratory (LASL) Intense Neutron Source (INS) experiment are discussed. The purpose of this work was to characterize the supersonic INS channel flow under conditions of large amounts of energy deposition. Nozzle channel wall pressure measurements, cold flow leakage rates, vacuum channel pressure and Mach number, leakage flow rates with mass addition to and momentum extraction from the main flow, and flow visualization photographs are given. Energy addition up to thirty percent of the theoretical maximum was achieved via mass addition to and momentum extraction from the main channel flow. In this range, both a weak and strong regime for leakage flow were identified. These regimes differed by about twenty percent in leakage flow rates

  19. Irradiation test HT-31: high-temperature irradiation behavior of LASL-made extruded fuel rods and LASL-made coated particles

    International Nuclear Information System (INIS)

    Wagner, P.; Reiswig, R.D.; Hollabaugh, C.M.; White, R.W.; Davidson, K.V.; Schell, D.H.

    1977-04-01

    Three LASL-made extruded graphite and coated particle fuel rods have been irradiated in the Oak Ridge National Laboratory High Fluence Isotope Reactor test HT-31. Test conditions were about 9 x 10 21 nvt(E > .18 MeV) at 1250 0 C. The graphite matrix showed little or no effect of the irradiation. LASL-made ZrC containing coated particles with ZrC coats and ZrC-doped pyrolytic carbon coats showed no observable effects of the irradiation

  20. LASL analytical chemistry program for fissionable materials safeguards

    International Nuclear Information System (INIS)

    Jackson, D.D.; Marsh, S.F.

    1979-01-01

    Gas-solid reactions at elevated temperature, used previously to convert uranium in refractory forms to species readily soluble in acid, are being applied to thorium materials. A microgram-sensitive spectrophotometric method was developed for determining uranium and the LASL Automated Spectrophotometer has been modified to use it. The instrument now is functional for determining milligram amounts of plutonium, and milligram and microgram amounts of uranium. Construction of an automated controlled-potential-coulometric analyzer has been completed. It is giving design performance of 0.1% relative standard deviation for the determination of plutonium using a method developed especially for the instrument. A method has been developed for the microcomplexometric titration of uranium in its stable (VI) oxidation state. A color probe analyzer assembled for this titration also has been used for microcomplexometric titration of thorium. The present status of reference materials prepared for NBS and for the SALE program, as well as examples of working reference materials prepared for use with nondestructive analyzers, is given. The interlaboratory measured value of the 239 Pu half-life is 24,119 y. Just completed measurement of the half life of 241 Pu is 14.38 y. Measurement of the 240 Pu half life is in progress

  1. [Research on respiration course of human at different postures by electrical impedance tomography].

    Science.gov (United States)

    Chen, Xiaoyan; Wu, Jun; Wang, Huaxiang; Li, Da

    2010-10-01

    In this paper, the respiration courses of human at different postures are reconstructed by electrical impedance tomography (EIT). Conjugate gradient least squares (CGLS) algorithm is applied to reconstruct the resistivity distribution during respiration courses, and the EIT images taken from human at flat lying, left lying, right lying, sitting and prone postures are reconstructed and compared. The relative changes of the resistivity in region of interest (ROI) are analyzed to evidence the influences caused by different postures. Results show that the changes in postures are the most influential factors for the reconstructions, and the EIT images vary with the postures. In human at flat-lying posture, the left and right lungs have larger pulmonary ventilation volume simultaneously, and the EIT-measured data are of lower variability.

  2. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  3. Assessing the potential for isotopic partitioning of soil respiration at research sites in Nova Scotia and Newfoundland

    Energy Technology Data Exchange (ETDEWEB)

    Risk, D.; Kellman, L.; Black, M. [Saint Francis Xavier Univ., Antigonish, NS (Canada). Environmental Sciences Research Centre

    2005-07-01

    The stable isotope ratios of carbon and oxygen in different tree species were studied with respect to different tissues, at different points within the tree, through soil profiles and in carbon dioxide respired from laboratory incubations. Although isotopic methods of partitioning autotrophic and heterotrophic soil respiration have been used with some success, stable isotopic methods are complicated by the fact that carbon isotope fractionations are small in natural systems, and radiocarbon techniques are time and equipment intensive. Studies that use isotopic analysis opportunistically, such as in C3/C4 transitional systems, have proven to be the most successful. Previously unexploited opportunities have the potential to be used for stable isotope-based partitioning in natural systems if the autotrophic/heterotrophic process distribution in the profile is well understand and if there is good process resolution and concurrent analyses using physical partitioning methods such as trenches. This study explored the different paths of opportunity in terms of background isotopic characterization that is being carried out for an existing network of carbon flux research sites in eastern Nova Scotia and in western Newfoundland. The new continuous flow-isotope ratio mass spectrometer (CF-IRMS) at the Environmental Earth Sciences Laboratory at St. Francis Xavier University was used for the isotopic analyses. The isotopic information will be evaluated for potential partitioning opportunities, considering the combination of approaches that will give the best chances of success. Isotopic partitioning trials will take place at suitable sites.

  4. DT fusion neutron irradiation of BNL--LASL superconductor wires, LASL YAG, Al2O3 and Spinel, LASL-IIT MgO, YAG, Al2O3 and Spinel, and NRL GeO2 crystals, December 28, 1977

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of eleven BNL-LAST superconductor wires, six NRL GeO 2 crystals, two YAG, two Spinel and two Al 2 O 3 crystals for LASL and four LASL high purity single crystals of MgO, YAG, Spinel and Al 2 O 3 is described. The sample position, beam-on time, and neutron dose record are given. The maximum fluence on any sample was 1.51 x 10 16 neutrons/cm 2

  5. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    International Nuclear Information System (INIS)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944

  6. History and environmental setting of LASL near-surface land disposal facilities for radioactive wastes (Areas A, B, C, D, E, F, G, and T). A source document

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.A.

    1977-06-01

    The Los Alamos Scientific Laboratory (LASL) has been disposing of radioactive wastes since 1944. The LASL Materials Disposal Areas examined in this report, Areas A, B, C, D, E, F, G, and T, are solid radioactive disposal areas with the exception of Area T which is a part of the liquid radioactive waste disposal operation. Areas A, G, and T are currently active. Environmental studies of and monitoring for radioactive contamination have been done at LASL since 1944.

  7. Respirator studies for the ERDA Division of Safety, Standards, and Compliance. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Hack, A.L.; Davis, T.O.; Shafer, C.; Moore, T.O.; Richards, C.P.; Revoir, W.H.

    1976-08-01

    Major accomplishments during FY 1975 were the initiation of a respirator research program to investigate the physiological effects of wearing a respirator under stress, assisting ERDA contractors by providing information and training concerning respirator programs, quality assurance of respirators, and respirator applications. A newsletter of respirator developments for ERDA contractor personnel was published, and a Respirator Symposium was conducted

  8. Interferogram reduction and interpretation as applied to the optical analysis of the 10 kJ LASL laser fusion system

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Hall, W.S.; Liberman, I.; Lawrence, G.

    1978-01-01

    The LASL 10 kJ Eight-Beam CO 2 Laser Fusion System, currently under construction, has approximately one hundred optical elements per beam. The nominal system is diffraction limited and degradations in performance are primarily caused by imperfect components as well as alignment errors. Consequently, analysis and predictions for the system are very much dependent on the proper description of the imperfect components. The approach taken at LASL has been to characterize the components interferometrically. Interferograms of the various components are made at the 633 nm He--Ne wavelength. Detailed results of the analysis for one complete leg of the eight-beam system is presented

  9. Developments in the LASL Fuel Pin Imaging System: PINEX-3A

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Berzins, G.J.; Cosimi, R.A.; O'Hare, T.E.; Davidson, J.R.

    1979-01-01

    The LASL Fuel Pin Imaging System was evaluated using a series of 10 TREAT transients, each of approx. 240-MW peak power. HEDL provided the fuel-ejection type capsule with annular fuel pellets. The pin visibility threshold was determined to be approx. 20-MW of TREAT power (approx. 130 W/g), almost an order of magnitude improvement over our PINEX-2 threshold. The impact of changes in instrumentation, imaging apertures, and fluors that produced the improved sensitivity are reported. Results of a time-integrated imaging technique are also presented

  10. Plated copper substrates for the LASL Antares CO2 laser system

    International Nuclear Information System (INIS)

    Blevins, D.J.; Munroe, J.L.

    1979-01-01

    Antares is a large carbon-dioxide laser system presently under construction at the Los Alamos Scientific Laboratory (LASL). Antares will be part of the LASL High Energy Gas Laser Facility (HEGLF). Its purpose will be to investigate inertial confinement fusion with light of 10.6-μm wavelength. Most of the optics comprising Antares will be reflectors and, for many reasons, copper is the material of choice. The mirrors range in size from 2.5 cm in diameter to 45 cm in diameter. The copper must be very pure to help maximize damage threshold, making plated copper an attractive solution. The final mirror should be very stable, i.e., characterized by very low microcreep. This makes an alloy a more suitable substrate candidate than pure copper. For Antares, all of the smaller mirrors will be made of copper plated onto an aluminum-bronze substrate, and all of the larger mirrors will be made of copper plated onto aluminum alloy 2124. This paper discusses how this design was arrived at and the methods used to assure a satisfactory mirror

  11. Proposal for the transmittal of data to LASL and the reporting of TRAC analyses for the multinational reflood experimental program

    International Nuclear Information System (INIS)

    Bleiweis, P.B.; Kirchner, W.L.; Sicilian, J.M.

    1979-04-01

    The proposed form of the digital tape containing the reduced experimental data from any of the 2D/3D facilities (CCTF, SCTF, UPTF, and possibly PKL Core-II) and the procedures which LASL will use in performing TRAC calculations and reporting results are described in this document

  12. Evaluation of the LASL automated spectrophotometer for uranium determination at submilligram levels

    International Nuclear Information System (INIS)

    Hollen, R.M.; Jackson, D.D.; Rein, J.E.

    1977-07-01

    The LASL automated spectrophotometer, designed for determination of 1 to 14 mg of uranium and 0.5 to 14 mg of plutonium, has been evaluated for determination of lower levels of uranium to 0.12 mg. The essentially linear response of absorbance is maintained and the standard deviation for a single measurement is constant at about 0.013 mg of uranium, corresponding to a maximum uncertainty of about 10 percent at the 0.12-mg limit. The instrument was applied to the analysis of a series of low-level-concentration, 0.07- to 0.8-mg/ml uranium samples. The results were not statistically different from those obtained by a manual spectrophotometric method

  13. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  14. 60-inch annular pitch polisher for LASL's LASER-fusion effort

    International Nuclear Information System (INIS)

    Williamson, R.

    1978-01-01

    The Antares laser will require that about 100 high-precision NaCl windows of 18-in. diameter be produced, maintained, and repaired. To aid the industry in achieving the required production rates, a polishing development program was undertaken by LASL's Laser Division in collaboration with the Air Force and International Laser Systems. The design and initial shakedown of the polishing machine is described. Preliminary results indicate the machine's design is sound, its operation is generally simple, and it should be capable of finishing 18-in. NaCl to better than lambda/2 visible and 20-10 surface. Shakedown work with glass has demonstrated 0-0 surface, complete absence of edge roll, and lambda/16 over 12 in., and lambda/6 over 19 in

  15. Respirator field performance factors

    International Nuclear Information System (INIS)

    Skaggs, B.J.; DeField, J.D.; Strandberg, S.W.; Sutcliffe, C.R.

    1985-01-01

    The Industrial Hygiene Group assisted OSHA and the NRC in measurements of respirator performance under field conditions. They reviewed problems associated with sampling aerosols within the respirator in order to determine fit factors (FFs) or field performance factor (FPF). In addition, they designed an environmental chamber study to determine the effects of temperature and humidity on a respirator wearer

  16. Publications of Los Alamos Research, 1977-1981: formerly Publications of LASL Research. Volume II

    International Nuclear Information System (INIS)

    Sheridan, C.J.; Garcia, C.A.

    1983-03-01

    This volume is a bibliography of Los Alamos publications during the specified period in the following areas: general physics; nuclear physics; particles and fields; radioisotope and radiation applications; nuclear materials security safeguards; solar energy; theoretical plasma physics; and transportation of property and nuclear materials

  17. Cold cathode electron guns in the LASL high power short-pulse CO2 laser program

    International Nuclear Information System (INIS)

    Singer, S.; Ladish, J.S.; Nutter, M.J.

    1975-01-01

    The Electron Beam Controlled Discharge CO 2 Laser is now firmly established as the only high power short pulse laser amplifier that has been demonstrated to have scaling capabilities to large apertures and energies much greater than 100 J. These devices require a beam of energetic electrons to control the gas discharge that produces the required population inversion. Until recently, the electron source was usually a thermionic emitter, even for rather large lasers, whose heater requirements dwarfed the pulsed energies associated with the transient operation of the laser. With the advent of reliable cold-cathode electron guns, the operation of these lasers has been greatly simplified. At LASL, there are four electron beam controlled laser systems which are in operation, under construction, or in design: the 1 kJ system, now operational; the 2.5 kJ system; the 10 kJ system; and the 100 kJ system. Only the first uses thermionic-emitter electron guns; the remainder use or will use cold cathode sources. The operation of the 200 x 35 cm 2 two sided cold cathode electron gun used in the 2.5 kJ laser system and to be used in the 10 kJ laser is described

  18. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  19. Choosing the right respirator

    International Nuclear Information System (INIS)

    Bidwell, J.

    1997-01-01

    Selecting respirators to help protect workers from airborne contaminants can be a confusing process. The consequences of selecting the incorrect respirator can be intimidating, and worker safety and health may be dramatically and irreparably affected if an inappropriate respirator is chosen. When used in the workplace, a formal respiratory protection program must be established covering the basic requirements outlined in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Education and training must be properly emphasized and conducted periodically. Maintenance, cleaning, and storage programs must be established and routinely followed for reusable respirators. The process of establishing a respiratory protection program can be broken down into four basic steps: Identify respiratory hazards and concentrations; understand the contaminants effects on workers' health; select appropriate respiratory protection; and train in proper respirator use and maintenance. These four steps are the foundation for establishing a basic respirator protection program. Be sure to consult state and federal OSHA requirements to ensure that the program complies. Leading industrial respirator manufacturers should be able to assist with on-site training and education in this four-step process, in addition to helping employers train their workers and conduct respirator fit testing

  20. LASL Controlled Thermonuclear Research Program. Progress report, January--December 1976

    International Nuclear Information System (INIS)

    Thomas, K.S.

    1978-03-01

    This annual progress report is divided into the following sections: (1) Scyllac feedback sector experiments, (2) staged theta-pinch program, (3) toroidal reverse-field pinch, (4) Scylla IV-P linear theta-pinch experiments, (5) gun injection experiment, (6) Scylla I-C, laser-plasma interaction studies, (7) field reversal theta pinch, (8) Implosion Heating Experiment, (9) experimental plasma physics, (10) plasma diagnostics, (11) high-beta tokamak, (12) theory, (13) computers, (14) engineering, (15) magnetic energy transfer and storage, (16) magnetic confinement systems studies, and (17) intense neutron source facility

  1. Sub One-Hundred-PS Pyroelectric Detector Research and Evaluation Program at LASL

    International Nuclear Information System (INIS)

    McLellan, E.J.; Stotlar, S.C.

    1978-01-01

    Preliminary devices have been designed and evaluated with 1 ns and 90 ps FWHM CO 2 laser pulses. Good agreement between calculated and measured values of falltime and voltage responsivity has been obtained. The female SMA to male BNC connector appears to be the most desirable easily available package for sub-one-hundred ps CO 2 laser pulses. A new detector with an expected risetime of 13 ps has been designed

  2. LASL: controlled thermonuclear research program. Progress report, January--December 1977

    International Nuclear Information System (INIS)

    Thomas, K.S.; Sawyer, G.A.

    1979-02-01

    Information is included for each of the following sections: (1) reversed-field pinch program, (2) Scyllac feedback stabilization experiments, (3) Scylla IV-P linear theta pinch experiments, (4) staged theta pinch, (5) field-reversal experiment, (6) implosion heating experiment, (7) fast liner experiment, (8) gun injection experiment, (9) experimental plasma physics, (10) high-density z-pinch, (11) plasma diagnostics, (12) theory, (13) computers, (14) magnetic energy transfer and storage, (15) systems studies, (16) engineering, and (17) tritium systems test assembly

  3. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  4. Cattle respiration facility

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Lund, Peter; Weisbjerg, Martin Riis

    2012-01-01

    In Denmark, the emission rate of methane from dairy cows has been calculated using the IPCC standard values for dairy cows in Western countries, due to the lack of national data. Therefore, four respiration chambers for dairy cows were built with the main purpose of measuring methane, but also...

  5. A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL)

    International Nuclear Information System (INIS)

    Amorim, E.S. do; D'Oliveira, A.B.; Oliveira, E.C. de.

    1980-11-01

    A comparative study of the systems for neutronics calculations used in Los Alamos Scientific Laboratory (LASL) and Argonne National Laboratory (ANL) has been performed using benchmark results available in the literature, in order to analyse tghe convenience of using the respective codes MINX/NJOY and ETOE/MC 2 -2 for performing neutronics calculations in course at the Divisao de Estudos Avancados. (Author) [pt

  6. Respirators. Does your face fit

    Energy Technology Data Exchange (ETDEWEB)

    Caro, N M; Else, D

    1981-04-01

    The authors carried out a survey of face sizes of men and women of four different ethnic origins and carried out face-seal leakage trials on four corresponding test panels. No single respirator design is likely to fit all members of the workforce, and it may be necessary to stock respirators from more than one manufacturers.Three or four different respirators or size of respirator may be needed. However, the use of lossely-fitting respirators such as Airsteam helmets could remove the necessity for exhaustive fitting procedures.

  7. Thermophysical properties: some experience in research, development and applications

    International Nuclear Information System (INIS)

    Wagner, P.; Acton, R.U.

    1977-01-01

    Accurate measurements of thermophysical properties, understanding exactly any use requirements, and understanding the behavior of the material are all potential ingredients for in-depth research and development projects. The work reported here is but a brief description of some of the many LASL and SLA projects and their chain-branching manifestations

  8. LIMITATION OF SOIL RESPIRATION DURING DRY PERIOD

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor; Acosta, Manuel

    2003-01-01

    Roč. 16, - (2003), s. 47-52. ISBN 80-7157-297-7 R&D Projects: GA MŠk LN00A141; GA AV ČR IBS6087005 Institutional research plan: CEZ:AV0Z6087904 Keywords : moisture * Norway spruce * precipitation * respiration * soil CO2 efflux Subject RIV: EH - Ecology, Behaviour

  9. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  10. Respirable dust and respirable silica exposure in Ontario gold mines.

    Science.gov (United States)

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  11. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  12. Nuclear safeguards research and development program. Status report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, J.L. (comp.)

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer.

  13. Nuclear safeguards research and development program. Status report, January--April 1977

    International Nuclear Information System (INIS)

    Sapir, J.L.

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer

  14. Respiration in spiders (Araneae).

    Science.gov (United States)

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  15. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  16. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  17. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  18. E-Division semiannual report. Progress report, December 1, 1976--May 30, 1977. [LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1977-11-01

    Detector research and development are described first. Then, briefer reports are given on research on the following topics: electronic temperature monitoring and identification for livestock, electromagnetic probing (for fracture mapping), fiber optics for downhole instrumentation (for weapons testing), adaptive control applied to HVAC systems, energy environmental simulator, and high-temperature electronics. Engineering support (development projects, program support, instrumentation support) and technical services (general group activities, recharge programs, research and development programs, minicomputer maintenance, information and training services) are sketched. The report is basically administrative in nature, with a minimum of technical material. 47 figures, 10 tables. (RWR)

  19. Redefinition and global estimation of basal ecosystem respiration rate

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenping [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Luo, Yiqi [Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, USA; Li, Xianglan [College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Liu, Shuguang; Yu, Guirui [Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Zhou, Tao [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Bahn, Michael [Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Black, Andy [Faculty of Land and Food Systems, University of British Columbia, Vancouver, B. C., Canada; Desai, Ankur R. [Atmospheric and Oceanic Sciences Department, Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA; Cescatti, Alessandro [Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy; Marcolla, Barbara [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Jacobs, Cor [Alterra, Earth System Science-Climate Change, Wageningen University, Wageningen, Netherlands; Chen, Jiquan [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, Ohio, USA; Aurela, Mika [Climate and Global Change Research, Finnish Meteorological Institute, Helsinki, Finland; Bernhofer, Christian [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Gielen, Bert [Department of Biology, University of Antwerp, Wilrijk, Belgium; Bohrer, Gil [Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA; Cook, David R. [Climate Research Section, Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA; Dragoni, Danilo [Department of Geography, Indiana University, Bloomington, Indiana, USA; Dunn, Allison L. [Department of Physical and Earth Sciences, Worcester State College, Worcester, Massachusetts, USA; Gianelle, Damiano [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Grünwald, Thomas [Chair of Meteorology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany; Ibrom, Andreas [Risø DTU National Laboratory for Sustainable Energy, Biosystems Division, Technical University of Denmark, Roskilde, Denmark; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA; Lindroth, Anders [Geobiosphere Science Centre, Physical Geography and Ecosystems Analysis, Lund University, Lund, Sweden; Liu, Heping [Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA; Marchesini, Luca Belelli [Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy; Montagnani, Leonardo; Pita, Gabriel [Department of Mechanical Engineering, Instituto Superior Técnico, Lisbon, Portugal; Rodeghiero, Mirco [Sustainable Agro-ecosystems and Bioresources Department, Fondazione Edmund Mach-IASMA Research and Innovation Centre, San Michele all' Adige, Italy; Rodrigues, Abel [Unidade de Silvicultura e Produtos Florestais, Instituto Nacional dos Recursos Biológicos, Oeiras, Portugal; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; Stoy, Paul C. [Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA

    2011-10-13

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ~3°S to ~70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual

  20. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  1. Improvement of ballistocardiogram processing by inclusion of respiration information

    International Nuclear Information System (INIS)

    Tavakolian, Kouhyar; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel methodology for processing of a ballistocardiogram (BCG) is proposed in which the respiration signal is utilized to improve the averaging of the BCG signal and ultimately the annotation and interpretation of the signal. Previous research works filtered out the respiration signal while the novelty of the current research is that, rather than removing the respiration effect from the signal, we utilize the respiration information to improve the averaging and thus analysis and interpretation of the BCG signal in diagnosis of cardiac malfunctions. This methodology is based on our investigation that BCG cycles corresponding to the inspiration and expiration phases of the respiration cycle are different in morphology. BCG cycles corresponding to the expiration phase of respiration have been proved to be more closely related to each other when compared to cycles corresponding to inspiration, and therefore expiration cycles are better candidates to be selected for the calculation of the averaged BCG signal. The new BCG average calculated based on this methodology is then considered as the representative and a template of the BCG signal for further processing. This template can be considered as the output of a clinical BCG instrument with higher reliability and accuracy compared to the previous processing methods

  2. LASL computerized quality assurance record-keeping system for analytical chemistry

    International Nuclear Information System (INIS)

    Dahlby, J.W.; Phillips, J.R.

    1976-06-01

    Research programs requiring quality assurance surveillance, certification procedures, and associated record keeping have increased markedly at the Los Alamos Scientific Laboratory. A computer-based system, accessible through time-sharing terminals, performs many routine operations, including continued records updating for equipment calibration, personnel certification, quality assurance procedure listings, and controlled-document distribution lists. The system described has operated successfully for more than a year, resulting in a significant savings in man-hours required to keep quality assurance records

  3. Facepiece leakage and fitting of respirators

    International Nuclear Information System (INIS)

    White, J.M.

    1978-05-01

    The ways in which airborne contaminants can penetrate respirators and the factors which affect the fit of respirators are discussed. The fit of the respirator to the face is shown to be the most critical factor affecting the protection achieved by the user. Qualitative and quantitative fit testing techniques are described and their application to industrial respirator programs is examined. Quantitative measurement of the leakage of a respirator while worn can be used to numerically indicate the protection achieved. These numbers, often referred to as protection factors, are sometimes used as the basis for selecting suitable respirators and this practice is reviewed. (author)

  4. Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)

    Science.gov (United States)

    Forshee, Jay Lance, II

    Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity

  5. Laser fusion program at LASL. Progress report, January 1--June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Stark, E.

