WorldWideScience

Sample records for laser-polarized xenon interphase

  1. NMR Study of Laser-polarized 129Xe in Low Pressure Natural Xenon Gas

    Institute of Scientific and Technical Information of China (English)

    SUN Xianping; WANG Shenglie; ZENG Xizhi

    2001-01-01

    The NMR signal from the laser-polarized t29 Xe in low-pressure natural xenon gas has been observed with a Bruker WP-80SY NMR spectrometer. The laser-polarized 129 Xe was produced by the method of laser pumping and spin exchange in a magnetic field of 1.87 Tesla. It is obtained experimentally that the nuclear spin relaxation rate 1/T1 of laser-polarized 129Xe are (4.03±1.97)×10-3/see~(2.21±0.78)×10-3/see in the range of the 3.33×103 Pa~8.29×104 Pa Xe gas pressures, the apparent wall relaxation rate 1/Tw* =(1.98±0.18)×10-3/see, and the relaxation rate coefficient C of 133Cs-129Xe spin exchange is (2.81±0.74)×10-16 em3/sec.

  2. Development of a functionalized Xenon biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  3. Development of a functionalized Xenon biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  4. Study of gas-fluidization dynamics with laser-polarized 129Xe.

    Science.gov (United States)

    Wang, Ruopeng; Rosen, Matthew Scott; Candela, Donald; Mair, Ross William; Walsworth, Ronald Lee

    2005-02-01

    We report initial NMR studies of gas dynamics in a particle bed fluidized by laser-polarized xenon (129Xe) gas. We have made preliminary measurements of two important characteristics: gas exchange between the bubble and emulsion phases and the gas velocity distribution in the bed. We used T2* contrast to differentiate the bubble and emulsion phases by choosing solid particles with large magnetic susceptibility. Experimental tests demonstrated that this method was successful in eliminating 129Xe magnetization in the emulsion phase, which enabled us to observe the time dependence of the bubble magnetization. By employing the pulsed field gradient method, we also measured the gas velocity distribution within the bed. These results clearly show the onset of bubbling and can be used to deduce information about gas and particle motion in the fluidized bed.

  5. NMR of laser-polarized 129Xe in blood foam

    Science.gov (United States)

    Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.

    1997-01-01

    Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.

  6. Quantum theory and experimental study of laser polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Siji; Gao Zhihui; Mao Huajin

    1987-02-01

    The full quantum theory of laser polarization is presented in this paper. The polarization properties of multimode laser beam in anisotropic cavity are analysed. Basic equations, calculation curve and polarization configurations of describing the inter-angle of mode polarization directions in 6328 A He-Ne laser vs. anisotropy are given. The effects of the phase anisotropy on mode polarization by stress is investigated. The experimental result and theory analysis is coincident.

  7. Diffusion NMR methods applied to xenon gas for materials study

    Science.gov (United States)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  8. [Interphase cytogenetics in oncologic diagnosis].

    Science.gov (United States)

    Pajor, L

    1998-12-06

    Nowadays, the detection of specific DNA sequences on interphase nuclei of cytological and paraffin slide preparations by in situ hybridization, the interphase cytogenetics became an established technology in the pathological diagnostics. A historical overview on the development of the technique is presented, the theoretical basis of the detection of numerical and structural chromosomal aberrations is demonstrated and the applications are exemplified on different types of malignant lymphomas, leukaemias as well as epithelial tumors. Combined use of the interphase cytogenetics, light microscopy and immunohistochemistry with the digital imaging techniques can provide us with morphological, immunophenotypic and genotypic informations of the same cellular object which might be a milestone in the pathomorphological diagnostics.

  9. Broadband laser polarization control with aligned carbon nanotubes

    CERN Document Server

    Yang, He; Lia, Diao; Chen, Ya; Mattila, Marco; Tian, Ying; Yong, Zhenzhong; Yang, Changxi; Tittonen, Ilkka; Ren, Zhaoyu; Bai, Jingtao; Li, Qingwen; Kauppinen, Esko I; Lipsanen, Harri; Sun, Zhipei

    2015-01-01

    We introduce a simple approach to fabricate aligned carbon nanotube (ACNT) device for broadband polarization control in fiber laser systems. The ACNT device was fabricated by pulling from as-fabricated vertically-aligned carbon nanotube arrays. Their anisotropic property is confirmed with optical and scanning electron microscopy, and with polarized Raman and absorption spectroscopy. The device was then integrated into fiber laser systems (at two technologically important wavelengths of 1 and 1.5 um) for polarization control. We obtained a linearly-polarized light output with the maximum extinction ratio of ~12 dB. The output polarization direction could be fully controlled by the ACNT alignment direction in both lasers. To the best of our knowledge, this is the first time that ACNT device is applied to polarization control in laser systems. Our results exhibit that the ACNT device is a simple, low-cost, and broadband polarizer to control laser polarization dynamics, for various photonic applications (such as ...

  10. Scalability study of solid xenon

    CERN Document Server

    Yoo, J; Jaskierny, W F; Markley, D; Pahlka, R B; Balakishiyeva, D; Saab, T; Filipenko, M

    2015-01-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  11. Scalability study of solid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  12. Interactions between xenon and phospholipid bicelles studied by 2H/ 129Xe/ 131Xe NMR and optical pumping of nuclear spins

    Science.gov (United States)

    Li, Xiaoxia; Newberry, Caitlin; Saha, Indrajit; Nikolaou, Panayiotis; Whiting, Nicholas; Goodson, Boyd M.

    2006-02-01

    The interactions between xenon and DMPC/DHPC bicelles ( q = 3.5%, 7.5% w/v) were studied via 2H, 129Xe, 131Xe, and optically enhanced 129Xe NMR. The chemical shifts, linewidths, and quadrupolar couplings of the xenon/bicelle NMR signals were correlated with different regions of the bicellar phase diagram. The addition of xenon (<70 mM) was observed to reduce the temperature-onset of bicelle alignment by several degrees, in quantitative agreement with effects previously observed with chloroform; however, the stable liquid-crystalline range was not significantly reduced. Preliminary laser-polarized xenon/bicelle studies yielded 129Xe T1 values of ˜120 s, long enough to permit a variety of planned experiments.

  13. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  14. Requirements for Xenon International

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Ely, James H.; Haas, Derek A.; Harper, Warren W.; Heimbigner, Tom R.; Hubbard, Charles W.; Humble, Paul H.; Madison, Jill C.; Morris, Scott J.; Panisko, Mark E.; Ripplinger, Mike D.; Stewart, Timothy L.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  15. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M. Daniel [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  16. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. XENON1T radon assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan [MPIK, Heidelberg (Germany); Collaboration: XENON-Collaboration

    2016-07-01

    The radioactive isotope {sup 222}Rn is one of the most dominant intrinsic background sources for experiments dealing with a low event rate like the XENON1T Dark Matter detector. Being part of the primordial decay chain of {sup 238}U the noble gas {sup 222}Rn permanently emanates from almost all materials. Therefore, it is crucial to determine the radon emanation rate of those detector components that will be in contact with the xenon target. The technique of the radon emanation measurements, making use of ultra low background proportional counters is presented as well as selected results for XENON1T.

  18. The Effect of Interphase Structures in Nanodielectrics

    Science.gov (United States)

    Raetzke, Stephanie; Kindersberger, Josef

    The interface between the polymer and the filler particles influences the properties of dielectric materials. To understand how interfaces act, they should be considered as layers rather than interfaces. Therefore the term interphase is more appropriate for the polymer layer around a filler particle where the polymer chains are chemically and/or physically bound to the particle surface. The interphase is characterized by an ordered polymer structure around the particles. This paper discusses the influence of the ordered polymer structure around the particles on the polymer properties with regard to explain the effect of nano particles on material properties. In this paper also a model is given how to estimate the maximum interphase fraction depending on particle diameter and interphase thickness. It is postulated that the most significant results can be achieved at this maximum.

  19. Direct WIMP searches with XENON100 and XENON1T

    Directory of Open Access Journals (Sweden)

    Davide Ferella Alfredo

    2015-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON direct Dark Matter search program. It consists of an ultra-low background double phase (liquid-gas xenon filled time projection chamber with a total mass of 161 kg (62 in the target region and 99 in the active shield, installed at the Laboratori Nazionali del Gran Sasso (LNGS. Here the results from the 224.6 live days of data taken between March 2011 and April 2012 are reported. The experiment set one of the most stringent limits on the WIMP-nucleon spin-independent cross section to date (2 × 10−45 cm2 for a 55 Gev/c2 WIMP mass at 90 % confidence level and the most stringent on the spin-dependent WIMP-neutron interaction (3.5 × 10−40 for a 45 GeV/c2 WIMP mass. With the same dataset, XENON100 excludes also solar axion coupling to electrons at gAe > 7.7 × 10−12 for a mass of mAxion 1 × 10−12 at a mass range of mAxion = 5−10 keV/c2 (both 90 % C.L.. Moreover an absolute spectral comparison between simulated and measured nuclear recoil distributions of light and charge signals from a 241AmBe source demonstrates a high level of detector and systematics understanding. Finally, the third generation of the XENON experiments, XENON1T, is the first tonne scale direct WIMP search experiment currently under construction. The commissioning phase of XENON1T is expected to start in early 2015 followed, a few months after, by the first science run. The experiment will reach sensitivities on the WIMP-nucleon spin-independent cross section down to 2 ×10−47 cm2 after two years of data taking.

  20. Xenon-based anesthesia: theory and practice

    OpenAIRE

    Jan-Hinrich Baumert

    2009-01-01

    Jan-Hinrich BaumertDept of Anaesthesiology, UMC St Radboud, Nijmegen, NetherlandsAbstract: Xenon has been in use as an anesthetic for more than 50 years. Although it exhibits some of the properties of an ideal anesthetic, the technical complexity of xenon equipment and the high cost of the gas have prevented widespread use of xenon anesthesia. The main beneficial features of xenon anesthesia are fast induction and emergence because of low solubility in blood and tissues, along with remarkably...

  1. Interphase tuning for stronger and tougher composites.

    Science.gov (United States)

    Livanov, Konstantin; Yang, Lin; Nissenbaum, Asaf; Wagner, H Daniel

    2016-05-27

    The development of composite materials that are simultaneously strong and tough is one of the most active topics of current material science. Observations of biological structural materials show that adequate introduction of reinforcements and interfaces, or interphases, at different scales usually improves toughness, without reduction in strength. The prospect of interphase properties tuning may lead to further increases in material toughness. Here we use evaporation-driven self-assembly (EDSA) to deposit a thin network of multi-wall carbon nanotubes on ceramic surfaces, thereby generating an interphase reinforcing layer in a multiscale laminated ceramic composite. Both strength and toughness are improved by up to 90%, while keeping the overall volume fraction of nanotubes in a composite below 0.012%, making it a most effective toughening and reinforcement technique.

  2. Interphase tailoring in graphite-epoxy composites

    Science.gov (United States)

    Subramanian, R. V.; Sanadi, A. R.; Crasto, A. S.

    1988-01-01

    The fiber-matrix interphase in graphite fiber-epoxy matrix composites is presently modified through the electrodeposition of a coating of the polymer poly(styrene-comaleic anhydride), or 'SMA' on the graphite fibers; optimum conditions have been established for the achievement of the requisite thin, uniform coatings, as verified by SEM. A single-fiber composite test has shown the SMA coating to result in an interfacial shear strength to improve by 50 percent over commercially treated fibers without sacrifice in impact strength. It is suggested that the epoxy resin's superior penetration into the SMA interphase results in a tougher fiber/matrix interface which possesses intrinsic energy-absorbing mechanisms.

