WorldWideScience

Sample records for laser-tig hybrid welding

  1. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  2. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  3. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  4. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  5. Comparison of Plasma, Metal Inactive Gas (MIG) and Tungsten Inactive Gas (TIG) Processes for Laser Hybrid Welding (302)

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    enables a more stable ignition and running process than both TIG and MIG hybrid welding. Because of the delivery of extra material from a hot wire, the MIG hybrid process is well suited for bridging gaps of up to 0.6 mm in butt-welding of 2 mm steel. But because of the constant delivery of new material......, the MIG process is more difficult to control than laser/plasma and laser/TIG processes. All three types of secondary heat sources enable an increased ductility of the weld as compared to pure laser welding when welding 1.8 mm GA 260 with a TIG torch and 2.13 mm CMn steel with a plasma arc or MIG...

  6. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  7. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  8. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  9. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  10. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig-Mig Hybrid Welding

    Science.gov (United States)

    Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.

    Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.

  11. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  12. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  13. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  14. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  15. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  16. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    Science.gov (United States)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  17. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  18. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  19. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    Science.gov (United States)

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (pTIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  20. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  1. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  2. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  3. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  4. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    Science.gov (United States)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  5. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Kumar, B Ramesh; Gangradey, R

    2012-01-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  6. Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam

    International Nuclear Information System (INIS)

    Yang, Dongxia; Li, Xiaoyan; He, Dingyong; Huang, Hui; Zhang, Liang

    2012-01-01

    Highlights: ► The microstructural characterization of the TIG and laser welded Al–Mg–Mn–Er alloy is studied. ► Transition zone and HAZ are found to disappear near the fusion boundaries in LBW joint. ► Primary Al 3 Er in LBW weld provides more nucleation sites and lead to the grain refinement. ► The evaporation of alloying element Mg in TIG and LBW joints is investigated. ► Reasons for high strength of LBW joint are fine-grain strengthening and solution strengthening. -- Abstract: Al-4.7Mg-0.7Mn-0.3Er alloy plates were welded by laser beam welding (LBW) and tungsten inert gas (TIG). Mechanical properties and microstructures of both welded joints were analyzed. The results showed that the tensile strength of LBW joint was 315 MPa, which was approximately 10% higher than that of TIG welded joint. This was attributed to the fine grains, dispersed primary Al 3 Er phase and low Mg evaporation in LBW weld. Equiaxed grains with average size of 30 μm were obtained in the fusion zone, which were much smaller than that of 90 μm in the fusion zone of TIG joint, due to the low heat input during LBW process. Moreover, finer primary Al 3 Er particles were uniformly distributed in the LBW joints, which resulted in a substantial increase of nucleation rate in LBW welds. In addition, it was also found that Mg concentrations in the fusion zones, in both TIG and LBW joints, were lower than that of the base one tested by EPMA. The burning loss rates of Mg in TIG and LBW joints were 36% and 22%, respectively.

  7. Welding of cold worked austenitic steels - comparison of TIG, EB and laser processes

    International Nuclear Information System (INIS)

    Richard, A.; Prunele, D. de; Castilan, F.

    1993-01-01

    Effect of welding on cold worked components is a local falling of their properties. Modifications induced by such an operation depend on the thermal cycle and consequently on the welding process. An experimental study aim of which is to compare respective effects of different welding processes (TIG, EB, laser) has been realized. This publication presents results related to 316L and 316Ti steels. (author). 2 refs., 7 figs., 1 tab

  8. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    Science.gov (United States)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  9. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  10. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  11. Temper-bead repair-welding of neutron-irradiated reactor (pressure) vessel by low-heat-input TIG and YAG laser welding

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Ozawa, Masayoshi; Kamo, Kazuhiko

    2006-01-01

    Weldability in neutron-irradiated low alloy steel for reactor (pressure) vessel has been studied by temper-bead repair-welding of low-heat-input TIG and YAG laser welding. A low alloy steel and its weld, and stainless steel clad and nickel (Ni)-based alloy clad were irradiated in a materials test reactor (LVR-15, Czech Republic) up to 1.4 x 10 24 n/m 2 (>1 MeV) at 290degC, which approximately corresponds to the maximum neutron fluence of 60-year-operation plants' vessels. The He concentration in the irradiated specimens was estimated to be up to 12.9 appm. The repair-welding was carried out by TIG and YAG laser welding at a heat input from 0.06 to 0.86 MJ/m. The mechanical tests of tensile, impact, side bend and hardness were carried out after the repair-welding. Cracks were not observed in the irradiated low alloy steel and its weld by temper-bead repair-welding. Small porosities were formed in the first and second layers of the repair-welds of low alloy steel (base metal). However, only a few porosities were found in the repair-welds of the weld of low alloy steel. From the results of mechanical tests, the repair-welding could be done in the irradiated weld of low alloy steel containing a He concentration up to 12.9 appm, although repair-welding could be done in base metal of low alloy steel containing up to only 1.7 appmHe. On the other hand, cracks occurred in the heat affected zones of stainless steel and Ni-based alloy clads by repair-welding, except by YAG laser repair-welding at a heat input of 0.06 MJ/m in stainless steel clad containing 1.7 appmHe. Based on these results, the determination processes were proposed for optimum parameters of repair-welding of low alloy steel and clad used for reactor (pressure) vessel. (author)

  12. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  13. Development of remote laser welding technology

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Kim, Woong-Ki; Lee, Jung-Won; Yang, Myung-Seung; Park, Hyun-Soo

    1999-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding process are widely used for manufacturing of the commercial fuel elements, it can not be recommended for the remote seal welding of fuel element at PIE facility due to its complexity of the electrode alignment, difficulty in the replacement of parts in the remote manner and its large heat input for thin sheath. Therefore, Nd:YAG laser system using the optical fiber transmission was selected for Zircaloy-4 end cap welding. Remote laser welding apparatus is developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The laser weldability is satisfactory in respect of the microstructures and mechanical properties comparing with the TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in remote manner have been developed. (author)

  14. Microscopic characterisation of TIG-deposition and -welding

    International Nuclear Information System (INIS)

    Groot, P.

    1992-11-01

    In the framework of the European Fusion Technology Programme austenitic RVS AISI 316LN is considered as candidate material for the First Wall. In this report, among others, tungsten-arc (TIG) welding connections are investigated as a part of the ECN project 1.653. It concerns respectively; the deposition of TIG-electrode-material and the welding connection. The connections are fabricated by the Danish Welding Institute Svejsecentrals in Broendby. This study is supposed to give a welding qualification by microscopic characterisation of a TIG-deposition and a TIG-weld. 3 refs., 33 figs., 5 tabs

  15. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  16. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  17. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  18. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  19. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  20. Research on the Effects of Technical Parameters on the Molding of the Weld by A-TIG Welding

    OpenAIRE

    Shi, Kai; Pan, Wu

    2012-01-01

    The effects of welding parameters on the molding of weld by A-TIG welding of a 4mm thickness mild steel plate is studied in the present paper. The results obtained show that: as welding current increases A-TIG welding penetration gets deeper than TIG welding; size and shape of HAZ has remarkable change; A-TIG welding has the narrower weld pool width than TIG welding.

  1. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  2. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    International Nuclear Information System (INIS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K.

    2011-01-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  3. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Science.gov (United States)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower δ-ferrite content, alignment of columnar grain with δ-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  4. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower {delta}-ferrite content, alignment of columnar grain with {delta}-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  5. Experience with pulsed tig-welding at UKAEA Springfields

    International Nuclear Information System (INIS)

    Taylor, A.F.

    1973-01-01

    Welding investigations at Springfields are primarily concerned with development of jointing procedures for nuclear fuel elements, where high standards of integrity are required. Equipment and work which developed from a pulsed TIG-welding technique, set up in 1963 for welding of 0.4 mm thick tubing are described. A computer based control system, which is illustrated, can provide direct digital control of continuous or pulsed TIG or plasma welding. The work has been mainly concerned with stainless and low alloy steel between 0.4 and 4 mm thick. Some applications are mentioned. Tentative conclusions are drawn and it is felt that because of development at Springfields in continuous TIG-welding there is no advantage in using pulsed TIG on materials thinner than about 2 mm. (U.K.)

  6. Impact Toughness of Steel WMD After TIG Welding

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-09-01

    Full Text Available The material selected for this investigation was low alloy weld metal deposit after TIG welding with various amount of oxygen in weld metal deposit (WMD. After TIG process it is difficult to get proper amount of oxygen in WMD on the level much lower than 350 ppm. The highest impact toughness of low alloy WMD corresponds with the amount of oxygen in WMD above 350 ppm. In the paper focuses on low alloy steel after innovate welding method with micro-jet cooling that could be treated as a chance on rising amount of oxygen in weld. Weld metal deposit (WMD was carried out for TIG welding with micro-jet cooling with various amount of oxygen in WMD. In that paper various gas mixtures (gas mixtures Ar-O2 and Ar-CO2 were tested for micro-jet cooling after TIG welding. An important role in the interpretation of the results can give methods of artificial intelligence.

  7. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  8. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  9. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  10. Study of 2219 aluminum alloy using direct current A-TIG welding

    Science.gov (United States)

    Li, Hui; Zou, Jiasheng

    2017-07-01

    Direct current A-TIG (DCEN A-TIG) welding using special active agent had eliminated the pores and the oxidation of 2219 high-strength aluminum alloy in welding. Addition of AlF3-25% LiF active agent to DCEN A-TIG welding and arc morphology showed a trailing phenomenon. However, the change in arc morphology was not remarkable when AlF3-75% LiF active agent was added. Addition of AlF3-75% LiF active agent can refine the grain size of DCEN A-TIG joint. The mechanical properties of the weld were optimal at 10% AlF3-75% LiF active agent. Compared with AC TIG and AC A-TIG welding, DCEN A-TIG welding yielded better results for 2219 Al alloy.

  11. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  12. Laser/TIG Hybrid Welding of Pot for Induction Heater

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sondrup, Lars de Caldas

    2004-01-01

    In this paper, systematic work is presented that shows the steps for realizing a hybrid welded tailored blank that is formed to a pot for induction heating. The bottom is made of ferritic stainless steel and the sides of austenitic stainless steel. Only the bottom will then interact directly...

  13. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  14. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  15. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho

    2014-01-01

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  16. Sturdy on Orbital TIG Welding Properties for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Hong, Jintae; Kim, Kahye; Huh, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We developed a precision TIG welding system that is able to weld the seam between end-caps and a fuel cladding tube for the nuclear fuel test rod and rig. This system can be mainly classified into an orbital TIG welder (AMI, M-207A) and a pressure chamber. The orbital TIG welder can be independently used, and it consists of a power supply unit, a microprocessor, water cooling unit, a gas supply unit and an orbital weld head. In this welder, the power supply unit mainly supplies GTAW power for a welding specimen and controls an arc starting of high frequency, supping of purge gas, arc rotation through the orbital TIG welding head, and automatic timing functions. In addition, the pressure chamber is used to make the welded surface of the cladding specimen clean with the inert gas filled inside the chamber. To precisely weld the cladding tube, a welding process needs to establish a schedule program for an orbital TIG welding. Therefore, the weld tests were performed on a cladding tube and dummy rods under various conditions. This paper describes not only test results on parameters of the purge gas flow rates and the chamber gas pressures for the orbital TIG welding, but also test results on the program establishment of an orbital TIG welding system to weld the fuel test rods. Various welding tests were performed to develop the orbital TIG welding techniques for the nuclear fuel test rod. The width of HAZ of a cladding specimen welded with the identical power during an orbital TIG welding cycle was continuously increased from a welded start-point to a weld end-point because of heat accumulation. The welding effect of the PGFR and CGP shows a relatively large difference for FSS and LSS. Each hole on the cladding specimens was formed in the 1bar CGP with the 20L/min PGFR but not made in the case of the PGFR of 10L/min in the CGP of 2bar. The optimum schedule program of the orbital TIG welding system to weld the nuclear fuel test rod was established through the program

  17. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  18. Study of the Performance of Stainless Steel A-TIG Welds

    Science.gov (United States)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  19. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma......, or metal inactive gas/metal active gas.This is followed by reports of how the many process parameters governing the hybrid welding process can be set and how the choice of secondary energy source, shielding gas, etc. can affect the overall welding process....

  20. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed as a hy...

  1. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling

    International Nuclear Information System (INIS)

    Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning

    2017-01-01

    Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of

  2. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  3. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  4. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  5. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  6. Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Sung Hyuk; Kwon, Hyuk Sun; Kim, Gyo Sung; Lee, Chong Soo

    2014-01-01

    Highlights: • We report the mechanical properties of DP780 steel welded by three methods. • The size of the welded zone increases with heat input (MAG > TIG > laser). • The hardness of the welded zone increases with cooling rate (laser > TIG > MAG). • Tensile and fatigue properties are strongly dependent on welding method. • Crack initiation sites depend on the microstructural features of the welded zone. - Abstract: The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading

  7. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  8. Optimization of process parameters in welding of dissimilar steels using robot TIG welding

    Science.gov (United States)

    Navaneeswar Reddy, G.; VenkataRamana, M.

    2018-03-01

    Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.

  9. TIG Dressing Effects on Weld Pores and Pore Cracking of Titanium Weldments

    Directory of Open Access Journals (Sweden)

    Hui-Jun Yi

    2016-10-01

    Full Text Available Weld pores redistribution, the effectiveness of using tungsten inert gas (TIG dressing to remove weld pores, and changes in the mechanical properties due to the TIG dressing of Ti-3Al-2.5V weldments were studied. Moreover, weld cracks due to pores were investigated. The results show that weld pores less than 300 μm in size are redistributed or removed via remelting due to TIG dressing. Regardless of the temperature condition, TIG dressing welding showed ductility, and there was a loss of 7% tensile strength of the weldments. Additionally, it was considered that porosity redistribution by TIG dressing was due to fluid flow during the remelting of the weld pool. Weld cracks in titanium weldment create branch cracks around pores that propagate via the intragranular fracture, and oxygen is dispersed around the pores. It is suggested that the pore locations around the LBZ (local brittle zone and stress concentration due to the pores have significant effects on crack initiation and propagation.

  10. Development of TIG Welding System for a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers.

  11. Development of TIG Welding System for a Nuclear Fuel Test Rig

    International Nuclear Information System (INIS)

    Joung, Changyoung; Ahn, Sungho; Hong, Jintae; Kim, Kahye

    2013-01-01

    The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rig and rods. To manufacture the nuclear fuel test rig, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rig and rods jointing the various sensors and end caps on a fuel cladding tube, which is charged with fuel pellets and component parts. Thus, we designed and fabricated the precision welding system consisting of an orbital TIG welder, a low-pressure chamber, and a high-pressure chamber. Using this system, the performance tests were performed with the round and seal spot welds for each welding condition. This paper describes not only the contents for the fabrication of precision TIG welding system but also some results from weld tests using the low-pressure and high-pressure chambers to verify the performance of this system. The TIG welding system was developed to manufacture the nuclear fuel test rig and rods. It has been configured to be able to weld the nuclear fuel test rigs and rods by applying the TIG welder using a low-pressure chamber and a high-pressure chamber. The performance tests using this system were performed with the round and seal spot welds for the welding conditions. The soundness of the orbital TIG welding system was confirmed through performance tests in the low-pressure and high-pressure chambers

  12. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  13. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  14. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  15. Design Optimization and Fatigue Analysis of Laser Stake Welded Connections

    Science.gov (United States)

    2008-06-01

    is ultimately envisioned that laser welding will be as common in the shipyard as other processes such -- as MIG, TIG and SMAW. Laser stake- welding of...input from conventional welding techniques can be detrimental to the polymer matrix composite material. In comparison, the laser welding process allows...more discrete frequencies. In the laser welding process , the photons are targeted on the work piece surface which needs to be welded . Highly

  16. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Laboratory (Ret.), private communication. 33. S. Kou, Welding Metallurgy , 2nd Ed., John Wiley & Sons, Inc., 2003. DOI: 10.1002/0471434027. 34. J. K...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds ...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple

  17. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  18. Optical Arc-Length Sensor For TIG Welding

    Science.gov (United States)

    Smith, Matthew A.

    1990-01-01

    Proposed subsystem of tungsten/inert-gas (TIG) welding system measures length of welding arc optically. Viewed by video camera, in one of three alternative optical configurations. Length of arc measured instead of inferred from voltage.

  19. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  20. Microprobe investigation of brittle segregates in aluminum MIG and TIG welds

    Science.gov (United States)

    Larssen, P. A.; Miller, E. L.

    1968-01-01

    Quantitative microprobe analysis of segregated particles in aluminum MIG /Metal Inert Gas/ and TIG /Tungsten Inert Gas/ welds indicated that there were about ten different kinds of particles, corresponding to ten different intermetallic compounds. Differences between MIG and TIG welds related to the individual cooling rates of these welds.

  1. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  2. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  3. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    Science.gov (United States)

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  4. Microstructure and mechanical properties in TIG welding of CLAM steel

    International Nuclear Information System (INIS)

    Zhu Qiang; Lei Yucheng; Chen Xizhang; Ren Wenjie; Ju Xin; Ye Yimin

    2011-01-01

    Tungsten insert gas (TIG) welding on China low activation martensitic (CLAM) steel under identical conditions was performed. Microhardness test, tensile test, Charpy impact test and microstructure measurements were carried out on TIG welded joints after post weld heat-treatment. Hardening at WM and softening in HAZ is detected in the TIG weld joint. Microhardness in WM decreased when the temperature of PWHT increased. The ultimate tensile stress of weld metal is higher than that of HAZ and BM. Absorbed energy increased with PWHT temperature rising, until PWHT was done at 760 deg. C/30 min, the specimen ductile fractured in local area. The microstructure of the weld metal for every specimen was found to be tempered martensite with a little of delta ferrite. M 23 C 6 particles are the predominant type of carbides. Oxide precipitate phases appeared in WM, which are the primary crack initiation sites and it is critically important minimize their formation.

  5. Welding state of art for Eurofer 97 application to Tritium Blanket Module for ITER Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/DIR), 91 - Gif sur Yvette (France); Janin, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DPC/SCP/Gerailp), 91 - Gif sur Yvette (France)

    2007-07-01

    Full text of publication follows: Eurofer weldability must be established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer samples from 0.5 mm to 40 mm. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, that yields brittle joints with (5-ferrite. This process is considered only for low penetration depth (cooling plates). The other processes produce similar results, with attenuation or enhanced effects, depending on cooling rates and weld penetration depth. Pre- and post-heating have been applied on hybrid and laser welds. High hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with M23C6 carbide precipitation. Delta ferrite has been observed only in Electron Beam welds, due to very high cooling rate during the solidification phase, related to strong enhanced weld shape. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties. To restore properties after welding, PWHT seems is necessary and several treatments including one at 750 deg. C for 2 hours have been performed. Also tries is a re-austenisation treatment of 10 h at 1050 deg. C. affecting order to improve results, pre- and post-heating has been applied. The heating produced by the resistive heater was too low, and new welding tests are planned at higher temperatures (400 deg. C). However, the pre- and post-heating at higher temperatures will complicate manufacturing of TBM clamping For penetration depths below 10 mm, laser process is the reference method and TIG second. Distortion level performed by laser process is acceptable for manufacturing

  6. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    Science.gov (United States)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  7. Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.

    2017-11-01

    AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.

  8. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  9. Tube welding by the pulsed tig method

    International Nuclear Information System (INIS)

    Dick, N.T.

    1973-01-01

    During the construction of the helical wound boiler pods for the AGR stations at Hartlepool and Heysham, automatic TIG-welding techniques were used. In some cases limited access excluded the use of wire feed techniques and autogenous techniques had to be used. To resolve the problem of excessive concavity which occurred when using constant current autogenous techniques on 14.5 mm OD mild steel tubes of 1.8 mm thickness, pulsed-TIG welding was applied. By modifying the trailing edge of the pulse to produce a crater fill with each pulse, susceptibility to porosity and solidification cracking was reduced. The incorporation of digital counter permitted pulse duration, background duration, and electrode indexing distance to be monitored. (U.K.)

  10. Analysis of cracks in stainless steel TIG [tungsten inert gas] welds

    International Nuclear Information System (INIS)

    Nakagaki, M.; Marschall, C.; Brust, F.

    1986-12-01

    This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ΔT/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending

  11. Investigation of TIG welding characteristics with a dual cooled rod for the fuel irradiation test

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Kim, Hyung Kyu

    2008-01-01

    To establish the fabrication process, and for satisfying the requirements of the irradiation test, an TIG(Tungsten Inert Gas) welding machine for the dual cooled rods specimens was developed, and the preliminary welding experiments were performed to optimize the welding process conditions. Cladding tubes of 15.9 and 9 mm for the outer and inner diameters, respectively with a 0.57 mm thickness and end caps were used for the specimens. This paper describes the experimental results of the TIG welds and the micrograph examinations of the TIG welded specimens corresponding to various welding conditions for the dual cooled fuel irradiation test. The investigations revealed that the present TIG process satisfied the requirements for the fuel irradiation test in the HANARO research reactor

  12. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    International Nuclear Information System (INIS)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck; Myoung, Gi Hoon; Park, In Duck

    2016-01-01

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar

  13. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Myoung, Gi Hoon; Park, In Duck [Korea Institute of Machinery and Materials, Busan (Korea, Republic of)

    2016-07-15

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

  14. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  15. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  16. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  17. Pulsed tig-welding in production

    International Nuclear Information System (INIS)

    Haylett, R.

    1973-01-01

    The first main application of the pulsed-TIG welding process in production used a combination of the method with the melt-through method to fit and weld annular shaped AISI 321 stainless steel inserts as part of the fabrication of a double-skinned vacuum insulation panel of stainless steel for the thermal insulation system of a sodium-cooled reactor. Other applications are discussed. It is concluded that the process could be more fully exploited in industry and that this might be achieved by the use of inexpensive pulse operation attachments. (U.K.)