    1976-11-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. The Single-Beam System continued to be used in target experiments at a peak intensity of 7 x 10/sup 14/ W/cm/sup 2/, and the system was improved. The status of the Two-Beam System, on which target experiments have begun with 300-J, 1-ns pulses in one beam, is described. Construction and checkout of the Eight-Beam System are continuing. Further design studies for the High-Energy Gas Laser Facility and the initiation of a prototype program are reported. The rare-gas oxides and dimeric mercury were emphasized in investigations into new lasers for fusion research. Experimental kinetics studies, a study of heat-pipe containment of metal vapors, theoretical support, and optical-damage investigations are described. Significant experimental and theoretical results are reported on the question of wavelength-scaling in laser-plasma interaction physics. Studies of vacuum insulation as a means of preventing target preheat by hot electrons are also summarized. Analyses of the ponderomotive force in laser-plasma interactions and of the relationship between x-ray spectrum and suprathermal electron distribution are described. Improvements to the MCRAD and LASNEX design codes are outlined, and a LASNEX analysis of a target heated by laser-generated fast ions is discussed. Improved methods of screening, characterizing, and fabricating microballoons and more complex targets are described, and progress in applying uniform layers of DT ice on the inside of a microballoon is reported. Improvements in diagnostics include x-ray streak photographs, the fabrication of x-ray microscope systems, and x-ray film imaging. New results in our feasibility and systems studies are presented, including the wetted-wall and magnetically protected reactor concepts, the effect of ionized debris on cavity walls, the fusion-fission breeder concept, and the production of synthetic fuels by fusion

  6. Laser Fusion Program at LASL. Progress report, July 1--December 31, 1977

    International Nuclear Information System (INIS)

    Skoberne, F.

    1978-12-01

    Progress in the development of high-energy short-pulse CO 2 laser systems for fusion research is reported. Among the achievements discussed are an increase in on-target energy of the Two-Beam System to 375 J per beam; operation of one Eight-Beam System module at the design point of 1.2 kJ at a power of > 2 TW; and the on-schedule development of our 100- to 200-TW laser Antares. Target designs based on the LASNEX code incorporating new theoretical insights are described, culminating in a double-shell exploding-pusher target that attains a high degree of symmetry through hot-electron transport in an exploding outer shell. Studies of laser light absorption are outlined, which confirmed that the values for CO 2 are nearly identical to those obtained with Nd:glass lasers. Unique diagnostics are described, which allow one to measure properties of x-ray emission not previously accessible, and which provide absorption data of sufficient accuracy for direct comparison with theory. Finally, various feasibility and systems studies are summarized, such as the successful modeling of short-pulse amplification in large three-pass CO 2 laser amplifiers, as verified experimentally

  7. Laser Fusion Program at LASL. Progress report, July 1--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Skoberne, F. (comp.)

    1978-12-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Among the achievements discussed are an increase in on-target energy of the Two-Beam System to 375 J per beam; operation of one Eight-Beam System module at the design point of 1.2 kJ at a power of > 2 TW; and the on-schedule development of our 100- to 200-TW laser Antares. Target designs based on the LASNEX code incorporating new theoretical insights are described, culminating in a double-shell exploding-pusher target that attains a high degree of symmetry through hot-electron transport in an exploding outer shell. Studies of laser light absorption are outlined, which confirmed that the values for CO/sub 2/ are nearly identical to those obtained with Nd:glass lasers. Unique diagnostics are described, which allow one to measure properties of x-ray emission not previously accessible, and which provide absorption data of sufficient accuracy for direct comparison with theory. Finally, various feasibility and systems studies are summarized, such as the successful modeling of short-pulse amplification in large three-pass CO/sub 2/ laser amplifiers, as verified experimentally.

  8. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  9. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  10. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  11. Use of Facemasks and Respirators

    Centers for Disease Control (CDC) Podcasts

    2007-05-15

    This program demonstrates the differences of facemasks and respirators that are to be used in public settings during an influenza pandemic.  Created: 5/15/2007 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 5/25/2007.

  12. 78 FR 18535 - Respirator Certification Fees

    Science.gov (United States)

    2013-03-27

    ... facepiece respirators. The North American respiratory protection market generated revenues around $1,830 million in 2007, the most recent data available.\\4\\ A summary of market segmentation, by respirator type... management. Of the U.S. respirator market of products approved by NIOSH, approximately 35 percent of approval...

  13. LASL Compact Torus Program

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  14. Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

    OpenAIRE

    Wilaiwan Sornpoon; Sebastien Bonnet; Poonpipope Kasemsap; Savitri Garivait

    2013-01-01

    The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to ...

  15. Respirable dust meter locates super polluters in traffic

    NARCIS (Netherlands)

    Schmidt-Ott's, A.; Kurniawan, A.; Schrauwers, A.

    2006-01-01

    The Netherlands is having trouble with the EU standards for respirable dust (PM 10). The Dutch Council of State recently blocked a number of residential development projects because local conditions failed to meet the PM 10 standard. Research by the Nano Structured Materials group at TU Delft shows

  16. Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems

    Science.gov (United States)

    White, Joshua S.; Maskiewicz, April C.

    2014-01-01

    Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that…

  17. Management effects on European cropland respiration

    DEFF Research Database (Denmark)

    Eugster, Werner; Moffat, Antje M.; Ceschia, Eric

    2010-01-01

    Increases in respiration rates following management activities in croplands are considered a relevant anthropogenic source of CO2. In this paper, we quantify the impact of management events on cropland respiration fluxes of CO2 as they occur under current climate and management conditions. Our....... This allowed us to address the question of how management activities influence ecosystem respiration. This was done by comparing respiration fluxes during 7, 14, and 28 days after the management with those observed during the matching time period before management. Median increases in respiration ranged from...... than management alone are also important at a given site. Temperature is the climatic factor that showed best correlation with site-specific respiration fluxes. Therefore, the effect of temperature changes between the time periods before and after management were taken into account for a subset of 13...

  18. Effects of respirator use on worker performance

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, R. [Yankee Atomic Electric Co., Bolton, MA (United States)

    1995-03-01

    In 1993, EPRI funded Yankee Atomic Electric Company to examine the effects of respirator use on worker efficiency. Phase I of Yankee`s effort was to develop a study design to determine respirator effects. Given success in Phase I, a larger population will be tested to determine if a stasitically significant respirator effect on performance can be measured. This paper summarizes the 1993 EPRI/Yankee Respirator Effects of Pilot Study, and describes the study design for the 1994 EPRI/Yankee Respirator Study to be conducted at the Oyster Creek Nuclear Power Plant. Also described is a summary of respirator effect studies that have been conducted during the last ten (10) years.

  19. Respirators: Supervisors Self-Study #43442

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    This course, Respirators: Supervisors Self-Study (#43442), addresses training requirements for supervisors of respirator wearers as specified by the American National Standard Institute (ANSI) Standard for Respiratory Protection, ANSI Z88.2, and as incorporated by reference in the Department of Energy (DOE) Worker Health and Safety Rule, 10 Code of Federal Regulations (CFR) 851. This course also presents the responsibilities of supervisors of respirator wearers at Los Alamos National Laboratory (LANL).

  20. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  1. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    Science.gov (United States)

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  2. Redefinition and global estimation of basal ecosystem respiration rate

    Science.gov (United States)

    Yuan, W.; Luo, Y.; Li, X.; Liu, S.; Yu, G.; Zhou, T.; Bahn, M.; Black, A.; Desai, A.R.; Cescatti, A.; Marcolla, B.; Jacobs, C.; Chen, J.; Aurela, M.; Bernhofer, C.; Gielen, B.; Bohrer, G.; Cook, D.R.; Dragoni, D.; Dunn, A.L.; Gianelle, D.; Grnwald, T.; Ibrom, A.; Leclerc, M.Y.; Lindroth, A.; Liu, H.; Marchesini, L.B.; Montagnani, L.; Pita, G.; Rodeghiero, M.; Rodrigues, A.; Starr, G.; Stoy, Paul C.

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ∼3°S to ∼70°N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr −1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.

  3. Elemental Concentration of Inhalable and Respirable Particulate ...

    African Journals Online (AJOL)

    20537 and respirable foam for I.O.M sampler. The elemental composition (Co, Ni, Zn, Cu, Fe, Pb, Cr, Mn and Cd) were analyzed by using Atomic Absorption Spectrophotometric (AAS). The data generated were subjected to descriptive analysis. In inhalable fraction,the enrichment factor ranged from 1-73.3 while in respirable ...

  4. Respirators: APR Issuer Self Study 33461

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Laboratory

    2016-07-13

    Respirators: APR Issuer Self-Study (course 33461) is designed to introduce and familiarize employees selected as air-purifying respirator (APR) issuers at Los Alamos National Laboratory (LANL) with the responsibilities, limitations, procedures, and resources for issuing APRs at LANL. The goal is to enable these issuers to consistently provide proper, functioning APRs to authorized users

  5. Nuclear safeguards research. Program status report. Progress report, September--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    This report presents the status of the Nondestructive Assay R and D program of the LASL Nuclear Safeguards Research Group, R-1, covering the period September-December 1975. It covers: holdup measurements at the Kerr-McGee Pu facility at Crescent, Okla.; calculations for Random Driver; instrument development and measurement controls; ERDA nondestructive assay training program; and in-plant dynamic materials control (DYMAC) program. 22 figures, 5 tables

  6. Visible light alters yeast metabolic rhythms by inhibiting respiration

    OpenAIRE

    Robertson, James Brian; Davis, Chris R.; Johnson, Carl Hirschie

    2013-01-01

    In some organisms, respiration fluctuates cyclically, and these rhythms can be a sensitive gauge of metabolism. Constant or pulsatile exposure of yeast to visible wavelengths of light significantly alters and/or initiates these respiratory oscillations, revealing a further dimension of the challenges to yeast living in natural environments. Our results also have implications for the use of light as research tools—e.g., for excitation of fluorescence microscopically—even in organisms such as y...

  7. BOREAS TE-5 Soil Respiration Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  8. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    Science.gov (United States)

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  9. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

  10. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips, H

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... Related Projects: Health 607, Sim 02-06-03 Category: Occupational Health Applied Research Occupational Hygiene Summary Project SIM020604 was formulated to determine the Inherent Respirable Dust Generation Potential (IRDGP) of various South...

  11. Landscape Influences on Potential Soil Respiration Rates in a Forested Watershed of Southeastern Kentucky

    Science.gov (United States)

    Amanda C. Abnee; James A. Thompson; Randall K. Kolka; Elisa M. D' Angelo; Mark S. Coyne

    2004-01-01

    Soil respiration measurements conducted in the laboratory have been shown to be related to temperature and moisture, with maximum rates at soil temperatures between 25 and 40°C and soil moisture between -0.01 and -0.10 MPa. A preliminary study using forest soils from eastern Kentucky supported the previous research with soil respiration rates greater at 25°C than at 15...

  12. How much work is expended for respiration?

    Science.gov (United States)

    Johnson, A T

    1993-01-01

    The rate of work expended to move air in the respiratory system has been determined for five different airflow waveshapes, a non-linear respiratory model and five exercise levels. As expected, the rectangular waveshape was the most efficient. Model conditions were then changed one a time: (i) starting lung volume was allowed to vary, (ii) exhalation flow limitation was added, (iii) respiration was considered to be a metabolic burden determining part of the ventilation requirement and (iv) a respirator mask was added. Although there is no direct work advantage to varying initial lung volume, such volume changes appear to be dictated by the asymmetry of lung recoil pressure about the lung relaxation volume; allowing the work of respiration to become a metabolic burden clearly shows why respiratory waveforms change from rest to exercise; and, adding a respirator imposes a severe respiratory burden on the wearer engaging in moderate, heavy and very heavy exercise.

  13. Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

    Science.gov (United States)

    Jiang, Lifen; Shi, Fuchen; Li, Bo; Luo, Yiqi; Chen, Jiquan; Chen, Jiakuan

    2005-09-01

    The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.

  14. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  15. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type and...

  16. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it contains...

  17. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  18. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    Science.gov (United States)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  19. Heterotrophic components of soil respiration in pastures and forests in southwestern Amazonia, Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Eric Atlas Davidson

    2008-12-01

    Full Text Available In this paper we present data on soil microbial biomass and heterotrophic respiration in pastures, mature and secondary forests, in order to elucidate their contribution to total CO2 flux from soil to atmosphere. The research was conducted in Southwestern Amazonia, Acre State, Brazil. Microbial biomass was estimated using a variation of the traditional fumigation-extraction method and heterotrophic respiration was measured using respirometry flasks attached to an infrared gas analyzer. Soil microbial biomass and heterotrophic respiration did not differ statistically among pastures, mature and secondary forests. These laboratory results indicate that higher CO2 fluxes from pasture soils measured in situ are probably due to higher root respiration by pasture grasses.

  20. Soil Respiration And Respiration Partitioning In An Oak-Savannah With A History Of Fertilization

    Science.gov (United States)

    Morris, K. A.; Nair, R.; Schrumpf, M.; Migliavacca, M.

    2017-12-01

    Soil respiration is a combination of autotrophic and heterotrophic components. These components have different controls and structurally complex ecosystems such as oak-savannahs offer an opportunity to study strongly contrasting conditions (ie., soil from under trees versus open areas) in an environment with similar soil mineralogy and climatic patterns. To measure respiration coming from plant roots, fungal hyphae, and free-living microbes we established stations of soil cores comprised of three selectively permeable meshes under tree canopies and in open grassy areas of a Holm Oak (Quercus ilex) savannah in Extremadura, Spain. Large plots of this ecosystem had previously been fertilized as part of a stoichiometeric imbalance study (in 2015). Stations were installed in Dec. 2016 within four plots; control, N added, P added, and N+P added. Respiration from cores was measured in campaigns at key phenological stages with a portable Li-Cor 8100A unit. Six months after installation > 50% of soil respiration was attributable to free-living microbes. There is a persistent effect of the prior fertilization, resulting in increased soil respiration in open areas regardless of fertilizer type, while respiration from under tree canopies had a varied response. Soil under tree canopies showed distinct sensitivity to stoichiometric imbalance, meaning that addition of N or P alone either did not change respiration or decreased it slightly, while N+P stimulated respiration. We determined that respiration from free-living microbes is a major component of soil respiration even in the most active plant growing season. However, because of the lag between the time of fertilization and the time of measurement, it not possible to say whether treatment responses are due solely to nutrient status of the soil or whether changes in plant biomass and species composition also play a role. Additional work planned at the site will shed light on this uncertainty as well as the contribution of

  1. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  2. Plant Respiration and Climate Change Effects

    International Nuclear Information System (INIS)

    Bruhn, D.

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO 2 on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO 2 from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO 2 on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO 2 . These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO 2 . The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO 2 exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO 2 release. (au)

  3. Plant Respiration and Climate Change Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, D

    2002-04-01

    Plant respiration is one of the key processes in terms of an understanding of plant growth and functioning in a future climate. Short- and long-term effects of temperature and CO{sub 2} on plant respiration were investigated in a number of plant species. The experiments tested effects of either temperature and/or CO{sub 2} from the level of individual respiratory enzymes, isolated mitochondria, whole-tissue, and up to the whole canopy level. The short-term effects of elevated atmospheric CO{sub 2} on plant respiration appeared to be less than suggested so far in the literature. This was true both at the tissue level and for intact mitochondria. Respiratory enzymes can, however, be affected already at low CO{sub 2}. These effects did not manifest itself at the tissue level, though, due to low degrees of control on the whole respiratory process exerted by the particular enzymes. Plant respiration on the other hand was affected by long-term growth at elevated atmospheric CO{sub 2}. The findings of the reduced plant respiration at the leaf level were consistent with the literature and potential causes are discussed. Short-term effects of temperature on plant respiration were demonstrated to be dependent on the actual measurement temperature. Further, it is shown that mitochondrial leaf respiration in darkness and light differ substantially in the temperature sensitivity with the former being the far most sensitive. This has implications for modelling CO{sub 2} exchange between vegetation and atmosphere as demonstrated here, since this has so far been neglected. Long-term effects of temperature resulted in respiratory acclimation in a number of species. Respiratory acclimation appeared not to occur to any one single type of growth temperature. The implications of this finding in combination with the timing of acclimation are discussed for modelling respiratory CO{sub 2} release. (au)

  4. Pulmo uterinus: a history of ideas on fetal respiration.

    Science.gov (United States)

    Obladen, Michael

    2017-05-24

    Theories about fetal respiration began in antiquity. Aristotle characterized pneuma as warm air, but also as the enabler of vital functions and instrument of the soul. In Galen's system of physiology, the vital spirit was carried by the umbilical arteries, the nutrients by the umbilical vein from the placenta to the fetus. In 1569 Aranzio postulated that the maternal and fetal vasculatures are distinct. From 1670 to 1690, a century before the discovery of oxygen, researchers understood that during respiration some form of exchange with the air must occur, naming the substance biolychnium, phlogiston, sal-nitro, or nitro-aerial particles. An analogy of placental and pulmonary gas exchange was described in 1674 by Mayow. In 1779, Lavoisier understood the discovery of oxygen, discarded the phlogiston theory, and based respiration physiology on gas exchange. With the invention of the spectroscope, it became possible to measure hemoglobin oxygenation, and in 1876 Zweifel proved fetal oxygen uptake. Major progress in understanding fetal gas exchange was achieved in the 20th century by the physiologists Barcroft in Cambridge and Dawes in Oxford.

  5. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Simplified pressure method for respirator fit testing.

    Science.gov (United States)

    Han, D; Xu, M; Foo, S; Pilacinski, W; Willeke, K

    1991-08-01

    A simplified pressure method has been developed for fit testing air-purifying respirators. In this method, the air-purifying cartridges are replaced by a pressure-sensing attachment and a valve. While wearers hold their breath, a small pump extracts air from the respirator cavity until a steady-state pressure is reached in 1 to 2 sec. The flow rate through the face seal leak is a unique function of this pressure, which is determined once for all respirators, regardless of the respirator's cavity volume or deformation because of pliability. The contaminant concentration inside the respirator depends on the degree of dilution by the flow through the cartridges. The cartridge flow varies among different brands and is measured once for each brand. The ratio of cartridge to leakflow is a measure of fit. This flow ratio has been measured on human subjects and has been compared to fit factors determined on the same subjects by means of photometric and particle count tests. The aerosol tests gave higher values of fit.

  7. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  8. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    Science.gov (United States)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  9. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  10. Mirror position display equipment for the target chamber mirror mounts of the LASL HELIOS laser fusion facility

    International Nuclear Information System (INIS)

    Wells, F.D.; Remington, D.A.

    1979-01-01

    Equipment has been fabricated which records the absolute positions of sixteen mirror mounts used to direct and focus eight high-energy laser beams for research in laser induced fusion. Each mirror mount is driven by three stepping motors, controlled to produce the motions of Focus, Tilt, and Rotate relative to the target. Stepping of the motors is sensed by incremental optical encoders coupled to the motor drive shafts. Outputs from the encoder tracks are multiplexed to a microprocessor which transmits motor step information via a fiber optical data link to a Mirror Position Display chassis. This unit accumulates the steps, stores the motor positions, displays mirror position data to the operator, and provides the equipment control functions. Standby battery power is included to retain the motor step data in the event of power failure

  11. On the Concept of "Respiration": Biology Student Teachers' Cognitive Structures and Alternative Conceptions

    Science.gov (United States)

    Kurt, Hakan; Ekici, Gulay; Aktas, Murat; Aksu, Ozlem

    2013-01-01

    In researches, the subject of respiration has been determined to be among subjects about whom participants from all educational levels struggle to form their cognitive structures and have many alternative conceptions. This research was carried out in order to determine biology student teachers' cognitive structures and alternative conceptions…

  12. Estimating Canopy Dark Respiration for Crop Models

    Science.gov (United States)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  13. Internal current generation in respiration chambers

    Science.gov (United States)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  14. 42 CFR 84.1130 - Respirators; description.

    Science.gov (United States)

    2010-10-01

    ...; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84...., dust clouds produced in mining, quarrying, and tunneling, and in dusts produced during industrial... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying...

  15. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  16. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    Soil respiration varied from 2.5 to 11.9 g CO2 m-2 d-1 and from 1.5 to 9.3 g CO2 m-2 d-1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root ...

  17. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  18. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  19. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Science.gov (United States)

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  20. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84... Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a substantial, durable container...

  1. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  2. What controls respiration rate in stored sugarbeet roots

    Science.gov (United States)

    Although respiration is estimated to be responsible for 60 to 80% of the sucrose lost during storage, the mechanisms by which sugarbeet roots regulate their respiration rate are unknown. In plants, respiration rate is regulated by (1) available respiratory capacity, (2) cellular energy status, (3) ...

  3. Redefinition and global estimation of basal ecosystem respiration rate

    DEFF Research Database (Denmark)

    Yuan, Wenping; Luo, Yiqi; Li, Xianglan

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models sti...

  4. Quantifying soil respiration at landscape scales. Chapter 11

    Science.gov (United States)

    John B. Bradford; Michael G. Ryan

    2008-01-01

    Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...

  5. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  6. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    Betson, N.R.; Gottlicher, S.G.; Hogberg, P.; Hall, M.; Wallin, G.; Richter, A.

    2007-01-01

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta) 13 C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta) 13 C of soil-respired carbon dioxide (CO 2 ) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO 2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO 2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta) 13 C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta) 13 C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  7. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest

    Science.gov (United States)

    E.A. Davidson; A.D. Richardson; K.E. Savage; D.Y. Hollinger

    2006-01-01

    Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30-80% of...

  8. Estimation of fractional contribution of root respiration to a forest-floor CO2 flux using carbon isotopes

    International Nuclear Information System (INIS)

    Hachiya, Masashi; Moriizumi, Jun; Yamazawa, Hiromi

    2010-01-01

    Efflux of soil respired carbon dioxide(CO 2 ) is very important component for the global carbon cycle and dynamics of 14 C in environment, and to predict the global climate changes caused by increasing CO 2 concentrations in the atmosphere. There are two components that generate CO 2 in soil, soil organic matter decomposition and root respiration. Although the former is relatively well understood, the root-derived CO 2 efflux has not been evaluated sufficiently. The objective of our research is to estimate depth profile of the root respiration rate. Thus we developed a box model which calculates the depth profile. In this paper, we discussed about (1) the adequacy of calculated result by comparing it to the to observed soil respired CO 2 flux with trenching method and (2) sensitivity of the box model to uncertainty in the input data. The result showed that the depth profile of root respiration rate decreased with soil depth. This is attributed to the distribution of fine roots which dominate root respiration. The model results reasonable agreed with the measurement results and characteristics of root respiration. The output of the model was robust to the variation of the input data. (author)

  9. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  10. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  11. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Science.gov (United States)

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  12. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  13. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  14. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration.

    Science.gov (United States)

    Stefani, Angelo; Felício, Joanna D'Arc; de Andréa, Mara M

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley-GHE and Typic Eutroferric Chernosol-AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g(-1)), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g(-1)), and (14)C-glucose (4.0 mg and 5.18 Bq of (14)C-glucose g(-1)). The (14)C-CO(2) produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects.

  15. Did Respiration or Photosynthesis Come First

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  16. A MEMS turbine prototype for respiration harvesting

    Science.gov (United States)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  17. Respiration sensor made from indium tin oxide-coated conductive fabrics

    Science.gov (United States)

    Kim, Sun Hee; Lee, Joo Hyeon; Jee, Seung Hyun

    2015-02-01

    Conductive fabrics with new properties and applications have been the subject of extensive research over the last few years, with wearable respiration sensors attracting much attention. Different methods can be used to obtain fabrics that are electrically conducting, an essential property for various applications. For instance, fabrics can be coated with conductive polymers. Here, indium tin oxide (ITO)-coated conductive fabrics with cross-linked polyvinyl alcohol (C-PVA) were prepared using a doctor-blade. The C-PVA was employed in the synthesis to bind ITO on the fabrics with the highest possible mechanical strength. The feasibility of a respiration sensor prepared using the ITO-coated conductive fabric was investigated. The ITO-coated conductive fabric with the C-PVA was demonstrated to have a high potential for use in respiration sensors.