  3. Dependence of Z Parameter for Tensile Strength of Multi-Layered Interphase in Polymer Nanocomposites to Material and Interphase Properties

    Science.gov (United States)

    Zare, Yasser; Rhee, Kyong Yop

    2017-01-01

    In this work, the Z interphase parameter which determines the tensile strength of interphase layers in polymer nanocomposites is presented as a function of various material and interphase properties. In this regard, the simple Pukanszky model for tensile strength of polymer nanocomposites is applied and the dependency of Z to different characteristics of constituents and interphase are illustrated by contour plots. The interphase strength ( σ i) and B interfacial parameter in Pukanszky model show direct links with Z parameter. Also, it is found that the volume fractions of nanoparticles and interphase reveal dissimilar effects on Z. A high Z is obtained by a low nanoparticle volume fraction and high content of interphase, but the best values of Z are associated with the level of B parameter.

  4. Structure and dynamics of interphase chromosomes.

    Directory of Open Access Journals (Sweden)

    Angelo Rosa

    Full Text Available During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.

  5. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  6. RESULTS FROM THE XENON100 EXPERIMENT

    Directory of Open Access Journals (Sweden)

    Rino Persiani

    2013-12-01

    Full Text Available The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS, with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase the sensitivity by two orders of magnitude.

  7. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  8. Barriers to the Migration of Interphase Boundaries.

    Science.gov (United States)

    1984-01-06

    neceeay and Identify by block number) CFerrite, carbide, interphase boundary structure, nucleation, growth, solute drag effect, barrier, bainite ...Third Three Years (1980-1983) 8 B. Personnel and Supplemental Support Situations 10 C. The Proeutectoid Ferrite and Bainite Reactions in Fe-C-X...C. Fig. 13 Optical micrographs of ferrite/ bainite morphology round the bay of Fe-0.19% C-2.30% Mo at early stages of transformation. Bay temperature

  9. Interphase cytogenetics of workers exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wang, Yunxia; Venkatesh, P. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  10. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  11. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  12. Mechanisms of nuclear lamina growth in interphase.

    Science.gov (United States)

    Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I

    2016-04-01

    The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.

  13. Wimp Detection Using Liquid Xenon (dark Matter)

    CERN Document Server

    Wang, H

    1998-01-01

    The missing mass "Dark Matter" problem of the Universe is one of the most important questions facing the moden physics and astronomy. This thesis work developed the Liquid Xenon technology to detect the SUSY ark matter. The background rejection principle was tested and many technical problem are studied, including the purification of the liquid xenon to yield both long electron lifetime and long xenon scintillation light attenuation length, and xenon recoil scintillation efficiency measurement. The detector design and construction are studied. Finally a two phase xenon detector was realized for the future dark matter experiment. The key working principle is the use of proportional scintillation and electro-luminescence to detector the ionization components, which is different between background and recoil signals. The two phase test results shown that a detector energy threshold as low as 10keV can be achieved.

  14. Genome architecture: domain organization of interphase chromosomes.

    Science.gov (United States)

    Bickmore, Wendy A; van Steensel, Bas

    2013-03-14

    The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.

  15. Xenon Gamma Detector Project Support

    Energy Technology Data Exchange (ETDEWEB)

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  16. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  17. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  18. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  19. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  20. Polymer dynamics in nanoconfinement: Interfaces and interphases

    Directory of Open Access Journals (Sweden)

    Krutyeva Margarita

    2015-01-01

    Full Text Available The dynamics of polymers in nanoconfinement was studied by using neutron spectroscopy. A number of pronounced effects on different time and length scales for the polymers confined in nanopores of anodic aluminium oxide were observed. Local segmental dynamics was found to be dependent on the type of the interaction between the solid pore wall and polymer: attractive interactions lead to the formation of a surface layer with the dynamics slowed down as compared to the dynamics of pure polymer; neutral/repulsive interaction do not change the local dynamics. Attractive interactions cause anchoring of polymer segments on the surface creating an interphase between the polymer in close vicinity to the solid surface and pure polymer. In addition, at strong confinement conditions the dilution of the entanglement network is observed.

  1. Measurement of the $\\beta$-asymmetry parameter in $^{35}$Ar decay with a laser polarized beam

    CERN Multimedia

    With this proposal we request beam time for the first two phases of a project that aims at measuring the $\\beta$-asymmetry parameter of the mirror $\\beta$-decay branch in $^{35}$Ar using an optically polarized Ar atom beam. The final goal of the experiment is to measure this parameter to a precision of 0.5%. This will allow the most precise determination of the V$_{ud}$ quark mixing matrix element from all the mirror transitions with an absolute uncertainty of 0.0007. The proposal will be presented in phases and we ask here 11 shifts (7 on-line + 4 off-line) for phase 1 and 15 shifts (6 on-line and 9 off-line) for phase 2. Phase 1 aims at establishing the optimal laser polarization scheme as well as the best implantation host for maintaining the polarization. Phase 2 aims at enhancing the beam polarization by removing the unpolarized part of the beam using re-ionization.

  2. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  3. Xenon recovery from molybdenum-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37931 (United States); Paviet, P.D.; Bresee, J.C. [U.S. Department of Energy,1000 Independence Ave, S.W., Washington DC, 20585-1290 (United States)

    2016-07-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) sponsors research and development on the recycle of used commercial nuclear fuel as an option for future nuclear fuel cycles that offers increased use of uranium and thorium resources and a possible reduction in the overall cost of nuclear waste management. The two alternatives, direct disposal of used fuel and fuel recycle, are broadly referred to as open and closed fuel cycles. One requirement of a closed fuel cycle is the safe management of radioactive off-gases, which includes {sup 14}C, radioiodine and the noble gases, including radio-xenon. The longest lived relevant radio-xenon isotope is {sup 127}Xe; with a half-life of just 36.35 days it is feasible to trap and hold the radio-xenon to allow for decay to safe environmental levels. However, the very weak chemical bonds of noble gases, in this case xenon, make them difficult to trap, which led to an extensive DOE-NE study of noble gas adsorption on various molecular sieves as an alternative to costly cryogenics processes. Preliminary results indicate that xenon adsorption at near room temperature on molecular sieves, both synthetic and natural, may have both cost and efficiency advantages over cryogenic processes. These results appear to have direct application in helping achieve the United Nations Security Council goal of reducing xenon emissions from medical isotope producers.

  4. Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers

    OpenAIRE

    2011-01-01

    From the late 1980s onwards, the use of DNA probes to visualise sequences on individual chromosomes (fluorescent in-situ hybridisation - FISH) revolutionised the study of cytogenetics. Following single colour experiments, more fluorochromes were added, culminating in a 24 colour assay that could distinguish all human chromosomes. Interphase cytogenetics (the detection of chromosome copy number in interphase nuclei) soon followed, however 24 colour experiments are hampered for this application...

  5. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  6. Direct Dark Matter search with XENON100

    Directory of Open Access Journals (Sweden)

    Orrigo S.E.A.

    2016-01-01

    Full Text Available The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10−45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.. The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10−40 cm2 (90% C.L. for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10−12 (90% C.L., and for axion-like-particles, gAe < 1 × 10−12 (90% C.L. for masses between 5 and 10 keV/c2.

  7. Cosmogenic activation of xenon and copper

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Kish, Alexander; Piastra, Francesco [University of Zuerich, Department of Physics, Zuerich (Switzerland); Schumann, Marc [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-10-15

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of {sup 7}Be, {sup 101}Rh, {sup 125}Sb, {sup 126}I and {sup 127}Xe in xenon, out of which only {sup 125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation. (orig.)

  8. XMASS experiment, dark matter search with liquid xenon detector

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Akihiro, E-mail: minamino@scphys.kyoto-u.ac.j [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan)

    2010-11-01

    The XMASS Collaboration is developing liquid xenon detector for the purpose of direct detection of dark matter in the universe. A prototype detector was developed at Kamioka Observatory to test the basic performance of single phase liquid xenon detector. With the detector, the physical properties of liquid xenon were measured, and the performance of vertex and energy reconstruction and the self-shielding power of liquid xenon for background {gamma}-rays were confirmed.

  9. XENON ANESTHESIA IN CHILDREN: BIS-MONITORING

    Directory of Open Access Journals (Sweden)

    V. G. Bagaev

    2013-01-01

    Full Text Available We conducted 60 low-flow xenon anesthesias in children of 1-18 years of age. We measured the sedation level using bispectral (BIS index and clinically on the stage of induction, xenon anesthesia maintenance and during recovery. The trial showed that, according to the clinical and BIS-monitoring data, sevoflurane inhalational induction in children of 1-5 years of age and propofol intravenous induction in children of 6-18 years of age provides children with the required sedation level. BIS index objectively reflects intensity of the sedative component of an anesthesia both in the junior and the senior age groups on the stages of xenon anesthesia maintenance and during recovery.

  10. Transdermal diffusion of xenon in vitro using diffusion cells

    Science.gov (United States)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  11. Distillation of Liquid Xenon to Remove Krypton

    CERN Document Server

    Abe, K; Iida, T; Ikeda, M; Kobayashi, K; Koshio, Y; Minamino, A; Miura, M; Moriyama, S; Nakahata, M; Nakajima, Y; Namba, T; Ogawa, H; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Ueshima, K; Yamashita, M; Kaneyuki, K; Ebizuka, Y; Kikuchi, J; Ota, A; Suzuki, S; Takahashi, T; Hagiwara, H; Kamei, T; Miyamoto, K; Nagase, T; Nakamura, S; Ozaki, Y; Sato, T; Fukuda, Y; Sato, T; Nishijima, K; Sakurai, M; Maruyama, T; Motoki, D; Itow, Y; Ohsumi, H; Tasaka, S; Kim, S B; Kim, Y D; Lee, J I; Moon, S H; Urakawa, Y; Uchino, M; Kamioka, Y

    2008-01-01

    A high performance distillation system to remove krypton from xenon was constructed, and a purity level of Kr/Xe = $\\sim 3 \\times 10^{-12}$ was achieved. This development is crucial in facilitating high sensitivity low background experiments such as the search for dark matter in the universe.

  12. Absolute Electron Extraction Efficiency of Liquid Xenon

    Science.gov (United States)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  13. Cosmogenic activation of xenon and copper

    CERN Document Server

    Baudis, Laura; Piastra, Francesco; Schumann, Marc

    2015-01-01

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of 7Be, 101Rh, 125Sb, 126I and 127Xe in xenon, out of which only 125Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only exis...

  14. High-power atomic xenon laser

    NARCIS (Netherlands)

    Witteman, W.J.; Peters, P.J.M.; Botma, H.; Botma, H.; Tskhai, S.N.; Udalov, Yu.B.; Mei, Q.C.; Mei, Qi-Chu; Ochkin, V.N.