  18. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    Directory of Open Access Journals (Sweden)

    Brytan Z.

    2016-06-01

    Full Text Available This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature.

  19. Post-irradiation mechanical tests on F82H EB and TIG welds

    International Nuclear Information System (INIS)

    Rensman, J.; Osch, E.V. van; Horsten, M.G.; D'Hulst, D.S.

    2000-01-01

    The irradiation behaviour of electron beam (EB) and tungsten inert gas (TIG) welded joints of the reduced-activation martensitic steel IEA heat F82H-mod. was investigated by neutron irradiation experiments in the high flux reactor (HFR) in Petten. Mechanical test specimens, such as tensile specimens and KLST-type Charpy impact specimens, were neutron irradiated up to a dose level of 2-3 dpa at a temperature of 300 deg. C in the HFR reactor in Petten. The tensile results for TIG and EB welds are as expected with practically no strain hardening capacity left. Considering impact properties, there is a large variation in impact properties for the TIG weld. The irradiation tends to shift the DBTT of particularly the EB welds to very high values, some cases even above +250 deg. C. PWHT of EB-welded material gives a significant improvement of the DBTT and USE compared to the as-welded condition

  20. Multi-pass TIG welding process: simulating thermal SS304

    International Nuclear Information System (INIS)

    Harinadh, Vemanaboina; Akella, S.; Buddu, Ramesh Kumar; Edision, G.

    2015-01-01

    Welding is basic requirement in the construction of nuclear reactors, power plants and structural components development. A basic studies on various aspects of the welding is essential to ensure the stability and structural requirement conditions. The present study explored the thermo-mechanical analysis of the multipass welds of austenitic stainless steels which are widely used in fusion and fission reactor components development. A three-dimensional (3D) finite element model is developed to investigate thermally induced stress field during TIG welding process for SS304 material. The transient thermal analysis is performed to obtain the temperature history, which then is applied to the mechanical (stress) analysis. The present thermal analysis is conducted using element type DC3D8. This element type has a three dimensional thermal conduction capability and eight nodes. The 6 mm thick plated is welded with six numbers of passes. The geometry and meshed model with tetrahedral shape with volume sweep. The analysis is on TIG welding process using 3D-weld interface plug-in on ABAQUS-6.14. The results are reported in the present paper

  1. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  2. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Optimization of process parameters of pulsed TIG welded maraging steel C300

    Science.gov (United States)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  4. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    Prediction of the weld pool geometry of TIG arc welding by using fuzzy logic controller. ... The experimental data were then used for building a fuzzy logic model to predict the effects of control factors on the responses. A graphical mapping scheme was employed for the graphical representation of the macrostructure zones' ...

  5. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  6. TIG welding of aluminium foams. Analysis of foaming operating parameters; Soldadura TIG de espumas de aluminio. Analisis de los parametros operacionales de espumado

    Energy Technology Data Exchange (ETDEWEB)

    Portoles, A.; Berenguer, O.; Onoro, J.; Ranninger, C.

    2011-07-01

    In this work the influence of main parameters that take part during TIG welding process are analyzed. Some of these parameters belong to the welding process, as for example the welding speed, intensity and voltage while others are from the material and tooling features, as for example foaming material and tooling design. The result of this work shows a strong dependence on these parameters of the TIG welding process for metallic foams. (Author) 16 refs.

  7. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  8. Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, K. Devendranath, E-mail: ramdevendranath@gmail.com; Ramanand, R.; Ameer, Ajmal; Simon, K. Aghil; Arivazhagan, N.

    2016-03-21

    This study addresses the effect of post weld heat treatment on the fusion zone microstructure and the mechanical properties of activated flux tungsten inert gas (A-TIG) weldments of Inconel X750. In this study, a compound flux of 50% SiO{sub 2}+50% MoO{sub 3} was used for A-TIG welding of the samples. Comparative studies on the microstructure and mechanical properties have been made on the weldments both in the as-welded and post weld heat treated conditions. Direct ageing post weld heat treatment (PWHT) was carried out at 705 °C for 22 h on the A-TIG weldment to assess the structure–property relationships. It was inferred that direct ageing post weld heat treatment resulted in better tensile strength (1142 MPa) compared to the as-welded coupons (736 MPa). The joint efficiencies of the as-welded and post weld heat treated conditions were found to be 60.7% and 94.07% respectively. The impact toughness of the as-welded coupons were found to be greater than the post weld heat treated samples; however the impact toughness of the welds are greater than the parent metal employed in both the cases. This study also attested the detailed structure–property relationships of A-TIG weldments using the combined techniques of optical and scanning electron microscopy, Electron Dispersive X-ray Analysis (EDAX) techniques.

  9. Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750

    International Nuclear Information System (INIS)

    Ramkumar, K. Devendranath; Ramanand, R.; Ameer, Ajmal; Simon, K. Aghil; Arivazhagan, N.

    2016-01-01

    This study addresses the effect of post weld heat treatment on the fusion zone microstructure and the mechanical properties of activated flux tungsten inert gas (A-TIG) weldments of Inconel X750. In this study, a compound flux of 50% SiO_2+50% MoO_3 was used for A-TIG welding of the samples. Comparative studies on the microstructure and mechanical properties have been made on the weldments both in the as-welded and post weld heat treated conditions. Direct ageing post weld heat treatment (PWHT) was carried out at 705 °C for 22 h on the A-TIG weldment to assess the structure–property relationships. It was inferred that direct ageing post weld heat treatment resulted in better tensile strength (1142 MPa) compared to the as-welded coupons (736 MPa). The joint efficiencies of the as-welded and post weld heat treated conditions were found to be 60.7% and 94.07% respectively. The impact toughness of the as-welded coupons were found to be greater than the post weld heat treated samples; however the impact toughness of the welds are greater than the parent metal employed in both the cases. This study also attested the detailed structure–property relationships of A-TIG weldments using the combined techniques of optical and scanning electron microscopy, Electron Dispersive X-ray Analysis (EDAX) techniques.

  10. Tig welding produces leak-proof joints for nuclear application

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A pulsed welding apparatus using a Hobart Cyber-tig power source with programmed pulsed current has been developed to produce leak-free welds required for a new hermetically sealed leak-free valve for use in nuclear power plants. Advantages of the technique are precise control over travel speed and filler metal addition allowing the weld to be repeated with precision. (R.A.)

  11. The measurement of released radionuclides during TIG-Welding and Grinding

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Eder, E.

    2000-01-01

    The radiological relevance of the TIG welding using thoriated tungsten electrodes has recently been proved by means of different studies. As a result of this the TUEV Sueddeutschland and the University of Goettingen have carried out special investigations concerning the release of radionuclides during TIG welding. The main emphasis of these investigations were the representativity of various sampling techniques, the influence of various parameters during welding as well as the determination of activity size distributions related to the aerodynamic diameter of the inhaled aerosols. The properties of the tungsten rods are improved through the addition of radioactive thorium. We investigated the radiation exposure by handling with thoriated tungsten welding rods. We investigated the different exposure pathways and determined the specific activity in dependence to the different types of welding rods. By carrying out surveys with the users, we determined the exposure pathways for the individual exposed persons: TIG - hand-welders', TIG 'machine-welders', labourers, other persons. We measured the activity concentration of the breathing air while welding, at grinding the electrodes and by staying in the rooms where usually it's welded. The size distribution of the aerosol-attached activity was determined with several kinds of impactors. The main emphasis was the comparison of the different sampling systems at the measuring of the activity concentration of the breathing air. Selective sampling by impactors: · Berner-impactor, stationary · Sierra-impactor, stationary · Anderson-Imcaktor, stationary · Marple-impactor, personal sampler Aerosol sampling by air samplers · 5 personal air sampler · 2 stationary sampler, ring face · 2 stationary sampler, open face Rn-220-Measurements · Thoron-monitor Determination of activities on measuring filters · alpha spectrometry · low-level-gamma-spectrometry. For the various exposed persons, at the extern irradiation with gamma

  12. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    Science.gov (United States)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  13. Development and modeling of hot tearing test in TIG welding of aluminum alloy 6056

    OpenAIRE

    Niel , Aurélie; Fras , Gilles; Deschaux-Beaume , Frédéric; Bordreuil , Cyril

    2010-01-01

    International audience; TIG welding process is widely used in the aeronautic industry. However, the increase of productivity which generally require an increase of welding speed is limited by the appearance of defects, such as hot tearing. This study focuses on the analysis of hot tearing in TIG welding on a 6056 aluminum alloy, used in aircraft manufacturing. Thanks to the developpement of an original hot tearing test and to numerical simulation of welding process, the influence of various p...

  14. The application of TIG-welding to the manufacture of modern boiler units. Chapter 3

    International Nuclear Information System (INIS)

    Dick, N.T.

    1978-01-01

    Stringent weld acceptance standards are necessary in nuclear installations. Mechanised TIG-welding is being used exclusively in the manufacture of the boiler pods for the Hartlepool and Heysham nuclear generating stations. The choice of a TIG welding process is discussed. Reliability, access, welding position, tube dimensions and weld profile were important as was the desirability of having ferrite control because in the austenitic stainless steel used, the acceptance standard does not permit microfissuring. Development of the technique and production equipment and conditions are given for tube butt welding, tube-to-tubeplate bore welding and tube-to-tubeplate face welding in AGR applications. (U.K.)

  15. Final Report of Project Curriculum Development: Pulsed Tig Welding, 1978-1979.

    Science.gov (United States)

    Atlantic County Area Vocational-Technical School, NJ.

    Designed to help unemployed and disadvantaged workers find new career opportunities, this curriculum provides vocational students with a basic course of instruction in pulsed tungsten inert gas (TIG) welding. The first of four sections provides a general background of welding, the welding industry, and welding processes. Section 2 focuses on…

  16. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  17. Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm

    Science.gov (United States)

    Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal

    2017-08-01

    To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.

  18. The effect of pretreatment, welding technique and filter alloys in TIG welding of AlLiCu alloys. Pt. 2

    International Nuclear Information System (INIS)

    Krueger, U.; Neye, G.

    1989-01-01

    Previous publications on TIG welding on recently developed AlLiCu alloys point to unsatisfactory results if one proceeds in the usual way. In this report, the conditions are shown for producing welds with few pores with the aid of TIG welding using usual production methods. After reporting on investigations with argon as the cover gas in the first part of the report, this part is concerned with experiments in which helium was used as the cover gas. (orig.) [de

  19. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  20. A technical report on the evaluation of the integrity for the TIG welded spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Yoo, Ho Sik; Lww, Chang Woo

    1994-07-01

    The spacer grid, which supports fuel rods, guide thimble and instrumentation tube, is classified into two types according to their strap material,.ie. inconel and zircaloy spacer grid. KOFA fuel of 14 x 14 and 17 x 17 type has seven and eight spacer grid respectively. Zircaloy spacer grid is assembled by straps whose cross points are welded by TIG welding method. This technical report provides to give some information about structure and function of the spacer grid and the basis and characteristic of the TIG welding method. A series of test which is conducted to evaluate the integrity of TIG welded zircaloy spacer grid and their results have been also studied. (Author) 18 refs., 23 figs., 3 tabs

  1. A technical report on the evaluation of the integrity for the TIG welded spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Yoo, Ho Sik; Lww, Chang Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The spacer grid, which supports fuel rods, guide thimble and instrumentation tube, is classified into two types according to their strap material,.ie. inconel and zircaloy spacer grid. KOFA fuel of 14 x 14 and 17 x 17 type has seven and eight spacer grid respectively. Zircaloy spacer grid is assembled by straps whose cross points are welded by TIG welding method. This technical report provides to give some information about structure and function of the spacer grid and the basis and characteristic of the TIG welding method. A series of test which is conducted to evaluate the integrity of TIG welded zircaloy spacer grid and their results have been also studied. (Author) 18 refs., 23 figs., 3 tabs.

  2. Present and future of laser welding machine; Laser yosetsuki no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Taniu, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-04-01

    This paper describes recent trends of laser welding machine. For CO2 laser welding machine, seam weld of large diameter weld pipes using a 25 kW-class machine, and plate weld of steel plate using a 45 kW-class machine are reported. For YAG laser welding machine, high-output 5.5 kW-class machines are commercialized. Machines with slab structure of plate-like YAG chrystal have been developed which show high-oscillation efficiency and can be applied to cutting. Machines have been developed in which YAG laser output with slab structure is transmitted through GI fiber. High-speed welding of aluminum alloys can be realized by improving the converging performance. Efficiency of YAG laser can be enhanced through the time-divided utilization by switching the beam transmission path using fiber change-over switch. In the automobile industry, CO2 laser is mainly used, and a system combining CO laser with articulate robot is realized. TIG and MIG welding is often used for welding of aluminum for railway vehicles. It is required to reduce the welding strain. In the iron and steel industry, the productivity has been improved by the laser welding. YAG laser is put into practice for nuclear reactors. 5 refs., 8 figs., 1 tab.

  3. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  4. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  5. The measurement of released radionuclides during TIG-Welding and Grinding

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, A.; Lehmann, K.-H. [Technical Inspection Agency of Southern Germany (TUEV Sueddeutschland), Subdepartment Environmental Radioactivity, Munich (Germany); Reineking, A. [Isotope Laboratory for Biological and Medical Research, Georg-August-University of Goettingen, Goettingen (Germany); Eder, E. [Government of Bavaria, State Ministry for State Development and Environmental Affairs, Munich (Germany)

    2000-05-01

    The radiological relevance of the TIG welding using thoriated tungsten electrodes has recently been proved by means of different studies. As a result of this the TUEV Sueddeutschland and the University of Goettingen have carried out special investigations concerning the release of radionuclides during TIG welding. The main emphasis of these investigations were the representativity of various sampling techniques, the influence of various parameters during welding as well as the determination of activity size distributions related to the aerodynamic diameter of the inhaled aerosols. The properties of the tungsten rods are improved through the addition of radioactive thorium. We investigated the radiation exposure by handling with thoriated tungsten welding rods. We investigated the different exposure pathways and determined the specific activity in dependence to the different types of welding rods. By carrying out surveys with the users, we determined the exposure pathways for the individual exposed persons: TIG - hand-welders', TIG 'machine-welders', labourers, other persons. We measured the activity concentration of the breathing air while welding, at grinding the electrodes and by staying in the rooms where usually it's welded. The size distribution of the aerosol-attached activity was determined with several kinds of impactors. The main emphasis was the comparison of the different sampling systems at the measuring of the activity concentration of the breathing air. Selective sampling by impactors: {center_dot} Berner-impactor, stationary {center_dot} Sierra-impactor, stationary {center_dot} Anderson-Imcaktor, stationary {center_dot} Marple-impactor, personal sampler Aerosol sampling by air samplers {center_dot} 5 personal air sampler {center_dot} 2 stationary sampler, ring face {center_dot} 2 stationary sampler, open face Rn-220-Measurements {center_dot} Thoron-monitor Determination of activitys on measuring filters {center_dot} alpha

  6. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  7. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  8. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C. [Nuclear Waste Management Organization (NWMO), Toronto, Ontario (Canada); Martel, P. [Novika Solutions, La Pocatiere, Quebec (Canada)

    2015-09-15

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Axe Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  9. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  10. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  11. Low activation steels welding with PWHT and coating for ITER Test Blanket Modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2009-01-01

    Eurofer weldability is established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer Low activation steel. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, and too strong enhanced weld shape with brittle joints with δ-ferrite and pores. This process is considered only for low penetration depth (cooling plates). The other processes produce 2 families of similar results: one for Hybrid (MIG + Laser) and Laser processes, and a second one for TIG and Narrow Gap TIG processes. The first one procures less distortion and coarsened fusion zone, due to higher cooling rate. For all the welding processes, high hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with carbide precipitation. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties and high joint coefficient value. To restore mechanical properties after welding, PWHT have been developed: single step for the first family and 2 steps for the second one. Distortions of different mock-ups with and without PWHT have been managed to assess manufacturing rules and clamping devices. Welding data base has thus been established. W coating on the TBM structure has shown no strong effect on the TBM structure. (author)

  12. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  13. Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets

    Directory of Open Access Journals (Sweden)

    Ahmed Ameed Zain Al-Abideen

    2017-04-01

    Full Text Available A tungsten inert gas (TIG welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15 min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum. The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.

  14. Stress distribution in Co-Cr implant frameworks after laser or TIG welding.

    Science.gov (United States)

    de Castro, Gabriela Cassaro; de Araújo, Cleudmar Amaral; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio de Arruda

    2013-01-01

    Lack of passivity has been associated with biomechanical problems in implant-supported prosthesis. The aim of this study was to evaluate the passivity of three techniques to fabricate an implant framework from a Co-Cr alloy by photoelasticity. The model was obtained from a steel die simulating an edentulous mandible with 4 external hexagon analog implants with a standard platform. On this model, five frameworks were fabricated for each group: a monoblock framework (control), laser and TIG welding frameworks. The photoelastic model was made from a flexible epoxy resin. On the photoelastic analysis, the frameworks were bolted onto the model for the verification of maximum shear stress at 34 selected points around the implants and 5 points in the middle of the model. The stresses were compared all over the photoelastic model, between the right, left, and center regions and between the cervical and apical regions. The values were subjected to two-way ANOVA, and Tukey's test (α=0.05). There was no significant difference among the groups and studied areas (p>0.05). It was concluded that the stresses generated around the implants were similar for all techniques.

  15. Investigation of mixing and diffusion processes in hybrid spot laser-MIG keyhole welding

    International Nuclear Information System (INIS)

    Zhou, J; Tsai, H L

    2009-01-01

    In hybrid laser-MIG keyhole welding, anti-crack elements can be added into the weld pool through a filler metal in anticipation of compensating mass loss, preventing porosity formation and improving compositional and mechanical properties of the welds. Understanding the mixing and diffusion of the filler metal in the molten pool is vital to achieve these desired objectives. In this study, mathematical models and associated numerical techniques have been developed to investigate the mixing and diffusion processes in hybrid laser-MIG keyhole welding. The transient interactions between droplets and weld pool and dynamics of the melt flow are studied. The effects of key process parameters, such as droplet size (wire diameter), droplet generation frequency (wire feed speed) and droplet impinging speed, on mixing/diffusion are systematically investigated. It was found that compositional homogeneity of the weld pool is determined by the competition between the mixing rate and the solidification rate. A small-size filler droplet together with high generation frequency can increase the latitudinal diffusion of the filler metal into the weld pool, while the large-size droplet along with the low generation frequency helps to get more uniform longitudinal diffusion. Increasing the impinging velocity of the filler droplet can improve the latitudinal diffusion of the filler metal. However, a high impinging velocity can cause a lower diffusion zone in the upper part of the welds. This study provides a good foundation for optimizing the hybrid laser-MIG keyhole welding process to achieve quality welds with desired properties.

  16. Effects of different brazing and welding methods on the fracture load of various orthodontic joining configurations.

    Science.gov (United States)

    Bock, Jens J; Bailly, Jacqueline; Fuhrmann, Robert A

    2009-06-01

    The aim of this study was to compare the fracture load of different joints made by conventional brazing, tungston inert gas (TIG) and laser welding. Six standardized joining configurations of spring hard quality orthodontic wire were investigated: end-to-end, round, cross, 3 mm length, 9 mm length and 6.5 mm to orthodontic band. The joints were made by five different methods: brazing with universal silver solder, two TIG and two laser welding devices. The fracture loads were measured with a universal testing machine (Zwick 005). Data were analysed with the Mann-Whitney-Wilcoxon and Kruskal-Wallis tests. The significance level was set at Pwelding (Pwelding (826 N). No differences between the various TIG or laser welding devices were demonstrated, although it was not possible to join an orthodontic wire to an orthodontic band using TIG welding. For orthodontic purposes laser and TIG welding are solder free alternatives. TIG welding and laser welding showed similar results. The laser technique is an expensive, but sophisticated and simple method.

  17. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  18. Research on TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct

    International Nuclear Information System (INIS)

    Fang Shixiang; Lan Zhibing; Cui Quhu

    2010-01-01

    The research on TIG weld machine of the upper side ring slot of Gd-rod existent matter: seal electrical source got up difficulty; control system had graveness aging; space between was adjusted precision lowness; welding torch lay mode and structure were not in reason. carried through all around technology reconstruct: had chosen the best of TIG weld machine; designed ignite arc device, designed optics imaging device, designed tungsten mighty axis direction auto conditioning, was provided with arc slot, adopted PLC to control the whole system and realization auto control. After TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct research , provided with arc slot the first time in the Gd-rod of nuclear fuel, optimized the weld technics, improved welding line melt width and deep equality, stability, and great breadth advanced nuclear fuel product line technology and throughput. (authors)

  19. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    Science.gov (United States)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  20. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  1. Soudage hybride Laser-MAG d'un acier Hardox® Hybrid Laser Arc Welding of a Hardox® steel

    Directory of Open Access Journals (Sweden)

    Chaussé Fabrice

    2013-11-01

    Full Text Available Le soudage hybride laser-MAG est un procédé fortement compétitif par rapport aux procédés conventionnels notamment pour le soudage de fortes épaisseurs et les grandes longueurs de soudure. Il connait de ce fait un développement important dans l'industrie. La présente étude s'est portée sur la soudabilité de l'acier Hardox® par ce procédé. Un large panel de techniques de caractérisation a été employé (mesures thermiques, radiographie X, duretés Vickers, macrographie…. L'objectif étant de déterminer l'influence des paramètres du procédé sur la qualité de la soudure et d'étendre notre compréhension des phénomènes se déroulant lors de ce type de soudage. Hybrid Laser Arc Welding (HLAW technology is a highly competitive metal joining process especially when high productivity is needed and for the welding of thick plates. It is a really new technology but its implementation in industry accelerates thanks to recent improvements of high power laser equipment and development of integrated hybrid welding heads. This study focuses on weldability of Hardox® 450 steel by HLAW. Welding tests were conducted by making critical process parameters vary. Then a large panel of characterization techniques (X-Ray radiography, macroscopic examination and hardness mapping was used to determine process parameters influence on weldability of Hardox 450® Steel.