  18. Secondary School Students' Misconceptions about Photosynthesis and Plant Respiration: Preliminary Results

    Science.gov (United States)

    Svandova, Katerina

    2014-01-01

    The study investigated the common misconceptions of lower secondary school students regarding the concepts of photosynthesis and plant respiration. These are abstract concepts which are difficult to comprehend for adults let alone for lower secondary school students. Research of the students misconceptions are conducted worldwide. The researches…

  19. Glucose induced respiration in clay substrates during succession on a colliery heap

    Czech Academy of Sciences Publication Activity Database

    Szili-Kovács, T.; Elhottová, Dana

    2007-01-01

    Roč. 54, Suppl. 1 (2007), s. 128-129 [International Congress of the Hungarian Society for Microbiology/15./. 18.07.2007-20.07.2007, Budapest] Institutional research plan: CEZ:AV0Z60660521 Keywords : glucose * respiration * clay substrates Subject RIV: EH - Ecology, Behaviour

  20. Substrate induced respiration in soils developed under four stages of succession on a colliery heap

    Czech Academy of Sciences Publication Activity Database

    Szili-Kovács, T.; Elhottová, Dana

    2007-01-01

    Roč. 35, č. 2 (2007), s. 1169-1172 ISSN 0133-3720 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : respiration * soils * colliery heap Subject RIV: EH - Ecology, Behaviour Impact factor: 1.190, year: 2007

  1. Plant species richness regulates soil respiration through changes in productivity.

    Science.gov (United States)

    Dias, André Tavares Corrêa; van Ruijven, Jasper; Berendse, Frank

    2010-07-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of diversity on soil respiration. We hypothesized that plant diversity could affect soil respiration in two ways. On the one hand, more diverse plant communities have been shown to promote plant productivity, which could increase soil respiration. On the other hand, the nutrient concentration in the biomass produced has been shown to decrease with diversity, which could counteract the production-induced increase in soil respiration. Our results clearly show that soil respiration increased with species richness. Detailed analysis revealed that this effect was not due to differences in species composition. In general, soil respiration in mixtures was higher than would be expected from the monocultures. Path analysis revealed that species richness predominantly regulates soil respiration through changes in productivity. No evidence supporting the hypothesized negative effect of lower N concentration on soil respiration was found. We conclude that shifts in productivity are the main mechanism by which changes in plant diversity may affect soil respiration.

  2. Partitioning of ecosystem respiration in a beech forest

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  3. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  4. Development of an Advanced Respirator Fit Test Headform (Postprint)

    Science.gov (United States)

    2012-11-01

    N95 filtering facepiece respirators (FFRs) for pro - tection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking...requiredto wear respirators to reduce their exposure to air- borne hazards.(1) The U.S. Occupational Safety and Health Administration ( OSHA ) Respiratory...13 workplace protection factors.(9,10). Inward leakage (IL) of con - taminants into a respirator facepiece has been described as a combination of

  5. Soil Respiration under Different Land Uses in Eastern China

    Science.gov (United States)

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  6. Contribution of root respiration to soil respiration in a C3/C4 mixed ...

    Indian Academy of Sciences (India)

    Unknown

    The linear regression relationship between soil respiration and root biomass was used to determine the .... 10 days, sieved 50 g soil samples were placed in a 100 ml beaker and a 250 ..... Comparatively, the method can take multi-samples by ...

  7. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  8. [The development of a respiration and temperature monitor].

    Science.gov (United States)

    Du, X; Wu, B; Liu, Y; He, Q; Xiao, J

    2001-12-01

    This paper introduces the design of a monitoring system to measure the respiration and temperature of a body with an 8Xc196 single-chip microcomputer. This system can measure and display the respiration wave, respiration frequency and the body temperature in real-time with a liquid crystal display (LCD) and give an alarm when the parameters are beyond the normal scope. In addition, this device can provide a 24 hours trend graph of the respiration frequency and the body temperature parameters measured. Data can also be exchanged through serial communication interfaces (RS232) between the PC and the monitor.

  9. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  10. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  11. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    Science.gov (United States)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  12. Lymphocyte respiration in children with Trisomy 21

    Directory of Open Access Journals (Sweden)

    Aburawi Elhadi H

    2012-12-01

    Full Text Available Abstract Background This study measured lymphocyte mitochondrial O2 consumption (cellular respiration in children with trisomy 21. Methods Peripheral blood mononuclear cells were isolated from whole blood of trisomy 21 and control children and these cells were immediately used to measure cellular respiration rate. [O2] was determined as a function of time from the phosphorescence decay rates (1/τ of Pd (II-meso-tetra-(4-sulfonatophenyl-tetrabenzoporphyrin. In sealed vials containing lymphocytes and glucose as a respiratory substrate, [O2] declined linearly with time, confirming the zero-order kinetics of O2 conversion to H2O by cytochrome oxidase. The rate of respiration (k, in μM O2 min-1, thus, was the negative of the slope of [O2] vs. time. Cyanide inhibited O2 consumption, confirming that oxidation occurred in the mitochondrial respiratory chain. Results For control children (age = 8.8 ± 5.6 years, n = 26, the mean (± SD value of kc (in μM O2 per min per 107 cells was 1.36 ± 0.79 (coefficient of variation, Cv = 58%; median = 1.17; range = 0.60 to 3.12; -2SD = 0.61. For children with trisomy 21 (age = 7.2 ± 4.6 years, n = 26, the values of kc were 0.82 ± 0.62 (Cv = 76%; median = 0.60; range = 0.20 to 2.80, pp6.1 mU/L. Fourteen of 26 (54% children with trisomy 21 had kc values of 0.20 to 0.60 (i.e., kc positively correlated with body-mass index (BMI, R >0.302, serum creatinine (R >0.507, blood urea nitrogen (BUN, R >0.535 and albumin (R >0.446. Conclusions Children with trisomy 21 in this study have reduced lymphocyte bioenergetics. The clinical importance of this finding requires further studies.

  13. Coarse woody debris and soil respiration 6 years post-tornado in a Piedmont forest blowdown

    Science.gov (United States)

    Oldfield, C.; Peterson, C. J.

    2017-12-01

    Severe wind disturbances can rapidly change carbon pools and fluxes in forests, causing a site to switch from a carbon sink to a source in a matter of minutes. Moreover, salvage logging after a disturbance can result in disturbed and compacted soil, altered woody debris carbon pools, and seedling mortality, all of which may further alter carbon dynamics beyond that caused by the disturbance itself. We measured down dead wood and soil respiration in the summer of 2017 at Boggs Creek Recreation Area in the Piedmont of northeast Georgia, the site of a severe tornado in 2011. Down dead wood and soil respiration were compared in control (intact forest), salvaged, and unsalvaged areas. Megagrams per hectare of down dead wood was significantly higher in the unsalvaged condition than the control or salvage logging condition (ANOVAs, pdead wood was not significantly different in the control when compared to the salvage logging condition (p=0.99). Soil respiration was significantly higher in the salvage logged condition than the control (pdead wood in a forest, and salvage logging may lead to greater soil respiration years after the initial disturbance, both of which will influence the time elapsed before a disturbed forest switches from carbon source to carbon sink. Further research is needed to determine the duration of these effects, along with the carbon consequences for other forest carbon pools.

  14. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  15. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  16. Differential soil respiration responses to changing hydrologic regimes

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Howard E. Epstein; Daniel L. Welsch

    2009-01-01

    Soil respiration is tightly coupled to the hydrologic cycle (i.e., snowmelt and precipitation timing and magnitude). We examined riparian and hillslope soil respiration across a wet (2005) and a dry (2006) growing season in a subalpine catchment. When comparing the riparian zones, cumulative CO2 efflux was 33% higher, and peak efflux occurred 17 days earlier during the...

  17. Automatic patient respiration failure detection system with wireless transmission

    Science.gov (United States)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  18. Soil respiration response to experimental disturbances over 3 years

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Soung-Ryoul Ryu; Malcolm North; Jiquan Chen

    2006-01-01

    Soil respiration is a major pathway for carbon cycling in terrestrial ecosystems yet little is known about its response to natural and anthropogenic disturbances. This study examined soil respiration response to prescribed burning and thinning treatments in an old-growth, mixed-conifer forest on the western slope of the Sierra Nevada Mountains. Experimental treatments...

  19. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  20. Soil Respiration and Student Inquiry: A Perfect Match

    Science.gov (United States)

    Hoyt, Catherine Marie; Wallenstein, Matthew David

    2011-01-01

    This activity explores the cycling of carbon between the atmosphere (primarily as CO[subscript 2]) and biomass in plants, animals, and microscopic organisms. Students design soil respiration experiments using a protocol that resembles current practice in soil ecology. Three methods for measuring soil respiration are presented. Student-derived…

  1. A Global Database of Soil Respiration Data, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  2. A Global Database of Soil Respiration Data, Version 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  3. Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?

    Science.gov (United States)

    Wells, A. J.; Balster, N. J.

    2009-12-01

    Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p invasive plant tissue had a slightly faster decomposition rate than the native litter and this rate was elevated under invasive

  4. The role of alternative cyanide-insensitive respiration in plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raskin, Ilya

    1997-09-29

    This DOE funded research concentrated on the investigation of the role of respiration and oxidative stress in plant biology. Initially the authors concentrated on the possible role of cyanide-insensitive respiration in counteracting the deleterious effects of chilling stress. Although plants are considered to be poikilotherms, there are a few examples of thermogenesis, in which the tissue temperature increases well above ambient. They suggested that differences between thermogenic and non-thermogenic plants may be quantitative rather than qualitative, and that heat from increased respiration may have a local protective effect on the mitochondria, slowing or reducing the effects of chilling. They proposed that this is accomplished by a large increase in respiration, predominantly via the alternative pathway. They measured the increases in respiration, particularly via the alternative pathway, in response to chilling. They have also quantified the associated increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. For example, after 8 h exposure to 8 C, heat evolution in chilling-sensitive species increased 47--98%, compared to 7--22% for the chilling-resistant species. No increase in heat evolution was observed in the extremely chilling-sensitive ornamental Episcka cupreata (Hook). Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Heat evolution by mitochondria isolated from potato tuber slices were also measured. These values, together with measurements of the heat capacity of isolated mitochondria and counting of the mitochondria by flow cytometry, allow calculation of theoretical maximal rates of heating and the heat produced per mitochondrion. The obtained data was consistent with the protective role of respiratory heat production in cold-stressed plants.

  5. [Effects of management regime on soil respiration from agroecosystems].

    Science.gov (United States)

    Chen, Shu-tao; Zhu, Da-wei; Niu, Chuan-po; Zou, Jian-wen; Wang, Chao; Sun, Wen-juan

    2009-10-15

    In order to examine the effects of management regime, such as nitrogen application and plowing method, on soil respiration from farmland, the static opaque chamber-gas chromatograph method was used to measure soil CO2 fluxes in situ. The field measurement was carried out for 5 growing seasons, which were the 2002-2003 wheat, 2003 maize and soybean, 2003-2004 wheat, 2004 maize and 2004-2005 wheat seasons. Our results showed that soil respiration increased in fertilizer-applied treatments compared with no fertilizer treatment after 3 times of fertilizer application on 9 November 2002, 14 February and 26 March 2003. And the most obvious increase appeared following the third fertilizer application. No significant difference in soil respiration was found among several fertilizer application treatments. The effect of plowing depth on soil respiration was contingent on preceding cropping practice. Over the 2003-2004 wheat-growing seasons (its preceding cropping practice was rice paddy), mean soil respiration rates were not significant different (p > 0.05) between no plowing treatment and shallow plowing treatment. The shallow plowing treatment CT2 led to higher soil CO2 losses compared with no plowing treatment of NT2 in the 2004 maize-growing season, however, the significant higher (p soil respiration rates occurred with no plowing treatment of NT3 in the following 2004-2005 wheat-growing season. Intensive plowing (25 cm depth), compared with no plowing practice (NT4), increased soil respiration significantly during the 2004-2005 wheat-growing season. Regression analysis showed that the exponential function could be employed to fit the relationship between soil respiration and temperature. The exponential relationship yielded the Q10 values which were varied from 1.26 to 3.60, with a mean value of 2.08. To evaluate the effect of temperature on soil respiration, the CO2 emission fluxes were normalized for each treatment and each crop growing season. Plotting the

  6. Health literacy profile of high school students based on knowledge, attitude and behavior to health of respiration

    Science.gov (United States)

    Widiyawati, W.; Fitriani, A.; Priyandoko, D.

    2018-05-01

    This research aims to describe the high school student’s health literacy profile based on their knowledge, attitude, and behavior to health of respiration. This descriptive study involved 65 participants of senior high school students of Ciamis city. Research instruments for collecting data are test and questionnaires sheets. The data were analyzed using quantitative descriptive analysis. The results showed that student’s health literacy of respiration get mean 109.94, moderate category. Based on the above results, it can be concluded that student’s health literacy of respiration is enough because student’s health literacy are in the moderate category, but it needs to be improved by the classroom learning in accompanied by changing some of the lesser habits in maintaining respiratory health.

  7. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    Science.gov (United States)

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  8. Soil respiration dynamics in the middle taiga of Central Siberia region

    Science.gov (United States)

    Makhnykina, Anastasia; Prokushkin, Anatoly; Polosukhina, Daria

    2017-04-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2 emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was located in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer -LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths -5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest was characterized by the intermediate values of soil respiration. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and climatic conditions identified the parameters with

  9. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  10. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  11. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  12. Correction of Altitude-Induced Changes in Performance of the Volumetric Diffusive Respirator

    Science.gov (United States)

    2017-04-05

    Aeromedical Research Department This report is published in the interest of scientific and technical information exchange , and its... impossible to obtain without adding another measuring device to the patient circuit. Patients in the ARDSNet study [10] high tidal volume arm (12 mL/kg... exchange in hypoxemic patients. Respiration. 2012; 84(5):369-376. 9. Hurst JM, Branson RD, Davis K Jr, Barrette RR, Adams KS. Comparison of

  13. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  14. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  15. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  16. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  17. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    Science.gov (United States)

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  18. Herd protection effect of N95 respirators in healthcare workers.

    Science.gov (United States)

    Chen, Xin; Chughtai, Abrar Ahmad; MacIntyre, Chandini Raina

    2017-12-01

    Objective To determine if there was herd protection conferred to unprotected healthcare workers (HCWs) by N95 respirators worn by colleagues. Methods Data were analysed from a prospective cluster randomized clinical trial conducted in Beijing, China between 1 December 2008 and 15 January 2009. A minimum compliance level (MCL) of N95 respirators for prevention of clinical respiratory illness (CRI) was set based on various compliance cut-offs. The CRI rates were compared between compliant (≥MCL) and non-compliant (protection from use of N95 respirators by colleagues within a hospital ward.

  19. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...

  20. Respirator studies for the Nuclear Regulatory Commission (NRC)

    International Nuclear Information System (INIS)

    Skaggs, B.J.; Fairchild, C.I.; DeField, J.D.; Hack, A.L.

    1985-01-01

    A project of the Health, Safety and Environment Division is described. The project provides the NRC with information of respiratory protective devices and programs for their licensee personnel. The following activities were performed during FY 1983: selection of alternate test aerosols for quality assurance testing of high-efficiency particulate air respirator filters; evaluation of MAG-1 spectacles for use with positive and negative-pressure respirators; development of a Manual of Respiratory Protection in Emergencies Involving Airborne Radioactive Materials, and technical assistance to NRC licensees regarding respirator applications. 2 references, 1 figure

  1. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.

    Science.gov (United States)

    Galea, Karen S; Mair, Craig; Alexander, Carla; de Vocht, Frank; van Tongeren, Martie

    2016-03-01

    Personal 8-h shift exposure to respirable dust, diesel engine exhaust emissions (DEEE) (as respirable elemental carbon), and respirable crystalline silica of workers involved in constructing an underground metro railway tunnel was assessed. Black carbon (BC) concentrations were also assessed using a MicroAeth AE51. During sprayed concrete lining (SCL) activities in the tunnel, the geometric mean (GM) respirable dust exposure level was 0.91mg m(-3), with the highest exposure measured on a back-up sprayer (3.20mg m(-3)). The GM respirable crystalline silica concentration for SCL workers was 0.03mg m(-3), with the highest measurement also for the back-up sprayer (0.24mg m(-3)). During tunnel boring machine (TBM) activities, the GM respirable dust concentration was 0.54mg m(-3). The GM respirable elemental carbon concentration for all the TBM operators was 18 µg m(-3); with the highest concentration measured on a segment lifter. The BC concentrations were higher in the SCL environment in comparison to the TBM environment (daily GM 18-54 µg m(-3) versus 3-6 µg m(-3)). This small-scale monitoring campaign provides additional personal data on exposures experienced by underground tunnel construction workers. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Measuring oxygen uptake in fishes with bimodal respiration.

    Science.gov (United States)

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  3. Respiration in heterotrophic unicellular eukaryotic organisms.

    Science.gov (United States)

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    Science.gov (United States)

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  5. Proteomic data set of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates

    Directory of Open Access Journals (Sweden)

    Tobias Goris

    2016-09-01

    Full Text Available Sulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration. We present proteomic data of S. multivorans grown with different electron donors (formate or pyruvate and electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]. To obtain information on the cellular localization of proteins, membrane extracts and soluble fractions were separated before data collection from both fractions. The proteome analysis of S. multivorans was performed by mass spectrometry (nanoLC-MS/MS. Raw data have been deposited at ProteomeXchange, “ProteomeXchange provides globally coordinated proteomics data submission and dissemination” [1], via the PRIDE partner repository with the dataset identifier PRIDE: PXD004011. The data might support further research in organohalide respiration and in the general metabolism of free-living Epsilonproteobacteria. The dataset is associated with a previously published study “Proteomics of the organohalide-respiring Epsilonproteobacterium S. multivorans adapted to tetrachloroethene and other energy substrates” [2]. Keywords: Anaerobic respiration, Epsilonproteobacteria, Nitrate respiration, Reductive dechlorination, Reductive dehalogenase

  6. Contribution of root to soil respiration and carbon balance in ...

    Indian Academy of Sciences (India)

    PRAKASH

    improves our understanding of the terrestrial carbon cycle ... considerably lower net ecosystem productivity in Community 2 than in Community 1 .... soil respiration chambers for each time were dried at 31ºC ..... Using existing management.

  7. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  8. Disclosure and Fit Capability of the Filtering Facepiece Respirator.

    Science.gov (United States)

    Lofgren, Don J

    2018-05-01

    The filtering facepiece air-purifying respirator is annually purchased in the tens of millions and widely used for worker protection from harmful airborne particulates. The workplace consumers of this safety product, i.e., employers, workers, and safety and health professionals, have assurances of its effectiveness through the respirator certification and disclosure requirements of the National Institute for Occupational Safety and Health. However, the certification of a critical performance requirement has been missing for the approved filtering facepiece respirator since 1995: fit capability. Without this certification, consumers continue to be at risk of purchasing a respirator model that may fit a small percentage of the intended users. This commentary updates and expands an earlier one by this author, addresses the consequences of poorly fitting certified models on the market and lack of disclosure, and calls for further action by National Institute for Occupational Safety and Health to meet the needs and expectations of the consumer.

  9. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  10. respiration and transpiration characteristics of selected fresh fruits

    African Journals Online (AJOL)

    AISA

    were higher in optimal atmospheres. The Q10 values ... High respiration rates increase tissue aging and decrease the ability of the product to repel ... Two types of containers were used for the ..... availability of oxygen around the product also.

  11. Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter; Huntingford, Chris

    2003-01-01

    Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO 2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate-carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO 2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions

  12. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  13. Carbon dioxide titration method for soil respiration measurements

    OpenAIRE

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  14. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  15. Management of respiration in MND/ALS patients: an evidence based review.

    Science.gov (United States)

    Heffernan, Catherine; Jenkinson, Crispin; Holmes, Tricia; Macleod, Heidi; Kinnear, William; Oliver, David; Leigh, Nigel; Ampong, Mary-Ann

    2006-03-01

    This systematic review comprises an objective appraisal of the evidence in regard to the management of respiration in patients with motor neuron disease (MND/ALS). Studies were identified through computerised searches of 32 databases. Internet searches of websites of drug companies and MND/ALS research web sites, 'snow balling' and hand searches were also employed to locate any unpublished study or other 'grey literature' on respiration and MND/ALS. Since management of MND/ALS involves a number of health professionals and care workers, searches were made across multiple disciplines. No time frame was imposed on the search in order to increase the probability of identifying all relevant studies, although there was a final limit of March 2005. Recommendations for patient and carer-based guidelines for the clinical management of respiration for MND/ALS patients are suggested on the basis of qualitative analyses of the available evidence. However, these recommendations are based on current evidence of best practice, which largely comprises observational research and clinical opinion. There is a clear need for further evidence, in particular randomised and non-randomised controlled trials on the effects of non-invasive ventilation and additional larger scale cohort studies on the issues of initial assessment of respiratory symptoms, and management and timing of interventions.

  16. Carbon fluxes of surfaces vs. ecosystems. Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems

    Czech Academy of Sciences Publication Activity Database

    Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.

    2011-01-01

    Roč. 8, č. 9 (2011), s. 2523-2534 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011

  17. 42 CFR 84.161 - Man test for gases and vapors; Type B and Type BE respirators; test requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type B and Type BE respirators; test requirements. 84.161 Section 84.161 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  18. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  19. 42 CFR 84.160 - Man test for gases and vapors; Type A and Type AE respirators; test requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type A and Type AE respirators; test requirements. 84.160 Section 84.160 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  20. Dark respiration of leaves and traps of terrestrial carnivorous plants: are there greater energetic costs in traps?

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2010-01-01

    Roč. 5, č. 1 (2010), s. 121-124 ISSN 1895-104X Institutional research plan: CEZ:AV0Z60050516 Keywords : Aerobic respiration * metabolic costs * trap specialization Subject RIV: EF - Botanics Impact factor: 0.685, year: 2010

  1. Use of respirators for protection of workers against airborne radioactive materials

    International Nuclear Information System (INIS)

    Revoir, W.H.

    1990-01-01

    The various types of respirators and the requirements for an effective respirator program are outlined. The use of specific types of respirators to protect workers against inhalation of airborne radioactive materials is discussed. Problems encountered in using respirators in the nuclear industry which have resulted in worker injury and death are described

  2. Stimulation of respiration in rat thymocytes induced by ionizing radiation

    International Nuclear Information System (INIS)

    Gudz, T.I.; Pandelova, I.G.; Novgorodov, S.A.

    1994-01-01

    The effect of X irradiation on the respiration of rat thymocytes was studied. An increase in the rate of O 2 uptake was observed 1 h after cells were irradiated with doses of 6-10 Gy. The radiation-induced increase in respiration could be blocked by oligomycin, an inhibitor of mitochondrial ATP synthase, suggesting control by increased cytoplasmic ATP turnover. The stimulation of respiration was not associated with changes in the activity of mitochondrial electron transfer enzymes or permeability of the inner membrane. Several inhibitors of processes which used ATP were screened for their effects on the basal respiration rate and on the radiation response. In irradiated thymocytes, an enhancement of inhibition of respiration by ouabain, La 3+ and cycloheximide was observed. These results indicate that the radiation-induced stimulation of respiration is due to changes in ion homeostasis and protein synthesis. The effect of X irradiation was shown to be independent of the redox status of nonprotein thiols and was not associated with detectable changes in some products of lipid peroxidation. The radiation-induced decrease in activity of superoxide dismutase suggests free radical involvement in deleterious effects of radiation. 43 refs., 2 figs., 3 tabs

  3. Quantitative evaluation of the protective effect of respirators

    International Nuclear Information System (INIS)

    Murata, Mikio

    1983-01-01

    The present status and related problems of the quantitative evaluation method for respirator efficiency are generally reviewed. As the introduction, the special features of various types of respirators are summarized, and the basic concept of leakage and the protection factor are explained. As for the quantitative measurement of the protective efficiency, the features of various existing man-test methods such as NaCl aerosol man-test, DOP (dioctyl phthalate) man-test, and SF 6 gas man-test are reviewed and discussed. As the important problems associated with those man-tests, the following aspects are discussed. The measurement of the aerosol concentration within masks; the calculation method for the protection factor; the effect of beards. The examples of measuring the protection factor are also explained for the following respirator systems: half mask respirator with a high efficiency filter; full face mask respirator with a high efficiency filter; demand mode and pressure-demand mode respirators; and mound suit with suspenders. Finally, the outline of the manual of respiratory protection published by NRC in 1976 is briefly reviewed. (Aoki, K.)