    1995-01-01

    The high pressure atomic xenon laser is becoming the most promising light source in the wavelength region of a few microns. The merits are high efficiency (so far up to 8 percent), high output energies (15 J/liter at 9 bar), high continuous output power (more than 200 W/liter), no gas dissociation a

  15. Relative scintillation efficiency of liquid xenon in the XENON10 direct dark matter search

    Science.gov (United States)

    Manzur, Angel

    There is almost universal agreement that most of the mass in the Universe consists of dark matter. Many lines of reasoning suggest that the dark matter consists of a weakly interactive massive particle (WIMP) with mass ranging from 10 GeV/c 2 to a few TeV/c 2 . Today, numerous experiments aim for direct or indirect dark matter detection. XENON10 is a direct detection experiment using a xenon dual phase time projection chamber. Particles interacting with xenon will create a scintillation signal ( S 1) and ionization. The charge produced is extracted into the gas phase and converted into a proportional scintillation light ( S 2), with an external electric field. The dominant background, b particles and g rays, will undergo an electron recoil (ER) interaction, while WIMPs and neutrons will undergo a nuclear recoil (NR) interaction. Event-by-event discrimination of background signals is based on log 10 ( S 2/ S 1) NR review the requirements for a dark matter search. In particular I discuss the XENON10 detector, deployment, operation, calibrations, analysis and WIMP-nucleon cross- section limits. Finally, I present our latest results for the relative scintillation efficiency ([Special characters omitted.] ) for nuclear recoils in liquid xenon, which was the biggest source of uncertainty in the XENON10 limit. This quantity is essential to determine the nuclear energy scale and to determine the WIMP-nucleon cross sections.

  16. Growth of the Mammalian Golgi Apparatus during Interphase.

    Science.gov (United States)

    Sin, Alex T-W; Harrison, Rene E

    2016-09-15

    During the cell cycle, genetic materials and organelles are duplicated to ensure that there is sufficient cellular content for daughter cells. While Golgi growth in interphase has been observed in lower eukaryotes, the elaborate ribbon structure of the mammalian Golgi apparatus has made it challenging to monitor. Here we demonstrate the growth of the mammalian Golgi apparatus in its protein content and volume during interphase. Through ultrastructural analyses, physical growth of the Golgi apparatus was revealed to occur by cisternal elongation of the individual Golgi stacks. By examining the timing and regulation of Golgi growth, we established that Golgi growth starts after passage through the cell growth checkpoint at late G1 phase and continues in a manner highly correlated with cell size growth. Finally, by identifying S6 kinase 1 as a major player in Golgi growth, we revealed the coordination between cell size and Golgi growth via activation of the protein synthesis machinery in early interphase.

  17. Nuclear reprogramming by interphase cytoplasm of 2-cell mouse embryos

    Science.gov (United States)

    Kang, Enugu; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P.; Schöler, Hans; Mitalipov, Shoukhrat

    2014-01-01

    Summary Successful mammalian cloning employing somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II-arrested (MII) oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing pluripotency in somatic cell nuclei1-3. However, these poorly defined maternal factors presumably decline sharply after fertilization since cytoplasm of pronuclear stage zygotes is reportedly inactive4, 5. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase (M-phase) can also support derivation of embryonic stem cells (ESCs) following SCNT6-8, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in M-phase but not in interphase cytoplasm are “trapped” inside the nucleus during interphase and effectively removed during enucleation9. Here, we investigated the presence of reprogramming activity in the interphase cytoplasm of 2-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated M-phase and interphase zygotes and 2-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Then, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ESC, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ESCs capable of contributing to traditional germline and tetraploid chimeras. In addition, direct transfer of cloned embryos, reconstructed with ESC nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to utilize interphase cytoplasm in SCNT could impact efforts to generate autologous human ESCs for

  18. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  19. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods.

  20. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    Science.gov (United States)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a ;Q-process; to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass

  1. The Large Underground Xenon (LUX) Experiment

    CERN Document Server

    Akerib, D S; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Camp, C; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chiller, A; Chiller, C; Clark, K; Classen, T; Coffey, T; Curioni, A; Dahl, E; Dazeley, S; de Viveiros, L; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Kwong, J; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; Marquez, Z; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Rodionov, A; Roberts, P; Shei, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sofka, C J; Sorensen, P; Spaans, J; Stiegler, T; Stolp, D; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, D; White, J T; Whitis, T J; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  2. Optically enhanced production of metastable xenon

    CERN Document Server

    Hickman, G T; Pittman, T B

    2016-01-01

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable.

  3. Chromatographic separation of radioactive noble gases from xenon

    CERN Document Server

    Akerib, D S; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bramante, R; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Coffey, T; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Yazdani, K; Young, S K; Zhang, C

    2016-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes $^{85}$Kr and $^{39}$Ar that are not removed by the {\\em in situ} gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400\\,kg of xenon was processed, reducing the average concentration of krypton from 130\\,ppb to 3.5\\,ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  4. Relaxation channels of multi-photon excited xenon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Serdobintsev, P. Yu.; Melnikov, A. S. [Institute of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Department of Physics, St. Petersburg State University, Saint Petersburg 198904 (Russian Federation); Rakcheeva, L. P., E-mail: lida@nanobio.spbstu.ru; Murashov, S. V.; Khodorkovskii, M. A. [Institute of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Lyubchik, S. [REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516 (Portugal); Timofeev, N. A.; Pastor, A. A. [Department of Physics, St. Petersburg State University, Saint Petersburg 198904 (Russian Federation)

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  5. Computer Simulation of the Interphase Boundary Evolution in Ni75AlxV25-x Alloy

    Institute of Scientific and Technical Information of China (English)

    Yongsheng LI; Zheng CHEN; Yanli LU; Yongxin WANG

    2005-01-01

    The interphase boundary evolution of ordered phase in Ni75AlxV25-x alloy during precipitation was simulated on atomic-scale based on the microscopic phase-field dynamic model. The results show that the second phase precipitated from the interphase boundary formed by the first phase and the disordered matrix at high temperature, and from the interphase boundaries of the first phase at low temperature. L12 phase had obvious selective orientation when precipitated from the interphase boundaries of D022. L12 phase nucleated easily at the interphase boundaries formed by [10] and [01] directions of D022 projection along [001] direction, and grew easily at [10] direction. There was no the selective orientation when L12 phase precipitated from the interphase boundary formed by D022 and the disordered matrix. D022 phase had the selective orientation when precipitated from the interphase boundaries of L12, and grew along the [10] direction.

  6. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    Science.gov (United States)

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  7. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    Science.gov (United States)

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-07-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites.

  8. Scintillation light, ionization yield and scintillation decay times in high pressure xenon and xenon methane

    NARCIS (Netherlands)

    Pushkin, K. N.; Akimov, D. Y.; Burenkov, A. A.; Dmitrenko, V. V.; Kovalenko, A. G.; Lebedenko, V. N.; Kuznetsov, I. S.; Stekhanov, V. N.; Tezuka, C.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2007-01-01

    Scintillation light, ionization yield and scintillation decay times have been measured in xenon and in its mixture with a 0.05% concentration of methane as a function of the reduced electric field (E/N)-the ratio of the electric field strength to the number density of gas-at a pressure of 21 atm. Th

  9. FANCA safeguards interphase and mitosis during hematopoiesis in vivo.

    Science.gov (United States)

    Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W Scott; Nalepa, Grzegorz

    2015-12-01

    The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.

  10. Multicolour interphase cytogenetics: 24 chromosome probes, 6 colours, 4 layers.

    Science.gov (United States)

    Ioannou, D; Meershoek, E J; Thornhill, A R; Ellis, M; Griffin, D K

    2011-01-01

    From the late 1980s onwards, the use of DNA probes to visualise sequences on individual chromosomes (fluorescent in-situ hybridisation - FISH) revolutionised the study of cytogenetics. Following single colour experiments, more fluorochromes were added, culminating in a 24 colour assay that could distinguish all human chromosomes. Interphase cytogenetics (the detection of chromosome copy number in interphase nuclei) soon followed, however 24 colour experiments are hampered for this application as mixing fluorochromes to produce secondary colours produces images that are not easily distinguishable from overlapping signals. This study reports the development and use of a novel protocol, new fast hybridising FISH probes, and a bespoke image capture system for the assessment of chromosome copy number in interphase nuclei. The multicolour probe sets can be used individually or in sequential hybridisation layers to assess ploidy of all 24 human chromosomes in the same nucleus. Applications of this technique are in the investigation of chromosome copy number and the assessment of nuclear organisation for a range of different cell types including human sperm, cancer cells and preimplantation embryos.

  11. Promoters active in interphase are bookmarked during mitosis by ubiquitination.

    Science.gov (United States)

    Arora, Mansi; Zhang, Jie; Heine, George F; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D

    2012-11-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.

  12. Formation of chromosomal domains in interphase by loop extrusion

    Science.gov (United States)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  13. Xenon poisoning calculation code for miniature neutron source reactor (MNSR)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In line with the actual requirements and based upon the specific char acteristics of MNSR, a revised point-reactor model was adopted to model MNSR's xenon poisoning. The corresponding calculation code, MNSRXPCC (Xenon Poison ing Calculation Code for MNSR), was developed and tested by the Shanghai MNSR data.

  14. First axion results from the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, gAe, has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no e

  15. Analysis of the XENON100 dark matter search data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Decowski, M.P.

    2014-01-01

    The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This pap

  16. The XENON1T Dark Matter Search Experiment

    CERN Document Server

    Aprile, Elena

    2012-01-01

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, XENON100 has already reached a sensitivity of $7\\times10^{-45}\\,\

  17. Solubilities of krypton and xenon in dichlorodifluoromethane

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, J.H.; Shockley, W.E.; Greene, C.W.

    1984-07-01

    The solubility behavior of krypton and xenon in dichlorodifluoromethane was investigated for the Consolidated Fuel Reprocessing Program (CFRP) in support of the fluorocarbon absorption process. The solubility data derived from solute radioisotopes had uncertainties of approx. 0.1%. Values for Henry's law constants were initially determined under equilibrium conditions at infinite solute dilution. Based on these results, the study was extended to finite solute concentrations. Nonidealities in the two binary systems were expressed as gas phase fugacity coefficients for each solute at 10/sup 0/ intervals over the range -30 to +50/sup 0/C. 22 references, 4 figures, 2 tables.

  18. A xenon gas purity monitor for EXO

    CERN Document Server

    Dobi, A; Herrin, S; Odian, A; Prescott, C Y; Rowson, P C; Ackerman, N; Aharmin, B; Auger, M; Barbeau, P S; Barry, K; Benitez-Medina, C; Breidenbach, M; Cook, S; Counts, I; Daniels, T; DeVoe, R; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, M; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; LePort, F; Mackay, D; MacLellan, R; Mong, B; Diez, M Montero; Muller, A R; Neilson, R; Niner, E; O'Sullivan, K; Piepke, A; Pocar, A; Pushkin, K; Rollin, E; Sinclair, D; Slutsky, S; Stekhanov, V; Twelker, K; Voskanian, N; Vuilleumier, J -L; Wichoski, U; Wodin, J; Yang, L; Yen, Y -R

    2011-01-01

    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.

  19. Liquid Xenon Detectors for Positron Emission Tomography

    CERN Document Server

    Miceli, A; Benard, F; Bryman, D A; Kurchaninov, L; Martin, J P; Muennich, A; Retiere, F; Ruth, T J; Sossi, V; Stoessl, A J

    2011-01-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).

  20. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  1. A pulse generator for xenon lamps

    Science.gov (United States)

    Janata, E.

    2002-10-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within ±0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 μs. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  2. Electron drift in a large scale solid xenon

    CERN Document Server

    Yoo, J

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7\\,cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163\\,K), the drift speed is 0.193 $\\pm$ 0.003 cm/$\\mu$s while the drift speed in the solid phase (157\\,K) is 0.397 $\\pm$ 0.006 cm/$\\mu$s at 900 V/cm over 8.0\\,cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  3. Perovskites with the Framework-Forming Xenon.