  2. Automated TIG welding system with visual sensor for repairing nuclear plants

    International Nuclear Information System (INIS)

    Inoue, Katsunori; Watanabe, Hiroshi; Kondoh, Yoshihide.

    1986-01-01

    An automated TIG welding system has been developed. This system is to be used for repairing nuclear plants, whose work environment is highly radioactive, so should have the automatic self control function and the remote controllable function. For this purpose, the visual sensor, a TV camera and an image processor, is installed and the image processing technique is applied to the all-position TIG welding system. In this system, all controls are made with microprocessors and every necessary information is displayed on the screen of the remote control unit. The excellent performance was obtained as the application of this system to the practical field. (author)

  3. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    Science.gov (United States)

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  4. Thermal Analysis and Microhardness Mapping in Hybrid Laser Welds in a Structural Steel

    Science.gov (United States)

    2003-01-01

    conditions. Via the keyhole the laser beam brings about easier ignition of the arc, stabilization of the arc welding process, and penetration of the...with respect to the conventional GMAW or GTAW processes without the need for very close fit-up. This paper will compare an autogenous laser weld to a...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017864 TITLE: Thermal Analysis and Microhardness Mapping in Hybrid Laser

  5. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  6. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  7. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    International Nuclear Information System (INIS)

    Kumar, A.; Sundarrajan, S.

    2009-01-01

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties

  8. On the Generalized Correlation Equation of Welding Current for the Tig Welding Machine Used in Nuclear Fuel Fabrication

    International Nuclear Information System (INIS)

    Umar, Efrizon

    1995-01-01

    In nuclear fuel fabrication, welding plays a very important role to join the end cap to the tube. In order to determine the welding current in TIG welding process for various materials, weld geometries and welding rates, the correlation between the welding current and the other parameters are needed. This paper presents the correlation of those parameters mentioned above. The proposed correlation was tested and produced satisfactory results. (author). 8 refs., 2 tabs., 2 figs

  9. Numerical simulation of TIG welding with filler of steel pieces of high thickness

    International Nuclear Information System (INIS)

    Carmignani, B.; Toselli, G.

    1999-01-01

    The problem of the numerical simulation of welding process with filler, in particular TIG (tungsten inert gas) with cold filler, has been approached with ABAQUS/S code. Reference has been made to some experimental models studied and prepared ad hoc in order to better know the physical phenomena involved in the TIG welding technique and to validate the computation methodologies and results obtained. This numerical simulation has been required in order to assist the fabrication development and QA for TF (toroidal field) coil case, an important component of ITER (international thermonuclear experimental reactor) machine [it

  10. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  11. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  12. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  13. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  14. 10-kW-class YAG laser application for heavy components

    Science.gov (United States)

    Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.

    2000-02-01

    The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.

  15. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  16. [Calculation and analysis of arc temperature field of pulsed TIG welding based on Fowler-Milne method].

    Science.gov (United States)

    Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang

    2012-09-01

    Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding.

  17. Examination of structure and mechanical properties of hard-to-weld metal joints obtained with the laser method

    International Nuclear Information System (INIS)

    Czujko, T.; Przetakiewicz, W.; Jozwiak, S.; Hoffman, J.; Kalita, W.

    1995-01-01

    Metal joints of stainless of type X6CrNiMoTi1722 (according to DIN) and high conductivity (HC) copper, and joints of transformer steel containing about 3.5% of silicon were obtained using metal sheets 2 mm in thickness. The microstructure and the distribution of microhardness in the area of the joint, and the changes of the strength and elongation caused by the process of laser welding were examined with reference to the properties of the native metal; and, in the case of transformer steel-joints, the effects of welding by means of the TIG method were also analyzed. A probable mechanism of the formation of the steel-copper joint was presented, the strength of which is comparable with that of copper. The superiority of laser welding over TIG welding was also demonstrated. (author). 11 refs, 4 figs, 1 tab

  18. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  19. Laser-GMA Hybrid Pipe Welding System

    Science.gov (United States)

    2007-11-01

    Investigation of varying laser power. The welded pipe is shown, with close -ups of the rootside reinforcement and macro sections...68 Figure 44. Investigation of varying laser stand-off. The welded pipe is shown, along with close -ups of backside...conventional beveled joints. With appropriate joint configuration and preparation, deep keyhole penetration provided by the laser and additional filler

  20. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China); Hunan Institute of Science and Technology, College of Mechanical Engineering, Yueyang (China); Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China)

    2017-06-15

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters. (orig.)

  1. Characterization on the Microstructure Evolution and Toughness of TIG Weld Metal of 25Cr2Ni2MoV Steel after Post Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2018-03-01

    Full Text Available The microstructure and toughness of tungsten inert gas (TIG backing weld parts in low-pressure steam turbine welded rotors contribute significantly to the total toughness of the weld metal. In this study, the microstructure evolution and toughness of TIG weld metal of 25Cr2Ni2MoV steel low-pressure steam turbine welded rotor under different post-weld heat treatment (PWHT conditions are investigated. The fractography and microstructure of weld metal after PWHT are characterized by optical microscope, SEM, and TEM, respectively. The Charpy impact test is carried out to evaluate the toughness of the weld. The optical microscope and SEM results indicate that the as-welded sample is composed of granular bainite, acicular ferrite and blocky martensite/austenite (M-A constituent. After PWHT at 580 °C, the blocky M-A decomposes into ferrite and carbides. Both the number and size of precipitated carbides increase with holding time. The impact test results show that the toughness decreases dramatically after PWHT and further decreases with holding time at 580 °C. The precipitated carbides are identified as M23C6 carbides by TEM, which leads to the dramatic decrease in the toughness of TIG weld metal of 25Cr2Ni2MoV steel.

  2. Advantages and successful use of TIG narrow-gap welding

    International Nuclear Information System (INIS)

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  3. Weld defects analysis of 60 mm thick SS316L mock-ups of TIG and EB welds by ultrasonic inspection for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    The present paper reports the weld quality inspections carried with 60 mm thick AISI welds of SS316L. The high thickness steel plates requirement is due to the specific applications in case of advanced fusion reactor structural components like vacuum vessel and others. Different kind welds are proposed for the thick plate joints like Tungsten Inert Gas (TIG) welding, Electron beam welding as per stringent conditions (like very low distortions and residual stresses) for the vacuum vessel fabrication. Mock-ups of laboratory scale welds are fabricated by TIG (multi-pass) and EB (double pass) process techniques and different weld quality inspections are carried by different NDT tests. The welds are examined with Liquid penetrant examination to check sub surface cracks/discontinuities towards the defects observation

  4. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, M.; Salas, F.; Carcel, F.J.; Perales, M.; Sanchez, A.

    2010-07-01

    This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal. (Author). 12 refs.

  5. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    Science.gov (United States)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  6. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  7. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  8. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  9. Effect of Cryogenic Treatment on Sensitization of 304 Stainless Steel in TIG Welding

    Science.gov (United States)

    Singh, Rupinder; Slathia, Ravinder Singh

    2016-04-01

    Stainless steel (SS) is sensitized by a thermal treatment in the range of 400-850 °C and inter-granular attack would occur upon subsequent exposure to certain media. In many practical situations, such as welding, sensitization is best studied by continuous cooling through the sensitizing temperature range wherein the variables are the peak temperature reached and the cooling rate in contrast to temperature and time of the isothermal hold which has been the customary practice. There are also various methods of controlling the inter-granular corrosion viz. lowering the carbon content, adding stabilizers and applying solution heat treatment but all these methods are either costly or difficult to apply. This study is focussed on the effect of cryogenically treated tungsten electrode of TIG welding on the sensitization behaviour of 304SS by taking into consideration the weld properties (like: hardness, tensile strength, percentage elongation and micro-structure). The parameters of significance are current, pulse frequency and gas flow rate. Further the study suggested that the results of non cryo treated electrode were better than the treated one on sensitization of welded joints during TIG welding within the range of selected parameters.

  10. Neutron and synchrotron measurements of residual strain in TIG welded aluminium alloy 2024

    International Nuclear Information System (INIS)

    Owen, R.A.; Preston, R.V.; Withers, P.J.; Shercliff, H.R.; Webster, P.J.

    2003-01-01

    Tungsten inert gas (TIG) welding is one method of joining aluminium alloys with potential application in the aerospace industry. However, for it to be seriously considered as an alternative to mechanical fasteners the interrelated problems of residual stress and distortion need to be addressed. In this paper neutron, laboratory and synchrotron X-ray diffraction methods are used to provide non-destructive information about the residual stress field in TIG-welded 2024 Al alloy. The results compare well despite the differing penetration and sampling volumes associated with each technique. It is found that the magnitudes of the tensile longitudinal stresses decrease along the plate due to progressive heating up of the plate ahead of the arc during welding, so that steady-state conditions are not achieved. Comparison of the data with a finite element model indicates that softening of the heat-affected region must be included to simulate the resulting stress field. The FE model is found to be in good agreement with the data especially in the vicinity of the weld slope-out

  11. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  12. Automatic TIG-welding in fabrication and repair of power plant. Chapter 4

    International Nuclear Information System (INIS)

    Bromwich, R.A.C.

    1978-01-01

    In the power plant industry many of the tube-to-tubeplate (or tube-to-header) welds and many tube-to-tube welds require the TIG process. This welding process and the associated technology have been developed for a wide range of applications covering both production and repair of power plant and ancillary equipment. It is often necessary, and usually preferred, to automate the process. The application of pulsing extends the range to more difficult materials and marginal thicknesses. The development and application of the process over the past few years is described. The mechanised equipment may be divided into four main categories: bore welding, seal welding, orbital welding, and special equipment. (U.K.)

  13. Laser-GMA Hybrid Pipe Welding System

    National Research Council Canada - National Science Library

    Reutzel, Edward W; Kern, Ludwig; Sullivan, Michael J; Tressler, Jay F; Avalos, Juan

    2007-01-01

    The combination of laser welding with conventional gas metal arc welding technology offers substantial increases in production rate of joining pipe through single-pass joining compared to multi-pass...

  14. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    Science.gov (United States)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  15. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  16. Strength evaluation of jointed parts between ODS cladding and end plug by means of alternative welding method. Research report

    International Nuclear Information System (INIS)

    Hatakeyama, Koichi; Mizuta, Syunji; Fujiwara, Masayuki; Ukai, Shigeharu

    2001-12-01

    For the purpose of urgently discerning the applicability of ODS cladding tube to the long life core of the fast reactors, the irradiation test using Russian fast reactor BOR-60 is planned. In this irradiation test, TIG welding or laser welding will be applied as welding method of ODS cladding with end plug. In this report, applicability of alternative welding method, i.e., TIG welding, laser welding, and also electron beam welding and 3 kinds of brazing diffusion bonding technique was evaluated. In addition, bending test and internal creep rupture test of the samples which were welded by laser and TIG welding were carried out. Following results were obtained in this study. (1) Tensile strength of laser welding test specimens with the highest energy density is most excellent in the welding process (over 90% of the base metal strength). (2) In the brazing filler metal, the tensile strength of the nickel brazing was most excellent (over 84% of the base metal strength). (3) In the bending test of laser and TIG welded test specimens, the crack was generated in circumferential direction of weld zone, which relatively corresponds to small bending angle. (4) As result of internal creep rupture test at 700degC, cladding itself was ruptured in the high stress region, whereas, weld zone was ruptured in the low stress level. (author)

  17. Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process

    International Nuclear Information System (INIS)

    Depradeux, L.; Julien, J.F.

    2004-01-01

    In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone (HAZ) during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated. When a melted zone is created, the thermal simulation reproduce well the temperature field in the upper face of the disk, but the size of the weld pool is not correctly rated, as fluid flows are not taken into account. Despite this fact, the general structural behavior is well represented by simulation

  18. Effect of current and speed on porosity in autogenous Tungsten Inert Gas (TIG) welding of aluminum alloys A1100 butt joint

    Science.gov (United States)

    Milyardi, Indra; Sunar Baskoro, Ario

    2018-04-01

    Autogenous Tungsten Inert Gas (TIG) welding has been conducted on aluminum alloy A1100. The purpose of this research is to determine the proper current and speed of autogenous TIG welding with butt joint pattern. Variations on welding current are 150 A, 155 A, and 160 A with the variations on welding speed are 1 mm/seconds, 1.1 mm/seconds, 1.2 mm/seconds. The welded results were tested using non-destructive test (NDT) method using X-Ray radiography. After the test, it is found that the appropriate current for the best result without porosity can be achieved using the welding parameter of welding current of 160 A and the welding speed of 1.1 mm seconds.

  19. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  20. The narrow-gap TIG welding concerns the electric power plants manufacturers

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  1. The characteristic of twin-electrode TIG coupling arc pressure

    International Nuclear Information System (INIS)

    Leng Xuesong; Zhang Guangjun; Wu Lin

    2006-01-01

    The coupling arc of twin-electrode TIG (T-TIG) is a particular kind of arc, which is achieved through the coupling of two arcs generated from two insulated electrodes in the same welding torch. It is therefore different from the single arc of conventional TIG in its physical characteristics. This paper studies the distribution of T-TIG coupling arc pressure, and analyses the influences of welding current, arc length, the distance between electrode tips and electrode shape upon arc pressure on the basis of experiment. It is expected that the T-TIG welding method can be applied in high efficiency welding according to its low arc pressure

  2. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  3. Intakes of thorium while using thoriated tungsten electrodes for TIG welding.

    Science.gov (United States)

    Ludwig, T; Schwass, D; Seitz, G; Siekmann, H

    1999-10-01

    Thoriated electrodes are used in TIG welding. TIG welders, along with persons who grind thoriated electrodes and persons located near relevant welding and grinding sites, might be at risk of thorium intake. The isotopes of radiological relevance are 232Th, 230Th, and 228Th. The studies described in the literature do not provide a consistent picture of the actual hazards, and changes in European and German radiological protection laws have now made it necessary to determine the risks. To accomplish this, a field test was conducted under real working conditions in 26 different welding shops. The airborne activity generated through welding, and through grinding of electrodes, was measured using personal air samplers. Stationary samplers were also used. The filters' samples were evaluated by means of direct alpha spectrometry with proportional counting and by means of gamma spectrometry following neutron activation. The results clearly showed that considerable intake can occur during both alternating-current welding and electrode grinding, if no suction systems are used. The range of 232Th intakes to welders were estimated from 0.1 Bq y(-1) to 144 Bq y(-1) during welding and from 0.02 Bq y(-1) to 30.2 Bq y(-1) during grinding. In 6 of the 26 cases the recent annual limit on intake derived from the most recent ICRP publications was exceeded--in the worst case it was exceeded by a factor of 10--if it is assumed that the persons studied were not exposed workers (not routinely monitored for radiation exposure). When the significantly more restrictive German limits are applied, the amounts by which the limits were exceeded were even greater. Because many qualified welders have very long careers, the risks can thus be considerable. The paper also discusses parameters that influence exposure, and it presents a catalogue of recommended measures for dosage reduction.

  4. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  5. TIG welding of 22-05 duplex stainless steels (Uranus 45 N and Avesta). Microstructural studies and mechanical properties

    International Nuclear Information System (INIS)

    Gomez de Salazar, J.M.; Urena, A.; Cobollo, M.; Barranco, V.; Alvarez, M.J.

    1998-01-01

    TIG welding of two different duplex stainless steels is carried out. Are-discharge on base-material plates by means of the TIG technique without filler metal and varying the energetic conditions (E.N.A.) has been performed. A comparative study concerning the microstructural evolution as well as mechanical properties is carried out. The relation between hardness profiles, the microstructural variations and the ferrite δ concentration is established. Further, the above mentioned properties are related to the E.N.A. for each welded joint. (Author) 8 refs

  6. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  7. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  8. Prediction Analysis of Weld-Bead and Heat Affected Zone in TIG welding using Artificial Neural Networks

    Science.gov (United States)

    Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.

    2018-04-01

    TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.

  9. Soldagem de um aço inoxidável ferrítico com o processo A-TIG Ferritic stainless steel welding with the A-TIG process

    Directory of Open Access Journals (Sweden)

    Alessandra Gois Luciano de Azevedo

    2009-03-01

    Full Text Available O processo de soldagem TIG com fluxo (processo A-TIG apresenta como principal vantagem a possibilidade de se obter uma maior penetração do cordão de solda empregando os mesmos parâmetros de soldagem do processo TIG convencional. Diversos estudos mostram a influência dos fluxos ativos sobre as características geométricas das soldas em aços inoxidáveis austeníticos, porém pouco se sabe sobre a influência deste processo nas características geométricas e metalúrgicas de cordões de solda em aços inoxidáveis ferríticos. Neste trabalho são aplicados diferentes tipos de fluxo na soldagem de aço inoxidável ferrítico com o objetivo de verificar possíveis influências no perfil do cordão de solda, no seu aspecto visual, na microestrutura, na dureza da zona fundida e na resistência ao impacto (ensaio Charpy. As soldagens "bead-on-plate" foram realizadas sem metal de adição. Foram utilizados seis tipos de fluxo, sendo um óxido elaborado em laboratório (TiO2 e cinco fluxos comerciais. Os resultados mostraram que a utilização do fluxo permite um aumento na penetração com mudanças significativas no aspecto do cordão de solda. Verificou-se ainda que a microestrutura e a dureza do cordão de solda do aço estudado não foram afetadas pelo tipo de fluxo utilizado, com a microestrutura analisada em microscópio óptico. O aço em estudo mostrou um alto grau de fragilidade à temperatura ambiente.The A-TIG welding process presents as main advantage the possibility of increase in the penetration depth using the same parameters as conventional TIG welding. Many researchers show the influence of the active flux on the weld geometry in austenitic stainless steel, however little it is known of the influence of this process in the weld fillet shape and metallurgic characteristics of the weld fillet in ferritic stainless steel. In this work different types of flux are applied with the objective to verify possible influences on the weld

  10. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    Science.gov (United States)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  11. Etude expérimentale du soudage par laser YAG de l'alliage base nickel Hastelloy X Experimental study of YAG laser welding of nickel base alloy Hastelloy X

    Directory of Open Access Journals (Sweden)

    Graneix Jérémie

    2013-11-01

    Full Text Available Le procédé de soudage laser YAG est envisagé pour remplacer le procédé de soudage TIG manuel pour la réalisation de pièces de turboréacteur en alliage nickel-chrome-molybdène Hastelloy X. Cette étude expérimentale a permis de définir un domaine de soudabilité de cet alliage répondant aux critères spécifiques du secteur aéronautique. The YAG laser welding process is contemplated to replace the manual TIG welding process for the production of parts of turbojet in Hastelloy X. This experimental study has identified the field of weldability of this alloy to meet the specific requirements of the aerospace industry.

  12. Pulsed TIG welding in the fabrication of nuclear components and structures

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1979-01-01

    TIG welding is an important welding technique in nuclear plant fabrication for the welding of critical components and structures where a high level of weld integrity is demanded. Whilst the process is ideally suited to precision welding, since the arc is a small intense heat source, it has proved to be somewhat intolerant to production variations in 'difficult' applications, such as tube to tube plate welding and orbital tube welding with tube in the fixed position. Whilst the problems directly associated with this intolerance (of the welding process) are less frequently observed when used manually, difficulties are experienced in fully mechanised welding operations particularly when welding to a relatively rigid approved procedure. Pulsing of the welding current was developed as a technique to achieve greater control of the behaviour of the weld pool. Instead of moving the weld pool in a continuous motion around the joint, welding was conducted intermittently in the form of overlapping spots. This technique, which offers significant advantages over continuous current welding has been exploited in nuclear fabrication for welding those components which demand a high level of weld quality. In this paper, the essential features of this technique are described and, in indicating its advantages, examples have been drawn from recent experiences on the welding of two types of joint for the Advanced Gas Cooled Reactor, a tube sheet and a butt joint in the G Position. (author)

  13. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  14. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  15. Development of a one side automatic TIG arc welding system in horizontal position for annular vessels in nuclear fuel cycle factory

    International Nuclear Information System (INIS)

    Ohtsuka, Takao; Ohsawa, Morihiko; Nakashima, Hiroyuki; Habuta, Susumu; Hori, Tomiji; Fujiwara, Katsusi; Kitaguchi, Yoshihisa.

    1995-01-01

    Various annular vessels are planned to be equipped as a part of the plutonium refining facility in the nuclear fuel cycle factory. For manufacturing the high quality vessels, a one side automatic TIG arc welding system which is applied to the circumferencial joints in horizontal welding position have been completed. The automatic welding system is confirmed to be effective for improving the joint qualities and saving the manufacturing cost by our Mockup test. The main points of our welding system are as follows. (1) Low pulsed TIG arc welding process with a mixed shielding gas of Ar+5%H 2 is being employed. (2) Mechanical seam trucking system for the carriage and welding torch is equipped in the welding machine. (3) Arc voltage controlling system is employed for stabilizing the welding condition. (4) Magnetic wheels are equipped at the carriage for travelling without rails. The weight of this welding machine is designed to be less than 15 kg. (author)

  16. Re-weldability tests of irradiated Inconel 625 by TIG welding method

    International Nuclear Information System (INIS)

    Tsuchiya, K.; Shimizu, M.; Kawamura, H.; Matsuda, F.; Kalinin, G.