  4. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Two Proximal Skin Electrodes — A Respiration Rate Body Sensor

    Directory of Open Access Journals (Sweden)

    Viktor Avbelj

    2012-10-01

    Full Text Available We propose a new body sensor for extracting the respiration rate based on the amplitude changes in the body surface potential differences between two proximal body electrodes. The sensor could be designed as a plaster-like reusable unit that can be easily fixed onto the surface of the body. It could be equipped either with a sufficiently large memory for storing the measured data or with a low-power radio system that can transmit the measured data to a gateway for further processing. We explore the influence of the sensor’s position on the quality of the extracted results using multi-channel ECG measurements and considering all the pairs of two neighboring electrodes as potential respiration-rate sensors. The analysis of the clinical measurements, which also include reference thermistor-based respiration signals, shows that the proposed approach is a viable option for monitoring the respiration frequency and for a rough classification of breathing types. The obtained results were evaluated on a wireless prototype of a respiration body sensor. We indicate the best positions for the respiration body sensor and prove that a single sensor for body surface potential difference on proximal skin electrodes can be used for combined measurements of respiratory and cardiac activities.

  6. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    International Nuclear Information System (INIS)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  7. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  8. Robotic radiosurgery. Treating tumors that move with respiration

    International Nuclear Information System (INIS)

    Urschel, Harold C. Jr.; Kresl, John J.; Luketich, James D.; Papiez, Lech; Timmerman, Robert D.; Schulz, Raymond A.

    2007-01-01

    Addresses in detail all aspects of the use of robotic radiosurgery to treat tumors of the lung, liver, and pancreas Includes full consideration of tumor tracking techniques, dosimetry, radiobiology, and fiducial placement strategies Written by leading experts Includes many high quality illustrations Stereotactic radiosurgery continues to evolve in ways that allow this powerful technology to reach and treat more tumors in more patients. This volume in the Robotic Radiosurgery series is devoted to theory and practice in the emerging field of stereotactic radiosurgery (also called stereotactic body radiation therapy) for extracranial tumors, particularly those that move as patients breathe. The book is divided into six sections. The first three sections address tumor motion due to respiration and tumor tracking techniques; dosimetry, radiobiology, and imaging; and fiducial placement systems. The fourth and fifth sections then discuss in depth the use of robotic radiosurgery to treat lung and abdominal tumors, respectively, and a final section explains emerging concepts and techniques. Within this framework, detailed information is provided on the technology and methodology for delivery of high doses of radiation to moving targets, radiobiological and radiological principles, and the challenges faced by clinicians performing extracranial stereotactic radiosurgery. Furthermore, there are thorough reviews of the general clinical literature on stereotactic radiation treatment of tumors of the lungs, liver, and pancreas, and the latest clinical data from clinicians conducting clinical studies using the CyberKnife registered Robotic Radiosurgery System. Special attention is given to the frameless robotic radiosurgery device known as the CyberKnife, the only image-guided radiosurgery system that utilizes intelligent robotics to track, detect, and correct for changes in tumor position during treatments. Tumors that move with respiration are treated with the CyberKnife using a

  9. Robotic radiosurgery. Treating tumors that move with respiration

    Energy Technology Data Exchange (ETDEWEB)

    Urschel, Harold C. Jr. [Baylor University Medical Center, Dallas, TX (United States). Chair of Cardiovascular and Thoracic Surgical Research, Education and Clinical Excellence; Kresl, John J. [Arizona Oncology Services at St. Joseph' s Hospital and Medical Center, Phoenix, AZ (United States). Dept. of Radiation Oncology; Luketich, James D. [University of Pittsburgh Medical Center PUH, Pittsburgh, PA (United States). The Heart, Lung and Esophageal Surgery Inst.; Papiez, Lech; Timmerman, Robert D. [University of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Radiation Oncology; Schulz, Raymond A. (eds.)

    2007-07-01

    Addresses in detail all aspects of the use of robotic radiosurgery to treat tumors of the lung, liver, and pancreas Includes full consideration of tumor tracking techniques, dosimetry, radiobiology, and fiducial placement strategies Written by leading experts Includes many high quality illustrations Stereotactic radiosurgery continues to evolve in ways that allow this powerful technology to reach and treat more tumors in more patients. This volume in the Robotic Radiosurgery series is devoted to theory and practice in the emerging field of stereotactic radiosurgery (also called stereotactic body radiation therapy) for extracranial tumors, particularly those that move as patients breathe. The book is divided into six sections. The first three sections address tumor motion due to respiration and tumor tracking techniques; dosimetry, radiobiology, and imaging; and fiducial placement systems. The fourth and fifth sections then discuss in depth the use of robotic radiosurgery to treat lung and abdominal tumors, respectively, and a final section explains emerging concepts and techniques. Within this framework, detailed information is provided on the technology and methodology for delivery of high doses of radiation to moving targets, radiobiological and radiological principles, and the challenges faced by clinicians performing extracranial stereotactic radiosurgery. Furthermore, there are thorough reviews of the general clinical literature on stereotactic radiation treatment of tumors of the lungs, liver, and pancreas, and the latest clinical data from clinicians conducting clinical studies using the CyberKnife {sup registered} Robotic Radiosurgery System. Special attention is given to the frameless robotic radiosurgery device known as the CyberKnife, the only image-guided radiosurgery system that utilizes intelligent robotics to track, detect, and correct for changes in tumor position during treatments. Tumors that move with respiration are treated with the Cyber

  10. Components of Soil Respiration and its Monthly Dynamics in Rubber Plantation Ecosystems

    OpenAIRE

    Zhixiang Wu; Limin Guan; Bangqian Chen; Chuan Yang; Guoyu Lan; Guishui Xie; Zhaode Zhou

    2014-01-01

    Aim: Our objective was to quantify four components and study effect factors of soil respiration in rubber plantation ecosystems. Providing the basic data support for the establishment of the trade of rubber plantation ecosystem carbon source/sink. Methods: We used Li-6400 (IRGA, Li-COR) to quantitate four components of soil respiration in rubber plantation ecosystems at different ages. Soil respiration can be separated as four components: heterotrophic respiration (Rh), Respiration of roots (...

  11. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    OpenAIRE

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-01-01

    Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration t...

  12. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  13. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  14. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  15. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  16. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  17. A novel through-wall respiration detection algorithm using UWB radar.

    Science.gov (United States)

    Li, Xin; Qiao, Dengyu; Li, Ye; Dai, Huhe

    2013-01-01

    Through-wall respiration detection using Ultra-wideband (UWB) impulse radar can be applied to the post-disaster rescue, e.g., searching living persons trapped in ruined buildings after an earthquake. Since strong interference signals always exist in the real-life scenarios, such as static clutter, noise, etc., while the respiratory signal is very weak, the signal to noise and clutter ratio (SNCR) is quite low. Therefore, through-wall respiration detection using UWB impulse radar under low SNCR is a challenging work in the research field of searching survivors after disaster. In this paper, an improved UWB respiratory signal model is built up based on an even power of cosine function for the first time. This model is used to reveal the harmonic structure of respiratory signal, based on which a novel high-performance respiration detection algorithm is proposed. This novel algorithm is assessed by experimental verification and simulation and shows about a 1.5dB improvement of SNR and SNCR.

  18. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations

    International Nuclear Information System (INIS)

    Balleza, M; Vargas, M; Delgadillo, I; Kashina, S; Huerta, M R; Moreno, G

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration. (paper)

  19. Changes in respiration rates and biomass attributes of epilithon due to extended exposure to zinc

    International Nuclear Information System (INIS)

    Colwell, F.S.

    1986-01-01

    The purpose of this research was to determine the influence of extended dosing of zinc on the carbon cycling and biomass characteristics of freshwater epilithon. Experiments were conducted in artificial streams continuously dosed with 0.00, 0.05, or 1.00 mg Zn liter -1 for 20 to 30 days during summer and fall, 1984 and 1985. Repeated measurement of epilithon structure and function included estimates of 14 C-glucose respiration, 14 C-glutamate respiration, O 2 and CO 2 flux rates, ash-free dry weight (AFDW), protein, carbohydrate, and algal pigment concentrations, and total and zinc-tolerant colony forming units. An increase in epilithic glucose respiration per unit biomass consistently occurred 5 to 10 days after dosing with 1.0 mg Zn liter -1 was started. At the same time significantly lower epilithon biomass occurred in the high dosed streams relative to controls in 3 out of 4 studies. Although algal pigment concentrations were lowest in the high dose streams at the midpoint of the studies, the chlorophyll a-to-pheophytin a ratio remained high, indicating that the minimal algal population was not senescing in situ. After 30 days, the epilithon dosed with 1.0 mg Zn liter -1 had higher AFDW, protein, and carbohydrate concentrations than the other treatments. The development of unique epilithon communities that are acclimated to prolonged zinc exposure is evident in the eventual recolonization of the artificial surfaces, glucose respiration rates that are comparable to controls, and presence of zinc-tolerant heterotrophs

  20. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  1. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  2. Bundvands respiration i Kattegat og Bælthavet

    DEFF Research Database (Denmark)

    Hansen, Jørgen L. S.; Bendtsen, Jørgen

    Der findes generelt meget få direkte målinger af den pelagiske respiration, og det har ikke været muligt at finde repræsentative målinger af den pelagiske respiration for de åbne danske farvande. Her præsenteres et sæsonstudie af bundvandets respiration fra 5 stationer i et transekt gående fra det....... Temperaturfølsomheden af respirationsraten udtrykt som en Q10 var 3,01 ± 1.07 for alle forsøg og uafhængigt af om prøverne blev kølet eller opvarmet under inkubationerne. Den labile pulje af organisk stof blev bestemt og de observerede respirations rater svarede til specifikke kulstof omsætningsrater på mellem 0...... målbar reduktion i det partikulære materiale under inkubationerne, tyder overraskende på,at opløst organisk materiale (DOM) er den vigtigste kulstofkilde for bundvandet respiration....

  3. Glycolysis-respiration relationships in a neuroblastoma cell line.

    Science.gov (United States)

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Reducing Uncertainty in the Daycent Model of Heterotrophic Respiration with a More Mechanistic Representation of Microbial Processes.

    Science.gov (United States)

    Berardi, D.; Gomez-Casanovas, N.; Hudiburg, T. W.

    2017-12-01

    Improving the certainty of ecosystem models is essential to ensuring their legitimacy, value, and ability to inform management and policy decisions. With more than a century of research exploring the variables controlling soil respiration, a high level of uncertainty remains in the ability of ecosystem models to accurately estimate respiration with changing climatic conditions. Refining model estimates of soil carbon fluxes is a high priority for climate change scientists to determine whether soils will be carbon sources or sinks in the future. We found that DayCent underestimates heterotrophic respiration by several magnitudes for our temperate mixed conifer forest site. While traditional ecosystem models simulate decomposition through first order kinetics, recent research has found that including microbial mechanisms explains 20 percent more spatial heterogeneity. We manipulated the DayCent heterotrophic respiration model to include a more mechanistic representation of microbial dynamic and compared the new model with continuous and survey observations from our experimental forest site in the Northern Rockies ecoregion. We also calibrated the model's sensitivity to soil moisture and temperature to our experimental data. We expect to improve the accuracy of the model by 20-30 percent. By using a more representative and calibrated model of soil carbon dynamics, we can better predict feedbacks between climate and soil carbon pools.

  5. Amazing structure of respirasome: unveiling the secrets of cell respiration.

    Science.gov (United States)

    Guo, Runyu; Gu, Jinke; Wu, Meng; Yang, Maojun

    2016-12-01

    Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.

  6. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  7. Effect of organic synthetic food colours on mitochondrial respiration.

    Science.gov (United States)

    Reyes, F G; Valim, M F; Vercesi, A E

    1996-01-01

    Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by alpha-ketoglutarate or succinate. This inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.

  8. The effect of facial expressions on respirators contact pressures.

    Science.gov (United States)

    Cai, Mang; Shen, Shengnan; Li, Hui

    2017-08-01

    This study investigated the effect of four typical facial expressions (calmness, happiness, sadness and surprise) on contact characteristics between an N95 filtering facepiece respirator and a headform. The respirator model comprised two layers (an inner layer and an outer layer) and a nose clip. The headform model was comprised of a skin layer, a fatty tissue layer embedded with eight muscles, and a skull layer. Four typical facial expressions were generated by the coordinated contraction of four facial muscles. After that, the distribution of the contact pressure on the headform, as well as the contact area, were calculated. Results demonstrated that the nasal clip could help make the respirator move closer to the nose bridge while causing facial discomfort. Moreover, contact areas varied with different facial expressions, and facial expressions significantly altered contact pressures at different key areas, which may result in leakage.

  9. Measurement of lung tumor motion using respiration-correlated CT

    International Nuclear Information System (INIS)

    Mageras, Gig S.; Pevsner, Alex; Yorke, Ellen D.; Rosenzweig, Kenneth E.; Ford, Eric C.; Hertanto, Agung; Larson, Steven M.; Lovelock, D. Michael; Erdi, Yusuf E.; Nehmeh, Sadek A.; Humm, John L.; Ling, C. Clifton

    2004-01-01

    Purpose: We investigate the characteristics of lung tumor motion measured with respiration-correlated computed tomography (RCCT) and examine the method's applicability to radiotherapy planning and treatment. Methods and materials: Six patients treated for non-small-cell lung carcinoma received a helical single-slice computed tomography (CT) scan with a slow couch movement (1 mm/s), while simultaneously respiration is recorded with an external position-sensitive monitor. Another 6 patients receive a 4-slice CT scan in a cine mode, in which sequential images are acquired for a complete respiratory cycle at each couch position while respiration is recorded. The images are retrospectively resorted into different respiration phases as measured with the external monitor (4-slice data) or patient surface displacement observed in the images (single-slice data). The gross tumor volume (GTV) in lung is delineated at one phase and serves as a visual guide for delineation at other phases. Interfractional GTV variation is estimated by scaling diaphragm position variations measured in gated radiographs at treatment with the ratio of GTV:diaphragm displacement observed in the RCCT data. Results: Seven out of 12 patients show GTV displacement with respiration of more than 1 cm, primarily in the superior-inferior (SI) direction; 2 patients show anterior-posterior displacement of more than 1 cm. In all cases, extremes in GTV position in the SI direction are consistent with externally measured extremes in respiration. Three patients show evidence of hysteresis in GTV motion, in which the tumor trajectory is displaced 0.2 to 0.5 cm anteriorly during expiration relative to inspiration. Significant (>1 cm) expansion of the GTV in the SI direction with respiration is observed in 1 patient. Estimated intrafractional GTV motion for gated treatment at end expiration is 0.6 cm or less in all cases; however; interfraction variation estimates (systematic plus random) are more than 1 cm in 3

  10. Personal exposure versus monitoring station data for respirable particles

    Energy Technology Data Exchange (ETDEWEB)

    Sega, K; Fugas, M

    1982-01-01

    Personal exposure to respirable particles of 12 subjects working at the same location, but living in various parts of Zagreb, was monitored for 7 consecutive days and compared with simultaneously obtained data from the outdoor network station nearest to subject's home. Although personal exposure is related to the outdoor pollution, other sources play a considerable role. Indoor exposure takes, on the average, more than 80% of the total time. The ratio between average personal exposure and respirable particle levels in the outdoor air decreases with the increased outdoor concentration (r = -0.93), indicating that this relationship might serve as a basis for a rough estimate of possible personal exposure.

  11. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  12. Soil Temperature and Moisture Effects on Soil Respiration and Microbial Community Abundance

    Science.gov (United States)

    2015-04-13

    Bárcenas-Moreno, G., M. Gómez-Brandón, J. Rousk, and E. Bååth. 2009. Adaptation of soil microbial communities to temperature: Comparison of fungi and...ER D C/ CR RE L TR -1 5- 6 ERDC 6.2 Geospatial Research and Engineering (GRE) ARTEMIS TSP-SA Soil Temperature and Moisture Effects on... Soil Respiration and Microbial Community Abundance Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Robyn A. Barbato

  13. Temperature preference and respiration of acaridid mites

    Czech Academy of Sciences Publication Activity Database

    Hubert, J.; Pekár, S.; Nesvorná, M.; Šustr, Vladimír

    2010-01-01

    Roč. 103, č. 6 (2010), s. 2249-2257 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z60660521 Keywords : mites * temperature * acclimation Subject RIV: EH - Ecology, Behaviour Impact factor: 1.489, year: 2010

  14. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Science.gov (United States)

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  15. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  16. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Czech Academy of Sciences Publication Activity Database

    Song, B.; Niu, S.; Luo, R.; Chen, J.; Yu, G.; Olejnik, Janusz; Wohlfahrt, G.; Kiely, G.; Noormels, A.; Montagnani, L.; Cescatti, A.; Magliulo, V.; Law, B. E.; Lund, M.; Varlagin, A.; Raschi, A.; Peichl, M.; Nilsson, M.; Merbold, L.

    2014-01-01

    Roč. 7, č. 5 (2014), s. 419-428 ISSN 1752-9921 Institutional support: RVO:67179843 Keywords : activation energy * ecosystem respiration * index of water availability * gross primary productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.646, year: 2014

  17. 75 FR 29699 - Total Inward Leakage Requirements for Respirators

    Science.gov (United States)

    2010-05-27

    ... or other half-mask respirator inward leakage measurement, and offer any additional comments on the..., facsimile (412) 386-4089, e-mail [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Department of... order to conduct tests and prepare responses. On April 20, 2010, NIOSH responded by reopening the docket...

  18. Soil respiration in Mexico: Advances and future directions

    Directory of Open Access Journals (Sweden)

    Alejandro Cueva

    2016-07-01

    Full Text Available Soil respiration (RS is a CO2 efflux from the soil to the atmosphere defined as the sum of autotrophic (respiration by roots and mycorrhizae, and heterotrophic (respiration of microorganisms that decompose fractions of organic matter and of soil fauna respiration. Globally, RS is considered to be the second largest flux of C to the atmosphere. From published literature it is clear that its main controls are soil temperature, soil moisture, photosynthesis, organic matter inputs and soil biota composition. Despite its relevance in C cycle science, there have been only twenty eight studies in Mexico in the last decade where direct measurement of gas exchange was conducted in the field. These studies were held mostly in agricultural and forest ecosystems, in Central and Southern Mexico where mild subtropical conditions prevail. However, arid, semi-arid, tropical and wetland ecosystems may have an important role in Mexico’s CO2 emissions because of their extent and extensive land use changes. From the twenty eight studies, only two provided continuous measurements of RS with high temporal resolution, highlighting the need for long-term studies to evaluate the complex biophysical controls of this flux and associated processes over different ecological succession stages. We conclude that Mexico represents an important opportunity to understand its complex dynamics, in national and global context, as ecosystems in the country cover a wide range of climatic conditions. This is particularly important because deforestation and degradation of Mexican ecosystems is rapidly increasing along with expected changes in climate.

  19. Estimating autotrophic respiration in streams using daily metabolism data

    Science.gov (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  20. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  1. Temperature response of soil respiration largely unaltered with experimental warming

    NARCIS (Netherlands)

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  2. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  3. Tillage and manure effect on soil microbial biomass and respiration ...

    African Journals Online (AJOL)

    The objective of this study was to determine the influence of both tillage and liquid pig manure application on soil microbial biomass, enzyme activities and microbial respiration in a meadow soil. The results obtained did not show any significant effect of tillage and manure on microbial biomass carbon (C) and nitrogen (N) ...

  4. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  5. Pulmonary inflammation and crystalline silica in respirable coal ...

    Indian Academy of Sciences (India)

    Unknown

    This study demonstrates dose-response relationships between respirable crystalline silica in coal mine dust and pulmonary inflammation, antioxidant production, and radiographic small opacities. [Kuempel E D, Attfield M D, Vallyathan V, Lapp N L, Hale J M, Smith R J and Castranova V 2003 Pulmonary inflammation and ...

  6. Quantitative change of EEG and respiration signals during mindfulness meditation

    Science.gov (United States)

    2014-01-01

    Background This study investigates measures of mindfulness meditation (MM) as a mental practice, in which a resting but alert state of mind is maintained. A population of older people with high stress level participated in this study, while electroencephalographic (EEG) and respiration signals were recorded during a MM intervention. The physiological signals during meditation and control conditions were analyzed with signal processing. Methods EEG and respiration data were collected and analyzed on 34 novice meditators after a 6-week meditation intervention. Collected data were analyzed with spectral analysis, phase analysis and classification to evaluate an objective marker for meditation. Results Different frequency bands showed differences in meditation and control conditions. Furthermore, we established a classifier using EEG and respiration signals with a higher accuracy (85%) at discriminating between meditation and control conditions than a classifier using the EEG signal only (78%). Conclusion Support vector machine (SVM) classifier with EEG and respiration feature vector is a viable objective marker for meditation ability. This classifier should be able to quantify different levels of meditation depth and meditation experience in future studies. PMID:24939519

  7. ECG-derived respiration methods: adapted ICA and PCA.

    Science.gov (United States)

    Tiinanen, Suvi; Noponen, Kai; Tulppo, Mikko; Kiviniemi, Antti; Seppänen, Tapio

    2015-05-01

    Respiration is an important signal in early diagnostics, prediction, and treatment of several diseases. Moreover, a growing trend toward ambulatory measurements outside laboratory environments encourages developing indirect measurement methods such as ECG derived respiration (EDR). Recently, decomposition techniques like principal component analysis (PCA), and its nonlinear version, kernel PCA (KPCA), have been used to derive a surrogate respiration signal from single-channel ECG. In this paper, we propose an adapted independent component analysis (AICA) algorithm to obtain EDR signal, and extend the normal linear PCA technique based on the best principal component (PC) selection (APCA, adapted PCA) to improve its performance further. We also demonstrate that the usage of smoothing spline resampling and bandpass-filtering improve the performance of all EDR methods. Compared with other recent EDR methods using correlation coefficient and magnitude squared coherence, the proposed AICA and APCA yield a statistically significant improvement with correlations 0.84, 0.82, 0.76 and coherences 0.90, 0.91, 0.85 between reference respiration and AICA, APCA and KPCA, respectively. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Ecophysiology and environmental distribution of organohalide-respiring bacteria

    NARCIS (Netherlands)

    Lu, Y.

    2016-01-01

    Organohalide-respiring bacteria (OHRB) are able to breathe natural and anthropogenically produced organohalides persistent in a broad range of oxygen-depleted environments. Therefore, these microorganisms are of high interest for organohalide-contaminated site bioremediation and natural halogen

  9. 30 CFR 71.100 - Respirable dust standard.

    Science.gov (United States)

    2010-07-01

    ... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... shall be measured with an approved sampling device and expressed in terms of an equivalent concentration determined in accordance with § 71.206 (Approved sampling devices; equivalent concentrations). ...

  10. Diatoms respire nitrate to survive dark and anoxic conditions

    DEFF Research Database (Denmark)

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.

    2011-01-01

    +, indicating dissimilatory nitrate reduction to ammo- nium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dis- similatory nitrate reduction pathway used by a eukaryotic photo- troph. Similar to large sulfur bacteria and benthic foraminifera...

  11. Hydrological controls on heterotrophic soil respiration across an agricultural landscape

    Science.gov (United States)

    Water availability is an important determinant of variation in soil respiration, but a consistent relationship between soil water and the relative flux rate of carbon dioxide across different soil types remains elusive. Using large undisturbed soil columns (N = 12), we evaluated soil water controls...

  12. Gap filling strategies and error in estimating annual soil respiration

    Science.gov (United States)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  13. Meetings: Issues and recent advances in soil respiration

    Science.gov (United States)

    K.A. Hibbard; B.E. Law

    2004-01-01

    The terrestrial carbon cycle is intriniscally tied to climate, hydrology, nutrient cycles, and the production of biomass through photosynthesis. Over two-thirds of terrestrial carbon is stored below ground in soils, and a significant amount of atmospheric CO2 is processed by soils every year. Thus, soil respiration is a key process that underlies...

  14. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism.