    Science.gov (United States)

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.

  4. Acoustic profilometry of interphases in epoxy due to segregation and diffusion using Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Bactavatchalou, R; Baller, J; Philipp, M; Sanctuary, R; Zielinski, B; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, Avenue de la Faiencerie, L-1115 Luxembourg (Luxembourg); Alnot, P; Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (Germany)], E-mail: mail@tauron.de

    2008-02-15

    Reactive network forming polymer systems like epoxies are of huge technological interest because of their adhesive properties based on specific interactions with a large variety of materials. These specific interactions alter the morphology of the epoxy within areas determined by the correlation length of these interactions. The changed morphology leads to interphases with altered (mechanical) properties. Besides these surface-induced interphases, bulk interphases do occur due to segregation, crystallization, diffusion, etc. A new experimental technique to characterize such mechanical interphases is {mu}-Brillouin spectroscopy ({mu}-BS). With {mu}-BS, we studied interphases and their formation in epoxies due to segregation of the constituent components and due to selective diffusion of one component. In the latter case, we will demonstrate the influence of changing the boundary conditions of the diffusion process on the shape of the interphase.

  5. Detection of chromosome aberrations in interphase nuclei using fluorescence in situ hybridization technique.

    OpenAIRE

    1993-01-01

    We report here several experiences of interphase cytogenetics, using fluorescence in situ hybridization (FISH) technique, for the detection of chromosome aberrations. FISH, using alpha satellite specific probes of 18, X, Y chromosomes, was done in interphase nuclei from peripheral blood of patients with Edwards' syndrome, Klinefelter's syndrome and Turner's syndrome with healthy male and female controls, respectively. The distributions of fluorescent signals in 100 interphase nuclei were well...

  6. Reliability and error analysis on xenon/CT CBF

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Diversified Diagnostic Products, Inc., Houston, TX (United States)

    2000-02-01

    This article provides a quantitative error analysis of a simulation model of xenon/CT CBF in order to investigate the behavior and effect of different types of errors such as CT noise, motion artifacts, lower percentage of xenon supply, lower tissue enhancements, etc. A mathematical model is built to simulate these errors. By adjusting the initial parameters of the simulation model, we can scale the Gaussian noise, control the percentage of xenon supply, and change the tissue enhancement with different kVp settings. The motion artifact will be treated separately by geometrically shifting the sequential CT images. The input function is chosen from an end-tidal xenon curve of a practical study. Four kinds of cerebral blood flow, 10, 20, 50, and 80 cc/100 g/min, are examined under different error environments and the corresponding CT images are generated following the currently popular timing protocol. The simulated studies will be fed to a regular xenon/CT CBF system for calculation and evaluation. A quantitative comparison is given to reveal the behavior and effect of individual error resources. Mixed error testing is also provided to inspect the combination effect of errors. The experiment shows that CT noise is still a major error resource. The motion artifact affects the CBF results more geometrically than quantitatively. Lower xenon supply has a lesser effect on the results, but will reduce the signal/noise ratio. The lower xenon enhancement will lower the flow values in all areas of brain. (author)

  7. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  8. A Xenon Condenser with a Remote Liquid Storage Vessel

    CERN Document Server

    Slutsky, S; Breuer, H; Dobi, A; Hall, C; Langford, T; Leonard, D; Kaufman, L J; Strickland, V; Voskanian, N

    2009-01-01

    We describe the design and operation of a system for xenon liquefaction in which the condenser is separated from the liquid storage vessel. The condenser is cooled by a pulse tube cryocooler, while the vessel is cooled only by the liquid xenon itself. This arrangement facilitates liquid particle detector research by allowing easy access to the upper and lower flanges of the vessel. We find that an external xenon gas pump is useful for increasing the rate at which cooling power is delivered to the vessel, and we present measurements of the power and efficiency of the apparatus.

  9. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

    2014-01-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  10. Liquid xenon scintillators for imaging of positron emitters.

    Science.gov (United States)

    Lavoie, L

    The current understanding of xenon scintillation physics is summarized and keyed to the use of xenon as a gamma-ray detector in medical radioisotope imaging systems. Liquid xenon has a short scintillation pulse (approximately 10(8) sec) and high gamma-ray absorption and scintillation efficiencies. The fast pulse may facilitate imaging in vivo distributions of hot positron sources and allow recovery of additional spatial information by time-of-flight techniques. We begin by describing our own study of the feasibility of making a practical positron scanning system, and consider the problems of scintillation decay time, linearity, efficiency, purity, and electricfield amplifcation. The prospects for a practical instrument are considered.

  11. Radon depletion in xenon boil-off gas

    OpenAIRE

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the rado...

  12. Dynamics and regulation of plant interphase microtubules: a comparative view.

    Science.gov (United States)

    Hashimoto, Takashi

    2003-12-01

    Microtubule and actin cytoskeletons are fundamental to a variety of cellular activities within eukaryotic organisms. Extensive information on the dynamics and functions of microtubules, as well as on their regulatory proteins, have been revealed in fungi and animals, and corresponding pictures are now slowly emerging in plants. During interphase, plant cells contain highly dynamic cortical microtubules that organize into ordered arrays, which are apparently regulated by distinct groups of microtubule regulators. Comparison with fungal and animal microtubules highlights both conserved and unique mechanisms for the regulation of the microtubule cytoskeleton in plants.

  13. Viscoelasticity of Xenon near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  14. Modeling Pulse Characteristics in Xenon with NEST

    CERN Document Server

    Mock, Jeremy; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, effects such as the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, parameters such as ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors.

  15. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  16. Radon depletion in xenon boil-off gas

    CERN Document Server

    Bruenner, S; Lindemann, S; Undagoitia, T Marrodán; Simgen, H

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the $10^{-15}\\,$mol/mol level.

  17. MPGDs in Compton imaging with liquid-xenon

    CERN Document Server

    Samuel, Duval; Herve, Carduner; Jean-Pierre, Cussonneau; Jacob, Lamblin; Patrick, Le Ray; Eric, Morteau; Tugdual, Oger; Jean-Sebastien, Stutzmann; Dominique, Thers

    2009-01-01

    The interaction of radiation with liquid xenon, inducing both scintillation and ionization signals, is of particular interest for Compton-sequences reconstruction. We report on the development and recent results of a liquid-xenon time-projection chamber, dedicated to a novel nuclear imaging technique named "3 gamma imaging". In a first prototype, the scintillation is detected by a vacuum photomultiplier tube and the charges are collected with a MICROMEGAS structure; both are fully immersed in liquid xenon. In view of the final large-area detector, and with the aim of minimizing dead-zones, we are investigating a gaseous photomultiplier for recording the UV scintillation photons. The prototype concept is presented as well as preliminary results in liquid xenon. We also present soft x-rays test results of a gaseous photomultiplier prototype made of a double Thick Gaseous Electron Multiplier (THGEM) at normal temperature and pressure conditions.

  18. Radon depletion in xenon boil-off gas

    Science.gov (United States)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  19. Plutonium-244 fission xenon in the most primitive meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, P.K.; Myers, W.A. (Dept. of Chemical Engineering, Univ. Arkansas, Fayetteville, AR (United States))

    1994-01-01

    The plutonium-244/xenon-136 ages of the Murchison, Murray and Orgueil meteorites have been calculated from the existing xenon isotope data and the uranium contents. The CI carbonaceous chondrite Orgueil, which is considered to be among the most primitive - in the sense of the least altered - sample of the solar system known to man, appears to have started to retain its xenon more than 5,000 million years ago, when the ratio of [sup 244]Pu to [sup 238]U in the solar system was as high as (0.5 [+-] 0.1) (atom/atom) and the CM carbonaceous chondrites Murchison and Murray started to retain their xenon about 4,940 million years ago, when the [sup 244]Pu to [sup 238]U ratio was about 0.17 (atom/atom). (orig.)

  20. Radon removal from gaseous xenon with activated charcoal

    Science.gov (United States)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.96±0.10)×10-3 at -85 °C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  1. Protective Oxide Coating for Ionic Conductive Solid Electrolyte Interphase.

    Science.gov (United States)

    Kim, Yong Su; Kim, Seong Heon; Kim, Gyusung; Heo, Sung; Mun, Jinsoo; Han, Sungsoo; Jung, Heechul; Kyoung, Yong Koo; Yun, Dong Jin; Baek, Woon Joong; Doo, Seokgwang

    2016-11-16

    To employ Li-based batteries to their full potential in a wide range of energy-storage applications, their capacity and performance stability must be improved. Si is a viable anode material for Li-based batteries in electric vehicles due to its high theoretical capacity and good economic feasibility. However, it suffers from physical and chemical degradation, leading to unstable electrochemical performance and preventing its incorporation in new Li-based battery systems. Herein, we applied a poly(vinyl alcohol)-PO4 protective coating for Si-graphite anodes and confirmed an improvement in the electrochemical performance. The experimental results revealed that the polymer acts as a binder to alleviate the pulverization of the electrode. Furthermore, the oxide coating reduces the loss of Li2O, which has high ionic conductivity, during operation, resulting in the formation of a stable solid electrolyte interphase. Our findings suggest that a stable and ion-conducting anode/interphase can be developed by applying an oxide and polymer coating in combined approach. Therefore, this study is expected to provide a basis for the further development and design of high-performance Li-based battery systems.

  2. Repo-Man/PP1 regulates heterochromatin formation in interphase

    Science.gov (United States)

    de Castro, Inês J.; Budzak, James; Di Giacinto, Maria L.; Ligammari, Lorena; Gokhan, Ezgi; Spanos, Christos; Moralli, Daniela; Richardson, Christine; de las Heras, Jose I.; Salatino, Silvia; Schirmer, Eric C.; Ullman, Katharine S.; Bickmore, Wendy A.; Green, Catherine; Rappsilber, Juri; Lamble, Sarah; Goldberg, Martin W.; Vinciotti, Veronica; Vagnarelli, Paola

    2017-01-01

    Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated with chromatin but its function in interphase is not known. Here we show that Repo-Man, via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin, dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein 1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that depletion of Repo-Man alters the peripheral localization of a subset of these regions and alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic phosphatase in the regulation of the epigenetic landscape and gene expression in interphase. PMID:28091603

  3. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    Directory of Open Access Journals (Sweden)

    Yamini Dalal

    2007-08-01

    Full Text Available Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3. However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.

  4. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Simin Lim

    Full Text Available Integrin-linked kinase (ILK localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.