    1998-01-01

    Inconel 625 is one of the possible materials for the vacuum vessel (VV) and for the in-vessel components of fusion reactors where high strength and high electrical resistance are required. In particular, Inconel 625 is used for the VV of JET and for flexible branch pipe lines in the ITER design. One of the most important issues for their applications is its re-weldability between un-irradiated and irradiated materials. This has a large impact on the design of in-vessel components. In this study, re-weldability of un-irradiated and/or irradiated Inconel 625 that has been welded by the tungsten inert gas (TIG) welding process has been examined, and effect of helium generation amount on mechanical properties of the weld joint has been discussed. (authors)

  17. A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hun; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2017-04-15

    In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a 2nd regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

  18. A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding

    International Nuclear Information System (INIS)

    Jung, Sung Hun; Kim, Jae-Woong

    2017-01-01

    In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a 2nd regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

  19. Medium- and high-pressure gauges and transducers produced by laser welding technology

    Science.gov (United States)

    Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe

    1998-07-01

    Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been

  20. Welding of zircalloy-2 and zircalloy-4 by CO2 laser and by TIG

    International Nuclear Information System (INIS)

    Ram, V.

    1990-01-01

    This study deals with the welding of zircaloy-2 and zircaloy-4 by means of two techniqes, namely tungsten inert gas welding and CO 2 laser welding. Suitable devices and jigs were developed and manufactured to allow the welding of flat specimens and cylindrical specimens. The optimal welding parameters for the two welding methods were determined. The quality of the welds was determined by tensile strength tests at room temperature and by determining the corrosion resistance to steam at temprature of 450 deg C, 550 deg C, and at 650 deg C. The influence of the weld on the microstructure of the material, on its composition and its crystallographic structure was investigated. Analysis of fracture surfaces of the tensile specimens was carried out with a scanning electron microscope. (author)

  1. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz

    International Nuclear Information System (INIS)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-01-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  2. [Occupational exposure of welders to ultraviolet and "blue light" radiation emitted during TIG and MMA welding based on field measurements].

    Science.gov (United States)

    Wolska, Agnieszka

    2013-01-01

    The aim of the study was to present the results of welders' occupational exposure to "blue light" and UV radiation carried out at industrial workstations during TIG and MMA welding. Measurements were performed at 13 workstations (TIG welding: 6; MMA welding: 7), at which different welding parameters and materials were used. The radiation level was measured using a wide-range radiometer and a set of detectors, whose spectral responses were adequately fit to particular hazard under study. The measurement points corresponded with the location of eye and hand. The highest values of eye irradiance were found for aluminum TIG welding. Effective irradiance of actinic UV was within the range E(s) = 7.79-37.6 W/m2; UVA total irradiance, E(UVA) = 18-53.1 W/m2 and effective blue-light irradiance E(B) = 35-67 W/m2. The maximum allowance time ranged from 1.7 to 75 s, which means that in some cases even unintentional very short eye exposure can exceed MPE. The influence of welded material and the type of electrode coating on the measured radiation level were evidenced. The exceeded value of MPE for photochemical hazard arising for the eyes and skin was found at all measured workstations. Welders should use appropriately the eye and face protective equipment and avoid direct staring at welding arc when starting an arc-welding operation. Besides, the lack of head and neck skin protection can induce acute and chronic harmful health effects. Therefore, an appropriate wear of personal protective equipment is essential for welders' health.

  3. Proposta de roteiro para a determinação das variáveis de soldagem do Processo TIG pulsado aplicado à soldagem de chapas finas Proposal of roadmap for determining the variables of pulsed TIG welding process applied to welding of thin plates

    Directory of Open Access Journals (Sweden)

    Tiago Vieira da Cunha

    2013-03-01

    Full Text Available Na soldagem TIG pulsada a corrente varia entre dois níveis bem definidos de energia numa determinada frequência, sendo, portanto, necessário a regulagem de um conjunto de variáveis composto pela corrente de pulso, tempo de pulso, corrente de base, tempo de base, além da velocidade de soldagem. Entretanto, apesar de ser uma técnica tão amplamente difundida, na prática estas variáveis de soldagem muitas vezes são reguladas de forma arbitrária. Isto pode conduzir ao uso ineficiente da pulsação da corrente quando considerado o resultado final da solda, bem como nos aspectos de produtividade. Diante desta carência, este trabalho tem por objetivo apresentar um roteiro desenvolvido com o intuito de suprir a necessidade prática de se estabelecer critérios para auxiliar a determinação das variáveis da soldagem TIG pulsada, tomando como premissa a largura desejada para o cordão de solda final, a sobreposição entre os pontos de solda que compõem o cordão e a velocidade de soldagem. Por fim, é apresentada uma aplicação deste roteiro na soldagem "bead on plate" de chapas de aço inox com 1,2 mm de espessura.In pulsed TIG welding the current varies between two well-defined energy levels in a given frequency being, therefore, necessary to the adjustment of a set of variables consisting of the peak current, peak time, background current, background time and the welding speed. However, despite being a technique so widespread, in practice these welding variables are often regulated arbitrarily. This can lead to inefficient use of the pulsed current regarding the end result of the weld as well as in the aspects of productivity. Given this shortage, this paper aims to present a roadmap developed in order to meet the practical need to establish criteria to assist in the determination of pulsed TIG welding variables, taking as its premise the desired width of the weld bead, overlap between the weld points comprising the weld bead and the

  4. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  5. Investigation on Nd:YAG laser weldability of zircaloy-4 end cap closure for nuclear fuel elements

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yung; Yang, Myung Seung

    2001-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulty in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed. The effects of irradiation on the properties of the laser apparatus were also being studied

  6. Study of hybrid laser / MAG welding process: characterization of the geometry and the hydrodynamics of the melt pool and development of a 3D thermal model

    International Nuclear Information System (INIS)

    Le Guen, E.

    2010-11-01

    Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)

  7. Microstructure and mechanical properties of the TIG welded joints of fusion CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Zhizhong, E-mail: zhizhongjiang2006@yahoo.com.c [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, Beijing 100083 (China); Ren Litian; Huang Jihua; Ju Xin; Wu Huibin [School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road, Beijing 100083 (China); Huang Qunying; Wu Yican [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2010-12-15

    The CLAM steel plates were butt-welded through manual tungsten inert gas welding (TIG) process, and the following post-welding heat treatment (PWHT) at 740 {sup o}C for 1 h. The microstructure and mechanical properties of the welded joints were measured. The results show that both hardening and softening occur in the weld joints before PWHT, but the hardening is not removed completely in the weld metal and the fusion zone after PWHT. In as-welded condition, the microstructure of the weld metal is coarse lath martensite, and softened zone in heat-affected zone (HAZ) consists of a mixture of tempered martensite and ferrite. After PWHT, a lot of carbides precipitate at all zones in weld joints. The microstructure of softened zone transforms to tempered sorbite. Tensile strength of the weld metal is higher than that of HAZ and base metal regardless of PWHT. However, the weld metal has poor toughness without PWHT. The impact energy of the weld metal after PWHT reaches almost the same level as the base metal. So it is concluded that microstructure and mechanical properties of the CLAM steel welded joints can be improved by a reasonable PWHT.

  8. Effect of flux powder SiO2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    optimal weld pool geometry in the tungsten inert gas (TIG) welding of ..... Flux assisted gas tungsten arc and laser welding of titanium with cryolite containing fluxes: arc spectroscopy and corrosion resistance studies, Welding Journal, Vol.

  9. Evaluation of the TIG welding mechanical behavior in AISI 316 tubes for fuel rods

    International Nuclear Information System (INIS)

    Bittencourt, M.S.Q.; Carvalho Perdigao, S. de

    1985-10-01

    The effect of service temperature, the mechanical resistance and the creep behaviour of a steel which is intendend to be used as fuel rods in Nuclear Reactors was investigated. The tests were performed in seamless tubes of austenitic stainless steel, AISI 316, 20% cold worked, TIG welded. (Author) [pt

  10. Multipurpose ANSYS FE procedure for welding processes simulation

    Energy Technology Data Exchange (ETDEWEB)

    Capriccioli, Andrea [ENEA CR Frascati, Via Enrico Fermi 45, 00044 Frascati (Italy); Frosi, Paolo [ENEA CR Frascati, Via Enrico Fermi 45, 00044 Frascati (Italy)], E-mail: frosi@frascati.enea.it

    2009-06-15

    ANSYS FE procedures and 3D models for thermal and mechanical simulation of both Laser and TIG welding processes are presented. The special features are the applicability to a non uniform gap and the use of a fast iterative procedure that assures the constancy of the fixed maximum temperature along the single pass and between each pass and the following, apart from their shapes and sizes. All the thermal and mechanical material properties of both INCONEL 625 and AISI 316 are described till to liquid phase; convection and radiation effects are considered. The 3D ANSYS models use both brick and non linear contact elements and elastic and elastic-plastic materials. Two full simulation are presented: a laser welding test (taken from ENEA) and a TIG welding one (source W7-X) with the root seam plus 14 passes; thermal and mechanical results are reported in the two cases and for the latter an extensive sensitivity analysis, changing mesh size of the filling material, welding speed and material properties, is explained with results and comparisons. This large sensitivity analysis has been executed for TIG welding because in this case (multi-pass welding) the reduction of CPU time is a strong requirement; but some conclusions are helpful for laser welding too. The mechanical calculation results very sensitive to the mesh shape: this fact implies very fine and regular meshes. The specimens are first restrained and then welded with the foreseen welding procedure; after that it is released and the final linear and angular shrinkages are calculated. The ANSYS birth and death procedure is used and the CPU time was strongly reduced.

  11. Multipurpose ANSYS FE procedure for welding processes simulation

    International Nuclear Information System (INIS)

    Capriccioli, Andrea; Frosi, Paolo

    2009-01-01

    ANSYS FE procedures and 3D models for thermal and mechanical simulation of both Laser and TIG welding processes are presented. The special features are the applicability to a non uniform gap and the use of a fast iterative procedure that assures the constancy of the fixed maximum temperature along the single pass and between each pass and the following, apart from their shapes and sizes. All the thermal and mechanical material properties of both INCONEL 625 and AISI 316 are described till to liquid phase; convection and radiation effects are considered. The 3D ANSYS models use both brick and non linear contact elements and elastic and elastic-plastic materials. Two full simulation are presented: a laser welding test (taken from ENEA) and a TIG welding one (source W7-X) with the root seam plus 14 passes; thermal and mechanical results are reported in the two cases and for the latter an extensive sensitivity analysis, changing mesh size of the filling material, welding speed and material properties, is explained with results and comparisons. This large sensitivity analysis has been executed for TIG welding because in this case (multi-pass welding) the reduction of CPU time is a strong requirement; but some conclusions are helpful for laser welding too. The mechanical calculation results very sensitive to the mesh shape: this fact implies very fine and regular meshes. The specimens are first restrained and then welded with the foreseen welding procedure; after that it is released and the final linear and angular shrinkages are calculated. The ANSYS birth and death procedure is used and the CPU time was strongly reduced.

  12. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    Energy Technology Data Exchange (ETDEWEB)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Cao, X., E-mail: Xinjin.cao@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Pham, X-T., E-mail: Tan.pham@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); Wanjara, P., E-mail: Priti.wanjara@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Fihey, J.L., E-mail: jean-luc.fihey@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada)

    2017-01-15

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triple junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.

  13. Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Jan, E-mail: jan.karlsson@ltu.se [Lulea University of Technology, Dept. TVM, SE-971 87 Lulea (Sweden); Norman, Peter; Kaplan, Alexander F.H. [Lulea University of Technology, Dept. TVM, SE-971 87 Lulea (Sweden); Rubin, Per [Rubin-Materialteknik, Gullhoenevaegen 13 97596 Lulea (Sweden); Lamas, Javier [Lulea University of Technology, Dept. TVM, SE-971 87 Lulea (Sweden); Centro Tecnoloxico do Naval Galego, Ferrol 15590 (A Coruna) (Spain); Yanez, Armando [Centro de Investigacions Tecnoloxicas, Universidade da Coruna, Ferrol 15403 (A Coruna) (Spain)

    2011-06-15

    Two different kinds of undercut were identified when laser hybrid welding hot rolled HSLA-steel in either the as-rolled condition or with the top surface mill scale removed. The presence of mill scale on the steel surface was found to give a sharp angled undercut combined with a sharp oxide inclusion at the edge of the weld which would have the same mechanical effect as a crack in this position. Removal of the surface oxides before welding resulted in the elimination of the oxide inclusions and a more rounded undercut geometry indicative of superior mechanical properties, particularly fatigue life. The mechanisms of the formation of both types of undercut have been analysed by high speed photography and SEM.

  14. Effect of current and travel speed variation of TIG welding on microstructure and hardness of stainless steel SS 316L

    Science.gov (United States)

    Jatimurti, Wikan; Abdillah, Fakhri Aulia; Kurniawan, Budi Agung; Rochiem, Rochman

    2018-04-01

    One of the stainless steel types that widely used in industry is SS 316L, which is austenitic stainless steel. One of the welding methods to join stainless steel is Tungsten Inert Gas (TIG), which can affect its morphology, microstructure, strength, hardness, and even lead to cracks in the weld area due to the given heat input. This research has a purpose of analyzing the relationship between microstructure and hardness value of SS 316L stainless steel after TIG welding with the variation of current and travel speed. The macro observation shows a distinct difference in the weld metal and base metal area, and the weld form is not symmetrical. The metallographic test shows the phases that formed in the specimen are austenite and ferrite, which scattered in three welding areas. The hardness test showed that the highest hardness value found in the variation of travel speed 12 cm/min with current 100 A. Welding process and variation were given do not cause any defects in the microstructure, such as carbide precipitation and sigma phase, means that it does not affect the hardness and corrosion resistance of all welded specimen.

  15. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  16. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  17. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  18. The hardiness of numerical simulation of TIG welding. Application to stainless steel 316L structures

    International Nuclear Information System (INIS)

    El-Ahmar, Walid; Jullien, Jean-Francois; Gilles, Philippe; Taheri, Said; Boitout, Frederic

    2006-01-01

    The welding numerical simulation is considered as one of the mechanics problems the most un-linear on account of the great number of the parameters required. The analysis of the hardiness of the welding numerical simulation is a current questioning whose expectation is to specify welding numerical simulation procedures allowing to guarantee the reliability of the numerical result. In this work has been quantified the aspect 'uncertainties-sensitivity' imputable to different parameters which occur in the simulation of stainless steel 316L structures welded by the TIG process: that is to say the mechanical and thermophysical parameters, the types of modeling, the adopted behaviour laws, the modeling of the heat contribution.. (O.M.)

  19. Effect of welding processes on the impression creep resistance of type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasudevan, M.; Vasantharaja, P.; Sisira, P.; Divya, K.; Ganesh Sundara Raman, S.

    2016-01-01

    Type 316 LN stainless steel is the major structural material used in the construction of fast breeder reactors. Activated Tungsten Inert Gas (A-TIG) welding , a variant of the TIG welding process has been found to enhance the depth of penetration significantly during autogenous welding and also found to enhance the creep rupture life in stainless steels. The present study aims at comparing the effect of TIG and A-TIG welding processes on the impression creep resistance of type 316 LN stainless steel base metal, fusion zone and heat affected zone (HAZ) of weld joints. Optical and TEM have been used to correlate the microstructures with the observed creep rates of various zones of the weld joints. Finer microstructure and higher ferrite content was observed in the TIG weld joint fusion zone. Coarser grain structure was observed in the HAZ of the weld joints. Impression creep rate of A-TIG weld joint fusion zone was almost equal to that of the base metal and lower than that of the TIG weld joint fusion zone. A-TIG weld joint HAZ was found to have lower creep rate compared to that of conventional TIG weld joint HAZ due to higher grain size. HAZ of the both the weld joints exhibited lower creep rate than the base metal. (author)

  20. Occupational exposure of welders to ultraviolet and "blue light" radiation emitted during TIG and MMA welding based on field measuremants

    Directory of Open Access Journals (Sweden)

    Agnieszka Wolska

    2013-02-01

    Full Text Available Background: The aim of the study was to present the results of welders' occupational exposure to "blue light" and UV radiation carried out at industrial workstations during TIG and MMA welding. Materials and methods: Measurements were performed at 13 workstations (TIG welding: 6; MMA welding: 7, at which different welding parameters and materials were used. The radiation level was measured using a wide-range radiometer and a set of detectors, whose spectral responses were adequately fit to particular hazard under study. The measurement points corresponded with the location of eye and hand. Results: The highest values of eye irradiance were found for aluminum TIG welding. Effective irradiance of actinic UV was within the range Es = 7.79-37.6 W/m2; UVA total irradiance, EUVA = 18-53.1 W/m2 and effective blue-light irradiance EB = 35-67 W/m2. The maximum allowance time ranged from 1.7 to 75 s, which means that in some cases even unintentional very short eye exposure can exceed MPE. Conclusions: The influence of welded material and the type of electrode coating on the measured radiation level were evidenced. The exceeded value of MPE for photochemical hazard arising for the eyes and skin was found at all measured workstations. Welders should use appropriately the eye and face protective equipment and avoid direct staring at welding arc when starting an arcwelding operation. Besides, the lack of head and neck skin protection can induce acute and chronic harmful health effects. Therefore, an appropriate wear of personal protective equipment is essential for welders' health. Med Pr 2013;64(1:69–82

  1. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Science.gov (United States)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  2. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  3. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    Directory of Open Access Journals (Sweden)

    Anas M. Atieh

    2018-05-01

    Full Text Available Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only, high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  4. Long-term integrity of waste package final closure for HLW geological disposal, (2). Applicability of TIG welding method to overpack final closure

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sawa, Shuusuke; Aritomi, Masanori

    2005-01-01

    Overpack, a high-level radioactive waste package for geological disposal, seals vitrified waste and in line with Japan's waste management program is required to isolate it from contact with groundwater for 1,000 years. In this study, TIG (Tungsten Inert Gas) welding method, a typical arc welding method and widely used in various industries, was examined for its applicability to seal a carbon steel overpack lid with a thickness of 190 mm. Welding conditions and welding parameters were examined for multi-layer welding in a narrow gap for four different groove depths. Weld joint tests were conducted and weld flaws, macro- and microstructure, and mechanical properties were assessed within tentatively applied criteria for weld joints. Measurement and numerical calculation for residual stress were also conducted and the tendency of residual stress distribution was discussed. These test results were compared with the basic requirements of the welding method for overpack which were pointed out in our first report. It is assessed that the TIG welding method has the potential to provide the necessary requirements to complete the final closure of overpack with a maximum thickness of 190 mm. (author)

  5. Assessment of repair welding technologies of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Damages on reactor internals of stainless steels caused by stress corrosion cracking and fatigue were identified in aged BWR plants. Repair-welding is one of the practical countermeasure candidates to restore the soundness of components and structures. The project of 'Assessment of Repair welding Technologies of Irradiated Materials' has been carried out to develop the technical guideline regarding the repair-welding of reactor internals. In FY 2011, we investigated the fatigue strength of stainless steel SUS316L irradiated by YAG laser welding. Furthermore, revision of the technical guideline regarding the repair-welding of reactor internals was discussed. Diagram of tungsten inert gas (TIG) weld cracking caused by entrapped Helium was modified. Helium concentration for evaluation-free of TIG weld cracking caused by entrapped Helium was revised to 0.007appm from 0.01appm. (author)

  6. A simplified model for TIG-dressing numerical simulation

    Science.gov (United States)

    Ferro, P.; Berto, F.; James, M. N.

    2017-04-01

    Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.

  7. Welding qualification procedure for fuel rods tubes of Zr-Sn alloys by the TIG automatic process

    International Nuclear Information System (INIS)

    1984-11-01

    It is presented the requirements to be used in the Welding qualification procedure for tubes of Zr-Sn alloys, specified in the ASTM B353 regulatory guide, used in the fabrication of fuel rods PWR reactors by the automatic TIG process. (E.G.) [pt

  8. Welding feasibility study of U-shape lips at ITER Port-Plug with new laser beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Behr, W., E-mail: w.behr@fz-juelich.de; Faidel, D.; Fischer, K.; Pap, M.; Offermanns, G.

    2013-10-15

    A “Cut and weld feasibility study of U shape lips” shown on June 2007 was initial of the following investigations. A new solution for Port Plug sealing at ITER was demanded and the experience in laser beam welding of the ZAT (Central Institute of Technology) in Jülich (Research Centre Jülich) offered an alternative solution. Up to now mechanically fixed sealing or sealing by TIG welding is used with typical benefits and problems, as heat input, shrinkage or limited room for tools. New disc-laser application for tight welding (leakage rate < 10{sup −9} mbar l/s) of the sealing lips is presented in the following. Both in the metallographic investigation and by means of leakage rate investigation the suitability of the selected procedure as seal alternative at the ITER Port Plug could be pointed out. The distance between two connections can be reduced to approx. 5 mm. The presented milling process for weld seam removal offers an option additionally to laser beam cutting. Final tests with a new disc-laser source offered additional benefits concerning seam quality, process stability and seam geometry. The distance between two connections will be reduced to less than 3 mm in next investigations. Construction unit near investigations and a demo part in original size underline finally the industrial suitability of the laser-welding-process for Port-Plug sealing at ITER.

  9. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    International Nuclear Information System (INIS)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon; Oh, Seung Jin

    2010-01-01

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  10. TIG of Reduced Activation Ferrite/Martensitic Steel for the Korean ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Duck Young; Ahn, Mu Young; Yu, In Keun; Cho, Seun Gyon [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Oh, Seung Jin [KHNP, Daejeon (Korea, Republic of)

    2010-10-15

    Test Blanket Modules (TBM) will be tested in ITER to verify the capability of tritium breeding and recovery and the extraction of thermal energy suitable for the production of electricity. A Helium Cooled Solid Breeder (HCSB) TBM has been developed in Korea to accomplish these goals. Reduced Activation Ferritic/Martensitic (RAFM) steel has been chosen as the primary candidate structural material for Korean TBM. Due to the complexity of the First wall (FW) and Side wall (SW), it is necessary to develop various joining technologies, such as Hot Isostatic Pressing (HIP), Electron Beam Welding (EBW) and Tungsten Inert Gas (TIG) welding, for the successful fabrication of TBM. In this study, the mechanical properties of TIG welded RAFM steel were investigated. Various mechanical tests of TIG-welded RAFM steel were performed to obtain the optimized TIG welding process for RAFM steel

  11. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  12. Effect of welding processes and joint configuration on the residual stresses and distortion in type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.; Palanichamy, P.