    OpenAIRE

    Guidot, D M; Repine, J E; Kitlowski, A D; Flores, S C; Nelson, S K; Wright, R M; McCord, J M

    1995-01-01

    We determined that mitochondrial respiration reduced cytosolic oxidant stress in vivo and scavenged extramitochondrial superoxide anion (O2-.) in vitro. First, Saccharomyces cerevisiae deficient in both the cytosolic antioxidant cupro-zinc superoxide dismutase (Cu,Zn-SOD) and electron transport (Rho0 state) grew poorly (P 0.05) in all yeast. Seco...

  15. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  16. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Science.gov (United States)

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  17. Impact of some selected insecticides application on soil microbial respiration.

    Science.gov (United States)

    Latif, M A; Razzaque, M A; Rahman, M M

    2008-08-15

    The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.

  18. Evaluation of respiration-correlated digital tomosynthesis in lung.

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  19. Availability, consistency and evidence-base of policies and guidelines on the use of mask and respirator to protect hospital health care workers: a global analysis.

    Science.gov (United States)

    Chughtai, Abrar Ahmad; Seale, Holly; MacIntyre, Chandini Raina

    2013-05-31

    jointly evaluate the available evidence, prioritize research to inform evidence gaps, and develop consistent policy on masks and respirator use in the health care setting.

  20. Management effects on European cropland respiration

    Czech Academy of Sciences Publication Activity Database

    Eugster, W.; Moffat, A. M.; Ceschia, E.; Aubinet, M.; Ammann, C.; Osborne, B.; Davis, P. A.; Smith, P.; Jacobs, C.; Moors, E.; Le Dantec, V.; Béziat, P.; Saunders, M.; Jans, W.; Grunwald, T.; Rebmann, C.; Kutsch, W.; Czerný, Radek; Janouš, Dalibor; Moureaux, Ch.; Dufranne, D.; Carrara, A.; Magliulo, V.; Di Tommasi, P.; Olesen, J. E.; Schelde, K.; Olioso, A.; Bernhofer, Ch.; Cellier, P.; Larmanou, E.; Loubet, B.; Wattenbach, M.; Marloie, O.; Sanz, M. J.; Sogaard, H.; Buchmann, N.

    2010-01-01

    Roč. 139, č. 3 (2010), s. 346-462 ISSN 0167-8809 Institutional research plan: CEZ:AV0Z60870520 Keywords : ploughing * tillage * carbon fluxes * eddy covariance * cropland management Subject RIV: EH - Ecology, Behaviour Impact factor: 2.790, year: 2010

  1. Respirator studies for the National Institute for Occupational Safety and Health. Progress report, July 1, 1974--June 30, 1975

    International Nuclear Information System (INIS)

    Douglas, D.D.; Revoir, W.; Lowry, P.L.

    1976-08-01

    Respirator studies carried out in FY 1975 for the National Institute for Occupational Safety and Health were concentrated in two major areas: (1) the development of respirator test equipment and methods to improve the means of evaluating the performance of respirators, (2) the testing of respirators to obtain quantitative data to permit recommendations to be made to upgrade respirator performance criteria. Major accomplishments included obtaining man-test results on several different respirators using an anthropometrically selected test panel, determination of respirator exhalation valve leakages under static and dynamic conditions, and determination of the effects of respirator strap tension on facepiece leakage

  2. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Science.gov (United States)

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  3. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  4. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Science.gov (United States)

    2012-09-28

    ... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of...

  5. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Science.gov (United States)

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  6. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Science.gov (United States)

    Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick

    2018-01-01

    In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...

  7. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  8. Global spatiotemporal distribution of soil respiration modeled using a global database

    Science.gov (United States)

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  9. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  10. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  11. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  12. Assessment of respirable dust and its free silica contents in different Indian coalmines.

    Science.gov (United States)

    Mukherjee, Ashit K; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2005-04-01

    Assessment of respirable dust, personal exposures of miners and free silica contents in dust were undertaken to find out the associated risk of coal workers' pneumoconiosis in 9 coal mines of Eastern India during 1988-91. Mine Research Establishment (MRE), 113A Gravimetric Dust Sampler (GDS) and personal samplers (AFC 123), Cassella, London, approved by Director General of Mines Safety (DGMS) were used respectively for monitoring of mine air dust and personal exposures of miners. Fourier Transform Infra-red (FTIR) Spectroscopy determined free silica in respirable dusts. Thermal Conditions like Wet Bulb Globe Temperature (WBGT) index, humidity and wind velocity were also recorded during monitoring. The dust levels in the face return air of both, Board & Pillar (B&P) and Long Wall (LW) mining were found above the permissible level recommended by DGMS, Govt. of India. The drilling, blasting and loading are the major dusty operations in B&P method. Exposures of driller and loader were varied between, 0.81-9.48 mg/m3 and 0.05-9.84 mg/m3 respectively in B&P mining, whereas exposures of DOSCO loader, Shearer operator and Power Support Face Worker were varied between 2.65-9.11 mg/m3, 0.22-10.00 mg/m3 and 0.12-9.32 mg/m3 respectively in LW mining. In open cast mining, compressor and driller operators are the major exposed groups. The percentage silica in respirable dusts found below 5% in all most all the workers except among query loaders and drillers of open cast mines.

  13. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    Science.gov (United States)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  14. LASL experience in decontamination of the environment

    International Nuclear Information System (INIS)

    Ahlquist, A.J.

    1981-01-01

    This discussion represents one part of a major effort in soil decontamination at the Los Alamos site. A contaminated industrial waste line in the Los Alamos townsite was removed, and a plutonium incineration facility, and a filter building contaminated with actinium-227 were dismantled. The former plutonium handling facility has been decontaminated, and canyons and an old firing site contaminated with strontium-90 have been surveyed

  15. LAMPF: the meson factory. A LASL monograph

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.

    1977-08-01

    A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group. (PMA)

  16. LAMPF: the meson factory. A LASL monograph

    International Nuclear Information System (INIS)

    Allred, J.C.

    1977-08-01

    A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group

  17. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  18. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  19. SOME METHODIC ASPECTS OF VOCAL RESPIRATION WITHIN ACADEMIC SINGING TEACHING

    Directory of Open Access Journals (Sweden)

    AGA LUDMILA

    2015-12-01

    Full Text Available This article presents the author’s reflections on the methodical problems of vocal respiration treated by Ludmila Aga as one of the essential elements of vocal technique. Based on her own rich experience as opera soloist and vocal teacher, the author reviews some theoretical principles which treat this problem. Besides, L. Aga proposes some helpful exercises for developing vocal respiration abilities. The article combines data from physiology, history and the theory of performing arts, methods of singing. Having an applied character, this work might be helpful for the singing teachers from the colleges and higher instituti­ons of music proile, as well as for the students of the Academic Singing Department.

  20. [Effects of antimicrobial drugs on soil microbial respiration].

    Science.gov (United States)

    Liu, Feng; Ying, Guang-Guo; Zhou, Qi-Xing; Tao, Ran; Su, Hao-Chang; Li, Xu

    2009-05-15

    The effects on soil microbial respiration of sulfonamides, tetracyclines, macrolides and so on were studied using the direct absorption method. The results show sulfamethazine, sulfamethoxazole, chlortetracycline, tetracycline, tylosin and trimethoprim inhibit soil respiration 34.33%, 34.43%, 2.71%, 3.08%, 7.13%, 38.08% respectively. Sulfamethoxazole and trimethoprim have the highest inhibition rates among all the antibiotics. In early incubation period (0-2 d), the concentrations above 10 mg x kg(-1) of sulfamethazine, sulfamethoxazole and trimethoprim remarkably decrease soil CO2 emission. The effects of these antibiotics vary with their concentrations too. Sulfamethoxazole and trimethoprim show good dose-response relationships. According to the standard of pesticide safety evaluation protocol, the six antibiotics pose a little risk to soil microbial environment.

  1. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Effects of long-term microgravitation exposure on cell respiration of the rat musculus soleus fibers.

    Science.gov (United States)

    Veselova, O M; Ogneva, I V; Larina, I M

    2011-07-01

    Cell respiration of the m. soleus fibers was studied in Wistar rats treated with succinic acid and exposed to microgravitation for 35 days. The results indicated that respiration rates during utilization of endogenous and exogenous substrates and the maximum respiration rate decreased in animals subjected to microgravitation without succinate treatment. The respiration rate during utilization of exogenous substrate did not increase in comparison with that on endogenous substrates. Succinic acid prevented the decrease in respiration rate on endogenous substrates and the maximum respiration rate. On the other hand, the respiration rate on exogenous substrates was reduced in vivarium control rats receiving succinate in comparison with intact control group. That could indicate changed efficiency of complex I of the respiratory chain due to reciprocal regulation of the tricarbonic acid cycle.

  3. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of bioirrigation of non-biting midges (Diptera: Chironomidae) on lake sediment respiration

    Science.gov (United States)

    Baranov, Viktor; Lewandowski, Jörg; Romeijn, Paul; Singer, Gabriel; Krause, Stefan

    2016-06-01

    Bioirrigation or the transport of fluids into the sediment matrix due to the activities of organisms such as bloodworms (larvae of Diptera, Chironomidae), has substantial impacts on sediment respiration in lakes. However, previous quantifications of bioirrigation impacts of Chironomidae have been limited by technical challenges such as the difficulty to separate faunal and bacterial respiration. This paper describes a novel method based on the bioreactive tracer resazurin for measuring respiration in-situ in non-sealed systems with constant oxygen supply. Applying this new method in microcosm experiments revealed that bioirrigation enhanced sediment respiration by up to 2.5 times. The new method is yielding lower oxygen consumption than previously reported, as it is only sensitive to aerobic heterotrophous respiration and not to other processes causing oxygen decrease. Hence it decouples the quantification of respiration of animals and inorganic oxygen consumption from microbe respiration in sediment.

  5. Respiration shutoff in Escherichia coli after far-uv irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Norton, I.L.

    1984-01-01

    Damage to DNA of Escherichia coli by uv, ionizing radiation and chemicals causes a number of responses that require the recA + and lexA + gene products. The responses include error prone repair (as indicated by mutagenesis), filamentation and induction of prophage lambda. Another important rec/lex response, shutoff of respiration, which occurs 60 min after exposure to uv, is studied. Objective is to understand the genetic and biochemical bases of the shutoff process and its control

  6. Quantitative respirator man-testing at Rocky Flats

    International Nuclear Information System (INIS)

    Leigh, J.D.

    The dioctyl phthalate quantitative respirator man-testing method used at Rocky Flats is outlined. Using this method, 93 persons trained to use self contained breathing equipment were tested with eight respiratory protective devices. Test results obtained with the seven devices using high efficiency particulate filters are compared to the results obtained with the self contained breathing equipment. Also comparison is made for these results to test results for 1667 other employees

  7. Matching sampler penetration curves to definitions of respirable fraction

    International Nuclear Information System (INIS)

    Mercer, T.T.

    1977-01-01

    A formal definition of 'respirable fraction' (the probability that a particle of a given size will deposit in the alveolar regions of the lung if inhaled) is useful only if there is a method of sorting out airborne contamination approximately in accordance with the definition. The matching of the definitions adopted by different organizations to the penetration curves of various types of sample is discussed. (author)

  8. Short Communication: HIV Patient Systemic Mitochondrial Respiration Improves with Exercise.

    Science.gov (United States)

    Kocher, Morgan; McDermott, Mindy; Lindsey, Rachel; Shikuma, Cecilia M; Gerschenson, Mariana; Chow, Dominic C; Kohorn, Lindsay B; Hetzler, Ronald K; Kimura, Iris F

    2017-10-01

    In HIV-infected individuals, impaired mitochondrial function may contribute to cardiometabolic disease as well as to fatigue and frailty. Aerobic exercise improves total body energy reserves; however, its impact at the cellular level is unknown. We assessed alterations in cellular bioenergetics in peripheral blood mononuclear cells (PBMC) before and after a 12-week aerobic exercise study in sedentary HIV-infected subjects on stable antiretroviral therapy who successfully completed a 12-week aerobic exercise program. In this prospective study, participants underwent supervised 20-40 min of light aerobic exercise (walking or jogging) performed three times per week for 12 weeks, gradually increasing to maintain an intensity of 50%-80% of heart rate reserve. Maximal aerobic capacity (VO 2MAX ) was assessed by a graded exercise test on a cycle ergometer before and after completion of the study. PBMC from compliant subjects (attended at least 70% of exercise sessions) were assessed for mitochondrial respiration using the Seahorse XF24 Bio-Analyzer. Seven of 24 enrolled subjects were compliant with the exercise regimen. In these individuals, a significant increase (p = .04) in VO 2MAX over 12 weeks was found with a median increase of 14%. During the same interval, a 2.45-fold increase in PBMC mitochondrial respiratory capacity (p = .04), a 5.65-fold increase in spare respiratory capacity (p = .01), and a 3.15-fold (p = .04) increase in nonmitochondrial respiration was observed. Aerobic exercise improves respiration at the cellular level. The diagnostic and prognostic value of such improved cellular respiration in the setting of chronic HIV warrants further investigation.

  9. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  10. VALORISATION TENDENCIES (POSTAVANGARDE IN RESPIRATION OF FLOWERS BY IULIAN GOGU

    Directory of Open Access Journals (Sweden)

    BARBAS VALERIA

    2017-12-01

    Full Text Available „Respiration of flowers”, signed by Iulian Gogu, is a representative creation of the ‘90s, an example of the modernization of chamber music in the Republic of Moldova, in terms of the compositional and interpretative aspects, which reflects the process of assimilation and valorisation of West European sound practices: avant-garde experiments, new aesthetics of musical material and contemporary musical language – acquiring new tendencies and compositional techniques, musical graphics, and various instrumental timbre experimentations.

  11. Independent Evaluation of The Lepestok Filtering Facepiece Respirator

    International Nuclear Information System (INIS)

    Hoover, Mark D; Vargo, George J

    2001-01-01

    The purpose of this study was to determine the protection factor of the Lepestok-200 filtering facepiece respirator by conducting a standard quantitative fit test on a panel of 25 representative adults (14 males and 11 females) using the TSI Incorporated PortaCount PlusTM quantitative fit-testing system. Each subject was tested four times. In the total of 100 tests, 95% of the overall fit factors were greater than 3, more than 80% of the overall fit factors were greater than 14, approximately 50% were greater than 86, and 20% were greater than 200. The pass-fail performance of the respirator was similar for each of the six exercises in the test series: (1) normal breathing, (2) deep breathing, (3) moving the head side to side, (4) moving the head up and down, (5) reading a passage of text out loud, and (6) normal breathing, indicating that the respirator performs equally well for each type of exercise. A significant and sustained improvement in fit factor was observed after the initial test, indicating that the subjects benefited from the knowledge gained in the first of the four quantitative fit tests. In the 75 tests conducted after the initial test for each individual, 95% of the overall fit factors were greater than 6, more than 80% of the overall fit factors were greater than 23, and 50% were greater than 116, and 20% were greater than 200. Thus, the initial learning experienced doubled the fit factor for subsequent tests. In addition, there is an indication that the Lepestok-200 may perform better on wearers with wider faces than on individuals with narrower faces. The results of this study demonstrate the effectiveness of the Lepestok-200 respirator and reinforce the general conclusion that quantitative fit-testing can make an important contribution to ensuring that proper protection factors are achieved for workers

  12. Quantitative respirator man-testing at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, J. D.

    1978-01-01

    The dioctyl phthalate quantitative respirator man-testing method used at Rocky Flats is outlined. Using this method, 93 persons trained to use self contained breathing equipment were tested with eight respiratory protective devices. Test results obtained with the seven devices using high efficiency particulate filters are compared to the results obtained with the self contained breathing equipment. Also comparison is made for these results to test results for 1667 other employees.

  13. Linear programming model can explain respiration of fermentation products

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045

  14. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    OpenAIRE

    Golub, Aleksander S.; Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po...

  15. Partitioning autotrophic and heterotrophic respiration at Howland Forest

    Science.gov (United States)

    Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly

    2015-04-01

    Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.

  16. Linear programming model can explain respiration of fermentation products.

    Science.gov (United States)

    Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel

    2018-01-01

    Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.

  17. Influence of vestibular activation on respiration in humans

    Science.gov (United States)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  18. The importance of in vitro diagnostics in respiration allergy

    International Nuclear Information System (INIS)

    Wever, A.M.J.

    1987-01-01

    Out of the 4 types of allergic reactions, in respiration allergy the anaphylactic reaction caused by IgE antibodies is the most important. Determination of IgE with radioimmunoassay: the radio-allergo-sorbent test (Rast) and the Phadiatop (pharmacie-differential atopy test) was investigated in 248 patients with pulmonal complaints. Phadiatop can be used as a screening test and for a better application of the specific Rast-diagnostic. 1 table

  19. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  20. Diurnal respiration of a termite mound

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  1. Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative

    Science.gov (United States)

    Thornley, John H. M.

    2011-01-01

    Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose

  2. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  3. Miniaturized test system for soil respiration induced by volatile pollutants

    International Nuclear Information System (INIS)

    Kaufmann, Karin; Chapman, Stephen J.; Campbell, Colin D.; Harms, Hauke; Hoehener, Patrick

    2006-01-01

    A miniaturized method based on 96-well microtitre plates was developed and used to study respiration in pristine and contaminated soils following addition of volatile substrates. Small soil samples were exposed to fuel components, which were volatilized from spatially separate reservoirs of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an organic carrier. Respiration was determined as CO 2 production by means of a pH-indicator and bicarbonate-containing agar, or as 14 CO 2 evolution from 14 C-labelled substrates. Substrate concentrations inducing maximum microbial activity or inhibition were determined and CO 2 production profiles examined by multivariate analysis. When high concentrations of fuel components were applied, distinction of hydrocarbon exposed soils from unexposed soil was achieved within 6 h of incubation. With low concentrations, adequate distinction was achieved after 24 h, probably as a result of community adaptation. Nutrient limitation was identified with the 14 C method for toluene, and the optimal N and P amendment determined. Further potential applications of this rapid and inexpensive method are outlined. - A new method to study soil respiration is used when volatile organic contaminants are added

  4. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  5. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  6. [The knowledge of animal respiration as a combustion phenomenon].

    Science.gov (United States)

    de Micheli, Alfredo

    2014-01-01

    The different stages leading to knowledge of the phenomenon of animal breathing are going from some writings in Corpus Hippocraticum to Aristoteles' and Galen's works, who considered the heart as the source of the animal heat. Later, Miguel Servet suggested that the inspired air can achieve other functions besides cooling the blood. After that, different explications of the animal heat were raised. About 1770, due to progress of knowledge in the chemistry field, first Mayow and later Black began to consider the animal respiration as a combustion. The important treatise Méthode de nomenclature chimique, published by Guyton de Morveau et al. in 1787 and soon after the Traité élémentaire de chimie de Lavoisier (1789) provided a solid support to Lavoisier's thought. This way on arrived to consider analogous the respiration and combustion phenomena. Studies on the animal respiration phenomenon continued in xix century and in the following century it was possible to apply thermodynamic principles to biology: "generalized thermodynamics". Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  7. A New Compendium of Soil Respiration Data for Africa

    Directory of Open Access Journals (Sweden)

    Terence Epule Epule

    2015-04-01

    Full Text Available The objective of this paper is to present to the scientific community a new dataset derived from existing literature on soil respiration in Africa. The data has thus been obtained by searching for records in peer review papers and grey literature. The main search engines used are: Scientific Citation Index (SCI database, ISI Science web and Google scholar. This data description paper has greatly advanced the number of data points on soil respiration in Africa from 4 in 2010 to 62 in 2014. The new data points are culled from 47 peer review publications and grey literature reports. The data lends its self to a lot of possible analytical methods such as correlation analysis, multiple linear regressions, artificial neural network analysis and process base modeling. The overall conclusion that can be drawn here is that this paper has greatly advanced the availability of soil respiration data in Africa by presenting all the available records that before now were only reported in different studies.

  8. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Santhipriya Inapurapu

    2017-01-01

    Full Text Available Objective(s: To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM, although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient.

  9. [Baroreflexes originated in vertebral artery zones upon peripheral vein tonus, systemic arterial blood pressure, and external respiration].

    Science.gov (United States)

    Agadzhanian, N A; Kupriianov, S V

    2008-06-01

    The investigation was intended to study the role ofbaroreceptors ofhemodynamically isolated zone of vertebral arteries in regulation of peripheral veins tonus, arterial pressure and external respiration. Pressure decrease in this vascular reflexogenic zone led to reflex responses of increase in femoral vein tonus, elevation of blood pressure level and stimulation of external respiration. The opposite reflex responses of cardio-respiratory functional system to initial pressure activation of vertebral arteries baroreceptors are observed. Basing on generalization of our own findings and similar physiological and morphological researches of other authors, it is established that afferentation from the vertebral artery zone is a reflexogenic factor of somatic muscles' veins tonus regulation. These reflexes of capacity vessels tonic activity changes are part of cardio-respiratory responses of maintaining the tissue gaseous exchange.

  10. Small scale spatial variability and pattern of soil respiration and water content in wet and a dry temperate grasslands and bare soil

    Czech Academy of Sciences Publication Activity Database

    Fóti, S.; Nagy, Z.; Balogh, J.; Bartha, S.; Acosta, Manuel; Czóbel, S.; Péli, E.; Marek, Michal V.; Tuba, Z.

    2009-01-01

    Roč. 28, č. 4 (2009), s. 389-398 ISSN 1335-342X Institutional research plan: CEZ:AV0Z60870520 Institutional support: RVO:67179843 Keywords : chamber technique * coefficient of variation * semivariance * Soil respiration * spatial pattern Subject RIV: EH - Ecology, Behaviour

  11. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential

    Czech Academy of Sciences Publication Activity Database

    Špaček, Tomáš; Šantorová, Jitka; Zacharovová, K.; Berková, Z.; Hlavatá, Lydie; Saudek, F.; Ježek, Petr

    2008-01-01

    Roč. 40, č. 8 (2008), s. 1522-1535 ISSN 1357-2725 R&D Projects: GA MZd(CZ) NR7917 Institutional research plan: CEZ:AV0Z50110509 Keywords : in situ mitochondrial membrane potential * in situ mitochondrial respiration * glucose-stimulated insulin secretion Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.178, year: 2008

  12. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Science.gov (United States)

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  13. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  14. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  15. [Dynamic changes in soil respiration components and their regulating factors in the Moso bamboo plantation in subtropical China].

    Science.gov (United States)

    Yang, Wen-jia; Li, Yong-fu; Jiang, Pei-kun; Zhou, Guo-mo; Liu, Juan

    2015-10-01

    Dynamic changes (from April 2013 to March 2014) in soil respiration components were investigated by Li-8100 in the Moso bamboo plantation in Lin' an City, Zhejiang Province. Results showed that the average annual values for the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate in the Moso bamboo plantation were 2.93, 1.92 and 1.01 imol CO2 . m-2 . s-1, respectively. The soil respiration rate and its components exhibited strongly a seasonal dynamic pattern. The maximum appeared in July 2013, and the minimum appeared in January 2014. The annual cumulative CO2 emissions through soil respiration, heterotrophic respiration, and autotrophic respiration were 37.25, 24.61 and 12.64 t CO2 . hm-2 . a-1, respectively. The soil respiration and its components showed a close relation with soil temperature of 5 cm depth, and the corresponding Q10, values at 5 cm depth were 2.05, 1.95 and 2.34, respectively. Both the soil respiration and heterotrophic respiration were correlated to soil water soluble organic C (WSOC) content, but no significant relationship between autotrophic respiration and WSOC was observed. There were no significant relationships between soil respiration components and soil moisture content or microbial biomass C. The seasonal changes in soil respiration components in the Moso bamboo plantation were predominantly controlled by the soil temperature, and the soil WSOC content was an important environmental factor controlling total soil respiration and soil heterotrophic respiration.

  16. Organic fuels for respiration in tropical river systems

    Science.gov (United States)

    Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.