  5. A chromosome 21-specific cosmid cocktail for the detection of chromosome 21 aberrations in interphase nuclei

    NARCIS (Netherlands)

    A.R.M. van Opstal (Diane); J.O. van Hmel (J.); H.J.F.M.M. Eussen (Bert); A. van der Heide (Annette); C.D.F. van den Berg (Cardi); P.A. In't Veld (Peter); F.J. Los

    1995-01-01

    textabstractFluorescent in situ hybridization (FISH) with a 21q11-specific probe (CB21c1) consisting of three non-overlapping cosmids has been applied to interphase amniocytes of pregnancies at increased risk for fetal aneuploidy (N = 78) and to interphase lymphocytes, cultured and uncultured, of pa

  6. A chromosome 21-specific cosmid cocktail for the detection of chromosome 21 aberrations in interphase nuclei

    NARCIS (Netherlands)

    A.R.M. van Opstal (Diane); J.O. van Hmel (J.); H.J.F.M.M. Eussen (Bert); A. van der Heide (Annette); C.D.F. van den Berg (Cardi); P.A. In't Veld (Peter); F.J. Los

    1995-01-01

    textabstractFluorescent in situ hybridization (FISH) with a 21q11-specific probe (CB21c1) consisting of three non-overlapping cosmids has been applied to interphase amniocytes of pregnancies at increased risk for fetal aneuploidy (N = 78) and to interphase lymphocytes, cultured and uncultured, of pa

  7. Influences of interphase on dynamic effective properties of composites reinforced by dispersed spherical particles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influences of interphase on dynamic effective properties of composites reinforced by randomly dispersed spherical particles were studied. A thin homogeneous elastic interphase with different shear and bulk moduli, located between the reinforced particle and the host matrix, was introduced to model the interfacial bonding state. The effects of such an interphase on the coherent plane waves were studied numerically. Numerical simulations were carried out for SiC-Al composites with four typical cases of interphase. It was found that the property of interphase has significant influences on the effective propagation constants of coherent waves and the dynamic effective elastic moduli of the composites. The influences on the coherent longitudinal wave and the coherent shear waves were different and dependent upon the frequency range. Moreover, several imperfect interface models, i.e., the spring model, mass model, and spring-mass model, were studied numerically and compared with the interphase model. It was found that the spring model is a more suitable model than the mass model for the light and weak interphase whereas the mass model is a more suitable model than the spring model for the heavy and strong interphase.

  8. Measuring radon reduction in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan; Cichon, Dominick; Lindemann, Sebastian; Marrodan Undagoitia, Teresa; Simgen, Hardy [MPIK, Heidelberg (Germany)

    2016-07-01

    {sup 222}Rn, which originates from the decay of primordial {sup 238}U, is one of the major background sources for ultra-low background noble gas detectors. One of them is XENON1T, which is a dark matter direct detection experiment looking for hypothetical weakly interacting massive particles (WIMPs). It uses liquid xenon (LXe) as a detection medium and aims to be sensitive to spin-independent WIMP-nucleon cross-sections of σ∝2.10{sup -47} cm{sup 2} at a WIMP mass of ∝50 GeV/c{sup 2}. To achieve this goal, radon activity inside the detector must be limited to a few mBq/kg. One possible way for reducing the concentration of {sup 222}Rn inside such an LXe detector is using the so-called ''boil-off method''. It takes advantage of the fact, that the radon concentration in boil-off xenon is smaller compared to the concentration in the liquid xenon from which the boil-off xenon evaporated. This can be understood by the different vapor pressures of radon and xenon. In this talk, tests conducted at the MPIK are outlined which probe the feasibility and effectiveness of the boil-off method. The results prove, that a reduction of the radon concentration can indeed be achieved. In addition, an outlook for possible future applications of this technique is given.

  9. Scintillation luminescence for high-pressure xenon gas

    Science.gov (United States)

    Kobayashi, S.; Hasebe, N.; Igarashi, T.; Kobayashi, M.-N.; Miyachi, T.; Miyajima, M.; Okada, H.; Okudaira, O.; Tezuka, C.; Yokoyama, E.; Doke, T.; Shibamura, E.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.

    2004-09-01

    Scintillation and ionization yields in xenon gas for 5.49MeV alpha-particles were measured in the range of pressure from 0.35 to 3.7MPa and the electric field strength (E) over the number density of xenon atoms (N), E/N from 0 to 5×10-18Vcm2. When our data are normalized at the data point measured by Saito et al., the number of scintillation photons is 2.3×105 while the number of ionization electrons is 2.0×105 at 2.6MPa and at 3.7×10-18Vcm2. The scintillation and ionization yields of xenon doped with 0.2% hydrogen, High-Pressure Xenon gas[H2-0.2%], at 2.6MPa was also measured. Scintillation yield of the Xe-H2 mixture gas is 80% as high as that of pure xenon. It is found that the scintillation yield is luminous enough to generate a trigger pulse of the high-pressure xenon time projection chamber, which is expected as a promising MeV Compton gamma-ray camera.

  10. An extended micromechanics method for probing interphase properties in polymer nanocomposites

    Science.gov (United States)

    Liu, Zeliang; Moore, John A.; Liu, Wing Kam

    2016-10-01

    Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both the geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. We apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.

  11. Review of xenon-133 production and related problems; Estudio bibliografico de la produccion de xenon-133 y problemas afines

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Ropero, M.

    1980-07-01

    A literature survey is given on the production methods of fission xenon-133 and related problems, such as purification, metrological and dosimetric aspects, preparation of isotopic solutions, recycling, etc. 127 references are included. (Author) 127 refs.

  12. Removal of noble gases out of xenon by a cryogenic distillation column for the XENON1T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Alexander; Murra, Michael; Rosendahl, Stephan; Bruno, Gianmarco; Schneider, Sergej; Weinheimer, Christian; Huhmann, Christian [Institut fuer Kernphysik, WWU Muenster (Germany)

    2015-07-01

    The upcoming XENON1T experiment is the next step for the dark matter particle search. It will surpass current limits on the WIMP-nucleon cross section set by liquid xenon detectors as LUX and XENON100 by more than an order of magnitude, which leads to an expected sensitivity of 2.0.10{sup -47} cm{sup 2} for WIMPs with a mass of 50 GeV/c{sup 2} after a 2.2 ton-year live-time. For achieving new sensitivity limits the reduction of internal background sources as {sup 85}Kr and {sup 222}Rn is of crucial importance. Taking advantage of the different boiling points of these noble gas impurities and xenon, they can be separated by a cryogenic distillation column in different steps. The improvement of the krypton removal by distillation for the XENON1T experiment and a first test setup on radon distillation at the XENON100 experiment are presented.

  13. Removal of noble gases out of xenon by a cryogenic distillation column for the XENON1T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Murra, Michael; Bruno, Gianmarco; Fieguth, Alexander; Huhmann, Christian; Rosendahl, Stephan; Schneider, Sergej; Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische-Wilhelms Universitaet Muenster (Germany)

    2015-07-01

    The XENON1T experiment is the next generation experiment for the direct detection of dark matter in the form of Weakly Interacting Massive Particles (WIMPS). With its 3.3 tons of liquid xenon XENON1T will increase the sensitivity on the WIMP-nucleon cross section down to 2.0 x 10{sup -47} cm{sup 2}, which is more than one order of magnitude better than the current best limits by LUX and XENON100. A key requirement to reach this sensitivity is the reduction of radioactive backgrounds such as {sup 85}Kr and {sup 222}Rn. Because of different boiling points of Kr and Xe both components can be separated by a cryogenic distillation column, which has been constructed and characterized for XENON1T, where a reduction factor greater 120000 has been confirmed. Based on the same principle, the separation of Rn and Xe by cryogenic distillation is currently being tested at XENON100, using the system as radon source and detector at the same time. The cryogenic distillation column, the krypton removal measurements as well as the radon removal tests are presented.

  14. Fast and selective MRI of xenon biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Doepfert, Joerg; Kunth, Martin; Witte, Christopher; Rossella, Federica; Schroeder, Leif [Leibniz-Institut fuer Molekulare Pharmakologie (FMP), Berlin (Germany)

    2012-07-01

    Due to its excellent chemical shift sensitivity and because its magnetization can be easily amplified by hyperpolarization, the use of xenon as a functionalized solution-state contrast agent (by trapping it in molecular cages such as cryptophane-A (CrA)) shows great promise. To further increase the signal, we detect Xe inside the cages indirectly by chemical exchange saturation transfer (Hyper-CEST). However, imaging of the hyperpolarized nuclei remains challenging, since each excitation pulse followed by readout gradients depletes the hyperpolarization. Here, we employ single-shot echo-planar imaging (EPI) to encode a whole image with only one excitation. We prepared a phantom consisting of two compartments containing CrA molecules (concentration: 10 {mu}M) with a chemical shift separation of 1.2 ppm and imaged it by EPI combined with CEST presaturation (acquisition time: 19 ms, saturation time: 4 s). By setting the frequency of the saturation pulse to either of the two cage frequencies, we were able to distinguish the two CrA resonances and separately image their spatial distribution. The total acquisition time for one image was drastically reduced compared to the original approach using chemical shift imaging. The proposed method demonstrates the possibility of fast and selective imaging of highly specific functionalized agents in the micro molar regime.

  15. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  16. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  17. Ethane-xenon mixtures under shock conditions

    Science.gov (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  18. Statistical methods in interphase cytogenetics: an experimental approach.

    Science.gov (United States)

    Kibbelaar, R E; Kok, F; Dreef, E J; Kleiverda, J K; Cornelisse, C J; Raap, A K; Kluin, P M

    1993-10-01

    In situ hybridization (ISH) techniques on interphase cells, or interphase cytogenetics, have powerful potential clinical and biological applications, such as detection of minimal residual disease, early relapse, and the study of clonal evolution and expansion in neoplasia. Much attention has been paid to issues related to ISH data acquisition, i.e., the numbers, colors, intensities, and spatial relationships of hybridization signals. The methodology concerning data analysis, which is of prime importance for clinical applications, however, is less well investigated. We have studied the latter for the detection of small monosomic and trisomic cell populations using various mixtures of human female and male cells. With a chromosome X specific probe, the male cells stimulated monosomic subpopulations of 0, 1, 5, 10, 50, 90, 95, 99, and 100%. Analogously, when a (7 + Y) specific probe combination was used, containing a mixture of chromosome No. 7 and Y-specific DNA, the male cells simulated trisomic cell populations. Probes specific for chromosomes Nos. 1, 7, 8, and 9 were used for estimation of ISH artifacts. Three statistical tests, the Kolmogorov-Smirnov test, the multiple-proportion test, and the z'-max test, were applied to the empirical data using the control data as a reference for ISH artifacts. The Kolmogorov-Smirnov test was found to be inferior for discrimination of small monosomic or trisomic cell populations. The other two tests showed that when 400 cells were evaluated, and using selected control probes, monosomy X could be detected at a frequency of 5% aberrant cells, and trisomy 7 + Y at a frequency of 1%.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Designer interphases for the lithium-oxygen electrochemical cell

    KAUST Repository

    Choudhury, Snehashis

    2017-04-20

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.

  20. Xenon-enhanced CT imaging of local pulmonary ventilation

    Science.gov (United States)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  1. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  2. Final Report: Interphase Analysis and Control in Fiber Reinforced Thermoplastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jon J. Kellar; William M. Cross; Lidvin Kjerengtroen

    2009-03-14

    This research program builds upon a multi-disciplinary effort in interphase analysis and control in thermoplastic matrix polymer matrix composites (PMC). The research investigates model systems deemed of interest by members of the Automotive Composites Consortium (ACC) as well as samples at the forefront of PMC process development (DRIFT and P4 technologies). Finally, the research investigates, based upon the fundamental understanding of the interphases created during the fabrication of thermoplastic PMCs, the role the interphase play in key bulk properties of interest to the automotive industry.

  3. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    CERN Document Server

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bramante, R; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C

    2016-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon re- combination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2-16 keV with $^3$H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured...