    2012-01-01

    Fabrication by welding introduces significant residual stresses in the welded structure/component due to non-uniform heat distribution during heating and cooling cycle. To control, reduce, or beneficially redistribute the residual stresses in weld joints, the stress distribution needs to be known. In the present study, weld joints of 16 mm thick 316LN stainless steel were made by multi-pass TIG, A-TIG welding and combination of TIG and A-TIG welding processes with various joint configurations. While V-groove edge preparation was required for making multi-pass TIG weld joint, square-edge preparation was sufficient for making A-TIG weld joint. Ultrasonic nondestructive technique based on the critically refracted longitudinal waves (LCR waves) has been used for the quantitative surface/sub-surface residual stress measurements in the weld joints. Distortion measurements were carried out before and after welding using height gauge. A-TIG weld joint was found to exhibit significant reduction in tensile residual stresses and distortion in comparison to that of other joints. (author)

  13. Numerical simulation of TIG welding with filler of steel pieces of high thickness

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Toselli, G. [ENEA Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Innovazione

    1999-07-01

    The problem of the numerical simulation of welding process with filler, in particular TIG (tungsten inert gas) with cold filler, has been approached with ABAQUS/S code. Reference has been made to some experimental models studied and prepared ad hoc in order to better know the physical phenomena involved in the TIG welding technique and to validate the computation methodologies and results obtained. This numerical simulation has been required in order to assist the fabrication development and QA for TF (toroidal field) coil case, an important component of ITER (international thermonuclear experimental reactor) machine. [Italian] Con il codice di analisi termo-strutturale non lineare agli EF, ABAQUS/S, viene affrontato per la prima volta il problema della simulazione numerica di un processo di saldatura con materiale d'apporto, in particolare il processo di saldatura TIG (tungsten inert gas) a filo freddo. Si e' fatto riferimento ad alcuni modelli sperimentali studiati e preparati ad hoc per conoscere meglio e valutare le metodologie di calcolo adottate ed i corrispondenti risultati ottenuti. Questo tipo di simulazione e' stato richiesto per fornire alcune conoscenze preliminari, che potessero essere di aiuto e guida nelle scelte di saldatura da eseguire per la fabbricazione e la quality assurance delle casse che dovranno contenere le bobine per la creazione del campo magnetico toroidale nella macchina ITER (international thermonuclear experiemental reactor) per la fusione nucleare. In questo lavoro, sono presentati, analizzati, discussi e confrontati con le corrispondenti misure sperimentali i primi risultati ottenuti. Sono descritte e discusse anche le difficolta' incontrate, le approssimazioni fatte e la ricerca di procedure di calcolo piu' semplificate.

  14. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  15. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  16. High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, Tommi E-mail: tommi.jokinen@vtt.fi; Kujanpaeae, Veli E-mail: veli.kujanpaa@lut.fi

    2003-09-01

    Laser welding has shown many advantages over traditional welding methods in numerous applications. The advantages are mainly based on very precise and powerful heat source of laser light, which change the phenomena of welding process when compared with traditional welding methods. According to the phenomena of the laser welding, penetration is deeper and thus welding speed is higher. Because of the precise power source and high-welding speed, the heat input to the workpiece is small and distortions are reduced. Also, the shape of laser weld is less critical for distortions than traditional welds. For welding thick sections, the usability of lasers is not so practical than with thin sheets, because with power levels of present Nd:YAG lasers depth of penetration is limited up to about 10 mm by single-pass welding. One way to overcome this limitation is to use multi-pass laser welding, in which narrow gap and filler wire is applied. By this process, thick sections can be welded with smaller heat input and then smaller distortions and the process seems to be very effective comparing 'traditional' welding methods, not only according to the narrower gap. Another way to increase penetration and fill the groove is by using the so-called hybrid process, in which laser and GMAW (gas metal arc welding) are combined. In this paper, 20-mm thick austenitic stainless steel was welded using narrow gap configuration with a multi-pass technique. Two welding procedures were used: Nd:YAG laser welding with filler wire and with addition of GMAW, the hybrid process. In the welding experiments, it was noticed that both processes are feasible for welding thicker sections with good quality and with minimal distortions. Thus, these processes should be considered when the evaluation of the welding process is done for joining vacuum vessel sectors of ITER.

  17. Internal Stress Distribution Measurement of TIG Welded SUS304 Samples Using Neutron Diffraction Technique

    Science.gov (United States)

    Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta

    2008-03-01

    The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.

  18. TIG (Tungsten Inert Gas) welding; Le soudage TIG

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  19. Evaluation of weld joints properties of 60mm thick AISI 316L for fusion reactor vacuum vessel by TIG and EB welding processes

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kutner

    2016-01-01

    The present paper is focussed on the NDT examination procedures, evaluated mechanical properties; microstructure details investigated on the different welding process of Multipass TIG process (64 passes) and electron beam welding (two pass) of the AISI SS316LN plates. The characterization of mechanical properties (Tensile, Bend, Hardness and Impact) and detailed microstructure analysis have been discussed in this paper. Mechanical properties in both conditions shown higher joint efficiencies. Bend tests shown the good quality of weld and ductility behavior of the joining process. Hardening is observed in both the samples for welded zone and HAZ compared to base metal. Impact fracture results revealed the poor toughness properties for the WZ compared to HAZ and BM samples in both the cases

  20. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  1. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu, India, 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian School of Mines University, Dhanbad, Jharkhand, India, 826004 (India)

    2016-05-05

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L{sub 25} orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  2. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    International Nuclear Information System (INIS)

    Kannan, S.; Senthil Kumaran, S.; Kumaraswamidhas, L.A.

    2016-01-01

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L_2_5 orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  3. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  4. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    Science.gov (United States)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  5. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  6. ITER lip seal welding and cutting developments

    International Nuclear Information System (INIS)

    Levesy, B.; Cordier, J.J.; Jokinen, T.; Kujanpää, V.; Karhu, M.; Le Barbier, R.; Määttä, T.; Martins, J.P.; Utin, Y.

    2015-01-01

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  7. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  8. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  9. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  10. The Effects of Nitrogen Gas on Microstructural and Mechanical Properties of TIG Welded S32205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Aziz Barış Başyiğit

    2018-04-01

    Full Text Available Duplex stainless steels are gaining greater interest due to their increasing amounts of application fields. Accordingly, there is a need for awareness of problems associated with improper microstructural distributions such as δ-ferrite (delta-ferrite, austenite and other important intermetallic phases that may form in these steel weldments. Since δ-ferrite versus austenite ratio profoundly influences corrosion and mechanical properties, optimum δ-ferrite ratios must be kept approximately within 35–65 vol % and balance austenite to maintain satisfactory corrosion and mechanical properties on welding of these steels. Cooling rates of welds and alloying elements in base metal are the major factors that determine the final microstructure of these steels. In this work, 3 mm thickness of 2205 duplex stainless-steel plates were TIG (Tungsten Inert Gas welded with various amounts of nitrogen gas added to argon shielding gas. Specimens were joined within the same welding parameters and cooling conditions. As nitrogen is a potential austenite stabilizer and an interstitial solid solution hardener, the effects of nitrogen on mechanical properties such as hardness profiles, grain sizes and microstructural modifications are investigated thoroughly by changing the welding shielding gas compositions. Increasing the nitrogen content in argon shielding gas also increases the amount of austenitic phase while δ-ferrite ratios decreases. Nitrogen spherodized the grains of austenitic structure much more than observed in δ-ferrite. The strength values of specimens that welded with the addition of nitrogen gas into the argon shielding gas are increased more in both austenitic and delta-ferritic structure as compared to specimens that welded with plain argon shielding gas. The addition of 1 vol % of nitrogen gas into argon shielding gas provided the optimum phase balance of austenite and δ-ferrite in S32205 duplex stainless-steel TIG-welded specimens.

  11. Estudio comparativo de la productividad y calidad obtenidas en la soldadura de tubos de calidad T9 empleados en el sector petroquímico, mediante los procesos TIG, HW-TIG y PAW Comparative study of productivity and quality obtained in tube welding quality T9 employees in the petrochemical industry, through TIG, HW-TIG and PAW processes

    Directory of Open Access Journals (Sweden)

    César García González

    2012-09-01

    Full Text Available Tradicionalmente, la fabricación soldada de tuberías de acero Cr-Mo empleadas en serpentines de hornos para la industria petroquímica se ha venido realizando de forma masiva mediante procesos de baja productividad, principalmente TIG para la pasada de raíz y SMAW para las pasadas de relleno, ambos manuales. En este estudio se muestran los resultados de la investigación realizada por el Centro Tecnológico AIMEN, en relación al empleo de tecnologías de alto rendimiento, concretamente TIG, HW-TIG y PAW robotizadas, aplicadas a los mismos materiales y productos. De este modo se calculan y comparan cuatro índices de productividad: Tiempo de Soldadura, Tasa de Deposición, Material Depositado y Volumen de Gas Consumido. El objetivo del estudio es contribuir a la reducción de los tiempos de producción, de los costes de fabricación, y a la mejora de la calidad del producto.Traditionally, the manufacture of welded Cr-Mo steel pipes used in furnace coils for petrochemical industry has been carried out on a massive scale by low productivity processes, mainly TIG for root pass and SMAW for layers of filling run, both of them manuals. This study presents the results of a research, conducted by AIMEN Technology Centre, related to the use of high performance technologies, specifically robotic processes such as TIG, TIG-HW and PAW, applied to the same materials and products. Thus, four productivity ratios have been calculated and compared: welding time, deposition rate, deposited material and volume of consumed gas. The aim of the study is to contribute to the reduction of the production time, manufacturing costs and to the improvement of the product quality.

  12. Investigation and Optimization of Disk-Laser Welding of 1 mm Thick Ti-6Al-4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2015-01-01

    Full Text Available Ti-6Al-4V joints are employed in nuclear engineering, civil industry, military, and space vehicles. Laser beam welding has been proven to be promising, thanks to increased penetration depth and reduction of possible defects of the welding bead; moreover, a smaller grain size in the fusion zone is better in comparison to either TIG or plasma arc welding, thus providing an increase in tensile strength of any welded structures. In this frame, the regression models for a number of crucial responses are discussed in this paper. The study has been conducted on 1 mm thick Ti-6Al-4V plates in square butt welding configuration; a disk-laser source has been used. A three-level Box-Behnken experimental design is considered. An optimum condition is then suggested via numerical optimization with the response surface method using desirability functions with proper weights and importance of constraints. Eventually, Vickers microhardness testing has been conducted to discuss structural changes in fusion and heat affected zone due to welding thermal cycles.

  13. Study of residual stresses in welded joints of dual phase HSLA steel used in automotive industry

    International Nuclear Information System (INIS)

    Barbato, D.S.; Fonseca, M.P. Cindra; Marques Junior, A.S.; Chuvas, T.C.; Pardal, J.M.

    2010-01-01

    One way of weight reduction in automotive vehicles is through the use of high strength and low alloy (HSLA) steels, which enables the use of small thickness plates. Whereas the appearance of residual stresses is intrinsic to the welding process, this study evaluates the residual stresses generated in welded joints obtained by TIG and LASER welding processes and comparing them. Residual stresses were measured by X-rays diffraction technique, using a portable device with Crκα radiation applying the double exposure method. It also evaluates the influence of shot peening treatment applied after welding, in the bend tests conducted for both welding conditions and TIG welded joints showed higher stability of compressive stresses after welding. The metallographic analysis by optical microscopy complemented the welded joints characterization. (author)

  14. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  15. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  16. TIG (Tungsten Inert Gas) welding

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    After having recalled the Tungsten Inert Gas process principle and the different alternative TIG processes, the author explains the advantages and limits of this process. The applications and recent developments are given. (O.M.)

  17. The influence of TIG-Arc physical characteristics on the penetration and weld width under different Ar and He supply conditions

    Science.gov (United States)

    Dai, Hongbin; Shen, Xiuqiang; Wang, Haoran

    2018-06-01

    In the paper, the 5A03 aluminium alloy was employed to study the influence of TIG arc on the penetration and the weld width. And the split anode method with water-cooled copper plate was used to measure and record the distribution of arc current, under different flow ratio of argon and helium conditions. And a gas supply device controlled by a solenoid valve was employed to obtain the stable TIG welding arc of gas supply alternately at the frequency of 1 Hz and 4 Hz, and then collected the phenomenon of arc alternate by the high-speed camera. The experimental results indicated that the current density at the arc anode center of argon and helium supply alternately with different mixing ratio is lower than that of the pure argon-arc center. Nonetheless, the former is more uniform in current density within 2 mm from the arc center. Furthermore, it presented as a component arc of argon-arc and helium-arc switched, with the condition of argon and helium supply alternately at a frequency of 1 Hz and the arc power density is greater and concentrated, leading to the wider and deeper weld.

  18. Joining Pipe with the Hybrid Laser-GMAW Process: Weld Test Results and Cost Analysis

    Science.gov (United States)

    2006-06-01

    GMAW head separations an additional gas nozzle directed N2 gas at the laser keyhole for plasma suppression and supplemental shielding. Experiments were...beam weld and GMA weld taking place simultaneously in close prox- i m i t y. It has been noted in the literature that hy- brid often refers to laser ...near the beginning and end of the weld. Laser beam keyhole instability may be the cause. Ongoing investigations are being undertaken to determine the

  19. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  20. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  1. TIG and MIG welding of 6061 and 7020 aluminium alloys. Microstructural studies and mechanical properties

    International Nuclear Information System (INIS)

    Gomez de Salazar, J.M.; Urena, A.; Villauriz, E.; Manzanedo, S.; Barrena, I.

    1998-01-01

    The aluminium alloys of the 6XXX and 7XXX series, are actually considered of medium and high strength, and are been profusely used in different industries such as aeronautical, automotive, etc.However, its wide application as structural material needs of the proper development of their joining process. The present work describes the results obtained from the microstructural evaluation, both with optical and scanning electronic micros copies (OM) and SEM), and of the mechanical one (hardness changes) of the weld produced in the alloys using different arc welding techniques: FTAW (TIG) and GMAW (MIG). For the last one, a filler metal with a composition of Al-5Mg, AWS denomination A5.10-92 (AA5356), has been used. (Author) 5 refs

  2. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  3. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    Science.gov (United States)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  4. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  5. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  6. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  7. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  8. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  9. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  10. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  11. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    Science.gov (United States)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  12. Quantitative analysis of tritium distribution in austenitic stainless steels welds

    International Nuclear Information System (INIS)

    Roustila, A.; Kuromoto, N.; Brass, A.M.; Chene, J.

    1994-01-01

    Tritium autoradiography was used to study the tritium distribution in laser and arc (TIG) weldments performed on tritiated AISI 316 samples. Quantitative values of the local tritium concentration were obtained from the microdensitometric analysis of the autoradiographs. This procedure was used to map the tritium concentration in the samples before and after laser and TIG treatments. The effect of the detritiation conditions and of welding on the tritium distribution in the material is extensively characterized. The results illustrate the interest of the technique for predicting a possible embrittlement of the material associated with a local enhancement of the tritium concentration and the presence of helium 3 generated by tritium decay. ((orig.))

  13. Microstructural development in multi-pass TIG welded F82H steels under dual-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, H.; Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Kishimoto, H.; Tomohiro, M.; Kohyama, A. [Kyoto Univ., Institute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: Reduced-activation ferritic/martensitic (RAFM) steels are the first candidate materials for blanket structural component. On fabricating blanket components, various joining technologies will be required, and it could be anticipated that some parts of the weldments will suffer from high-dose 14 MeV neutron irradiation. For example, the current Japanese water cooled test blanket module design has the weldment of the first wall and side wall at 25 mm from the surface. This will not be the case for TIER-TBM, but could be the critical issue if the same design is applied for DEMO blanket system. In this study, the effects of displacement damage and helium production on mechanical properties and microstructures of the multi-pass tungsten inert gas (TIG) welding were investigated. The welded joint used in this study is a multi-pass TIG weldment on 15-mm thick plates of F82H-IEA. The post weld heat treatment was carried out at 720 deg. C for 1 h. To obtain systematic and accurate information of the microstructural response under fusion environment, dual-ion irradiation was performed. 15 mm x 20 mm pieces which cover the whole TIG weldment were irradiated at 470 deg. C up to 20 dpa using 6.4 MeV Fe{sup +3} and/or energy-degraded 1.0 MeV He{sup +}. The damage rate was 1.0 x 10{sup -3} dpa/s, and the helium injection rate was 15 x 10{sup -3} appm He/s. After the irradiations, thin film samples were made from various regions of the weldment by focused ion beam (FIB) processor, and transmission electron microscopy (TEM) observation and hardness tests were performed. Microstructure and Vickers hardness profiles across base metal, heat affected zone (HAZ) and fusion zone (FZ) were examined before irradiation experiments. The hardness measurements revealed that the maximum hardness was observed at the last pass region of FZ, and the softest region was in the middle of the FZ and HAZ region near the transformation line. In the microstructure study

  14. Soldagem TIG de elevada produtividade: influência dos gases de proteção na velocidade limite para formação de defeitos High productivity TIG welding: influence of shielding gases on the limit speed for defect formation

    Directory of Open Access Journals (Sweden)

    Mateus Barancelli Schwedersky

    2011-12-01

    Full Text Available O processo TIG, em configurações tradicionais, apresenta problemas quando utilizado de maneira autógena com elevadas corrente e velocidade de soldagem. Nessa condição, normalmente ocorrem defeitos no cordão, principalmente descontinuidades denominadas humping. Em estudo realizado no LABSOLDA, foram obtidas soldas de excelente qualidade com o processo TIG atingindo velocidades de 1,5 m/min. Este procedimento, utilizando na proteção misturas argônio-hidrogênio, possibilitou velocidade semelhante ao processo MIG/MAG convencional, com a vantagem de ser realizada sem material de adição. O presente trabalho tem o objetivo de fornecer subsídios para uma nova análise da formação dos defeitos na soldagem TIG de elevada produtividade, já que a teoria baseada na pressão do arco não contempla totalmente o que tem sido observado na prática. Foram realizados ensaios com diferentes correntes utilizando argônio, hélio e misturas argônio-hidrogênio no gás de proteção. Os resultados mostram que para a mesma corrente média, à medida que o teor de H2 foi aumentado, ocorreram também gradativos aumentos da área fundida e eficiência de fusão. Foi possível mostrar indícios de que o mecanismo de formação de defeitos não depende somente da pressão do arco, mas sim do balanço entre pressão do arco e quantidade de metal fundido, que é dependente da eficiência de fusão proporcionada pelo gás utilizado.Under usual configurations, the TIG process presents problems when used autogenously with high current and welding speed. In this condition defects in the weld bead usually occur, especially discontinuities called humping. In a study conducted at LABSOLDA, welds with excellent quality were obtained using the TIG process reaching speeds of 1.5 m/min. Under argon-hydrogen shielding gas mixtures welding speed similar to the conventional MIG/MAG process was allowed, with the advantage of being performed without filler material. The

  15. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Knag , Heeshin

    2017-01-01

    International audience; In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plat...

  16. Study on Laser Welding Process Monitoring Method

    OpenAIRE

    Heeshin Knag

    2016-01-01

    In this paper, a study of quality monitoring technology for the laser welding was conducted. The laser welding and the industrial robotic systems were used with robot-based laser welding systems. The laser system used in this study was 1.6 kW fiber laser, while the robot system was Industrial robot (pay-load : 130 kg). The robot-based laser welding system was equipped with a laser scanner system for remote laser welding. The welding joints of steel plate and steel plate coated with zinc were ...

  17. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  18. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  19. Microstructure and Hardness Variation in a TIG Weldment of Irradiated F82H

    International Nuclear Information System (INIS)

    Tanigawa, H.; Ando, M.; Sawai, T.; Shiba, K.; Hashimoto, N.; Klueh, R.L.

    2003-01-01

    Previous work reported that a TIG weld joint of F82H exhibited low irradiation hardening in a tensile test, compared to the base metal. Microhardness tests and microstructure observation on the neutron-irradiated TIG weld joint of F82H revealed that the over-tempered zone in the heat-affected zone (HAZ) exhibited this good performance. The region in the HAZ where the prior austenite grain size became very fine during welding also exhibited lower irradiation hardening. Hypotheses for these low-hardening mechanisms were proposed based on the phase diagram and grain size

  20. Laser welding of tailored blanks

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.; Olsen, F.O.

    1998-01-01

    Laser welding has an increasing role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped) being transformed in a vehicle body component. In this paper low carbon CO 2 laser welding, on the thicknesses of 1,25 and 0.75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formability. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram. (Author) 14 refs

  1. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  2. Incoloy 800 steam generator tubes stubbing by laser and electron beams process

    International Nuclear Information System (INIS)

    Bonnin, P.; Noel, J.P.; Gauthier, J.P.; Peigney, A.

    1988-01-01

    The electron beam welding conditions are optimized for different thermal cycles and chemical compositions of the fusion zone. The metallurgical and mechanical properties of the joints are described and compared with the properties of laser and TIG welds [fr

  3. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  4. Impression creep behaviour of Mod. 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Ridhin Raj, V.R.; Kottda, Ravi Sankar; Kamaraj, M.; Maduraimuthu, V.M.; Vasudevan, M.