    2011-12-01

    Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from

  17. Effect of organic matter and roots in soil respiration in a Mediterranean riparian areas in Central Spain

    Science.gov (United States)

    Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora

    2010-05-01

    20 cm depth. Soil samples were dried to the air with the aim of preserving the roots the sample contained. They were extracted manually by means of very fine tweezers. We separate roots by diameter (Fine roots ≤ 1mm; rest of roots > 1mm) and dead from alive using texture and colour as clues. Finally the dry weight of roots was taking with a precision balance +-0.0001. Soil organic matter to 10 and 20 cm of depth were measure in laboratory using the method of Walkley and Black (1934). Differences in Soil CO2 flux, organic matter, fine root biomass, temperature and moisture between areas were analyzed using one-way ANOVAs. Our results suggest that fine root biomass present a larger impact than soil organic matter in soil CO2 flux values. Natural riparian forest presented higher values of soil CO2 flux than the rest of areas even when differences in root biomass and soil organic matter were controlled. Between the grassy area and both reforestations there were no differences in soil CO2 flux. In addition, we found that soil CO2 flux in our study area was more affected by soil temperature than by moisture, which could be relevant in the interpretation of the possible effects of global change. Key words: riparian forest, fine roots, carbon cycle, soil CO2 flux, root respiration. Acknowledgements: Research projects, n°FP08-AG02 IMIDRA and RTA 2006-00101-00-00 INIA and predoctoral scholarship FPI-INIA.

  18. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  19. Predicting future protection of respirator users: Statistical approaches and practical implications.

    Science.gov (United States)

    Hu, Chengcheng; Harber, Philip; Su, Jing

    2016-01-01

    The purpose of this article is to describe a statistical approach for predicting a respirator user's fit factor in the future based upon results from initial tests. A statistical prediction model was developed based upon joint distribution of multiple fit factor measurements over time obtained from linear mixed effect models. The model accounts for within-subject correlation as well as short-term (within one day) and longer-term variability. As an example of applying this approach, model parameters were estimated from a research study in which volunteers were trained by three different modalities to use one of two types of respirators. They underwent two quantitative fit tests at the initial session and two on the same day approximately six months later. The fitted models demonstrated correlation and gave the estimated distribution of future fit test results conditional on past results for an individual worker. This approach can be applied to establishing a criterion value for passing an initial fit test to provide reasonable likelihood that a worker will be adequately protected in the future; and to optimizing the repeat fit factor test intervals individually for each user for cost-effective testing.

  20. Responses of soil respiration and barley growth to modified supply of oxygen in the soil

    Directory of Open Access Journals (Sweden)

    A. SIMOJOKI

    2008-12-01

    Full Text Available Roots of dry-land plants are supplied with oxygen mainly by molecular diffusion from soil air. Roots may suffer from hypoxia if soil aeration is reduced by compaction and wetting. Although the mechanisms involved are well known, more research is needed to relate soil aeration status to plant growth. The effects of reduced oxygen supply on soil respiration and the growth of barley seedlings were studied in pot experiments with fine sand soil, where the soil air composition was varied by flushing the soil with gas streams containing 0%, 2%, 6%, 10% or 20% O2 independently of compactness (bulk density 1.4, 1.6 Mg m-3 and wetness (air space 0-5%, >5%. Plant growth decreased only at 0-2% O2 in the loose moist soil but as early as 20% O2 in the wet soil. Soil compaction impaired plant growth regardless of wetting and aeration. In the loose moist soil cropped with barley, the respiration rate (emission of CO2 did not decrease at 6% O2 but decreased clearly at 0-2% O2. The results compared fairly well with the critical oxygen concentrations calculated by a simple multicylindrical model, in which the water-film thickness around the roots was estimated using soil water retention data.

  1. Evaluation of protection factors of a breath-responsive-powered air-purifying respirator

    International Nuclear Information System (INIS)

    Nakagawa, Masahiro; Nojima, Shun; Fujii, Katsutoshi; Shishido, Nobuhito; Sakai, Toshiya; Umehara, Takashi; Shimizu, Isamu

    2012-01-01

    It is essential to wear an air-purifying respirator in the radiation works in a contaminated atmosphere. A breath-responsive-powered air-purifying respirator (BR-PAPR) has been recently developed. However, no research has yet been conducted to determine the protection factor (PF) of the BR-PAPR in actual workplaces. In this study, the PFs of the BR-PAPR were measured by a man-test apparatus and compared with those of a non-powered full face mask. The PFs were measured under three different situations; normal wearing condition, clogging the filter and leaving a gap between the face and the mask. Under these situations, it was found that the PFs of the BR-PAPR are higher than those of the non-powered full face mask. PFs greater than 4,000 were obtained for 95% of the subjects who wear the BR-PAPR, and PFs over 6,667, the upper limit of the man-test apparatus, were obtained for 49% of them. The questionnaire survey was conducted for workers. The results showed that the workers feel a reduced burden when they wear the BR-PAPR. The results of this study showed high protection performance and operation efficiency of the BR-PAPR. (author)

  2. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  3. Respirator studies for the Nuclear Regulatory Commission. Protection factors for supplied-air respirators. Progress report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Hack, A.; Bradley, O.D.; Trujillo, A.

    1977-12-01

    This report describes the work performed during FY 1977 for the Nuclear Regulatory Commission. The Protection Factors (efficiency) provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of anthropometrically selected test subjects. The major recommendation was that demand-type respirators should neither be used nor approved

  4. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    Science.gov (United States)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was

  5. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-03-02

    Mar 2, 2015 ... Joseph Daniels1,&, Ruth Nduati1,2, James Kiarie1,3, Carey Farquhar1,4,5 .... or basic science research career (Socio-Behavioral Research, .... a research environment that supports knowledge sharing to develop research ...

  6. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  7. Effects of simulated warming on soil respiration to XiaoPo lake

    Science.gov (United States)

    Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui

    2018-02-01

    The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p main influencing factor of soil respiration in this region.

  8. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  9. The alternative oxidase mediated respiration contributes to growth, resistance to hyperosmotic media and accumulation of secondary metabolites in three species

    OpenAIRE

    Sitaramam, V.; Pachapurkar, Shilpa; Gokhale, Trupti

    2008-01-01

    Plant respiration, similar to respiration in animal mitochondria, exhibits both osmosensitive and insensitive components with the clear distinction that the insensitive respiration in plants is quantitatively better described as ‘less’ sensitive rather than ‘insensitive’. Salicylic hydroxamic acid (SHAM)-sensitive respiration was compared with the respiration sensitive to other inhibitors in rice, yeast and Dunaliella salina. The influence of SHAM was largely in the osmotically less sensitive...

  10. Research

    African Journals Online (AJOL)

    A descriptive qualitative research design was used to determine whether participants ... simulation as a teaching method; a manikin offering effective learning; confidence ..... Tesch R. Qualitative Research: Analysis Types and Software Tools.

  11. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  12. Does an elevated CO2 concentration decrease dark respiration in trees? Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Long, Stephen [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2003-12-31

    Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect. While four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response, papers published since the start of the current research continue to report an instantaneous depression of respiratory CO2 efflux by elevation of [CO2]. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory 02 uptake in normal air. Leaf 02 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four of the DOE-sponsored long-term elevated [CO2] field experiments. Over one thousand separate measurements of respiration failed to reveal any decrease in respiratory 02 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a five-fold increase and to decrease to zero.

  13. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  14. Research

    African Journals Online (AJOL)

    research process, as part of which students must find and appraise evidence from research.[5] This highlights that teaching research methodology is inclined towards equipping students ... Students believed that evidence-based practice was vital, yet their understanding of the concept was restricted when compared with the.

  15. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  16. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  17. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol

    International Nuclear Information System (INIS)

    Hagen, Thilo; D'Amico, Gabriela; Quintero, Marisol; Palacios-Callender, Miriam; Hollis, Veronica; Lam, Francis; Moncada, Salvador

    2004-01-01

    2-Methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol, is known to have antiproliferative, antiangiogenic, and proapoptotic activity. Mechanistically, 2ME2 has been shown to downregulate hypoxia-inducible factor 1α (HIF1α) and to induce apoptosis in tumour cells by generating reactive oxygen species (ROS). In this study we report that 2ME2 inhibits mitochondrial respiration in both intact cells and submitochondrial particles, and that this effect is due to inhibition of complex I of the mitochondrial electron transport chain (ETC). The prevention by 2ME2 of hypoxia-induced stabilisation of HIF1α in HEK293 cells was found not to be due to an effect on HIF1α synthesis but rather to an effect on protein degradation. This is in agreement with our recent observation using other inhibitors of mitochondrial respiration which bring about rapid degradation of HIF1α in hypoxia due to increased availability of oxygen and reactivation of prolyl hydroxylases. The concentrations of 2ME2 that inhibited complex I also induced the generation of ROS. 2ME2 did not, however, cause generation of ROS in 143B rho - cells, which lack a functional mitochondrial ETC. We conclude that inhibition of mitochondrial respiration explains, at least in part, the effect of 2ME2 on hypoxia-dependent HIF1α stabilisation and cellular ROS production. Since these actions of 2ME2 occur at higher concentrations than those known to inhibit cell proliferation, it remains to be established whether they contribute to its therapeutic effect

  18. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    Science.gov (United States)

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  19. Anaerobic respiration of Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  20. Novel method for detection of Sleep Apnoea using respiration signals

    DEFF Research Database (Denmark)

    Nielsen, Kristine Carmes; Kempfner, Lykke; Sørensen, Helge Bjarup Dissing

    2014-01-01

    desaturations > 3%, extracted from the thorax and abdomen respiration effort belts, and the oxyhemoglobin saturation (SaO2), fed to an Elastic Net classifier and validated according to American Academy of Sleep Medicine (AASM) using the patients' AHI value. The method was applied to 109 patient recordings......Polysomnography (PSG) studies are considered the “gold standard” for the diagnosis of Sleep Apnoea (SA). Identifying cessations of breathing from long-lasting PSG recordings manually is a labour-intensive and time-consuming task for sleep specialist, associated with inter-scorer variability...

  1. Insulin resistance in HIV-infected youth is associated with decreased mitochondrial respiration.

    Science.gov (United States)

    Takemoto, Jody K; Miller, Tracie L; Wang, Jiajia; Jacobson, Denise L; Geffner, Mitchell E; Van Dyke, Russell B; Gerschenson, Mariana

    2017-01-02

    To identify relationships between insulin resistance (IR) and mitochondrial respiration in perinatally HIV-infected youth. Case-control study. Mitochondrial respiration was assessed in perinatally HIV-infected youth in Tanner stages 2-5, 25 youth with IR (IR+) and 50 without IR (IR-) who were enrolled in the Pediatric HIV/AIDS Cohort Study. IR was defined as a homeostatic model of assessment for IR value at least 4.0. A novel, high-throughput oximetry method was used to evaluate cellular respiration in peripheral blood mononuclear cells. Unadjusted and adjusted differences in mitochondrial respiration markers between IR+ and IR- were evaluated, as were correlations between mitochondrial respiration markers and biochemical measurements. IR+ and IR- youth were similar on age, sex, and race/ethnicity. Mean age was 16.5 and 15.6 years in IR+ and IR-, respectively. The IR+ group had significantly higher mean BMI and metabolic analytes (fasting glucose, insulin, cholesterol, triglycerides, and venous lactate and pyruvate) compared with the IR-. Mitochondrial respiration markers were, on average, lower in the IR+ compared with IR-, including basal respiration (417.5 vs. 597.5 pmol, P = 0.074), ATP production (11 513 vs. 15 202 pmol, P = 0.078), proton leak (584.6 vs. 790.0 pmol, P = 0.033), maximal respiration (1815 vs. 2399 pmol, P = 0.025), and spare respiration capacity (1162 vs. 2017 pmol, P = 0.032). Nonmitochondrial respiration did not differ by IR status. The results did not change when adjusted for age. HIV-infected youth with IR have lower mitochondrial respiration markers when compared to youth without IR. Disordered mitochondrial respiration may be a potential mechanism for IR in this population.

  2. The effect of respiration buffer composition on mitochondrial metabolism and function

    OpenAIRE

    Wollenman, Lucas C.; Vander Ploeg, Matthew R.; Miller, Mackinzie L.; Zhang, Yizhu; Bazil, Jason N.

    2017-01-01

    Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffer...

  3. Effect of fluorine and of beta-indolacetic acid on the respiration of root tissue

    Energy Technology Data Exchange (ETDEWEB)

    Pilet, P E

    1964-01-01

    The auxin, beta-indolacetic acid, (BIAA) inhibited the elongation of Lens culinaris roots at all concentrations. At high concentrations fluoride had an inhibitor effect, but it had a stimulatory effect on root growth at low concentrations. BIAA mildly stimulated respiration at low concentrations and inhibited oxygen absorption at high concentrations. At concentrations stimulating respiration fluoride was found to reduce these stimulating effects caused by BIAA. Therefore, fluoride and BIAA acted as antagonists in their effect on respiration.

  4. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    Full Text Available Although respiration is the principal cause of the loss of sucrose in postharvest sugarbeet (Beta vulgaris L., the internal mechanisms that control root respiration rate are unknown. Available evidence, however, indicates that respiration rate is likely to be controlled by the availability of respiratory substrates, and glycolysis has a central role in generating these substrates. To determine glycolytic changes that occur in sugarbeet roots after harvest and to elucidate relationships between glycolysis and respiration, sugarbeet roots were stored for up to 60 days, during which activities of glycolytic enzymes and concentrations of glycolytic substrates, intermediates, cofactors, and products were determined. Respiration rate was also determined, and relationships between respiration rate and glycolytic enzymes and metabolites were evaluated. Glycolysis was highly variable during storage, with 10 of 14 glycolytic activities and 14 of 17 glycolytic metabolites significantly altered during storage. Changes in glycolytic enzyme activities and metabolites occurred throughout the 60 day storage period, but were greatest in the first 4 days after harvest. Positive relationships between changes in glycolytic enzyme activities and root respiration rate were abundant, with 10 of 14 enzyme activities elevated when root respiration was elevated and 9 glycolytic activities static during periods of unchanging respiration rate. Major roles for pyruvate kinase and phosphofructokinase in the regulation of postharvest sugarbeet root glycolysis were indicated based on changes in enzymatic activities and concentrations of their substrates and products. Additionally, a strong positive relationship between respiration rate and pyruvate kinase activity was found indicating that downstream TCA cycle enzymes were unlikely to regulate or restrict root respiration in a major way. Overall, these results establish that glycolysis is not static during sugarbeet root

  5. Cheyne-Stokes respiration in patients with congestive heart failure: causes and consequences

    OpenAIRE

    Lorenzi-Filho,Geraldo; Genta,Pedro R; Figueiredo,Adelaide C.; Inoue,Daniel

    2005-01-01

    Cheyne-Stokes respiration is a form of periodic breathing in which central apneas and hypopneas alternate with periods of hyperventilation, producing a waxing and waning pattern of tidal volume. This review focuses on the causes and consequences of Cheyne-Stokes respiration in patients with congestive heart failure, in whom the prevalence is strikingly high and ranges from 30% to 50%. Several factors have been implicated in the genesis of Cheyne-Stokes respiration, including low cardiac outpu...

  6. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates

    Directory of Open Access Journals (Sweden)

    Fendt Sarah-Maria

    2010-02-01

    Full Text Available Abstract Background Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. Results We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Conclusions Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential

  7. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates.

    Science.gov (United States)

    Fendt, Sarah-Maria; Sauer, Uwe

    2010-02-18

    Depending on the carbon source, Saccharomyces cerevisiae displays various degrees of respiration. These range from complete respiration as in the case of ethanol, to almost complete fermentation, and thus very low degrees of respiration on glucose. While many key regulators are known for these extreme cases, we focus here on regulators that are relevant at intermediate levels of respiration. We address this question by linking the functional degree of respiration to transcriptional regulation via enzyme abundances. Specifically, we investigated aerobic batch cultures with the differently repressive carbon sources glucose, mannose, galactose and pyruvate. Based on 13C flux analysis, we found that the respiratory contribution to cellular energy production was largely absent on glucose and mannose, intermediate on galactose and highest on pyruvate. In vivo abundances of 40 respiratory enzymes were quantified by GFP-fusions under each condition. During growth on the partly and fully respired substrates galactose and pyruvate, several TCA cycle and respiratory chain enzymes were significantly up-regulated. From these enzyme levels and the known regulatory network structure, we determined the probability for a given transcription factor to cause the coordinated expression changes. The most probable transcription factors to regulate the different degrees of respiration were Gcr1p, Cat8p, the Rtg-proteins and the Hap-complex. For the latter three ones we confirmed their importance for respiration by quantifying the degree of respiration and biomass yields in the corresponding deletion strains. Cat8p is required for wild-type like respiration, independent of its known activation of gluconeogenic genes. The Rtg-proteins and the Hap-complex are essential for wild-type like respiration under partially respiratory conditions. Under fully respiratory conditions, the Hap-complex, but not the Rtg-proteins are essential for respiration.

  8. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    OpenAIRE

    Cheng Zhu; Yiping Ma; Honghui Wu; Tao Sun; Kimberly J. La Pierre; Zewei Sun; Qiang Yu

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4?mol N m?2 yr?1 vs 1.6?mol N m?2 yr?1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plan...

  9. Respiration and the watershed of spinal CSF flow in humans.

    Science.gov (United States)

    Dreha-Kulaczewski, Steffi; Konopka, Mareen; Joseph, Arun A; Kollmeier, Jost; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2018-04-04

    The dynamics of human CSF in brain and upper spinal canal are regulated by inspiration and connected to the venous system through associated pressure changes. Upward CSF flow into the head during inspiration counterbalances venous flow out of the brain. Here, we investigated CSF motion along the spinal canal by real-time phase-contrast flow MRI at high spatial and temporal resolution. Results reveal a watershed of spinal CSF dynamics which divides flow behavior at about the level of the heart. While forced inspiration prompts upward surge of CSF flow volumes in the entire spinal canal, ensuing expiration leads to pronounced downward CSF flow, but only in the lower canal. The resulting pattern of net flow volumes during forced respiration yields upward CSF motion in the upper and downward flow in the lower spinal canal. These observations most likely reflect closely coupled CSF and venous systems as both large caval veins and their anastomosing vertebral plexus react to respiration-induced pressure changes.

  10. Cheyne-stokes respiration in patients with heart failure.

    Science.gov (United States)

    AlDabal, Laila; BaHammam, Ahmed S

    2010-01-01

    Cheyne-Stokes respiration (CSR) is a form of central sleep-disordered breathing (SDB) in which there are cyclical fluctuations in breathing that lead to periods of central apneas/hypopnea, which alternate with periods of hyperpnea. The crescendo-decrescendo pattern of respiration in CSR is a compensation for the changing levels of blood oxygen and carbon dioxide. Severe congestive heart failure seems to be the most important risk factor for the development of CSR. A number of pathophysiologic changes, such as sleep disruption, arousals, hypoxemia-reoxygenation, hypercapnia/hypocapnia, and changes in intrathoracic pressure have harmful effects on the cardiovascular system, and the presence of CSR is associated with increased mortality and morbidity in subjects with variable degrees of heart failure. The management of CSR involves optimal control of underlying heart failure, oxygen therapy, and positive airway pressure support. In this review, we initially define and describe the epidemiology of central sleep apnea (CSA) and CSR, its pathogenesis, clinical presentation, diagnostic methods, and then discuss the recent developments in the management in patients with heart failure.

  11. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  12. Exposure to respirable crystalline silica in South African farm workers

    International Nuclear Information System (INIS)

    Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans

    2009-01-01

    Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.

  13. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  14. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    Winklhofer, S.; University Hospital Zurich; Schoth, F.; Stolzmann, P.; Krings, T.; Mull, M.; Wiesmann, M.; Stracke, C.P.; Alfried-Krupp-Hospital, Essen

    2014-01-01

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  15. Assessment of respirable dust exposures in an opencast coal mine.

    Science.gov (United States)

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  16. Heterotrophic soil respiration in forestry-drained peatlands

    International Nuclear Information System (INIS)

    Minkkinen, K.; Shurpali, N. J.; Alm, J.; Penttilae, T.

    2007-01-01

    Heterotrophic soil respiration (CO 2 efflux from the decomposition of peat and root litter) in three forestry-drained peatlands with different site types and with a large climatic gradient from the hemi-boreal (central Estonia) to south (southern Finland) and north boreal (northern Finland) conditions was studied. Instantaneous fluxes varied between 0 and 1.3 g CO 2 -C m -2 h -1 , and annual fluxes between 248 and 515 g CO 2 -C m -2 a -1 . Variation in the annual fluxes among site types was studied only in the south-boreal site where we found a clear increase from nutrient-poor to nutrient-rich site types. More than half of the within-site variation was temporal and explained by soil surface (-5 cm) temperature (T5). The response of soil respiration to T5 varied between the sites; the most northerly site had the highest response to T5 and the most southerly the lowest. This trend further resulted in increased annual fluxes towards north. This unexpected result is hypothesised to be related to differences in site factors like substrate quality, nutrient status and hydrology but also to temperature acclimation, i.e., adaptation of decomposer populations to different climates. (orig.)

  17. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  18. Research

    African Journals Online (AJOL)

    2014-05-06

    May 6, 2014 ... facilitate and support articulation between the ECT mid-level worker qualification and the professional B EMC degree. Methods. The researchers used an exploratory, sequential mixed-method design, which is characterised by a qualitative phase of research followed by a quantitative phase. This design is ...

  19. Research

    African Journals Online (AJOL)

    supports medical education and research at institutions in 12 ... (CBE). CapacityPlus, led by IntraHealth International, is the USAID-funded ... acquire public health, clinical, and/or research skills, usually through applied learning in a .... If students were evaluated, indicate the type of student (i.e. medical, dental, nursing, etc.) ...

  20. Research

    African Journals Online (AJOL)

    abp

    2017-01-24

    Jan 24, 2017 ... and the specific rotavirus VP4 (P-types) and VP7 (G-types) determined. Results: The .... Centre for Virus Research (CVR) of the Kenya Medical Research. Institute (KEMRI) ... rotavirus dsRNA was run on 10% polyacrylamide resolving gels using a large format .... What is known about this topic. •. Rotavirus is ...

  1. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    Science.gov (United States)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  2. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  3. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  4. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  5. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Claire L.; Bond-Lamberty, Ben; Desai, Ankur R.; Lavoie, Martin; Risk, Dave; Tang, Jianwu; Todd-Brown, Katherine; Vargas, Rodrigo

    2016-11-16

    A recent acceleration of model-data synthesis activities has leveraged many terrestrial carbon (C) datasets, but utilization of soil respiration (RS) data has not kept pace with other types such as eddy covariance (EC) fluxes and soil C stocks. Here we argue that RS data, including non-continuous measurements from survey sampling campaigns, have unrealized value and should be utilized more extensively and creatively in data synthesis and modeling activities. We identify three major challenges in interpreting RS data, and discuss opportunities to address them. The first challenge is that when RS is compared to ecosystem respiration (RECO) measured from EC towers, it is not uncommon to find substantial mismatch, indicating one or both flux methodologies are unreliable. We argue the most likely cause of mismatch is unreliable EC data, and there is an unrecognized opportunity to utilize RS for EC quality control. The second challenge is that RS integrates belowground heterotrophic (RH) and autotrophic (RA) activity, whereas modelers generally prefer partitioned fluxes, and few models include an explicit RS output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Pushing for more experiments that not only partition RS but also monitor the age of RA and RH, as well as for the development of belowground RA components in models, would allow for more direct comparison between measured and modeled values. The third challenge is that soil respiration is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Measuring soil fluxes with finer spatial resolution and more extensive coverage, and downscaling EC fluxes to match the scale of RS, will improve chamber and tower comparisons. Opportunities also exist to estimate RH at regional scales by implementing decomposition functional types, akin to plant functional

  6. Research

    African Journals Online (AJOL)

    abp

    2017-10-25

    Oct 25, 2017 ... stigma and superstition are known to lead to frequent presentation .... The limited documented research on challenges to help-seeking behaviour for cancer ..... to touch your breast [16] that breast self-examination may cause.

  7. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-10-02

    Oct 2, 2015 ... thought to prevent infection, but recent research has proven otherwise. In addition ... One patient had ophthalmalgia and was exposed to. Kaiy for one year and ... migraine, ear infections, tuberculosis, bone fractures, epilepsy,.

  8. Research

    African Journals Online (AJOL)

    abp

    2016-07-12

    Jul 12, 2016 ... multiple risk factors provides support for multiple-behavior interventions as ... consumption) with smoking therefore needs further research. As such this study .... restaurants, in bars, and on a statewide basis. They preferred to.

  9. Research

    African Journals Online (AJOL)

    The mini-clinical-evaluation exercise (mini-CEX) is a way of assessing the clinical ... Ethical approval for this study was obtained from the Medical Health. Research ..... mini-CEX assessment and feedback session, the greater the likelihood of.