  4. Xenon Anesthesia Improves Respiratory Gas Exchanges in Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    Antonio Abramo

    2010-01-01

    Full Text Available Background. Xenon-in-oxygen is a high density gas mixture and may improve PaO2/FiO2 ratio in morbidly obese patients uniforming distribution of ventilation during anesthesia. Methods. We compared xenon versus sevoflurane anesthesia in twenty adult morbidly obese patients (BMI>35 candidate for roux-en-Y laparoscopic gastric bypass and assessed PaO2/FiO2 ratio at baseline, at 15 min from induction of anaesthesia and every 60 min during surgery. Differences in intraoperative and postoperative data including heart rate, systolic and diastolic pressure, oxygen saturation, plateau pressure, eyes opening and extubation time, Aldrete score on arrival to the PACU were compared by the Mann-Whitney test and were considered as secondary aims. Moreover the occurrence of side effects and postoperative analgesic demand were assessed. Results. In xenon group PaO2-FiO2 ratio was significantly higher after 60 min and 120 min from induction of anesthesia; heart rate and overall remifentanil consumption were lower; the eyes opening time and the extubation time were shorter; morphine consumption at 72 hours was lower; postoperative nausea was more common. Conclusions. Xenon anesthesia improved PaO2/FiO2 ratio and maintained its distinctive rapid recovery times and cardiovascular stability. A reduction of opioid consumption during and after surgery and an increased incidence of PONV were also observed in xenon group.

  5. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  6. Emergence in Elderly Patient Undergoing General Anesthesia with Xenon

    Directory of Open Access Journals (Sweden)

    Maria Sanfilippo

    2013-01-01

    Full Text Available Introduction. It is a consensus that the postoperative cognitive function is impaired in elderly patients after general anaesthesia, and such category patient takes more time to recover. Xenon is a noble gas with anesthetic properties mediated by antagonism of N-methyl-D-aspartate receptors. With a minimum alveolar concentration of 0.63, xenon is intended for maintaining hypnosis with 30% oxygen. The fast recovery after xenon anaesthesia was hypothesized to be advantageous in this scenario. Case Presentation. We report the case of 99-year-old woman who underwent sigmoid colon carcinoma resection with colorectal anastomosis. We carried out the induction phase by propofol, oxygen, fentanil, and rocuronium bromide, and then we proceeded to a rapid sequence endotracheal intubation consequently. The patient was monitored by IBP, NIBP, ECG, cardiac frequency, respiratory rate, capnometry, TOF Guard, blood gas analysis, and BIS. For maintenance we administrated oxygen, remifentanil, rocuronium bromide, and xenon gas 60–65%. Shortly after the end of surgery the patients started an autonomous respiratory activity, and a high BIS level was also recorded. Decision was made by our team to proceed into the emergence phase. The residual neuromuscular block was antagonized by sugammadex, modified Aldrete score was implicated, and we got our patient fully awake without any cognitive dysfunction or delirium. Conclusion. The rapid emergence to full orientation in very elderly patient who had been anesthetized by xenon shows concordance to the high BIS values and the clinical signs of the depth of anesthesia.

  7. The next generation dark matter hunter: XENON1T status and perspective

    Directory of Open Access Journals (Sweden)

    Rizzo A.

    2016-01-01

    Full Text Available The XENON Dark Matter Experiment has been ongoing at LNGS since 2005 with the goal of searching for dark matter WIMPs with liquid xenon as target and detector material. With detectors of increasing target mass and decreasing background, the XENON program has achieved competitive limits on WIMP-nucleon interaction couplings, but also on axions and axion like particles. With the start of the next generation experiment, XENON1T expected in 2015, XENON Dark Matter Experiment will continue to lead field of dark matter direct detection. XENON1T will be the first experiment to use multi-tons of liquid xenon in a time projection chamber and is designed to achieve two orders of magnitude higher sensitivity than the current best limits. I will review the status of construction and the scientific goals of XENON1T.

  8. Xenon and isoflurane improved biventricular function during right ventricular ischemia and reperfusion.

    NARCIS (Netherlands)

    Hein, M.; Roehl, A.B.; Baumert, J.H.; Bleilevens, C.; Fischer, S.; Steendijk, P.; Rossaint, R.

    2010-01-01

    BACKGROUND: Although anesthetics have some cardioprotective properties, these benefits are often counterbalanced by their negative inotropic effects. Xenon, on the other hand, does not influence myocardial contractility. Thus, xenon may be a superior treatment for the maintenance of global hemodynam

  9. Hypersatellite and satellite transitions in xenon atoms

    Science.gov (United States)

    Ilakovac, K.; Vesković, M.; Horvat, V.; Kauić, S.

    1990-10-01

    Decay of double-K-shell-vacancy states in xenon atoms, created in the decay of 131Cs, was investigated. The measurements were performed with a pair of germanium detectors, a fast-slow coincidence system, and a three-parameter pulse-height analyzer. In the analysis of the two-dimensional E1-E2 spectrum, improved least-squares routines were applied. The following results were derived: the probability of creation of a double K-shell vacancy per 131Cs decay, PKK=(1.48+/-0.35)×10-5 the hypersatellite energy shifts Δh(Kα)=(653+/-20) eV, Δh(Kβ1)=(834+/-39) eV, and Δh(Kβ2)=(903+/-81) eV; the average values of the satellite energy shifts due to the presence of an L3- or L2-shell spectator vacancy Δs(KαL-1)=(80+/-15) eV, Δs(Kβ1L-1)=(169+/-34) eV, and Δs(Kβ2L-1)=(261+/-81) eV; the intensity ratios of the hypersatellite transitions, I(Kαh2)/I(Kαh1)=0.94+/-0.18, I(Kβh1)/I(Kαh1)=0.36+/-0.06, and I(Kβh2)/ I(Kαh1)=0.09+/-0.04 the intensity ratios of the satellite transitions I(Kα2L-1)/I(Kα1L-1)=0.44+/-0.10 and 0.44+/-0.09 for an L3 and L2 spectator vacancy, respectively; and the intensity ratios of some other satellite transitions.

  10. Direct observation of bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Erdal, E; Chepel, V; Rappaport, M L; Vartsky, D; Breskin, A

    2015-01-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300K into the liquid, or in a controlled manner, by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of {\\sigma}/E~7.5% for ~6,000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume 'local dual-phase' noble-liquid TPCs.

  11. Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Arazi, L; Coimbra, A E C; Rappaport, M L; Vartsky, D; Chepel, V; Breskin, A

    2015-01-01

    In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providing - under specific thermodynamic conditions - energy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.

  12. Calibration of a Liquid Xenon Detector with Kr-83m

    CERN Document Server

    Kastens, L W; Manzur, A; McKinsey, D N

    2009-01-01

    We report the preparation of a Kr-83m source and its subsequent use in calibrating a liquid xenon detector. Kr-83m atoms were produced through the decay of Rb-83 atoms trapped in zeolite molecular sieve and were then introduced into liquid xenon. Decaying Kr-83m nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 keV and 32.1 keV from the decay of Kr-83m were both observed. This calibration source will allow the characterization of the scintillation and ionization response of noble liquid detectors at low energies, highly valuable for the search for WIMP dark matter. Kr-83m may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.

  13. Liquid xenon purification, de-radonation (and de-kryptonation)

    Energy Technology Data Exchange (ETDEWEB)

    Pocar, Andrea, E-mail: pocar@umass.edu [Amherst Center for Fundamental Interactions and Physics Department, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-17

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  14. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  15. Observation and applications of single-electron charge signals in the XENON100 experiment

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are no

  16. Diabetes Mellitus/HIV Interphase: A Series of 10 Cases | Otieno ...

    African Journals Online (AJOL)

    Diabetes Mellitus/HIV Interphase: A Series of 10 Cases. ... transaminase (ALT), aspartate transaminase (AST), serum lipase and amylase levels. ... early enough, escpecially where a family history of diabetes and other risk factors occur.

  17. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.

    Science.gov (United States)

    Benedetti, Fabrizio; Dorier, Julien; Burnier, Yannis; Stasiak, Andrzej

    2014-03-01

    Understanding the structure of interphase chromosomes is essential to elucidate regulatory mechanisms of gene expression. During recent years, high-throughput DNA sequencing expanded the power of chromosome conformation capture (3C) methods that provide information about reciprocal spatial proximity of chromosomal loci. Since 2012, it is known that entire chromatin in interphase chromosomes is organized into regions with strongly increased frequency of internal contacts. These regions, with the average size of ∼1 Mb, were named topological domains. More recent studies demonstrated presence of unconstrained supercoiling in interphase chromosomes. Using Brownian dynamics simulations, we show here that by including supercoiling into models of topological domains one can reproduce and thus provide possible explanations of several experimentally observed characteristics of interphase chromosomes, such as their complex contact maps.

  18. Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yi Hua

    2015-06-01

    Full Text Available A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness of nanocomposites was much lower, which was in good agreement with the documented experimental observations. This work could shed some light on the design and manufacturing of resin nanocomposites.

  19. Adhesion energy, surface traction and surface tension in liquid xenon

    Indian Academy of Sciences (India)

    B Mathew; G A Adebayo

    2011-12-01

    We calculated the adhesion energy, the surface traction and the surface energy of liquid xenon using molecular dynamics (MD) simulation. The value of the adhesion energy for liquid xenon at a reduced density of 0.630 was found to be 0.591 J/m2 and the surface traction has a peak at = 3.32 Å. It was observed that the attraction of the molecules in the liquid surface which produces a resistance to penetration decreases with temperature. This may be attributed to the greater average separation of molecules at higher temperature.

  20. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  1. Average radiation widths of levels in natural xenon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G., E-mail: gilles.noguere@cea.fr [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Litaize, O.; Archier, P.; De Saint Jean, C. [CEA, DEN, Cadarache, F-13108 Saint Paul les Durance (France); Mutti, P. [Institut Laue-Langevin, F-38042 Grenoble (France)

    2011-11-15

    Average radiation widths <{Gamma}{sub {gamma}>} for the stable xenon isotopes have been estimated using neutron resonance spectroscopic information deduced from high-resolution capture and transmission data measured at the electron linear accelerator GELINA of the Institute for Reference Materials and Measurements (IRMM) in Geel, Belgium. The combination of conventional Neutron Resonance Shape Analysis techniques (NRSA) with high-energy model calculations in a simple Bayesian learning method permit to calculate a consistent local systematic in the xenon's mass region (Z=54) from A=124 to A=136.

  2. Xenon purity analysis for EXO-200 via mass spectrometry

    CERN Document Server

    Dobi, A; Slutsky, S; Yen, Y -R; Aharmin, B; Auger, M; Barbeau, P S; Benitez-Medina, C; Breidenbach, M; Cleveland, B; Conley, R; Cook, J; Cook, S; Counts, I; Craddock, W; Daniels, T; Davis, C G; Davis, J; deVoe, R; Dixit, M; Dolinski, M J; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, C; Hagemann, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Díez, M Montero; Morgan, P; Müller, A R; Neilson, R; Odian, A; O'Sullivan, K; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rivas, A; Rollin, E; Rowson, P C; Sabourov, A; Sinclair, D; Skarpaas, K; Stekhanov, V; Strickland, V; Swift, M; Twelker, K; Vuilleumier, J -L; Vuilleumier, J -M; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L

    2011-01-01

    We describe purity measurements of the natural and enriched xenon stockpiles used by the EXO-200 double beta decay experiment based on a mass spectrometry technique. The sensitivity of the spectrometer is enhanced by several orders of magnitude by the presence of a liquid nitrogen cold trap, and many impurity species of interest can be detected at the level of one part-per-billion or better. We have used the technique to screen the EXO-200 xenon before, during, and after its use in our detector, and these measurements have proven useful. This is the first application of the cold trap mass spectrometry technique to an operating physics experiment.