    2016-01-01

    P91 steel (9Cr-1Mo) steel is extensively used in power plants for super heater coils, headers and steam piping. The aim of the present work is to study the creep behaviour of different zones of A-TIG weld joint using impression creep technique and compare it with that of the TIG weld joint. P91 steel weld joints were made by A-TIG welding without using any filler material and multi-pass TIG welding is done using ER90S-B9 filler rods. Welds were subjected to post-weld heat treatment (PWHT). Impression creep tests were carried out at 650 °C on the base metal, weld metal and HAZ regions. Optical Microscope and TEM were used to correlate microstructures with observed creep rates. The FGHAZ showed significantly higher impression creep rate compared to that of the base metal and weld metal. Fine grain size and relatively coarser M 23 C 6 carbide particles are responsible for higher creep rate. The impression creep rate of A-TIG weld metal and coarse grain HAZ was found to be lower than that of base metal. This is attributed to the higher grain size in weld metal and coarse HAZ attributed to the higher grain size in weld metal and to the higher peak temperature observed during A-TIG welding. (author)

  5. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  6. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  7. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    Science.gov (United States)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  8. Corrosion characterisation of laser beam and tungsten inert gas weldment of nickel base alloys: Micro-cell technique

    International Nuclear Information System (INIS)

    Abraham, Geogy J.; Kain, V.; Dey, G.K.; Raja, V.S.

    2015-01-01

    Highlights: • Grain matrix showed better corrosion resistance than grain boundary. • Microcell studies showed distinct corrosion behaviour of individual regions of weldment. • TIG welding resulted in increased stable anodic current density on weld fusion zone. • LB welding resulted in high stable anodic current density for heat affected zone. - Abstract: The electrochemical studies using micro-cell technique gave new understanding of electrochemical behaviour of nickel base alloys in solution annealed and welded conditions. The welding simulated regions depicted varied micro structural features. In case of tungsten inert gas (TIG) weldments, the weld fusion zone (WFZ) showed least corrosion resistance among all other regions. For laser beam (LB) weldments it was the heat-affected zone (HAZ) that showed comparatively high stable anodic current density. The high heat input of TIG welding resulted in slower heat dissipation hence increased carbide precipitation and segregation in WFZ resulting in high stable anodic current density

  9. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  10. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  11. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  12. Welding with the TIG automatic process of the end fittings for the execution of the Embalse nuclear power plant fuel channel rechange

    International Nuclear Information System (INIS)

    Suarez, P.O.

    1990-01-01

    The present work describes the methodology for the cutting of the existing welding and subsequent welding applied by the TIG process of the coupling composed by the shroud ring and the end fitting ring from one of Embalse nuclear power plant's fuel channels. The replacement will be previously determined by the SLAR-ETTE mechanism where a displacement operated among the Gartner Spring rings, the pressure tubes are separated from the Calandria tubes. The welding to be carried out has the function of stamping the CO 2 annular gas (thermal insulator) circulating between the pressure tube and the Calandria one during the functioning of the plant. (Author) [es

  13. Effect of Different Welding Processes on Electrochemical and Corrosion Behavior of Pure Nickel in 1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Xijing Wang

    2017-11-01

    Full Text Available A plasma arc welding (PAW-tungsten inert gas (TIG hybrid welding process is proposed to weld pure nickel. In PAW-TIG welding, the arc of the PAW was first to be ignited, then TIG was ignited, while in PAW welding, only the PAW arc was launched. This paper investigated the effect of different welding processes on electrochemical and corrosion performance of between a pure nickel joint and a base metal in an aerated 1 M NaCl solution, respectively. The average grain size of the joint fabricated by PAW welding (denoted as JP joint is 463.57 μm, the joint fabricated by PAW-TIG welding(denoted as JP-T joint is 547.32 μm, and the base metal (BM is 47.32 μm. In this work, the passivity behaviors of samples were characterized for two welding processes by electrochemical impedance spectroscopy (EIS, open circuit potential versus immersion time (OCP-t, and the potentiodynamic polarization plots. EIS spectra, attained with different immersion times, were analyzed and fitted by an equivalent electrical circuit. Photomicrographs of BM, JP, and JP-T were also taken with a scanning electron microscope (SEM to reveal the morphological structure of the pit surfaces. Electrochemical tests show that the sequence of the corrosion resistance is BM > JP > JP-T. The size and quantity of the hemispherical corrosion pits of all samples are different. The corrosion morphology observations found a consistency with the consequence of the electrochemical measurements. The results show that an increase of the grain dimensions due to different heat treatments decreased the pure nickel stability to pitting corrosion.

  14. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Robert, E-mail: Robert.Stegemann@bam.de [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Wimpory, Robert; Boin, Mirko [HZB Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Kreutzbruck, Marc [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2017-03-15

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. - Highlights: • Comparison of magnetic microstructure with neutron diffraction stress analysis. • High spatial resolution magnetic stray field images of hypereutectoid TIG welds. • Spatial variations of the stray fields are below the magnetic field of the earth. • GMR spin valve gradiometer arrays adapted for the evaluation of magnetic microstructures. • Magnetic stray fields are closely linked to microstructure of the material.

  15. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  16. Soldadura TIG de espumas de aluminio. Análisis de los parámetros operacionales de espumado

    Directory of Open Access Journals (Sweden)

    Portolés, A.

    2011-06-01

    Full Text Available In this work the influence of main parameters that take part during TIG welding process are analyzed. Some of these parameters belong to the welding process, as for example the welding speed, intensity and voltage while others are from the material and tooling features, as for example foaming material and tooling design. The result of this work shows a strong dependence on these parameters of the TIG welding process for metallic foams.

    En este trabajo se analiza la influencia de los principales parámetros que intervienen en el proceso de soldadura TIG. Algunos de estos parámetros pertenecen al proceso de soldadura, velocidad de soldadura, intensidad y tensión, mientras otros son propios de las características del material y el utillaje, material precursor y forma de implementar la instalación de ensayo. El resultado de este trabajo muestra una fuerte dependencia de estos parámetros con el proceso de soldadura TIG para las espumas metálicas de aluminio.

  17. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  18. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  19. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  20. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  1. TIG welding of pure titanium with an TiAl6V4 alloy; Schweissen von technisch reinem Titan. WIG-Schweissen mit der Titanlegierung TiAl6V4

    Energy Technology Data Exchange (ETDEWEB)

    Karaaslan, A. [Techn. Univ. Yildiz (Turkey). Sektion fuer Metallurgie und Werkstofftechnik

    2004-07-01

    The present contribution describes the Tig welding process of pure Titanium with an high strength Titanium Aluminium alloy. The characterization of the metallurgical properties of the welds was carried out by hardness measurements and by tensile testing. Parallel to the results of light microscopic investigations of the microstructure the metallurgical and physical background will be highlighted. (orig.)

  2. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  3. Fundamental studies on electron-beam welding of heat-resistant superalloys for nuclear plants: Report 4. Mechanical properties of welded joints

    International Nuclear Information System (INIS)

    Susei, S.; Shimizu, S.; Aota, T.

    1982-04-01

    In this report, electron-beam (EB) welded joints and TIG welded joints of various superalloys to be used for nuclear plants, such as Hastelloy-type, Inconel-type and Incoloy-type, are systematically evaluated in terms of tensile properties, low-cycle fatigue properties at elevated temperatures, creep and creep-rupture properties. It was fully confirmed as conclusion that the EB welded joints are superior to the TIG welded ones in mechanical properties, especially at high temperature. In the evaluation of creep properties, ductility is one of the most important criteria to represent the resistance against fracture due to creep deformation, and this criterion is very useful in evaluating the properties of welded joints. Therefore, the more comparable to the base metal the electron beam welded joint becomes in terms of ductility, the more resistant is it against fracture. From this point of view, the electron beam welded joint is considerably superior to the TIG welded joint [fr

  4. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  5. Improved design bases of welded joints in seawater

    DEFF Research Database (Denmark)

    Ólafsson, Ólafur Magnús

    The presented work aims to investigate and establish a precise, thorough and detailed database from series of experimental testing of submerged arc welded, SAW, specimens of various thicknesses typically applied in offshore structures and foundations. Additionally, the testing was performed in two...... environment on fatigue resistance. Furthermore, novelty 25 mm thick steel laser-hybrid welded specimens in the as welded condition were subjected to experimental testing. A fatigue resistance S-Ncurve was established for the laser hybrid welded joints in addition to a more detailed analysis. The laser hybrid...... different environments, i.e. under in-air conditions and in a corrosion environment. Welded structures of all sizes and shapes exhibit fatigue failure primarily in the welded region, rather than in the base material, due to imperfections and flaws relating to the welding procedure. The welded region has...

  6. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  7. Study of residual stresses in welded joints of dual phase HSLA steel used in automotive industry; Estudo das tensoes residuais em juntas soldadas de aco ARBL bifasico usado na industria automobilistica

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, D.S.; Fonseca, M.P. Cindra; Marques Junior, A.S.; Chuvas, T.C.; Pardal, J.M., E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Berretta, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    One way of weight reduction in automotive vehicles is through the use of high strength and low alloy (HSLA) steels, which enables the use of small thickness plates. Whereas the appearance of residual stresses is intrinsic to the welding process, this study evaluates the residual stresses generated in welded joints obtained by TIG and LASER welding processes and comparing them. Residual stresses were measured by X-rays diffraction technique, using a portable device with Cr{kappa}{alpha} radiation applying the double exposure method. It also evaluates the influence of shot peening treatment applied after welding, in the bend tests conducted for both welding conditions and TIG welded joints showed higher stability of compressive stresses after welding. The metallographic analysis by optical microscopy complemented the welded joints characterization. (author)

  8. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    International Nuclear Information System (INIS)

    Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J.

    2012-01-01

    Highlights: ► Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. ► Microstructure, microhardness and corrosion of remelted samples are deeply analysed. ► Microstructural changes of laser remelted TiG2 lead to microhardness increase. ► Remelted Ti6Al4V presents microhardness increase and corrosion improvement. ► Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  9. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  10. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  11. Mechanical properties and microstructural investigations of TIG welded 40 mm and 60 mm thick SS 316L samples for fusion reactor vacuum vessel applications

    Energy Technology Data Exchange (ETDEWEB)

    Buddu, Ramesh Kumar, E-mail: brkumar75@gmail.com; Chauhan, N.; Raole, P.M.

    2014-12-15

    Highlights: • Austenitic stainless steels (316L) of 40 mm and 60 mm thickness plates were joined by Tungsten Inert Gas welding (TIG) process which are probable materials for advanced fusion reactor vacuum vessel requirements. • Mechanical properties and detailed microstructure studies have been carried out for welded samples. • Fractography analysis of impact test specimens indicated ductile fracture mode in BM, HAZ and WZ samples. • Presence of delta ferrite phase was observed in the welded zone and ferrite number data was measured for the base and weld metal and was found high in welds. - Abstract: The development of advanced fusion reactors like DEMO will have various challenges in materials and fabrication. The vacuum vessel is important part of the fusion reactor. The double walled design for vacuum vessel with thicker stainless steel material (40–60 mm) has been proposed in the advanced fusion reactors like ITER. Different welding techniques will have to be used for such vacuum vessel development. The required mechanical, structural and other properties of stainless steels have to be maintained in these joining processes of components of various shapes and sizes in the form of plates, ribs, shells, etc. The present paper reports characterization of welding joints of SS316L plates with higher thicknesses like 40 mm and 60 mm, prepared using multi-pass Tungsten Inert Gas (TIG) welding process. The weld quality has been evaluated with non-destructive tests by X-ray radiography and ultrasonic methods. The mechanical properties like tensile, bend tests, Vickers hardness and impact fracture tests have been carried out for the weld samples. Tensile property test results indicate sound weld joints with efficiencies over 100%. Hardening was observed in the weld zone in non-uniform manner. Macro and microstructure studies have been carried out for Base Metal (BM), Heat Affected Zone (HAZ) and Weld Zone (WZ). Scanning Electron Microscopy (SEM) analysis carried

  12. Mechanical properties and microstructural investigations of TIG welded 40 mm and 60 mm thick SS 316L samples for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Chauhan, N.; Raole, P.M.

    2014-01-01

    Highlights: • Austenitic stainless steels (316L) of 40 mm and 60 mm thickness plates were joined by Tungsten Inert Gas welding (TIG) process which are probable materials for advanced fusion reactor vacuum vessel requirements. • Mechanical properties and detailed microstructure studies have been carried out for welded samples. • Fractography analysis of impact test specimens indicated ductile fracture mode in BM, HAZ and WZ samples. • Presence of delta ferrite phase was observed in the welded zone and ferrite number data was measured for the base and weld metal and was found high in welds. - Abstract: The development of advanced fusion reactors like DEMO will have various challenges in materials and fabrication. The vacuum vessel is important part of the fusion reactor. The double walled design for vacuum vessel with thicker stainless steel material (40–60 mm) has been proposed in the advanced fusion reactors like ITER. Different welding techniques will have to be used for such vacuum vessel development. The required mechanical, structural and other properties of stainless steels have to be maintained in these joining processes of components of various shapes and sizes in the form of plates, ribs, shells, etc. The present paper reports characterization of welding joints of SS316L plates with higher thicknesses like 40 mm and 60 mm, prepared using multi-pass Tungsten Inert Gas (TIG) welding process. The weld quality has been evaluated with non-destructive tests by X-ray radiography and ultrasonic methods. The mechanical properties like tensile, bend tests, Vickers hardness and impact fracture tests have been carried out for the weld samples. Tensile property test results indicate sound weld joints with efficiencies over 100%. Hardening was observed in the weld zone in non-uniform manner. Macro and microstructure studies have been carried out for Base Metal (BM), Heat Affected Zone (HAZ) and Weld Zone (WZ). Scanning Electron Microscopy (SEM) analysis carried

  13. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds

    International Nuclear Information System (INIS)

    Chern, Tsann-Shyi; Tseng, Kuang-Hung; Tsai, Hsien-Lung

    2011-01-01

    The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO 2 , MnO 2 , SiO 2 , MoO 3 , and Cr 2 O 3 ), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO 2 , MoO 3 , and Cr 2 O 3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.

  14. Structural behaviour of a welded superalloy cylinder with internal pressure in a high temperature environment

    International Nuclear Information System (INIS)

    Udoguchi, T.; Nakanishi, T.

    1981-01-01

    Steady and cyclic creep tests with internal pressure were performed at temperatures of 800 to 1000 0 C on Hastelloy X cylinders with and without a circumferential Tungsten Inert Gas (TIG) welding technique. The creep rupture strength of the TIG welded cylinders was much lower than that of the non-welded cylinders whilst creep rupture strength reduction by the TIG technique was not observed in uniaxial creep tests. The reason for the low creep strength of welded cylinders is discussed and it is noted that the creep ductility of weld metal plays an essentially important role. In order to improve the creep strength of the TIG welded cylinder, various welding procedures with assorted weld metals were investigated. Some improvements were obtained by using welding techniques which had either Incoloy 800 or a modified Hastelloy X material as the filler metal. (U.K.)

  15. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  16. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  17. The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties

    Energy Technology Data Exchange (ETDEWEB)

    Prokic Cvetkovic, Radica; Popovic, Olivera [Belgrade Univ. (Serbia). Faculty of Mechanical Engineering; Burzic, Meri; Jovicic, Radomir [Belgrade Univ. (Serbia). Innovation Center; Kastelec Macura, Sandra [Technikum Taurunum, Zemun (Serbia); Buyukyildirim, Galip [IWE, Istanbul (Turkey)

    2013-01-15

    In this paper, the AlMg4.5Mn alloy has been welded using tungsten inert gas (TIG) and metal inert gas (MIG) processes with different gas shielding atmospheres. Tensile strength, hardness, impact and fracture toughness, fatigue crack growth parameters ({Delta}K{sub th}, da/dN), as well as microstructure were determined. By comparing results for different gas mixtures, the main conclusion for TIG welding was that increased helium content has an important effect on toughness and fatigue crack growth parameters, whereas its effect on other mechanical properties is not significant. On the other hand, in the case of MIG welding, adding helium does not affect mechanical properties, except the fatigue crack growth rate. It was also established that adding nitrogen (TIG welding) and oxygen (MIG welding) reduces toughness and increases crack growth rate, so their use in shielding mixtures is not recommended. (orig.)

  18. Modélisation du procédé de soudage hybride Arc / Laser par une approche level set application aux toles d'aciers de fortes épaisseurs A level-set approach for the modelling of hybrid arc/laser welding process application for high thickness steel sheets joining

    Directory of Open Access Journals (Sweden)

    Desmaison Olivier

    2013-11-01

    Full Text Available Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations.

  19. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    Science.gov (United States)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  20. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P., E-mail: Philippe.aubert@cea.fr [CEA Saclay, DEN/DM2S, F-91191 Gif sur Yvette (France); Tavassoli, F. [CEA Saclay, DEN/DMN, F-91191 Gif sur Yvette (France); Rieth, M. [KIT, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Diegele, E.; Poitevin, Y. [Fusion for Energy (F4E), C/Josep Pla 2 - Ed. B3, 08019 Barcelona (Spain)

    2011-02-15

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 {sup o}C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  1. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-01-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 o C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  2. Metals welding by using laser

    International Nuclear Information System (INIS)

    Al-Qaisy, R.A.W.

    1991-01-01

    In the present work, same welding ''conduction limited type'' under atmospheric conditions was performed using pulsed Ng:YAG laser to weld; low carbon steel (LCS), stainless steel (304) (SUS304), stainless steel (303) (SUS303), and brass. Microstructure of welded zone, heat affected zone (HAZ), and the laser energy on penetration depth and effective diameter were studied. Tensile test, micro-hardness, and surface roughness of welded and parent metals were also dealt with. Melting efficiency was worked out and an under vacuum seam welding of low carbon steel has been accomplished. Finally spot welding of aluminium tungsten, and platinium wires were employed using different layer energies. 34 tabs.; 82 figs.; 51 refs.; 1 app

  3. Repair-welding technology of irradiated materials - WIM project

    International Nuclear Information System (INIS)

    Nakata, K.; Oishi, M.

    1998-01-01

    A new project on the development of repair-welding technology for core internals and reactor (pressure) vessel, consigned by the Ministry of International Trade and Industry (MITI), has been started from October 1997. The objective of the project is classified into three points as follows: (1) to develop repair-welding techniques for neutron irradiated materials, (2) to prove the availability of the techniques for core internals and reactor (pressure) vessel, and (3) to recommend the updated repair-welding for the Technical Rules and Standards. Total planning, neutron irradiation, preparation of welding equipment are now in progress. The materials are austenitic stainless steels and a low alloy steel. Neutron irradiation is performed using test reactors. In order to suppress the helium aggregation along grain boundaries, low heat input welding techniques, such as laser, low heat input TIG and friction weldings, will be applied. (author)

  4. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  5. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Highlights: → Weld microstructure produced by RAFMS filler wires are free from delta ferrite. → Cooling rates of by weld thermal cycles influences the presence of delta ferrite. → Weld parameters modified with higher pre heat temperature and high heat input. → PWHT optimized based on correlation of hardness between base and weld metals. → Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in

  6. Assessment of the tolerances of the A-TIG process applied to the welding of stainless steel tubes of 6 mm thickness

    International Nuclear Information System (INIS)

    Dinechin, G. de; Chagnot, C.; Castilan, F.; Blanchot, O.; Baude, D.

    2001-01-01

    The aim of this work is to better understand the limits of the Activated Tungsten Inert Gas (A-TIG) process for the end to end automatic welding of austenitic stainless steel tubes of 6 mm thickness. From tests carried out with two standard fluxes, it has been shown that the process is tolerant for the arc height and for the application defects of the activating flux. A particular care has to be given to the choice of the welding intensity: a sufficient range is required to maintain the stability of the process and to take into account the size limits of the manufacture of the tubes. (O.M.)

  7. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    Science.gov (United States)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  8. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    Science.gov (United States)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  9. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  10. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  11. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  12. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  13. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  14. Microstructural, Mechanical, and Electrochemical Analysis of Duplex and Superduplex Stainless Steels Welded with the Autogenous TIG Process Using Different Heat Input

    Directory of Open Access Journals (Sweden)

    Gláucio Soares da Fonseca

    2017-12-01

    Full Text Available Duplex Stainless Steels (DSS and Superduplex Stainless Steels (SDSS have a strong appeal in the petrochemical industry. These steels have excellent properties, such as corrosion resistance and good toughness besides good weldability. Welding techniques take into account the loss of alloying elements during the process, so this loss is usually compensated by the addition of a filler metal rich in alloying elements. A possible problem would be during the welding of these materials in adverse conditions in service, where the operator could have difficulties in welding with the filler metal. Therefore, in this work, two DSS and one SDSS were welded, by autogenous Tungsten Inert Gas (TIG, i.e., without addition of a filler metal, by three different heat inputs. After welding, microstructural, mechanical, and electrochemical analysis was performed. The microstructures were characterized for each welding condition, with the aid of optical microscopy (OM. Vickers hardness, Charpy-V, and cyclic polarization tests were also performed. After the electrochemical tests, the samples were analyzed by scanning electron microscopy (SEM. The SDSS welded with high heat input kept the balance of the austenite and ferrite, and toughness above the limit value. The hardness values remain constant in the weld regions and SDSS is the most resistant to corrosion.