  10. Research

    African Journals Online (AJOL)

    abp

    2016-04-14

    Apr 14, 2016 ... Qualitative data, content analysis approach was used. Results: Overall 422 .... Study design: A mixed method cross-sectional design using both quantitative and qualitative research methods as described by. Hanson et al [33] ...

  11. Research

    International Nuclear Information System (INIS)

    1999-01-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance

  12. Research

    African Journals Online (AJOL)

    Research. December 2017, Vol. 9, No. 4 AJHPE 171. During curriculum development, teachers ... Ideally, examiners need an educational method to determine ..... A major focus of this study was addressing the human resource gap when.

  13. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests

    Science.gov (United States)

    Renchon, A.; Pendall, E.

    2017-12-01

    findings underscore the value of continuous measurements of RS in flux tower footprints. Findings are also relevant to recent research on light inhibition of leaf respiration and contribute to improved understanding of ecosystem carbon cycle - climate feedback processes.

  14. Thoracic and respirable particle definitions for human health risk assessment.

    Science.gov (United States)

    Brown, James S; Gordon, Terry; Price, Owen; Asgharian, Bahman

    2013-04-10

    Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of

  15. Accuracy of acoustic respiration rate monitoring in pediatric patients.

    Science.gov (United States)

    Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter

    2013-12-01

    Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.

  16. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  17. The development of guided inquiry-based learning devices on photosynthesis and respiration matter to train science literacy skills

    Science.gov (United States)

    Choirunnisak; Ibrahim, M.; Yuliani

    2018-01-01

    The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.

  18. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest

    Czech Academy of Sciences Publication Activity Database

    Guidolotti, G.; Rey, A.; D'Andrea, E.; Matteucci, G.; De Angelis, Paolo

    2013-01-01

    Roč. 33, č. 9 (2013), s. 960-972 ISSN 0829-318X Institutional support: RVO:67179843 Keywords : ecosystem respiration * Fagus sylvatica * leaf respiration * soil CO2 efflux * stem CO2 efflux * total non-structural carbohydrates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.405, year: 2013

  19. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air

  20. Responses of switchgrass soil respiration and its components to precipitation gradient in a mescocosm study

    Science.gov (United States)

    The objectives of this study were to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature. A mesocosm experiment was conducted with five prec...

  1. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil mesurements

    Science.gov (United States)

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground pl...

  2. Video-based respiration monitoring with automatic region of interest detection

    NARCIS (Netherlands)

    Janssen, R.J.M.; Wang, Wenjin; Moço, A.; de Haan, G.

    2016-01-01

    Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration

  3. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations

    Science.gov (United States)

    Declining rates of soil respiration are reliably observed during long-term laboratory incubations, but the cause is uncertain. We explored different controls on soil respiration during long-term soil incubations. Following a 707 day incubation (30 C) of soils from cultivated and forested plots at Ke...

  4. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  5. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    Science.gov (United States)

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  6. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    Science.gov (United States)

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  7. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1998-01-01

    Changes in geochemistry and stable isotopes along a well-established groundwater flow path were used to estimate in situ microbial respiration rates in the Middendorf aquifer in the southeastern United States. Respiration rates were determined for individual terminal electron acceptors including O 2 , MnO 2 , Fe 3+ , and SO 4 2- . The extent of biotic reactions were constrained by the fractionation of stable isotopes of carbon and sulfur. Sulfur isotopes and the presence of sulfur-oxidizing microorganisms indicated that sulfate is produced through the oxidation of reduced sulfur species in the aquifer and not by the dissolution of gypsum, as previously reported. The respiration rates varied along the flow path as the groundwater transitioned between primarily oxic to anoxic conditions. Iron-reducing microorganisms were the largest contributors to the oxidation of organic matter along the portion of the groundwater flow path investigated in this study. The transition zone between oxic and anoxic groundwater contained a wide range of terminal electron acceptors and showed the greatest diversity and numbers of culturable microorganisms and the highest respiration rates. A comparison of respiration rates measured from core samples and pumped groundwater suggests that variability in respiration rates may often reflect the measurement scales, both in the sample volume and the time-frame over which the respiration measurement is averaged. Chemical heterogeneity may create a wide range of respiration rates when the scale of the observation is below the scale of the heterogeneity

  8. Effect of fire disturbances on soil respiration of Larix gmelinii Rupr ...

    African Journals Online (AJOL)

    The Da Xing'an Mountain is a key distribution area for Chinese boreal forests and is a fire-prone area. Frequent forest fires have influenced on the regional carbon cycle enormously, especially for the influence of soil respiration. Thus, understanding post-fire soil respiration is important in the study of the global carbon ...

  9. Design of climate respiration chambers, adjustable to the metabolic mass of subjects

    NARCIS (Netherlands)

    Heetkamp, M.J.W.; Alferink, S.J.J.; Zandstra, T.; Hendriks, P.; Brand, van den H.; Gerrits, W.J.J.

    2015-01-01

    Open-circuit respiration chambers can be used to measure gas exchange and to calculate heat production (Q) of humans and animals. When studying short-term changes in Q, the size of the respiration chamber in relation to the subject of study is a point of concern. The washout time of a chamber,

  10. Effect of test exercises and mask donning on measured respirator fit.

    Science.gov (United States)

    Crutchfield, C D; Fairbank, E O; Greenstein, S L

    1999-12-01

    Quantitative respirator fit test protocols are typically defined by a series of fit test exercises. A rationale for the protocols that have been developed is generally not available. There also is little information available that describes the effect or effectiveness of the fit test exercises currently specified in respiratory protection standards. This study was designed to assess the relative impact of fit test exercises and mask donning on respirator fit as measured by a controlled negative pressure and an ambient aerosol fit test system. Multiple donnings of two different sizes of identical respirator models by each of 14 test subjects showed that donning affects respirator fit to a greater degree than fit test exercises. Currently specified fit test protocols emphasize test exercises, and the determination of fit is based on a single mask donning. A rationale for a modified fit test protocol based on fewer, more targeted test exercises and multiple mask donnings is presented. The modified protocol identified inadequately fitting respirators as effectively as the currently specified Occupational Safety and Health Administration (OSHA) quantitative fit test protocol. The controlled negative pressure system measured significantly (p < 0.0001) more respirator leakage than the ambient aerosol fit test system. The bend over fit test exercise was found to be predictive of poor respirator fit by both fit test systems. For the better fitting respirators, only the talking exercise generated aerosol fit factors that were significantly lower (p < 0.0001) than corresponding donning fit factors.

  11. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Science.gov (United States)

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  12. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  13. Lung function interpolation by analysis of means of neural-network-supported respiration sounds

    NARCIS (Netherlands)

    Oud, M

    Respiration sounds of individual asthmatic patients were analysed in the scope of the development of a method for computerised recognition of the degree of airways obstruction. Respiration sounds were recorded during laboratory sessions of allergen provoked airways obstruction, during several stages

  14. Analysis of the radioactive aerosols sampled with Lepestok respirators during work in the Chernobyl' NPP region

    International Nuclear Information System (INIS)

    Borisova, L.I.; Polevov, V.N.; Borisov, N.B.; Basmanov, P.I.

    1989-01-01

    Aerosols sampled with Lepestok type respirators in the Chernobyl' NPP region following the accident were analysed by gamma-spectroscopic and optical-radiographic methods and nuclide ratio of the aerosol sediment after respirators usage were determined. Parameters of the sampled gamma-active aerosol particles were obtained. ref. 1; tabs. 3

  15. 10 CFR Appendix A to Part 20 - Assigned Protection Factors for Respirators a

    Science.gov (United States)

    2010-01-01

    ... internal dose due to inhalation may, in addition, present external exposure hazards at higher... 10 Energy 1 2010-01-01 2010-01-01 false Assigned Protection Factors for Respirators a A Appendix A..., App. A Appendix A to Part 20—Assigned Protection Factors for Respirators a Operating mode Assigned...

  16. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Science.gov (United States)

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  17. Evaluation of 14C abundance in soil respiration using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Moriizumi, Jun; Asano, Tomohiro

    2004-01-01

    To clarify the behavior of 14 C in terrestrial ecosystems, 14 C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14 C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Δ 14 C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14 C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14 C addition and re-emission from soil. On the other hand, δ 14 C in soil respiration demonstrated that 14 C abundance ratio itself in soil-respired CO 2 is not always high compared with that in atmospheric CO 2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Δ 14 C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14 C-depleted soil organic matter to the total soil respiration in August

  18. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  19. Soil respiration and net N mineralization along a climate gradient in Maine

    Science.gov (United States)

    Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs

    1996-01-01

    Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...

  20. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  1. 30 CFR 71.301 - Respirable dust control plan; approval by District Manager and posting.

    Science.gov (United States)

    2010-07-01

    ... District Manager and posting. 71.301 Section 71.301 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... plan; approval by District Manager and posting. (a) The District Manager will approve respirable dust control plans on a mine-by-mine basis. When approving respirable dust control plans, the District Manager...

  2. Seasonality and Interannual Variability of Carbon Uptake and Respiration in a California Oak Savanna

    Science.gov (United States)

    Ma, S.; Baldocchi, D.; Xu, L.

    2005-12-01

    Estimating terrestrial carbon sink with large-scale modeling research requires understanding the physiological and ecological processes associated with the carbon uptake and respiration of ecosystems and their variability in seasons and years. This study was conducted in an oak/grass savanna ecosystem in California, USA. The savanna ecosystem consists of blue oak trees ( Quercus douglasii) in the overstory and annual C3 grasses in the understory. Fluxes of CO2 were measured above the canopy (overstory) and the grasses (understory) from 2001 to 2005 with two eddy covariance systems. Under typical Mediterranean Climate, net ecosystem exchange of CO2 (NEE), ecosystem respiration (Reco), and gross primary production (GPP) in this savanna ecosystem had a distinctive dry-wet seasonal pattern. Leaf area index, leaf nitrogen concentration, and leaf carbon stable isotope discrimination reflected the responses of leaf to the seasonality and interannual variability. Light- use efficiency, the ratio of GPP to absorbed photosynthetically active radiation (aPAR), was not consistent within a year or from year to year, indicating that photosynthesis process was constrained with low temperature during the beginning of the wet season and limited by precipitation during the summer drought. Annual NEE, Reco, and GPP above the canopy varied significantly between years, varying from -108 - 133 gC m-2, 780 - 988 gC m-2, and 646 - 963 gC m-2, respectively. The difference of interannual Reco was 1.2 times of that of interannual GPP. There was a tight relationship between annual NEE and the precipitation during the period with daily mean temperature varying between 10 - 20°C, equivalent to precipitation during March and April. The longer the period lasted, the higher carbon uptake occurred. Estimated annual NEE from 1949 - 2005 in the savanna ecosystem varied between ~-400 - 200 gC m-2.

  3. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    Science.gov (United States)

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  4. Stimulation of mitochondrial respiration induced by laser irradiation in the presence of rhodamine dyes

    International Nuclear Information System (INIS)

    Krasnikov, B.F.; Zorov, D.B.

    1996-01-01

    The effect of micromolar concentration of rhodamine 123 (methylrhodamine) and ethyl and amyl esters of unsubstituted rhodamine on oxygen consumption by rat liver mitochondria was studied under irradiation by an argon laser (488 and 514 nm). Irradiation of mitochondria in the presence of rhodamine stimulates their respiration. Light-induced stimulation of respiration is not inhibited by free radical scavenger ionol and by inhibitor of the permeability transition pore cyclosporine A. Stimulation of respiration by moderate doses of radiation is reversed in the dark. Increase in radiation dose resulted in only partial reversal of stimulated respiration in the dark. Rhodamine efficacy in stimulation of mitochondrial respiration depends on its structure (amyl > ethyl > methylrhodamine). 22 refs.; 4 figs

  5. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1997-01-01

    Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...

  6. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  7. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  8. Relationship between central sleep apnea and Cheyne-Stokes Respiration.

    Science.gov (United States)

    Flinta, Irena; Ponikowski, Piotr

    2016-03-01

    Central sleep apnea (CSA) in patients with heart failure (HF) occurs frequently and shows a serious influence on prognosis in this population. The key elements in the pathophysiology of CSA are respiratory instability with chronic hyperventilation, changes of arterial carbon dioxide pressure (pCO2) and elongated circulation time. The main manifestation of CSA in patients with HF is Cheyne-Stokes Respiration (CSR). The initial treatment is the optimization of HF therapy. However, many other options of the therapeutic management have been studied, particularly those based on positive airway pressure methods. In patients with heart failure we often can observe the overlap of CSA and CSR; we will discuss the differences between these forms of breathing disorders during sleep. We will also discuss when CSA and CSR occur independently of each other and the importance of CSR occurring during the daytime in context of CSA during the nighttime. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. State of the art in monitoring respirable mine aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Volkwein, J.C.; Mischler, S.E.; Thimons, E.D.; Timko, R.J.; Kissell, F.N.

    2005-07-01

    The Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) has been developing several new tools to help miners monitor respirable coal dust, silica, and diesel particulate matter. This paper discusses three main topics. First, the latest results of the person wearable dust monitor (PDM), developed by Rupprecht and Patashnick under CDC contract. The PDM was tested side by side with conventional samplers at a number of US coal mines and results indicated that the PDM was comparable to conventional samplers. Second, improvements to the Dust Dosimeter monitoring technique that includes a new pump with built in pressure transducer and algorithm to convert differential pressure to dust concentration have shown good precision. Third, advances in the use of the detector tube technique to monitor tailpipe diesel emissions and ambient diesel particulate matter show that strong correlations exist between differential pressure measurement and elemental carbon in the samplers. 3 figs.

  10. The external respiration and gas exchange in space missions

    Science.gov (United States)

    Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.

    Literature data and results of our own studies into an effect of micro- and macro-gravity on an external respiration function of man are presented. It is found that in cosmonauts following the 7-366 day space missions there is an enhanced tendency associated with an increased flight duration toward a decrease in the lung volume and breathing mechanics parameters: forced vital capacity of the lungs (FVC) by 5-25 percent, peak inspiratory and expiratory (air) flows (PIF, PEF) by 5-40 percent. A decrease in FVC appears to be explained by a new balance of elastic forces of the lungs, chest and abdomen occuring in microgravity as well as by an increased blood filling and pulmonary hydration. A decline of PIF and PEF is probalbly resulted from antigravitational deconditioning of the respiratory muscles with which a postflight decreased physical performance can in part be associated. The ventilation/perfusion ratios during orthostasis and +G Z and +G X accelerations are estimated. The biophysical nature of developing the absorption atelectases on a combined exposure to accelerations and 100% oxygen breathing is confirmed. A hypothesis that hypervolemia and pulmonary congestion can increase the tendency toward the development of atelectases in space in particular during pure oxygen breathing is suggested. Respiratory physiology problem area which is of interest for space medicine is defined. It is well known that due to present-day technologic progress and accomplishments in applied physiology including applied respiration physiology there currently exist sophisticated technical facilities in operation maintaining the life and professional working capacity of a man in various natural environments: on Earth, under water and in space. By the way, the biomedical involvement in developing and constructing such facilities has enabled an accumulation of a great body of information from experimental studies and full-scale trails to examine the effects of the changed environments

  11. Research

    African Journals Online (AJOL)

    abp

    2017-05-18

    May 18, 2017 ... available to populations of developing countries [2-5]. In 2013, in. Western and Central Europe and ..... initiation among the infected persons in the community. Addressing stigma and educating ... Lifespan/Tufts/Brown Center for AIDS Research (P30AI042853). Tables. Table 1: Baseline characteristics of ...

  12. Research

    African Journals Online (AJOL)

    abp

    15 févr. 2016 ... présentent un Indice de Masse Corporel (IMC) normal, les autres femmes sont soit ..... In The health belief model and personal health behavior, edited by MH ... Evaluation of the Osteoporosis Health Belief Scale. Research in.

  13. Research

    African Journals Online (AJOL)

    2017-03-14

    Mar 14, 2017 ... R Ebrahim,1 MSc (Dent); H Julie,2 MPH, MCur, PhD. 1 Extended ... and research is applied to develop and sustain society.[5]. Methods .... service they want, not the service we want to give whether they want it or. Co math. G.

  14. Research

    African Journals Online (AJOL)

    abp

    2017-11-24

    Nov 24, 2017 ... Page number not for citation purposes. 1. Prevalence and determinants of common mental ..... illnesses were smoke cigarette in the last 3 months that make prevalence of tobacco use 38.2%. ..... Okasha A, Karam E.Mental health services and research in the. Arab world. Acta Psychiatrica Scandinavica.

  15. Research

    African Journals Online (AJOL)

    abp

    2014-04-21

    Apr 21, 2014 ... Prospective assessment of the risk of obstructive sleep apnea in ... Faculty of Clinical Sciences, College of Medicine, University of .... University Teaching Hospital Health Research Ethics Committee ... BANG, Berlin questionnaire and the American Society of .... The epidemiology of adult obstructive sleep.

  16. Research

    African Journals Online (AJOL)

    abp

    2016-02-01

    Feb 1, 2016 ... University Hospital, DK-5000 Odense, Denmark, 3Center for Global Health, Institute of Clinical Research, University of Southern Denmark, DK-5000. Odense .... BHP is a Danish-Guinean Demographic Surveillance Site with a study-area .... variables such as age groups, previous military duty, history of.

  17. Research

    African Journals Online (AJOL)

    abp

    2015-06-24

    Jun 24, 2015 ... related immunosuppression, previous history of TB, and pause in treatment [6]. In Brazil, researchers .... treatment, use of traditional medicines or herbs, history of TB drug side effects and treatment delay). ..... therapy for pulmonary tuberculosis in Lima Ciudad, Peru. International journal of tuberculosis and ...

  18. Research

    African Journals Online (AJOL)

    Research. May 2016, Vol. 8, No. 1 AJHPE 37. Students who enrol in occupational therapy (OT) at the. University of Kwa Zulu-Natal (UKZN), Durban, South Africa ... The latter may include becoming familiar with the disintegrating social systems in primary .... They also lacked the skills needed to adapt sessions and failed to ...

  19. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-06-22

    Jun 22, 2015 ... collaboration with Makerere University, School of Public Health. We acknowledge The Family Health Research and Development Centre. (FHRDC) Uganda. Supported by Bill & Melinda Gates Institute for. Population & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, ...

  20. Research

    African Journals Online (AJOL)

    However, a focus on competence alone is inadequate to produce graduates who are capable of adapting to the changing needs of health systems. While knowledge and technical ... shared their responses to guided questions. There were three sessions; after each session the researcher aggregated participant responses ...

  1. Research

    African Journals Online (AJOL)

    abp

    2014-01-31

    Jan 31, 2014 ... by Hazarika in a population-based study in India. The researcher noted that patients' preference to the private health facilities was due mainly to their dissatisfaction with the services in the public health facilities [11]. Furthermore, the quality of the services in the private health facilities could also be a major ...

  2. Research

    African Journals Online (AJOL)

    2018-03-20

    Mar 20, 2018 ... student health professionals in various institutions, both in South Africa. (SA) and internationally. ... field include dentists, dental therapists and oral hygienists in training, .... The College of Health Sciences at UKZN has four schools: clinical ..... Journal of Emerging Trends in Educational Research and Policy ...

  3. Research

    African Journals Online (AJOL)

    abp

    2017-09-14

    Sep 14, 2017 ... Abstract. Introduction: Medical and dental students are a high-risk group for hepatitis B virus (HBV) infection which is an ... The Pan African Medical Journal - ISSN 1937-8688. ... Research ... in the College of Health Sciences and clinical students (years four to .... Hepatology International.2017 Jan; 11(1):.

  4. Research

    African Journals Online (AJOL)

    abp

    2015-01-19

    Jan 19, 2015 ... One research assistant was available to assist the learners and to answer questions while they completed the questionnaires during a classroom period. ..... PubMed | Google Scholar. 4. Hall PA, Holmqvist M, Sherry SB. Risky adolescent sexual behaviour: A psychological perspective for primary care.

  5. Gravimetric Measurements of Filtering Facepiece Respirators Challenged With Diesel Exhaust.

    Science.gov (United States)

    Satish, Swathi; Swanson, Jacob J; Xiao, Kai; Viner, Andrew S; Kittelson, David B; Pui, David Y H

    2017-07-01

    Elevated concentrations of diesel exhaust have been linked to adverse health effects. Filtering facepiece respirators (FFRs) are widely used as a form of respiratory protection against diesel particulate matter (DPM) in occupational settings. Previous results (Penconek A, Drążyk P, Moskal A. (2013) Penetration of diesel exhaust particles through commercially available dust half masks. Ann Occup Hyg; 57: 360-73.) have suggested that common FFRs are less efficient than would be expected for this purpose based on their certification approvals. The objective of this study was to measure the penetration of DPM through NIOSH-certified R95 and P95 electret respirators to verify this result. Gravimetric-based penetration measurements conducted using polytetrafluoroethylene (PTFE) and polypropylene (PP) filters were compared with penetration measurements made with a Scanning Mobility Particle Sizer (SMPS, TSI Inc.), which measures the particle size distribution. Gravimetric measurements using PP filters were variable compared to SMPS measurements and biased high due to adsorption of gas phase organic material. Relatively inert PTFE filters adsorbed less gas phase organic material resulting in measurements that were more accurate. To attempt to correct for artifacts associated with adsorption of gas phase organic material, primary and secondary filters were used in series upstream and downstream of the FFR. Correcting for adsorption by subtracting the secondary mass from the primary mass improved the result for both PTFE and PP filters but this correction is subject to 'equilibrium' conditions that depend on sampling time and the concentration of particles and gas phase hydrocarbons. Overall, the results demonstrate that the use of filters to determine filtration efficiency of FFRs challenged with diesel exhaust produces erroneous results due to the presence of gas phase hydrocarbons in diesel exhaust and the tendency of filters to adsorb organic material. Published by

  6. Glycolysis and mitochondrial respiration in mouse LDHC-null sperm.

    Science.gov (United States)

    Odet, Fanny; Gabel, Scott; London, Robert E; Goldberg, Erwin; Eddy, Edward M

    2013-04-01

    We demonstrated previously that a knockout (KO) of the lactate dehydrogenase type C (Ldhc) gene disrupted male fertility and caused a considerable reduction in sperm glucose consumption, ATP production, and motility. While that study used mice with a mixed genetic background, the present study used C57BL/6 (B6) and 129S6 (129) Ldhc KO mice. We found that B6 KO males were subfertile and 129 KO males were infertile. Sperm from 129 wild-type (WT) mice have a lower glycolytic rate than sperm from B6 WT mice, resulting in a greater reduction in ATP production in 129 KO sperm than in B6 KO sperm. The lower glycolytic rate in 129 sperm offered a novel opportunity to examine the role of mitochondrial respiration in sperm ATP production and motility. We observed that in media containing a mitochondrial substrate (pyruvate or lactate) as the sole energy source, ATP levels and progressive motility in 129 KO sperm were similar to those in 129 WT sperm. However, when glucose was added, lactate was unable to maintain ATP levels or progressive motility in 129 KO sperm. The rate of respiration (ZO2) was high when 129 KO or WT sperm were incubated with lactate alone, but addition of glucose caused a reduction in ZO2. These results indicate that in the absence of glucose, 129 sperm can produce ATP via oxidative phosphorylation, but in the presence of glucose, oxidative phosphorylation is suppressed and the sperm utilize aerobic glycolysis, a phenomenon known as the Crabtree effect.

  7. The cost of respirable coal mine dust: an analysis based on new black lung claims

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.; Lichtman, K. [US Bureau of Mines, Pittsburgh, PA (United States). Dept. of the Interior

    1997-12-01

    The article provides summation of the monetary costs of new compensation claims associated with levels of unmitigated respirable coal mine dust and the resultant lung disease known as black lung and compares these compensation costs to the cost of dust control technology research by the US Bureau of Mines. It presents an analysis of these expenditures and projects these costs over the period from 1991 to 2010, based on projected future new claims which are assumed to be approved for federal and state benefit payment. Since current and future dust control research efforts cannot change past claim histories, a valid comparison of future research spending with other incurred costs must examine only the cost of future new claims. The bias of old claim costs was eliminated in this analysis by examining only claims since 1980. The results estimate that for an expected 339 new approved claims annually from 1991 to 2010, the Federal Trust Fund costs will be 985 million dollars. During this same period, state black lung compensation is estimated to be 18.2 billion dollars. The Bureau of Mines dust control research expenditures are estimated as 0.44% of the projected future black lung-related costs. 9 refs., 4 figs., 3 tabs.