  3. Scintillation yield of liquid xenon at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, K. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan)], E-mail: ueshima@suketto.icrr.u-tokyo.ac.jp; Abe, K.; Iida, T.; Ikeda, M.; Kobayashi, K.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakajima, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takeda, A.; Takeuchi, Y.; Yamashita, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Kaneyuki, K. [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Doke, T. [Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8555 (Japan)] (and others)

    2008-09-01

    The intensity of scintillation light emission from liquid xenon at room temperature was measured. The scintillation light yield at 1{sup 0}C was measured to be 0.64{+-}0.02 (stat.) {+-}0.06 (sys.) of that at -100{sup 0}C. Using the reported light yield at -100{sup 0}C (46 photons/keV), the measured light yield at 1{sup 0}C corresponds to 29 photons/keV. This result shows that liquid xenon scintillator provides high light yield even at room temperature.

  4. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  5. Modification of carbon fiber / epoxy matrix interphase in a composite material : Design of a self-healing interphase by introducing thermally reversible Diels-Alder adducts

    OpenAIRE

    2014-01-01

    A thermally self-healable carbon/epoxy interphase was designed based on Diels-Alder (D-A) thermally reversible covalent bonds. The D-A modified interphase was formed between maleimide groups grafted on carbon fiber surface and furan groups introduced into epoxy network. The self-healing ability was characterized by a micromechanical approach using the micro-droplet debonding test. In this work, carbon fiber surface underwent a three-step treatment to graft maleimide groups, including HNO3 oxi...

  6. Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues

    Directory of Open Access Journals (Sweden)

    Foster Helen A

    2012-11-01

    Full Text Available Abstract Background In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade. Results This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain. Conclusions It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.

  7. [Molecular cytogenetic methods for studying interphase chromosomes in human brain cells].

    Science.gov (United States)

    Iurov, I Iu; Vorsanova, S G; Solov'ev, I V; Iurov, Iu B

    2010-09-01

    One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.

  8. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    Science.gov (United States)

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  9. Mechanical properties of interphase nuclei probed by cellular strain application.

    Science.gov (United States)

    Lammerding, Jan; Lee, Richard T

    2009-01-01

    The mechanical properties of the interphase nucleus have important implications for cellular function and can reflect changes in nuclear envelope structure and/or chromatin organization. Mutations in the nuclear envelope proteins lamin A and C cause several human diseases, such as Emery-Dreifuss muscular dystrophy, and dramatic changes in nuclear stiffness have been reported in cells from lamin A/C-deficient mice. We have developed a cellular strain technique to measure nuclear stiffness in intact, adherent cells and have applied this experimental method to fibroblasts from mouse models of Emery-Dreifuss muscular dystrophy and to skin fibroblasts from laminopathy patients and healthy control subjects. The experimental protocol is based on measuring induced nuclear deformations in cells plated on a flexible silicone substrate; the nuclear stiffness can subsequently be inferred from the ratio of induced nuclear strain to the applied membrane strain. These experiments reveal that lamins A and C are important determinants of nuclear stiffness and that lamin mutations associated with muscular dystrophies and other laminopathies often result in disturbed nuclear stiffness that could contribute to the tissue-specific disease phenotypes.

  10. Enhanced molecular dynamics for simulating porous interphase layers in batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan (Rice University, Houston, TX)

    2009-10-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  11. Xenon instability study of large core Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, E.V. [National Research Nuclear University ' MEPHi' , Moscow (Russian Federation); Gorodkov, S.S.

    2016-09-15

    One of the goals of neutronic calculations of large cores may be self-consistent distribution of equilibrium xenon through the reactor core. In deterministic calculations such self consistency is relatively simply achieved with the help of additional outer iterations by xenon, which can increase several times solution run time. But in stochastic calculation of large cores such increase is utterly undesirable, since even without these outer iterations it demands modeling of billion of histories, which in case of complicated large core may take about a day of 100 processors work. In addition the unavoidable statistical uncertainty here plays role of transient process, which excites xenon oscillations. In this work the rise of such oscillations and the way of their overcoming with the help of hybrid stochastic/deterministic calculation is studied. It is proposed to make at first single static Monte Carlo calculation of given core and to receive multi-group mesh cell characteristics for future use in operative code. This one will evaluate xenon distribution through the core, which will be equilibrium for deterministic solution and substantially close to equilibrium Monte Carlo solution, paid with enormous computing cost.

  12. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    Science.gov (United States)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  13. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  14. PWR core stablity aganst xenon-induced spatial power oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J.; Han, K.I. (Korea Advanced Energy Research Inst., Seoul (Republic of Korea))

    1982-06-01

    Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon transient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average burnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as burnup progresses, and unstable at the end of cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core burnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilites to some extents, especially at the end of cycle.

  15. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  16. Static Adsorption of Xenon on ACF at 257 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The static adsorption of xenon on active carbon fiber (ACF) at 257 K was measured with ASAP2010 specific surface area and pore diameter distribution instrument by changing the working gas from nitrogen to xenon. Compared with grain activated carbon (GAC), the results were as follows: (1) The adsorption performance of Viscose-based ACF (VACF-As) was the best among all absorbents tested. VACF-A3 was the superior xenon absorbent. The performance of pitch-based ACF (PACF-Cs) approached that of GAC, (2) Due to the difference of aperture distribution, the adsorption performances of ACF with different radics were different under the same experiment conditions even though the specific surface area was similar, (3) There were some differences of adsorptive capacity among ACF absorbents which had the same radic, however there was not definite relationship between their specific surface area and adsorptive capacity, (4) The adsorption of xenon on all kinds of ACF agrees with Langmuir equation, (5) The adsorptive curves can be fitted with a binomial equation.

  17. On the spin-dependent sensitivity of XENON100

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2012-11-15

    The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  18. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    Science.gov (United States)

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  19. Direct Dark Matter Search with the XENON100 Experiment

    Science.gov (United States)

    Mei, Yuan

    Dark matter, a non-luminous, non-baryonic matter, is thought to constitute 23 % of the matter-energy components in the universe today. Except for its gravitational effects, the existence of dark matter has never been confirmed by any other means and its nature remains unknown. If a hypothetical Weakly Interacting Massive Particle (WIMP) were in thermal equilibrium in the early universe, it could have a relic abundance close to that of dark matter today, which provides a promising particle candidate of dark matter. Minimal Super-Symmetric extensions to the standard model predicts a stable particle with mass in the range 10 GeV/c2 to 1000 GeV/c2, and spin-independent cross-section with ordinary matter nucleon sigmax power of liquid xenon, as well as a 99 kg liquid xenon active veto, the electromagnetic radiation background is greatly suppressed. By utilizing the difference of (S2/S1) between electronic recoil and nuclear recoil, the expected WIMP signature, a small nuclear recoil energy deposition, could be discriminated from electronic recoil background with high efficiency. XENON100 achieved the lowest background rate (< 2.2 x 10--2 events/kg/day/keV) in the dark matter search region (< 40 keV) among all direct dark matter detectors. With 11.2 days of data, XENON100 already sets the world's best spin-independent WIMP-nucleon cross-section limit of 2.7 x 10--44 cm2 at WIMP mass 50 GeV/c 2. With 100.9 days of data, XENON100 excludes WIMP-nucleon cross-section above 7.0 x 10--45 cm2 for a WIMP mass of 50 GeV/c2 at 90% confidence level.

  20. Impact of NAPL architecture on interphase mass transfer: A pore network study

    Science.gov (United States)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2016-09-01

    Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.

  1. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    Science.gov (United States)

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  2. Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents

    Science.gov (United States)

    Todd, Michael G.; Shi, Frank G.

    2003-10-01

    Recent research into the dielectric characteristics of polymer-ceramic composites has shown that the interphase region of the composite can have a dielectric constant significantly different from that of the polymer phase due to covalent bonding of the polymer molecules to the surface of the filler particles. Chemical coupling agents and surfactants such as functional silanes, organotitanates, organometallic chelating agents, phosphate esters, and various ionic and nonionic organic esters are commonly employed to enhance the compatibility between the polymer phase and dispersed filler phase of composite systems. Using experimental data and molecular dipole polarization calculations, we determine the effect of such coupling agents on the interphase dielectric constant. Our results show that the addition of functional silane coupling agents or nonionic surfactants at concentrations of 0.5 wt % or less of the total organics of a polymer-ceramic composite system has significant effects on the dielectric constant of the interphase region, yet has little or no effect on the dielectric constant values of the polymer phase. Furthermore, the chemical bonding of the coupling agents to the ceramic filler particles determine the dielectric constant of the interphase region as predicted by chemical polarization calculations. These results are fully consistent with experimental evidence and further validate the use of molecular polarization calculations of composite interphase regions to determine and predict the overall effective dielectric properties of packaging materials for a wide range of electrical, electronic, and rf applications.

  3. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    Science.gov (United States)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  4. The use of interphase FISH for prenatal diagnosis of Pallister-Killian syndrome.

    Science.gov (United States)

    Mowery-Rushton, P A; Stadler, M P; Kochmar, S J; McPherson, E; Surti, U; Hogge, W A

    1997-03-01

    Pallister-Killian syndrome (tetrasomy 12p) is a relatively rare aneuploidy syndrome characterized by the presence of mosaicism for an isochromosome 12p [i(12p)]. We report two new cases diagnosed following chorionic villus sampling and an abnormal ultrasound, respectively. Fluorescent in situ hybridization (FISH) was used to enumerate the number of interphase cells containing the isochromosome. The results of these studies illustrate the importance of the use of interphase FISH to detect the presence of the i(12p) in uncultured, non-dividing cells. A review of the literature identified 23 additional cases of Pallister-Killian syndrome diagnosed prenatally. Approximately 50 per cent of these cases were associated with the presence of a congenital diaphragmatic hernia. We suggest that a perinatal-lethal form of Pallister-Killian syndrome is underdiagnosed and recommend that all cases of prenatally detected diaphragmatic hernia be tested for Pallister-Killian syndrome using interphase FISH on uncultured amniocytes.

  5. Interphase cytogenetics in pathology: principles, methods, and applications of fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Werner, M; Wilkens, L; Aubele, M; Nolte, M; Zitzelsberger, H; Komminoth, P

    1997-01-01

    Characteristic chromosome aberrations have been identified in various tumors. Fluorescence in situ hybridization (FISH) using specific probes that are generated by vector cloning or in vitro amplification and labeled with fluorescent dyes allow for the detection of these genetic changes in interphase cells. This technique, that is also referred to as "interphase cytogenetics", can be performed in cytological preparations as well as in sections of routinely formaldehyde-fixed and paraffin-embedded tissue. In cancer research and diagnostics, interphase cytogenetics by FISH is used to detect numerical chromosome changes and structural aberrations, e.g., translocations, deletions, or amplifications. In this technical overview, we explain the principles of the FISH method and provide protocols for FISH in cytological preparations and paraffin sections. Moreover, possible applications of FISH are discussed.