  15. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  16. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  17. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  18. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  19. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  20. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: gsrini@igcar.gov.in [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2011-06-15

    Highlights: > Weld microstructure produced by RAFMS filler wires are free from delta ferrite. > Cooling rates of by weld thermal cycles influences the presence of delta ferrite. > Weld parameters modified with higher pre heat temperature and high heat input. > PWHT optimized based on correlation of hardness between base and weld metals. > Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in the weld

  1. The narrow-gap TIG welding concerns the electric power plants manufacturers; Le soudage en joint etroit suscite l'interet des constructeurs de centrales electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-05-15

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  2. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  3. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    Science.gov (United States)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  4. Experimental investigation of hardness of FSW and TIG joints of Aluminium alloys of AA7075 and AA6061

    Directory of Open Access Journals (Sweden)

    Chetan Patil

    2016-07-01

    Full Text Available This paper reports hardness testing conducted on welded butt joints by FSW and TIG welding process on similar and dissimilar aluminium alloys. FSW joints were produced for similar alloys of AA7075T651 and dissimilar alloys of AA7075T651- AA6061T6. The Friction stir welds of AA7075 & AA6061 aluminium alloy were produced at different tool rotational speeds of 650,700, 800, 900, 1000 and transverse speed of 30, 35, 40 mm/min. TIG welding was conducted along the rolling direction of similar and dissimilar aluminium plates. The Brinell hardness testing techniques were employed to conduct the tests; these tests were conducted on the welds to ascertain the joint integrity before characterization to have an idea of the quality of the welds

  5. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  6. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  7. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Wu, Qingsheng, E-mail: qingsheng.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-07-15

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h. - Highlights: •A new filler material was proposed to control ferrite content in CLAM weld metal. •Heat input affected ferrite content through influencing cooling rate during welding. •Multipass welding was a promising way to eliminate the ferrite in the weld.

  8. Dye-enhanced laser welding for skin closure.

    Science.gov (United States)

    DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R

    1992-01-01

    The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.

  9. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Avaliação das tensões residuais em tubos de pequeno diâmetro soldados pelo processo TIG orbital Residual stress evaluation in small diameter pipes welded using orbital TIG process

    Directory of Open Access Journals (Sweden)

    George Luiz Gomes de Oliveira

    2009-06-01

    Full Text Available O objetivo desse trabalho é avaliar o efeito da soldagem TIG orbital sobre o nível de tensões residuais da junta, sobre a microestrutura resultante e sobre o aspecto superficial do cordão de solda, considerando os efeitos da energia de soldagem, do número de passes e do tipo de pulsação (corrente e rotação em tubos de pequeno diâmetro e contribuir para a análise de decisões de se aplicar ou não testes hidrostáticos ou TTPS. Os corpos de prova soldados com diferentes níveis de energia, pulsação e número de passes foram submetidos à medição de tensões residuais em um difratômetro de Raios-X. As amostras também foram submetidas a análises metalográficas. Conclui-se que as tensões residuais na superfície externa dos tubos são de caráter compressivo. O nível de tensões residuais nos tubos cai com o aumento da energia de soldagem e é menor para tubos soldados utilizando pulsação do que com os soldados sem pulsação e, para esse trabalho, não foi influenciado substancialmente pelo número de passes. As amostras analisadas apresentaram microestruturas convencionais para o aço empregado.This work aims in evaluate the effect of orbital TIG welding on the joint's residual stress level, the final microstructure and the superficial aspect of the weld filet, observing the welding energy, number of passes and the type of pulsation effects in small diameter pipes. The test specimens were welded with different energy, pulsation and number of passes levels and after that it were submitted to residual stress measurement in a X-Ray diffractometer, samples were extracted from the test specimens and it were submitted to metallographic analysis. The ending of this work is that: residual stress in the pipes outer surface are compressive, residual stress level in pipes goes down with increasing welding energy, it is smaller for pipes welded with pulsation and in this work it were not effectively influenced by number of passes

  11. Online quality monitoring of welding processes by means of plasma optical spectroscopy

    Science.gov (United States)

    Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele

    2000-02-01

    An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.

  12. Laser penetration spike welding: a welding tool enabling novel process and design opportunities

    Science.gov (United States)

    Dijken, Durandus K.; Hoving, Willem; De Hosson, J. Th. M.

    2002-06-01

    A novel method for laser welding for sheet metal. is presented. This laser spike welding method is capable of bridging large gaps between sheet metal plates. Novel constructions can be designed and manufactured. Examples are light weight metal epoxy multi-layers and constructions having additional strength with respect to rigidity and impact resistance. Its capability to bridge large gaps allows higher dimensional tolerances in production. The required laser systems are commercially available and are easily implemented in existing production lines. The lasers are highly reliable, the resulting spike welds are quickly realized and the cost price per weld is very low.

  13. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  14. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  15. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  16. Thermal and molecular investigation of laser tissue welding

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  17. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  18. Corrosion Testing of Hybrid Welded Stainless Steel Pot

    DEFF Research Database (Denmark)

    Sondrup, Lars de Caldas; Bagger, Claus; Olsen, Flemming Ove

    2004-01-01

    Investigation of the use of hybrid welding by preparation of tailored blanks for the manufacturing of a deep drawn pot.......Investigation of the use of hybrid welding by preparation of tailored blanks for the manufacturing of a deep drawn pot....

  19. Mobility and kinematics analysis of a novel 5-DOF hybrid manipulator for reconditioning of mould and die tools: Part 1

    CSIR Research Space (South Africa)

    Modungwa, D

    2008-12-01

    Full Text Available produced using a micro torch. Micro TIG welding seldom causes sink marks that compromise the base material because the weld is completed at a lower temperature. Micro TIG amps can be adjusted by 0.5 amps at a time, going as low as 0.5 amps. Conventional... TIG welding might start at 20 amps. Micro TIG welding also requires the use of a microscope and a micro-sized torch head that is much smaller than used in conventional TIG welding, allowing for greater control of weld placement, especially in tight...

  20. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  1. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  2. Numerical modeling of keyhole dynamics in laser welding

    Science.gov (United States)

    Zhang, Wen-Hai; Zhou, Jun; Tsai, Hai-Lung

    2003-03-01

    Mathematical models and the associated numerical techniques have been developed to study the following cases: (1) the formation and collapse of a keyhole, (2) the formation of porosity and its control strategies, (3) laser welding with filler metals, and (4) the escape of zinc vapor in laser welding of galvanized steel. The simulation results show that the formation of porosity in the weld is caused by two competing mechanisms: one is the solidification rate of the molten metal and the other is the speed that molten metal backfills the keyhole after laser energy is terminated. The models have demonstrated that porosity can be reduced or eliminated by adding filler metals, controlling laser tailing power, or applying an electromagnetic force during keyhole collapse process. It is found that a uniform composition of weld pool is difficult to achieve by filler metals due to very rapid solidification of the weld pool in laser welding, as compared to that in gas metal arc welding.

  3. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  4. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  5. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  6. Creep damage behaviour of modified 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Sakthivel, T.; Laha, K.; Vasudevan, M.; Panneer Selvi, S.

    2016-01-01

    Creep deformation and rupture behaviour of modified 9Cr-1Mo steel weld joints fabricated by single-pass activated TIG (A-TIG) and shielded metal arc welding (SMAW) processes have been investigated at 923 K over a stress range of 50 to 110 MPa after post weld heat treatment (PWHT). The weld joints exhibited significantly lower creep rupture lives than the base metal at lower applied stresses. Creep rupture location of the weld joints were found to occur in the ICHAZ. An extensive localized creep deformation, coarsening of M 23 C 6 precipitates in the ICHAZ with creep exposure led to the premature type IV failure of the joints. The coarsening of M 23 C 6 precipitates was extensive in the mid-section of the ICHAZ than the sub-surface of the joints, and was more predominant in the SMAW joint. While A-TIG weld joint exhibited reduced creep cavitation and coarsening of M 23 C 6 precipitates due to lower deformation constraints by adjacent regions in the ICHAZ. Hence, A-TIG weld joint exhibited higher creep rupture life than the SMAW joint. (author)

  7. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  8. Using Taguchi method to optimize welding pool of dissimilar laser welded components

    OpenAIRE

    Anawa, E.; Olabi, Abdul-Ghani

    2008-01-01

    In the present work CO2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless steel and AISI 1009 low carbon steel plates. Laser power, welding speed, and defocusing distance combinations were carefully selected with the objective of producing welded joint with complete penetration, minimum fusion zone size and acceptable welding profile. Fusion zone area and shape of dissimilar austenitic stainless steel with ferritic low carbon s...

  9. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    International Nuclear Information System (INIS)

    Nagaraju, S.; GaneshKumar, J.; Vasantharaja, P.; Vasudevan, M.; Laha, K.

    2017-01-01

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  10. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, S. [Nuclear Recycle Board, BARCF, Kalpakkam (India); GaneshKumar, J.; Vasantharaja, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vasudevan, M., E-mail: dev@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-05-17

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  11. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates

    International Nuclear Information System (INIS)

    Zhao, Juan; Jiang, Feng; Jian, Haigen; Wen, Kang; Jiang, Long; Chen, Xiaobo

    2010-01-01

    Al-Mg-Sc alloy plates were welded by FSW and TIG welding. The effect of welding processes on mechanical properties of Al-Mg-Sc welded joints was analyzed based on optical microscopy, transmission electron microscopy, tensile testing and Vickers microhardness measurements. The results show that the mechanical properties of FSW welded joint are much better than those of TIG welded joint; the strength coefficient of FSW joint is up to 94%. Moreover, tensile strength and yield strength of FSW joint are 19% and 31% higher than those of TIG joint, respectively, which are attributed to the preservation of cold working microstructures in the process of FSW. Due to the low welding temperature during FSW process and the excellent thermal stability of Al 3 (Sc, Zr) particles, the cold working microstructures can be well preserved. In addition, the FSW joint have asymmetric microstructures and mechanical properties, which are not observed in TIG welded joint.

  12. Prediction of residual stresses induced by TIG welding of a martensitic steel (X10CrMoVNb9-1)

    International Nuclear Information System (INIS)

    Roux, G.M.

    2007-11-01

    Within the frame of the development of very high temperature nuclear reactors (VHTR) with gas as heat transfer fluid, some technological challenges are to be faced because of these high temperatures, notably the selection of the material used for the reactor vessel and its welding process. This research thesis aims at developing and validating numerical tools and behaviour models for the thermal-metallurgical-mechanical simulation of the multi-pass TIG welding process. The first part describes the development of simple welding tests (Disk-Spot and Disk-Cycle), the use of temperature and displacement measurement during these tests, and deep residual stress measurements, as well as the identification of the thermal limit conditions for the Disk-Spot test. It then discusses the choice and the identification of the thermal-metallurgical-mechanical behaviour model, with a particular attention to phase transformations and to their coupling with thermal and mechanical aspects. Experimental and simulation results are compared, notably in terms of residual stresses. The numerical implementation of the behaviour model and its integration into the CAST3M finite element software are also described

  13. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  14. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  15. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  16. Thermal and molecular investigation of laser tissue welding

    Science.gov (United States)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  17. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  18. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    Science.gov (United States)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  19. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  20. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  1. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  2. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  3. Fatigue behaviour of T welded joints rehabilitated by tungsten inert gas and plasma dressing

    International Nuclear Information System (INIS)

    Ramalho, Armando L.; Ferreira, Jose A.M.; Branco, Carlos A.G.M.

    2011-01-01

    Highlights: → This study addresses the use of improvement techniques for repair T welded joints. → TIG and plasma arc re-melting are applied in joints with fatigue cracks at weld toes. → Plasma dressing provides reasonable repair in joints with cracks greater than 4 mm. → TIG dressing produces a deficient repair in joints with cracks greater than 4 mm. → TIG dressing provides good repair in joints with fatigue cracks lesser than 2.5 mm. -- Abstract: This paper concerns a fatigue study on the effect of tungsten inert gas (TIG) and plasma dressing in non-load-carrying fillet welds of structural steel with medium strength. The fatigue tests were performed in three point bending at the main plate under constant amplitude loading, with a stress ratio of R = 0.05 and a frequency of 7 Hz. Fatigue results are presented in the form of nominal stress range versus fatigue life (S-N) curves obtained from the as welded joints and the TIG dressing joints at the welded toe. These results were compared with the ones obtained in repaired joints, where TIG and plasma dressing were applied at the welded toes, containing fatigue cracks with a depth of 3-5 mm in the main plate and through the plate thickness. A deficient repair was obtained by TIG dressing, caused by the excessive depth of the crack. A reasonable fatigue life benefits were obtained with plasma dressing. Good results were obtained with the TIG dressing technique for specimens with shallower initial defects (depth lesser than 2.5 mm). The fatigue life benefits were presented in terms of a gain parameter assessed using both experimental data and life predictions based on the fatigue crack propagation law.

  4. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  5. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  6. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  7. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  8. Laser Welding of Sub-assemblies before Forming

    DEFF Research Database (Denmark)

    Rasmussen, Mads; Olsen, Flemmming Ove; Pecas, Paulo

    1996-01-01

    This paper describes some experimental investigations of the formability of CO2-laser-welded 0.75 mm and 1.25 mm low carbon steel. There will be a description of how the laser welded blanks behave in different forming tests, and the influene of misalignment and undercut on the formability....... The quality is evalutated by measuring the imit strain and the limit effective strain for the laser welded sheets and the base material. These strains will be presented in a forming limit diagram (FLD). Finally the formability of the laser sheets is compared to that of the base materials....

  9. Development of thick wall welding and cutting tools for ITER

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi

    1998-01-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  10. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  11. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  12. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  13. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  14. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  15. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  16. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  17. Análise metalográfica do titânio puro submetido à soldagem laser Nd: YAG e TIG

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    Full Text Available INTRODUÇÃO: Os métodos de soldagem mais utilizados em Odontologia não podem ser aplicados ao titânio puro e às suas ligas em função da alta reatividade do titânio com elementos atmosféricos; dessa forma, o mesmo não deve ser soldado por processo comum. OBJETIVO: O objetivo deste trabalho foi avaliar a característica metalúrgica do titânio comercialmente puro sem solda e submetido aos processos de soldagem a laser e TIG. MATERIAL E MÉTODO: Foram confeccionados 15 corpos de prova em titânio comercialmente puro, cinco para cada condição, na forma de hastes cilíndricas, obtidas por fundição odontológica, sob atmosfera de gás argônio e vácuo, com calor produzido por um arco voltaico, com a injeção do titânio sob vácuo-pressão. Três grupos foram formados I: soldagem a laser; II: soldagem TIG, e III: sem solda. Os corpos de prova do grupo I e II foram seccionados ao meio e soldados por TIG e por laser, respectivamente; o grupo III foi mantido sem corte e sem solda, como controle. A análise metalográfica foi realizada sob aumentos de 50×, 100× e 200×, em microscópio. RESULTADO: Pelos resultados obtidos nas micrografias, o titânio comercialmente puro apresentou uma morfologia de grãos equiaxiais da fase α, o cordão de solda a laser apresentou estrutura martensítica e, na TIG, microestrutura Widmanstätten. CONCLUSÃO: A microestrutura martensítica é condizente com a alta taxa de resfriamento proveniente do processo de soldagem a laser. As estruturas martensítica e Widmansttäten são mais refinadas quando comparadas à microestrutura do metal base.

  18. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  19. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  20. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  1. Laser synthesis of hybrid nanoparticles for biomedicine

    Science.gov (United States)

    Avetissian, H. K.; Lalayan, A. A.

    2018-04-01

    The extraordinary properties of size-tunable nanoparticles (NPs) have given rise to their widespread applications in Nanophotonics, Biomedicine, Plasmonics etc. Semiconductor and metal NPs have found a number of significant applications in the modern biomedicine due to ultrasmall sizes (1-10 nm) and the size-dependent flexibility of their optical properties. In the present work passive Q-switched Nd:YAG pulsed laser was used to synthesize NPs by method of laser ablation in different liquids. For cases of hybrid metal NPs we have demonstrated that plasmon resonance can be modified and tuned from the plasmon resonances of pure metal NPs. The shifted plasmon resonance frequency at 437 nm for Au-Ag hybrid NPs, and 545 nm for Au-Cu hybrid NPs have been observed. Effectiveness of biotissue ablation in the case of the tissue sample that colored with metal NPs was approximately on 4-5 times larger than for the sample with non-colored area. Laser welding for deep-located biotissue layers colored by metal NPs has been realized. The luminescence properties of the colloidal hybrid Si-Ni nanoparticles' system fabricated by pulsed laser ablation are also considered. The red-shifted photoluminescence of this system has been registered in the blue range of the spectrum because of the Stark effect in the Coulomb field of the charged Ni nanoparticles. Summarizing, the knowledge of peculiarities of optical properties of hybrid NPs is very important for biomedical applications. More complex nanoassemblies can be easily constructed by the presented technique of laser synthesis of colloidal QDs including complexes of NPs of different materials.

  2. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  3. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  4. Analysis of Deformation and Failure Behaviors of TIG Welded Dissimilar Metal Joints Using Miniature Tensile Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji-Hwan; Jahanzeb, Nabeel; Kim, Min-Seong; Hwang, Ji-Hyun; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of)

    2017-02-15

    The deformation and failure behaviors of dissimilar metal joints between SS400 steel and STS316L steel were investigated. The dissimilar metal joints were fabricated using the tungsten inert gas (TIG) welding process with STS309 steel as a filler metal. The microstructures of the dissimilar metal joints were investigated using an optical microscope and EBSD technique. The mechanical properties of the base metal (BM), heat affected zone (HAZ) and weld metal (WM) were measured using a micro-hardness and micro-tension tester combined with the digital image correlation (DIC) technique. The HAZ of the STS316L steel exhibited the highest micro-hardness value, and yield/tensile strengths, while the BM of the SS440 steel exhibited the lowest micro-hardness value and yield /tensile strengths. The grain size refinement in the HAZ of SS400 steel induced an enhancement of micro-hardness value and yield/tensile strengths compared to the BM of the SS400 steel. The WM, which consists of primary δ-ferrite and a matrix of austenite phase, exhibited relatively a high micro-hardness value, yield /tensile strengths and elongation compared to the BM and HAZ of the SS400 steel.

  5. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  6. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  7. Advantages of MAG-STT Welding Process for Root Pass Welding in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Pandzic Adi

    2016-02-01

    Full Text Available This paper describesthe basics of modern MAG-STT welding process and its advantages for root pass welding of construction steels in oil and gas industry. MAG-STT welding process was compared with competitive arc welding processes (SMAW and TIG, which are also used for root pass welding on pipes and plates. After experimental tests, the obtained results are analyzed and presented in this paper

  8. Changes in type I collagen following laser welding.

    Science.gov (United States)

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  9. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2016-06-10

    Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is

  10. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  11. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  12. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  13. GAP WIDTH STUDY IN LASER BUTT-WELDING

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely related......In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser...... to the welding speed, (2) the larger laser power leads to the bigger maximum allowable gap width and (3) the focal point position has very little influence on the maximum gap width....

  14. Plasma Processes of Cutting and Welding

    Science.gov (United States)

    1976-02-01

    TIG process. 2.2.2 Keyhole Welding In plasma arc welding , the term...Cutting 3 3 4 4 4 2.2 Plasma Arc Welding 5 2.2.1 Needle Arc Welding 2.2.2 Keyhole Welding 5 6 3. Applications 8 93.1 Economics 4. Environmental Aspects of...Arc Lengths III. Needle Arc Welding Conditions IV. Keyhole Welding Conditions v. Chemical Analyses of Plates Used - vii - 1. 2. 3. 4. 5. 6. 7. 8.

  15. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L plates: a comparative study of ferrite number (FN) prediction and experimental measurements

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, Prakash M.; Sarkar, Biswanath

    2015-01-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other major structural components development. AISI SS316L materials of different thicknesses are utilized due to the superior mechanical properties, corrosion resistance, fatigue and stability at high temperature operation. The components are developed by using welding techniques like TIG welding with suitable filler material. Like in case of vacuum vessel, the multipass welding is unavoidable due to the use of high thickness plates (like in case of ITER and DEMO reactors). In general austenitic welds contains fraction of delta ferrite phase in multipass welds. The quantification depends on the weld thermal cycles like heat input and cooling rates associated with process conditions and chemical composition of the welds. Due to the repeated weld thermal passes, the microstructure adversely alters due to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influence the mechanical properties like tensile and impact toughness of joints. Control of the delta ferrite is necessary to hold the compatible final properties of the joints and hence its evaluation vital before the fabrication process. The present paper reports the detail analysis of delta ferrite phase in welded region and heat affected zones of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions (1.67 kJ/mm, 1.78 kJ/mm, 1.87 kJ/mm). The correlation of delta ferrite microstructure with optical microscope and high resolution SEM has been carried out and different type of acicular and vermicular delta ferrite structures is observed. This is further correlated with the non destructive magnetic measurement using Ferrite scope. The measured ferrite number (FN) is correlated with the formed delta ferrite phase. The chemical composition of weld samples is

  16. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  17. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  18. Stainless steel welding method with excellent nitric acid corrosion resistance

    International Nuclear Information System (INIS)

    Matsushita, Yukinobu; Inazumi, Toru; Hyakubo, Tamako; Masamura, Katsumi.

    1996-01-01

    The present invention concerns a welding method for a stainless steel used in a circumstance being in contact with a highly oxidizing nitric acid solution such as nuclear fuel reprocessing facilities, upon welding 316 type austenite steel containing Mo while giving excellent nitric acid resistance. A method of TIG welding using a filler metal having a composition of C, Si, Mn, P, S, Ni, Cr, Mo and Cu somewhat different from a stainless steel mother material in which C, Si, Mn, P, S, Ni, Cr and Mo are specified comprises a step of TIG-welding the surface of the mother material and a step of TIG-welding the rear face of the mother material, in which the welding conditions for the rear face of the mother material are such that the distance between the surface of the outermost welding metal layer on the side of the surface of the mother material and the bottom of the groove is not less than 5mm, and an amount of welding heat is made constant. As a result, even if the method is used in a circumstance being in contact with a highly corrosive solution such as nitric acid, corrosion resistance is not degraded. (N.H.)

  19. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding

    Science.gov (United States)

    Luo, Masiyang; Shin, Yung C.

    2015-01-01

    In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.