  8. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  9. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  10. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  11. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  12. Influence of temperature and organic matter content on soil respiration in a deciduous oak forest

    Directory of Open Access Journals (Sweden)

    Zsolt Kotroczó

    2014-12-01

    Full Text Available The increasing temperature enhances soil respiration differently depend on different conditions (soil moisture, soil organic matter, the activity of soil microbes. It is an essential factor to predicting the effect of climate change on soil respiration. In a temperate deciduous forest (North-Hungary we added or removal aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture and soil temperature. Soil CO2 efflux was measured at each plot using chamber based soil respiration measurements. We determined the temperature sensitivity of soil respiration. The effect of doubled litter was less than the effect of removal. We found that temperature was more influential in the control of soil respiration than soil moisture in litter removal treatments, particularly in the wetter root exclusion treatments (NR and NI (R2: 0.49-0.61. Soil moisture (R2: 0.18-0.24 and temperature (R2: 0.18-0.20 influenced soil respiration similarly in treatments, where soil was drier (Control, Double Litter, Double Wood. A significantly greater increase in temperature induced higher soil respiration were significantly higher (2-2.5-fold in root exclusion treatments, where soil was wetter throughout the year, than in control and litter addition treatments. The highest bacterial and fungal count was at the DL treatment but the differences is not significant compared to the Control. The bacterial number at the No Litter, No Root, No Input treatment was significantly lower at the Control. Similar phenomenon can be observed at the fungal too, but the differences are not significant. The results of soil respiration suggest that the soil aridity can reduce soil respiration increases with the temperature increase. Soil bacterial and fungal count results show the higher organic matter content and soil surface cover litter favors the activity.

  13. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.

    Science.gov (United States)

    Grové, T; Van Dyk, T; Franken, A; Du Plessis, J

    2014-01-01

    Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.

  14. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  15. Respirator studies for the ERDA Division of Safety, Standards, and Compliance, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Davis, T.O.; Raven, P.B.; Shafer, C.L.; Linnebur, A.C.; Bustos, J.M.; Wheat, L.D.; Douglas, D.D.

    1977-03-01

    Results of a study to determine what effect wearing a respirator has on worker performance, and which physiological parameters an industrial physician should consider when examining an employee who will be wearing a respirator while working are presented

  16. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena; Delgado-Huertas, Antonio; Carrillo-de-Albornoz, Paloma; Garcí a-Corral, Lara S.; Sanz-Martí n, Marina; Wassmann, Paul; Reigstad, Marit; Sejr, Mikael; Dalsgaard, Tage; Duarte, Carlos M.

    2017-01-01

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton

  17. 78 FR 54432 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-09-04

    ... Respirators. Procedure No. RCT-APR-STP-0068. Available at http://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH... currently market quarter-mask respirators? If you are a purchaser, do you currently use quarter-mask...

  18. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall

    OpenAIRE

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V.; Cheng, Chih-Hsin

    2017-01-01

    Background Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. Results The results showed that the temporal patterns of so...

  19. The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process.

    Science.gov (United States)

    Mejias, Laura; Komilis, Dimitrios; Gea, Teresa; Sánchez, Antoni

    2017-07-01

    The aim of this study was to assess the effect of the airflow and of the aeration mode on the composting process of non-urban organic wastes that are found in large quantities worldwide, namely: (i) a fresh, non-digested, sewage sludge (FSS), (ii) an anaerobically digested sewage sludge (ADSS), (iii) cow manure (CM) and (iv) pig sludge (PS). This assessment was done using respirometric indices. Two aeration modes were tested, namely: (a) a constant air flowrate set at three different initial fixed airflow rates, and (b) an oxygen uptake rate (OUR)-controlled airflow rate. The four wastes displayed the same behaviour namely a limited biological activity at low aeration, while, beyond a threshold value, the increase of the airflow did not significantly increase the dynamic respiration indices (DRI 1 max , DRI 24 max and AT 4 ). The threshold airflow rate varied among wastes and ranged from 42NL air kg -1 DMh -1 for CM and from 67 to 77NL air kg -1 DMh -1 for FSS, ADSS and PS. Comparing the two aeration modes tested (constant air flow, OUR controlled air flow), no statistically significant differences were calculated between the respiration activity indices obtained at those two aeration modes. The results can be considered representative for urban and non-urban organic wastes and establish a general procedure to measure the respiration activity without limitations by airflow. This will permit other researchers to provide consistent results during the measurement of the respiration activity. Results indicate that high airflows are not required to establish the maximum respiration activity. This can result in energy savings and the prevention of off-gas treatment problems due to the excessive aeration rate in full scale composting plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    Science.gov (United States)

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  1. 42 CFR 84.1151 - DOP filter test; respirators designed as respiratory protection against dusts, fumes, and mists...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false DOP filter test; respirators designed as... filter test; respirators designed as respiratory protection against dusts, fumes, and mists having an air...) All single air-purifying respirator filter units will be tested in an atmosphere concentration of 100...

  2. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure demand class; minimum requirements. 84.149 Section 84.149 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT... OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.149 Type C supplied-air respirator...

  3. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest

    Science.gov (United States)

    Siyan Ma; Jiquan Chen; John R. Butnor; Malcolm North; Eugénie S. Euskirchen; Brian Oakley

    2005-01-01

    Little is known about biophysical controls on soil respiration in California's Sierra Nevada old-growth, mixed-conifer forests. Using portable and automated soil respiration sampling units, we measured soil respiration rate (SRR) in three dominant patch types: closed canopy (CC), ceanothus-dominated patches (CECO), and open canopy (OC). SRR varied significantly...

  4. Convergence in the temperature response of leaf respiration across biomes and plant functional types.

    Science.gov (United States)

    Heskel, Mary A; O'Sullivan, Odhran S; Reich, Peter B; Tjoelker, Mark G; Weerasinghe, Lasantha K; Penillard, Aurore; Egerton, John J G; Creek, Danielle; Bloomfield, Keith J; Xiang, Jen; Sinca, Felipe; Stangl, Zsofia R; Martinez-de la Torre, Alberto; Griffin, Kevin L; Huntingford, Chris; Hurry, Vaughan; Meir, Patrick; Turnbull, Matthew H; Atkin, Owen K

    2016-04-05

    Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

  5. Delayed ultraviolet light-induced cessation of respiration by inadequate aeration of Escherichia coli

    International Nuclear Information System (INIS)

    Joshi, J.G.; Swenson, P.A.; Schenley, R.L.

    1977-01-01

    Inadequately aerated Escherichia coli B/r cultures did not shut their respiration off 60 min after ultraviolet light (52 J/m 2 at 254 nm) as they did when well supplied with oxygen. Since cessation of respiration is associated with cell death, the result suggested that oxygen toxicity by superoxide radicals generated by cell metabolism might be responsible for cell death. The specific activity of superoxide dismutase, which scavenges O 2 - radicals, increased twofold after 90 min of adequate aeration, but the specific activity of catalase remained constant. Respiration and viability of irradiated cells were affected not at all by the presence of superoxide dismutase and only slightly by the presence of catalase. Metal ions such as Mn 2+ and Fe 2+ , inducers of superoxide dismutase, had no effect on respiration and viability. When irradiated cells were incubated under N 2 for 90 min, the respiration, growth, and viability time-course responses were the same as for cells not exposed to anaerobiosis. We conclude that superoxide anions generated at the time of irradiation play no part in cessation of respiration and cell death and that inadequate aeration or anaerobiosis delays the ultraviolet light-induced synthesis of proteins responsible for the irreversible cessation of respiration

  6. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  7. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  8. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Measurement and Modeling of Respiration Rate of Tomato (Cultivar Roma) for Modified Atmosphere Storage.

    Science.gov (United States)

    Kandasamy, Palani; Moitra, Ranabir; Mukherjee, Souti

    2015-01-01

    Experiments were conducted to determine the respiration rate of tomato at 10, 20 and 30 °C using closed respiration system. Oxygen depletion and carbon dioxide accumulation in the system containing tomato was monitored. Respiration rate was found to decrease with increasing CO2 and decreasing O2 concentration. Michaelis-Menten type model based on enzyme kinetics was evaluated using experimental data generated for predicting the respiration rate. The model parameters that obtained from the respiration rate at different O2 and CO2 concentration levels were used to fit the model against the storage temperatures. The fitting was fair (R2 = 0.923 to 0.970) when the respiration rate was expressed as O2 concentation. Since inhibition constant for CO2 concentration tended towards negetive, the model was modified as a function of O2 concentration only. The modified model was fitted to the experimental data and showed good agreement (R2 = 0.998) with experimentally estimated respiration rate.

  10. Classification of soil respiration in areas of sugarcane renewal using decision tree

    Directory of Open Access Journals (Sweden)

    Camila Viana Vieira Farhate

    Full Text Available ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response variable. The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS, chisquare method (χ2 and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.

  11. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  12. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Science.gov (United States)

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  13. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe.

    Science.gov (United States)

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-28

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m(-2) across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  14. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  15. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe

    Science.gov (United States)

    Zhang, Bingwei; Li, Shan; Chen, Shiping; Ren, Tingting; Yang, Zhiqiang; Zhao, Hanlin; Liang, Yu; Han, Xingguo

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g C m-2 across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.

  16. Soil respiration in relation to photosynthesis of Quercus mongolica trees at elevated CO2.

    Science.gov (United States)

    Zhou, Yumei; Li, Mai-He; Cheng, Xu-Bing; Wang, Cun-Guo; Fan, A-Nan; Shi, Lian-Xuan; Wang, Xiu-Xiu; Han, Shijie

    2010-12-06

    Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO(2) m(-2) hr(-1) at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO(2) m(-2) hr(-1) at AC) in 2008, and increased the daytime CO(2) assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO(2) m(-2) hr(-1) at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO(2) fixation of plants in a CO(2)-rich world will rapidly return to the atmosphere by increased soil respiration.

  17. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Zhang, Bin; Yang, Qihong; Chang, Jianguo; Hou, Ke

    2016-01-01

    The aim of this paper is to evaluate the diurnal variation in soil respiration under different land use types on Taihang Mountain, North China, and to understand its response to environmental factors (e.g., soil temperature and moisture) and forest management. Diurnal variations in soil respiration from plantations (Robinia pseudoacacia, Punica granatum, and Ziziphus jujuba), naturally regenerated forests (Vitex negundo var. heterophylla), grasslands (Bothriochloa ischaemum), and farmlands (winter wheat/summer maize) were measured using an LI-8100 automated soil CO2 flux system from May 2012 to April 2013. The results indicated that land use type had a significant effect on the diurnal variation of soil respiration. The diurnal soil respiration from farmlands was highest, followed by Ziziphus jujube, R. pseudoacacia, P. granatum, the lower soil CO2 efflux was found from B. ischaemum and V. negundo var. heterophylla. The diurnal soil respiration across different land use types was significantly affected by soil temperature and moisture, and their interaction. Precipitation-stimulated soil respiration increased more in soil with low water content and less in soil with high water content. The lower diurnal soil respiration from naturally regenerated forests suggests that naturally regenerated vegetation is the optimal vegetation type for reducing global warming.

  18. Economic analysis of implementing respirator program or ventilation system in a manufacturing environment

    International Nuclear Information System (INIS)

    Saidi-Mehrabab, M.

    2000-01-01

    The techniques and methods of developing cost models for respirators are discussed. Models are developed and implemented in this study for nineteen types of respirators in two major classes (air-purifying and supplied-air) and one L EV system. One respirator model is selected for detailed discussion from among the twenty models. The technical cost method is used in constructing the cost models for each of the respirators and the L EV system. In this methodology, the costs of purchasing and using a typical respirator or L EV system are divided into two categories, variable costs and fixed costs. Variable costs consists of the cost of replaceable components and probabilistic mortality cost. Fixed cost is the annualized capital requirement plus interest cost. The criteria for estimating some of the cost elements are based on existing equations in the literature, engineering judgement and manufacturer-provided information. A technical cost model results from the integration of this information into a computerized framework. The cost models for discussion are presented in the order of increasing computational complexity. Through the economic analysis, the lowest cost type in each class of respirator is determined. The determination criteria are based on the minimum total annual cost and highest benefit cost ratio. The selected lowest cost respirators are compared with the L EV system from the economic standpoint to reveal the cost optimal alternative

  19. In-pot evaluation of different composted and pelletized organic fertilizers on soil carbon dioxide efflux and basal respiration

    Science.gov (United States)

    Opsi, Francesca; Cavallo, Eugenio; Cocco, Stefania; Corti, Giuseppe

    2013-04-01

    Climate change is one of the most important environmental problems and it is closely related to concentration changes of greenhouse gases (GHG) in the atmosphere, mainly due to anthropogenic activities. As a consequence, measures have been taken to reduce GHG emissions, some of which are associated with agriculture, as well as to the enhancement of soil carbon storage. Modern intensive farming activities have also raised problems related to the safe disposal of large volume of animal waste, such as pig slurry, where the excessive land spreading can lead to water pollution and GHG evolution to the atmosphere. Composting is a great environmentally sustainable option for recycling agricultural by-products, and pelletisation is a promising technology to reduce the large volume of mature composted material in pelleted fertilizers, more suitable for long-distance transport. This study consisted of a pot-incubation experience carried out in a greenhouse of the National Research Council of Italy, under controlled conditions. The aim of the research was to investigate the effect of a composted swine solid fraction (CS, 13% w/w) and swine solid fraction blended with sawdust and composted (CSS, 9% w/w), both also as a result of pelletisation process (CSP, 12% w/w and CSSP, 8% w/w, respectively), on soil organic matter mineralization and basal respiration. Results were obtained by monitoring CO2 efflux, basal respiration and microbial biomass C on amended soil, freshly collected in a vineyard planted on a Typic Ustorthent, fine-loamy, mixed, calcareous, mesic. Samples, adjusted and maintained to about 50-60% of water holding capacity, were conditioned at 25±3 °C for 31 days of incubation. The CO2 fluxes showed a high production at the initial stage of incubation, where differences among treatments were well-rendered. CSSP produced the highest values, while CSS showed values as lower as about 45%. Intermediate values, and similar to those found in the soil sample used as

  20. Impact of environmental factors and biological soil crust types on soil respiration in a desert ecosystem.

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93 ± 0.43 µmol m-2 s-1) and the lowest values in algae-crusted soil (0.73 ± 0.31 µmol m-2 s-1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m-3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level.

  1. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia

    International Nuclear Information System (INIS)

    Shibistova, O.; Zrazhevskaya, G.; Astrakhantceva, N.; Shijneva, I.; Lloyd, J.; Arneth, A.; Kolle, J.; Knohl, A.; Schmerler, J.

    2002-01-01

    Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO 2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q 10 of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C/m 2 /a. Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18

  2. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    Science.gov (United States)

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  3. Impact of Environmental Factors and Biological Soil Crust Types on Soil Respiration in a Desert Ecosystem

    Science.gov (United States)

    Feng, Wei; Zhang, Yuqing; Jia, Xin; Wu, Bin; Zha, Tianshan; Qin, Shugao; Wang, Ben; Shao, Chenxi; Liu, Jiabin; Fa, Keyu

    2014-01-01

    The responses of soil respiration to environmental conditions have been studied extensively in various ecosystems. However, little is known about the impacts of temperature and moisture on soils respiration under biological soil crusts. In this study, CO2 efflux from biologically-crusted soils was measured continuously with an automated chamber system in Ningxia, northwest China, from June to October 2012. The highest soil respiration was observed in lichen-crusted soil (0.93±0.43 µmol m−2 s−1) and the lowest values in algae-crusted soil (0.73±0.31 µmol m−2 s−1). Over the diurnal scale, soil respiration was highest in the morning whereas soil temperature was highest in the midday, which resulted in diurnal hysteresis between the two variables. In addition, the lag time between soil respiration and soil temperature was negatively correlated with the soil volumetric water content and was reduced as soil water content increased. Over the seasonal scale, daily mean nighttime soil respiration was positively correlated with soil temperature when moisture exceeded 0.075 and 0.085 m3 m−3 in lichen- and moss-crusted soil, respectively. However, moisture did not affect on soil respiration in algae-crusted soil during the study period. Daily mean nighttime soil respiration normalized by soil temperature increased with water content in lichen- and moss-crusted soil. Our results indicated that different types of biological soil crusts could affect response of soil respiration to environmental factors. There is a need to consider the spatial distribution of different types of biological soil crusts and their relative contributions to the total C budgets at the ecosystem or landscape level. PMID:25050837

  4. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  5. The Contribution of Old Carbon to Respiration from Alaskan Tundra Following Permafrost Thaw

    Science.gov (United States)

    Schuur, E. A.; Vogel, J. G.; Crummer, K. G.; Lee, H.; Sickman, J. O.; Dutta, K.

    2007-12-01

    More than 450 Pg of soil carbon (C) has accumulated in high latitude ecosystems after the retreat of the last major ice sheets. Recent studies suggest that, due to climate warming, these ecosystems may no longer be accumulating C, and in some cases may be losing stored C to the atmosphere. We used radiocarbon measurements of carbon dioxide to detect the age of C respired from tussock tundra near Denali National Park, Alaska. At this tundra site, permafrost has been observed to warm and thaw over the past several decades, causing the ground surface to subside as ice volume in the soil decreased. We established three sites within this area that differed in vegetation and surface topography; both characteristics varied in relation to the degree of permafrost thaw. We made radiocarbon measurements of ecosystem respiration, incubations of soil organic matter, and incubations of above and belowground plant biomass to determine the age and isotopic value of C respired from these sites. Over the study period from 2004 to 2006, ecosystem respiration radiocarbon values averaged from +35‰ to +95‰ in different months across sites. For soil incubations, surface soil radiocarbon was elevated relative both to ecosystem respiration and the current atmospheric radiocarbon value, demonstrating the significant contribution from C fixed over the past years to several decades. The deeper soil, in contrast, had respiration isotope values that averaged below zero, reflecting the significant effect of radioactive decay on the isotope content of deeper soil layers. The plant and soil incubations were combined in a multi- source mixing model to determine probable contributions from these different sources to ecosystem respiration. Deep soil respiration generally averaged between 5-15% of total ecosystem respiration, but reached as high as 40% in some months. When aggregated across the growing season, the two sites undergoing more disturbance from permafrost thaw had on average 2-3 times

  6. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    Science.gov (United States)

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  7. SU-E-J-67: Evaluation of Breathing Patterns for Respiratory-Gated Radiation Therapy Using Respiration Regularity Index

    International Nuclear Information System (INIS)

    Cheong, K; Lee, M; Kang, S; Yoon, J; Park, S; Hwang, T; Kim, H; Kim, K; Han, T; Bae, H

    2014-01-01

    Purpose: Despite the importance of accurately estimating the respiration regularity of a patient in motion compensation treatment, an effective and simply applicable method has rarely been reported. The authors propose a simple respiration regularity index based on parameters derived from a correspondingly simplified respiration model. Methods: In order to simplify a patient's breathing pattern while preserving the data's intrinsic properties, we defined a respiration model as a power of cosine form with a baseline drift. According to this respiration formula, breathing-pattern fluctuation could be explained using four factors: sample standard deviation of respiration period, sample standard deviation of amplitude and the results of simple regression of the baseline drift (slope and standard deviation of residuals of a respiration signal. Overall irregularity (δ) was defined as a Euclidean norm of newly derived variable using principal component analysis (PCA) for the four fluctuation parameters. Finally, the proposed respiration regularity index was defined as ρ=ln(1+(1/ δ))/2, a higher ρ indicating a more regular breathing pattern. Subsequently, we applied it to simulated and clinical respiration signals from real-time position management (RPM; Varian Medical Systems, Palo Alto, CA) and investigated respiration regularity. Moreover, correlations between the regularity of the first session and the remaining fractions were investigated using Pearson's correlation coefficient. Results: The respiration regularity was determined based on ρ; patients with ρ 0.7 was suitable for respiratory-gated radiation therapy (RGRT). Fluctuations in breathing cycle and amplitude were especially determinative of ρ. If the respiration regularity of a patient's first session was known, it could be estimated through subsequent sessions. Conclusions: Respiration regularity could be objectively determined using a respiration regularity index, ρ. Such single-index testing of

  8. In vitro toxicology of respirable Montserrat volcanic ash.

    Science.gov (United States)

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the

  9. A Novel Algorithm for Determining Contact Area Between a Respirator and a Headform

    OpenAIRE

    Lei, Zhipeng; Yang, James; Zhuang, Ziqing

    2014-01-01

    The contact area, as well as the contact pressure, is created when a respiratory protection device (a respirator or surgical mask) contacts a human face. A computer-based algorithm for determining the contact area between a headform and N95 filtering facepiece respirator (FFR) was proposed. Six N95 FFRs were applied to five sizes of standard headforms (large, medium, small, long/narrow, and short/wide) to simulate respirator donning. After the contact simulation between a headform and an N95 ...

  10. Respiration rate of stream insects measured in situ along a large altitude range

    DEFF Research Database (Denmark)

    Rostgaard, S.; Jacobsen, D.

    2005-01-01

    Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field...... at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q...

  11. Driver-response relationships between frontal EEG and respiration during affective audiovisual stimuli.

    Science.gov (United States)

    Kroupi, Eleni; Vesin, Jean-Marc; Ebrahimi, Touradj

    2013-01-01

    The complementary nature and the coordinative tendencies of brain and body are essential to the way humans function. Although static features from brain and body signals have been shown to reflect emotions, the dynamic interrelation of the two systems during emotional processes is still in its infancy. This study aims at investigating the way brain signals captured by Electroencephalography (EEG) and bodily responses reflected in respiration interact when watching music clips. A non-linear measure is applied to frontal EEG and respiration to determine the driver/driven relationship between these two modalities. The results reveal a unidirectional dependence from respiration to EEG which adds evidence to the bodily-feedback theory.

  12. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  13. Thermal effects on growth and respiration rates of the mayfly, Dolania americana (ephemeroptera)

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1975-01-01

    The mayfly Dolania Americana, common in the sand of Upper Three Runs Creek, Savannah River Plant, was studied to determine the effects of seasonal changes in temperature on population growth rates and to determine the effects of slight elevations in water temperature on respiration rates of this benthic species. Growth of the population increased with stream temperature until peak emergence of adults in June and July. There was a strong inverse correlation between body weight and respiration rates of immature nymphs. Respiration rates at 2.5, 5, and 10 0 C above ambient creekwater temperatures were not significantly higher than those measured at ambient creekwater temperatures. (auth)

  14. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  15. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone.

    Science.gov (United States)

    Pregitzer, Kurt; Loya, Wendy; Kubiske, Mark; Zak, Donald

    2006-06-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8-26%) compared to the control treatment in both community types over all three growing seasons. In years 6-7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15-25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60-80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4-6 per thousand enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil

  16. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  17. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    Science.gov (United States)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  18. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    Science.gov (United States)

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  19. Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, R; Boushel, R; Almdal, T

    2010-01-01

    mitochondrial respiration per milligram muscle was measured in saponin-treated skinned muscle fibres using high-resolution respirometry. RESULTS: Mitochondrial respiration per milligram muscle was lower in T2DM compared to controls at baseline and decreased during ROSI treatment but increased during PIO...... of ROSI and PIO on mitochondrial respiration, and also show that insulin sensitivity can be improved independently of changes in mitochondrial respiration. We confirm that mitochondrial respiration is reduced in T2DM compared to age- and BMI-matched control subjects....

  20. Influence of gamma irradiation, cold storage and pulsing on post harvest life and respiration rate of 'golden gate' cut roses

    International Nuclear Information System (INIS)

    Palanikumar, S.; Vinod Kumar; Bhattacharjee, S.K.; Pal, Madan

    2003-01-01

    Gamma irradiation at 0.025 kGy increased the respiration rate of 'Golden Gate' cut roses. The irradiation followed by cold storage (at 4 deg C) brought down the respiration rate after storage duration of 3 days. The respiration rate was found maximum in the sucrose (3% ) pulsed flowers immediately after pulsing. However, the rate of respiration is decreased in all the treatments. The irradiated flowers recorded lowest amount of respiration at senescence and the vase life was maximum in these flowers. (author)