  20. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  1. Modeling and design of energy concentrating laser weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.O. [Los Alamos National Lab., NM (United States); Sklar, E. [OptiCad Corp., Santa Fe, NM (United States)

    1997-04-01

    The application of lasers for welding and joining has increased steadily over the past decade with the advent of high powered industrial laser systems. Attributes such as high energy density and precise focusing allow high speed processing of precision assemblies. Other characteristics of the process such as poor coupling of energy due to highly reflective materials and instabilities associated with deep penetration keyhole mode welding remain as process limitations and challenges to be overcome. Reflective loss of laser energy impinging on metal surfaces can in some cases exceed ninety five percent, thus making the process extremely inefficient. Enhanced coupling of the laser beam can occur when high energy densities approach the vaporization point of the materials and form a keyhole feature which can trap laser energy and enhance melting and process efficiency. The extreme temperature, pressure and fluid flow dynamics of the keyhole make control of the process difficult in this melting regime. The authors design and model weld joints which through reflective propagation and concentration of the laser beam energy significantly enhance the melting process and weld morphology. A three dimensional computer based geometric optical model is used to describe the key laser parameters and joint geometry. Ray tracing is used to compute the location and intensity of energy absorption within the weld joint. Comparison with experimentation shows good correlation of energy concentration within the model to actual weld profiles. The effect of energy concentration within various joint geometry is described. This method for extending the design of the laser system to include the weld joint allows the evaluation and selection of laser parameters such as lens and focal position for process optimization. The design of narrow gap joints which function as energy concentrators is described. The enhanced laser welding of aluminum without keyhole formation has been demonstrated.

  2. Laser-welded ureteral anastomoses: experimental studies with three techniques.

    Science.gov (United States)

    Gürpinar, T; Gürer, S; Kattan, M W; Wang, L; Griffith, D P

    1996-01-01

    Tissue welding with laser energy is a new technique for reconstructive surgery. The potential advantages of laser welding are (a) lack of foreign body reaction, (b) decreased operative time, (c) less tissue manipulation, and (d) effective union of tissues equivalent to sutured anastomoses. We have performed ureteral anastomoses in adult mongrel dogs using a KTP 532 nm laser at an intensity of 1.4 W. Multiple "spot welds" of 1-s duration were utilized in a single layer anastomosis. Laser-welded anastomoses were performed with and without protein solder (33% and 50% human albumin) and were compared to sutured anastomoses. The laser-welded anastomoses required less operative time and provided bursting pressure levels similar to those of traditional sutured anastomoses. There was no advantage or disadvantage to the addition of human albumin as a solder in these experimental studies.

  3. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  4. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  5. Laser welding by dental Nd:YAG device

    Science.gov (United States)

    Fornaini, Carlo; Bertrand, Caroline; Merigo, Elisabetta; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Samir

    2009-06-01

    Welding laser was introduced in jewellery during years 70 and, just after, was successfully used also by dental technicians. Welding laser gives a great number of advantages, versus traditional welding and, for this reason, this procedure had a great diffusion in the technician laboratories and stimulated the companies to put in the market more and more evolutes appliances. Some aspects, such great dimensions, high costs and delivery system today still characterize these machines by fixed lenses, which have strictly limited its use only to technician laboratories. The aim of this study is to demonstrate the possibility, by using a fibber-delivered laser normally utilized in the dental office, to make, by dentist himself in his office, welding on different metals and to evaluate advantages and possibilities of this new technique.

  6. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  7. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  8. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  9. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Das, C.R.; Albert, S.K.; Sam, Shiju; Mastanaiah, P.; Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T.; Murthy, C.V.S.; Kumar, E. Rajendra

    2014-01-01

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  10. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, D.K; Hoving, W.; de Hosson, J.T.M.

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With

  11. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  12. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  13. Evolution of microstructure in laser welding of SS304L

    International Nuclear Information System (INIS)

    Kumar, Santosh; Kushwaha, R.P.; Viswanadham, C.S.; Dey, G.K.

    2009-01-01

    Laser welding is an important joining process and its application in industries is growing rapidly. One can produce laser welds over a wide range of process parameters and this offers very good opportunity for producing microstructure of different morphology and scales in the weldment. Weld beads have been produced on 5 mm thick plates of SS304L using CW Nd-YAG laser. Laser power was varied in 200 W to 1000 W range and welding speed was varied in 100 mm/mm to 1000 mm/mm. This resulted in weld beads of different morphology. Microstructure of the weld beads was examined on the cross-section as well as in the axial direction using optical microscopy and Transmission Electron Microscopy (TEM) to study evolution of the microstructure in the weldment. Microstructure was cellular and cellular-dendritic with grains growing from the fusion line towards the centerline. In the central region, cellular growth along the welding direction was observed. The cell size was found to increase with increasing laser power and decreasing welding speed. The findings are presented in this paper. (author)

  14. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  15. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  16. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  17. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  18. Detection of strain behavior during phase-transformation in welds by the laser speckle method. Report 3. Application of the laser speckle method to strain masurement in the welding process; Reza supekkuru ho ni yoru yosetsubu no sohentai tojo no hizumi kenshutsu. 3. Reza supekkuru ni yoru hizumi sokuteiho no yosetsu eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Y.; Kuroda, S. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Gross, H-G. [Rostock Univ., Rostock (Germany)

    1996-11-05

    It corresponds to an information relating to defect formation due to residual stress and its accompanying defect formation to find out the period of phase-transformation and expansion volume on the transformation forming at welding. In order to estimate texture of the heat affected zone, there is an SH-CCT diagram, which is important on weld metallurgy. However, this is formed by giving a thermal recycling to a small size specimen under stress-free, which has some problems to estimate the transformation starting period in actual welding. And, the expansion volume containing the transformation cannot be found out directly by this. In this study, as the first step adaptable to this problem with laser speckle method measurable with non-contact and high precision, a linear heating with TIG to a SUS304 stainless steel thin plate without transformation was executed at first, the strain behavior accompanied with it was confirmed. Secondly, using a thin plate of 9% Ni steel showing any transformation at comparatively low temperature, probability of a phase transformation detection was investigated on a way of cooling by executing resemble linear heating. As a result, the laser speckle method was confirmed to be adaptable to this problem. 14 refs., 17 figs., 1 tab.

  19. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  20. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    Science.gov (United States)

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.

  1. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  2. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  3. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  4. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  5. Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    Directory of Open Access Journals (Sweden)

    Peizhi Li

    2018-01-01

    Full Text Available A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers. At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist.

  6. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  7. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  8. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  9. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    Runchev, Dobre; Dorn, Lutc; Jaferi, Seifolah; Purbst, Detler

    1997-01-01

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  10. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  11. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  12. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  13. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  14. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  15. Elementary TIG Welding Skills.

    Science.gov (United States)

    Pierson, John E., III

    The text was prepared to help deaf students develop the skills needed by an employed welder. It uses simplified language and illustrations to present concepts which should be reinforced by practical experience with welding skills. Each of the 12 lessons contains: (1) an information section with many illustrations which presents a concept or…

  16. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  17. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established.

  18. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan

    2013-01-01

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established

  19. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  20. Study on the corrosion assessment of overpack welds-II (Joint research)

    International Nuclear Information System (INIS)

    Mitsui, Hiroyuki; Otsuki, Akiyoshi; Asano, Hidekazu; Taniguchi, Naoki; Kawakami, Susumu; Yui, Mikazu

    2006-06-01

    The corrosion resistance at the overpack welds is possible to be inferior to that at base metal, so that it has been concerned that a short-term failure of overpack may occur due to the corrosion penetration at the welds. In this study, corrosion mechanisms specific to the welds were extracted for carbon steel which is one of the candidate materials for overpacks. And then the corrosion experiments for welded carbon steel were planed to evaluate long-term integrity of overpack welds. Based on this plan, electrochemical tests for welded carbon steel using the samples welded by EBW and TIG were carried out, and the corrosion behavior of welded zone was compared with that of base metal. The results of anodic polarization tests in 0.01M and 0.1M carbonate aqueous solutions for base metal, heat affected zone and welded metal showed that; As for EBW, the anodic polarization curves were not affected by welding although the metallurgical structures vary with base metal, heat affected zone and welded metal. As for TIG, the current density of welded metal was larger than that of base metal and of heat affected zone, and local dissolution with immediate in current density was observed in 0.01M-pH10 carbonate aqueous solution. As shown in these results, it is expected that the corrosion resistance at the welds by EBW will be equal to that at base metal. As for TIG, however, it was indicated that the corrosion resistance is possible to be lower than base metal. (author)

  1. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue

    2017-06-01

    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  2. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  3. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    Science.gov (United States)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  4. Experimental study on the effect of welding speed and tool pin ...

    African Journals Online (AJOL)

    user

    Friction stir welding (FSW) is a novel solid state welding process for joining metallic alloys and ... compared with conventional welding methods such as TIG or MIG. ... Conventional fusion welding of aluminium alloys often produces a weld which .... Ti. 0.1%. Cr. 0.25%. Al. Balance. 3.1 Configuration of welding tool geometry.

  5. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    Science.gov (United States)

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  6. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  7. Laser tissue welding in ophthalmic surgery.

    Science.gov (United States)

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2008-09-01

    Laser welding of ocular tissues is an alternative technique or adjunct to conventional suturing in ophthalmic surgery. It is based on the photothermal interaction of laser light with the main components of the extracellular matrix of connective tissues. The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration. The procedure we set up is based on the use of an infrared diode laser in association with the topical application of the chromophore Indocyanine Green. Laser light may be delivered either continuously or in pulses, thus identifying two different techniques that have been applied clinically in various types of transplants of the cornea.

  8. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  9. Evaluation of local deformation behavior accompanying fatigue damage in F82H welded joint specimens by using digital image correlation

    International Nuclear Information System (INIS)

    Nakata, Toshiya; Tanigawa, Hiroyasu

    2012-01-01

    Highlights: ► In tensile, the TIG welded joint material was concentrated in the THAZ. ► In tensile, fracture occurred at the point where the axial strain converged. ► In fatigue, fracture occurred at the point where the Max. shear strain converged. ► Many macrocracks and cavities formed in the FGHAZ and THAZ of the cross section. - Abstract: By using digital image correlation, the deformation behaviors of local domains of F82H joint specimens welded using tungsten inert gas (TIG) and electron beam (EB) welding were evaluated during tensile and fatigue testing. In the tensile test specimens, the tensile strength decreased in the TIG-welded joints, and ductility decreased in both the EB- and TIG-welded joints. Because axial strain increased in the tempered heat-affected zone (HAZ) and led to the fracture of the TIG-welded joint, the strength was considered to have decreased because of welding. In fatigue testing, the number of cycles to fracture for the welded joint decreased to less than 40–60% of that for the base metal. For both fracture specimens, the largest value of shear strain was observed in the region approximately between the fine-grained HAZ and tempered HAZ; this shear strain ultimately led to fracture. Cavities and macrocracks were observed in the fine-grained HAZ and tempered HAZ in the cross sections of the fracture specimens, and geometrical damage possibly resulted in the reduction of fatigue lifetime.

  10. Mechanical properties and long-range behaviour of TZM-welding joints

    International Nuclear Information System (INIS)

    Jakobeit, W.; Eck, R.; Ullrich, G.

    1987-01-01

    In order to utilize the known excellent high temperature properties of TZM (Mo-0,5Ti-0,08Zr) for construction of components with thick sections (sheets of 8 mm wall thickness, bars of 25 mm diameter) the testing of suitable joining techniques was necessary. Based on the present state of the art the EB- and TIG-welding as well as the friction welding seemed to be the qualified methods. The investigations of the welded specimens covered non-destructive tests and metallographic evaluations as well as tensile tests, long term creep rupture tests at 850 0 C and fatigue tests unter tension-compression stresses at room temperature and 850 0 C. EB- and TIG-weldments showed coarse grained weld and heat affected zones. Due to higher gas contents, the EB-welded specimens produced by P/M process were interspersed with pores while the joints of the ARC-cast TZM material were uniform. However, TIG-welds of both variants were affected with porosity and cracks. The friction welds were almost perfect. In the tensile tests, all the joints containing recrystallized microstructure zones ruptured in the welds at strength values equivalent to recrystallized TZM. The strength of friction welds exhibited significant higher values. At room temperature the tensile ductility of all weldments was inadequate, the friction welded specimens showed the lowest values. At 850 0 C the tensile ductility was adequate in all variants. The creep rupture tests at 850 0 C exhibit up to 10 000 h that the strength of the friction weldments exceed those of the EB-weldments. (orig./IHOE) [de

  11. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  12. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  13. The laser revolution in shipbuilding: laser welding and cutting at Blohm + Voss

    Energy Technology Data Exchange (ETDEWEB)

    Minsks, T. [Blohm und Voss GmbH, Hamburg (Germany). Laser Production Line

    2000-12-01

    Precision manufacturing in steel shipbuilding has gained significantly in importance in recent years as a means of raising productivity and thus enhancing competitiveness. Precision manufacturing means working to very narrow tolerances, minimizing assembly costs by eliminating the need for straightening and adjustment, reducing reworking requirements and shortening throughput times. Blohm+Voss GmbH is the world's first shipbuilding company to use laser technology as part of its precision manufacturing approach, combined with complex clamping techniques which render exact prepositioning and tack welding of components superfluous. Laser cutting makes it possible to cut large formats with virtually parallel cut edges and very narrow cutting gaps which - in conjunction with suitable clamping - allow laser welding without the use of fillers. With a smaller heat-affected zone, laser welding causes less part distortion than conventional methods. This makes it possible to use thinner sheets and sections and thus supports the very low-weight constructions required for the types of ship built by Blohm+Voss. By combining laser cutting and laser welding in a single production line, Blohm+Voss currently boasts the most advanced prefabrication facility in shipbuilding, capable of producing components up to 12 meters long and 4 meters wide. (orig.)

  14. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    OpenAIRE

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    2011-01-01

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influen...

  15. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source, and the servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1 percent increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process

  16. Advances in automatic welding control

    International Nuclear Information System (INIS)

    White, D.; Woodacre, A.; Taylor, A.F.

    1972-01-01

    The development at the Reactor Fuel Element Laboratories, UKAEA Springfields, of a computer-based welding process control system, was aimed initially at the TIG welding of the end seals of nuclear fuel elements. The system provides for mixed multi-station operation with on-line real-time capability and can be used either as a research tool or for production requirements at competitive costs. The operation of the control system, the form of power source and servo motor control units are described. Typically, continuous or pulse-arc welding sequences can be digitally programmed on 0.1 sec increments, with current in 0.5 A increments up to a maximum of 256 A; up to three servo motors can be operated with speeds selected in 0.1% increments of their maximum. Up to six welding parameters can be monitored digitally at speeds from once every 10 msec. Some applications are described and it is shown that the equipment has wider uses outside the nuclear fuel element field. High quality industrial welding requirements can also be met and the system is not limited to the TIG process. (author)

  17. Problems in laser repair welding of polished surfaces

    Directory of Open Access Journals (Sweden)

    A. Skumavc

    2014-10-01

    Full Text Available This paper presents problems in laser repair welding of the tools for injection moulding of plastics and light metals. Tools for injection moulding of the car headlamps are highly polished in order to get a desirable quality of the injected part. Different light metals, glasses, elastomers, thermoplastics and thermosetting polymers are injected into the die cavity under high pressures resulting in the surface damages of the tool. Laser welding is the only suitable repair welding technique due to the very limited sputtering during deposition of the filler metal. Overlapping of the welds results in inhomogeneous hardness of the remanufactured surface. Results have shown strong correlation between hardness and surface waviness after final polishing of the repair welded surface.

  18. Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds

    International Nuclear Information System (INIS)

    Oh, Jinkeun; Kim, Nack J.; Lee, Sunghak; Lee, Eui W.

    2003-01-01

    The effect of microstructural characteristics on high-cycle fatigue properties and fatigue crack propagation behavior of welded regions of an investment cast Ti-6Al-4V were investigated. High-cycle fatigue and fatigue crack propagation tests were conducted on the welded regions, which were processed by two different welding methods: tungsten inert gas (TIG) and electron beam (EB) welding. Test data were analyzed in relation to microstructure, tensile properties, and fatigue fracture mode. The base metal was composed of an alpha plate colony structure transformed to a basket-weave structure with thin α platelets after welding and annealing. High-cycle fatigue results indicated that fatigue strength of the EB weld was lower than that of the base metal or the TIG weld because of the existence of large micropores formed during welding, although it had the highest yield strength. In the case of the fatigue crack propagation, the EB weld composed of thinner α platelets had a faster crack propagation rate than the base metal or the TIG weld. The effective microstructural feature determining the fatigue crack propagation rate was found to be the width of α platelets because it was well matched with the reversed cyclic plastic zone size calculated in the threshold ΔK regime

  19. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  20. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  1. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    Science.gov (United States)

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  2. Analysis of Pulsed Laser Welding Parameters Effect on Weld Geometry of 316L Stainless Steel using DOE

    Directory of Open Access Journals (Sweden)

    M. R. Pakmanesh

    2018-03-01

    Full Text Available In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.

  3. UNS S32750 super duplex steel welding using pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Francini, O.D.; Andrade, G.G.; Clemente, M.S.; Gallego, J.; Ventrella, V.A.

    2016-01-01

    Laser is a flexible and powerful tool with many relevant applications in industry, mainly in the welding area. Lasers today provide the welding industry technical solutions to many problems. This work studied the weld metal obtained by pulsed laser welding of Nd: YAG super duplex stainless steel UNS S32750 employed in the oil and natural gas, analyzing the influence of high cooling rate, due to the laser process, the swing phase ferrite / austenite. Were performed weld beads in butt joint with different repetition rates. The different microstructures were obtained by optical microscopy and scanning electron microscopy. The results showed that the effect of varying the welding energy of Nd: YAG laser on the volume fractions of the phases ferrite/austenite in the weld metal was its ferritization and low austenite amount on the grain boundary. (author)

  4. Application of YAG laser processing in underwater welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2002-09-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  5. Laser repair welding of molds with various pulse shapes

    Directory of Open Access Journals (Sweden)

    M. Pleterski

    2010-01-01

    Full Text Available Repair welding of cold-work tool steels with conventional methods is very difficult due to cracking during remelting or cladding and is generally performed with preheating. As an alternative, repair welding with laser technology has recently been used. This paper presents the influence of different pulse shapes on welding of such tools with the pulsed Nd:YAG laser. Repair welding tests were carried out on AISI D2 tool steel, quenched and tempered to hardness of 56 HRc, followed by microstructural analysis and investigation of defects with scanning electron microscopy. Test results suggest that it is possible to obtain sound welds without preheating, with the right selection of welding parameters and appropriate pulse shape.

  6. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  7. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  8. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  9. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  10. Welding with the TIG automatic process of the end fittings for the execution of the Embalse nuclear power plant fuel channel rechange; Soldadura con proceso TIG automatico de los accesorios extremos (end fitting) para la ejecucion de un recambio de canal de combustible en el reactor de la Central Nuclear Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, P O

    1991-12-31

    The present work describes the methodology for the cutting of the existing welding and subsequent welding applied by the TIG process of the coupling composed by the shroud ring and the end fitting ring from one of Embalse nuclear power plant`s fuel channels. The replacement will be previously determined by the SLAR-ETTE mechanism where a displacement operated among the Gartner Spring rings, the pressure tubes are separated from the Calandria tubes. The welding to be carried out has the function of stamping the CO{sub 2} annular gas (thermal insulator) circulating between the pressure tube and the Calandria one during the functioning of the plant. (Author). [Espanol] El presente trabajo describe la metodologia de corte de la soldadura existente y la posterior soldadura aplicada mediante proceso TIG de la junta compuesta por el aro de fuelle y el anillo del `end fitting`, de uno de los canales de combustibles del reactor de la Central Nuclear Embalse. El reemplazo, se determinara previamente mediante el mecanismo de SLAR-ETTE con lo cual se observara el desplazamiento operado entre los anillos garten spring que separan los tubos de presion de los tubos de calandria. La soldadura a efectuar cumple la funcion de sellar el gas anular CO{sub 2} (aislante termico) circulante entre el tubo de presion y el tubo de calandria durante el funcionamiento de la planta. (Autor).

  11. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  12. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  13. Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding)

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, S., E-mail: steve.livingstone@cnl.ca [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Xiao, L. [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Corcoran, E.C.; Ferrier, G.A.; Potter, K.N. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4 (Canada)

    2015-04-01

    Highlights: • Examines feasibility of laser welding appendages to Zr-4 tubing. • Laser welding minimizes the HAZ and removes toxic Be. • Mechanical properties of laser welds appear competitive with induction brazed joints. • Work appears promising and lays the foundation for further investigations. - Abstract: Laser welding is a potential alternative to the induction brazing process commonly used for appendage attachment in CANDU{sup ®} fuel fabrication that uses toxic Be as a filler metal, and creates multiple large heat affected zones in the sheath. For this work, several appendages were laser welded to tubing using different laser heat input settings and then examined with a variety of techniques: visual examination, metallography, shear strength testing, impact testing, and fracture surface analysis. Where possible, the examination results are contrasted against production induction brazed joints. The work to date looks promising for laser welded appendages. Further work on joint optimization, corrosion testing, irradiation testing, and post-irradiation examination will be performed in the future.

  14. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  15. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  16. Hot cracking characteristic of welding using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Ro, Kyoung Bo; Yoo, Young Tae; Oh, Yong Seak; Shin, Ho Jun; Kim, Ji Hwan

    2003-01-01

    The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. The major process parameters studied in the present laser welding experiment were position of focus, travel speed and laser power

  17. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  18. Forming Tests for Laser Welded Blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Rasmussen, Mads

    1998-01-01

    Ratio test (LDR)Tensile testBulge testMarziniak testPractical examples obtained for laser welded blanks are shown. In combination, tensile tests and the Bulge test can form the so-called Forming Limiting Curves and examples of curves obtained from laser welded blanks are shown.......In this paper different means for testing the formability of new material combinations used as tailored blanks in the automotive industry are presented. The following forming techniques will be described and their benefits and drawbacks presented :Limiting Dome Height test (LDH)Limiting Drawing...

  19. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  20. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)