  6. APPLICATION OF TWO-COLOR INTERPHASE FISH USING SEX PROBE IN ALLOGENEIC STEM CELL TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    曾慧兰; 李建勇; 朱康儿; 薛永权; 李杨秋; 刘晓力; 过宇

    2002-01-01

    Objective: To evaluate the significance of two-color interphase fluorescence in situ hybridization (FISH) using X and Y centromere probe in the engraftment estimation and minimal residual disease (MRD) monitoring after allogeneic stem cell transplantation (alloSCT). Methods: Samples from 12 cases patients in different periods after alloSCT were detected by interphase FISH. Results: All of the 12 patients were proved to obtain engraftment 22(35 days after alloSCT. While traditional karyotype showed as 100%XX or 100%XY invariably, FISH showed different percentages of donor original sex chromosome. Conclusion: Two-color interphase FISH is a more sensitive and simple test for engraftment evaluation and MRD monitoring post SCT, though, it can not entirely replace traditional karyotype analysis and gene detection by RT-PCR.

  7. Combined fluorescent-chromogenic in situ hybridization for identification and laser microdissection of interphase chromosomes.

    Directory of Open Access Journals (Sweden)

    Nerea Paz

    Full Text Available Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis.

  8. Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei.

    Science.gov (United States)

    Johnson, M D; Fresco, J R

    1999-07-01

    A methodology has been developed for binding oligodeoxyribonucleotide 'third strands' to duplex DNA targets in fixed but not additionally denatured metaphase spreads and interphase nuclei under conditions found to be optimal in solution. Third-strand in situ hybridization (TISH) at pH 6.0 of a psoralen- and biotin-modified 16-nucleotide homopyrimidine third strand to a unique multicopy target sequence in human chromosome 17 alpha-satellite (D17Z1 locus) is described. UVA-photofixed third strands, rendered fluorescent by fluorescein isothiocyanate-labeled avidin, are reproducibly centromere-specific for chromosome 17, and visible without amplification of the signal in lymphocyte and somatic cell hybrid spreads and interphase nuclei. Two third-strand-specific D17Z1 haplotypes were identified. TISH has potential diagnostic, biochemical, and flow cytometric applicability to native metaphase and interphase chromatin.

  9. On the matrix-particle interphase in epoxy-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Tognana, S., E-mail: stognana@exa.unicen.edu.a [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Tandil (Argentina); Salgueiro, W. [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Somoza, A. [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Tandil (Argentina)

    2010-04-16

    A study on the interphase morphology in epoxy-based composites is presented. Composite samples containing a volume fraction of aluminum particles (typical sizes of 100 {mu}m ca.) between 0% and 30% were prepared. As main experimental technique, differential scanning calorimetry (DSC) was used. Specifically, from the thermograms obtained for each composite, the differences between the heat flow at temperatures above and below the glass transition temperature were determined. From these data, for each composite, and following ideas suggested in the literature, the different thicknesses and volumetric fractions of interphase were estimated. The results obtained show that both morphological parameters strongly increase for a filler volume fraction above 15%. On the other hand, using positron annihilation lifetime spectroscopy technique, additional evidence allowed us to confirm the presence of an interphase region in the composites and estimate the associated free volume which was smaller than that corresponding to the epoxy matrix.

  10. Dark matter sensitivity of multi-ton liquid xenon detectors

    CERN Document Server

    Schumann, Marc; Bütikofer, Lukas; Kish, Alexander; Selvi, Marco

    2015-01-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as $2.5 \\times 10^{-49}$ cm$^2$ can be probed for WIMP masses around 40 GeV/$c^2$. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  11. First Dark Matter Results from the XENON100 Experiment

    CERN Document Server

    Aprile, E; Arneodo, F; Askin, A; Baudis, L; Behrens, A; Brown, E; Cardoso, J M R; Choi, B; Cline, D B; Fattori, S; Ferella, A D; Giboni, K -L; Hugenberg, K; Kish, A; Lam, C W; Lamblin, J; Lang, R F; Lim, K E; Lopes, J A M; Undagoitia, T Marrodán; Mei, Y; Fernandez, A J Melgarejo; Ni, K; Oberlack, U; Orrigo, S E A; Pantic, E; Plante, G; Ribeiro, A C C; Santorelli, R; Santos, J M F dos; Schumann, M; Shagin, P; Teymourian, A; Thers, D; Tziaferi, E; Wang, H; Weinheimer, C

    2010-01-01

    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3 x 10^-44 cm^2 for 50 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result challenges the interpretation of the CoGeNT or DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.

  12. Two-photon resonant, stimulated processes in krypton and xenon

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p..-->..s, d..-->..p, and f..-->..d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p..-->..s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs.

  13. IR-LAS Measurements of a Pulsed Xenon Discharge Plasma

    Science.gov (United States)

    Jinno, Masafumi; Wada, Ryota; Motomura, Hideki; Aono, Masaharu

    As a first step to understand the processes taking place in a pulsed xenon discharge, the temporal behavior of the radial metastable atom distribution in a xenon lamp was measured by IR laser absorption spectroscopy. During the first 10μs after starting the discharge, high electron density and the depletion of the ground state atoms at the center of the discharge brought about an almost flat distribution of the metastable atoms within the half-radius area. Following that, the metastable atom density became higher at the center than outside because of recombination between electrons and ions. After the metastable density increase and following voltage cut off, the metastable density decreases again. Considering the diffusion equation alongside these results, it becomes clear that the decrease of the metastable density is caused by quenching to the resonace level from the metastable level or three-body collisions forming excimers.

  14. Measurements of proportional scintillation in liquid xenon using thin wires

    CERN Document Server

    Aprile, E; Goetzke, L W; Fernandez, A J Melgarejo; Messina, M; Naganoma, J; Plante, G; Rizzo, A; Shagin, P; Wall, R

    2014-01-01

    Proportional scintillation in liquid xenon has a promising application in the field of direct dark matter detection, potentially allowing for simpler, more sensitive detectors. However, knowledge of the basic properties of the phenomenon as well as guidelines for its practical use are currently limited. We report here on measurements of proportional scintillation light emitted in liquid xenon around thin wires. The maximum proportional scintillation gain of $287^{+97}_{-75}$ photons per drift electron was obtained using 10 $\\mu$m diameter gold plated tungsten wire. The thresholds for electron multiplication and proportional scintillation are measured as $725^{+48}_{-139}$ and $412^{+10}_{-133}$ kV/cm, respectively. The threshold for proportional scintillation is in good agreement with a previously published result, while the electron multiplication threshold represents a novel measurement. A complete set of parameters for the practical use of the electron multiplication and proportional scintillation processe...

  15. High Pressure XENON Gamma-Ray Spectrometers for Field Use

    Energy Technology Data Exchange (ETDEWEB)

    David K. Wehe; Zong He; Glenn K. Knoll

    2004-02-16

    This project explored a new concept for high-pressure xenon ionization chambers by replacing the Frisch grid with coplanar grid electrodes similar to those used in wide bandgap semiconductor gamma-ray spectrometers. This work is the first attempt to apply the coplanar grid anode design in a gas ionization chamber in order to achieve to improved energy resolution. Three prototype detectors, two cylindrical and one parallel plate configurations, were built and tested. While the detectors did not demonstrate energy resolutions as good as other high pressure xenon gamma-ray spectrometers, the results demonstrated that the concept of single polarity charge sending using coplanar grid electrodes will work in a gas detector.

  16. NEXT: R and D towards a xenon high pressure TPC

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Thorsten [Universitat Autonoma de Barcelona, Barcelona (Spain); Sanchez, Federico [IFAE, Barcelona (Spain); Gomez-Cadenas, J.J.; Martin-Albo, Justo; Ball, Markus; Novella, Pau; Monrabal, Francesc; Cervera, Anselmo [IFIC, Valencia (Spain); Garcia Irastorza, Igor [Universidad de Zaragoza, Zaragoza (Spain)

    2008-07-01

    An open question within the Standard Model is the nature of the neutrino. Is it a Majorana or a Dirac particle? The only way to answer this, is the search for neutrino-less double beta decays. Various experimental approaches are investigated for this reason e.g. diodes, bolometers, liquid Xenon. The key points for all of them is the high requirements on the energy resolution to distinguish between the decay with two neutrinos and the neutrino-less decay and the external background suppression. Recently some Spanish groups started a R and D program to investigate the possibility to use a pressurized Xenon TPC with MPGD readout (MM, LEM (GEM)). In the presentation the choice of gaseous Xe is motivated and an overview about the R and D plans is given.

  17. Inelastic scattering of xenon atoms by quantized vortices in superfluids

    CERN Document Server

    Pshenichnyuk, I A

    2016-01-01

    We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.

  18. Driving Rabi oscillations at the giant dipole resonance in xenon

    CERN Document Server

    Pabst, Stefan; Santra, Robin

    2015-01-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant-dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the $4d$ ionization threshold. We find that intensities around 10$^{18}$ W/cm$^2$ are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in form of Autler-Townes splittings extending over several tens of electronvolt.

  19. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    Science.gov (United States)

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative

  20. Transition from linear to nonlinear sputtering of solid xenon

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen;

    1995-01-01

    Self-sputtering of solid xenon has been studied with molecular dynamics simulations as a model system for the transition from dominantly linear to strongly nonlinear effects. The simulation covered the projectile energy range from 20 to 750 eV. Within a relatively narrow range from 30 to 250 eV, ......V, nonlinear features such as high collision densities in the sputtering volume, amorphization of the crystalline structure, and an enhanced emission of low-energy atoms occur gradually....

  1. Xenon excimer emission from multicapillary discharges in direct current mode

    OpenAIRE

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Giapis, Konstantinos P.; Iberler, Marcus; Jacoby, Joachim; Frank, Klaus

    2012-01-01

    Microdischarges in xenon have been generated in a pressure range of 400–1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, t...

  2. Shear Thinning Near the Critical Point of Xenon

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m 430 mu, and frequencies 1 Hz critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below T(sub c).

  3. Neutrino physics with multi-ton scale liquid xenon detectors

    CERN Document Server

    Baudis, L; Kish, A; Manalaysay, A; Undagoitia, T Marrodan; Schumann, M

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and 7-Be neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2x10^-48 cm^2 and WIMP masses around 50 GeV, for an assumed 99.5% rejectio...

  4. 37 Ar Calibration of the Large Underground Xenon Experiment

    Science.gov (United States)

    Boulton, Elizabeth; LUX Collaboration Collaboration

    2017-01-01

    The LUX collaboration released its 332 live-day WIMP search result in June 2016. Besides WIMPs, there are several other rare particles to search for using two-phase xenon detectors, such as axion-like pseudoscalars, axions, and electrophilic dark matter. All of these proposed particles interact with xenon via electron recoils at low energy. Also, the neutrino magnetic moment can be searched for by examining the rates of neutrino-electron scattering at low energy. Therefore, understanding xenon's response in this low-energy regime is vitally important. 37Ar is an ideal source for calibrating a detector at these low energies, because it decays via electron capture (EC) and releases x-rays at two energies: 2.8 keV due to EC from the K-shell and 0.27 keV due to EC from the L-shell. Additionally, 37Ar can be used to precisely study recombination fluctuations at a specific energy in the WIMP region of interest. Recombination fluctuations limit electron recoil discrimination efficiency, so understanding how these fluctuations change with electric drift field is important to all LUX analysis. This talk will explain the motivation, creation, deployment, and results of the 37Ar source in LUX over a wide range of drift fields.

  5. High-pressure xenon detector development at Constellation Technology Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Austin, Robert A. [Constellation Technology Corporation, 7887 Bryan Dairy Road, Suite 100, Largo, FL 33777 (United States)], E-mail: austin@contech.com

    2007-08-21

    Xenon-filled ionization detectors, due to their high atomic number fill gas (Z=54), moderate densities ({approx}0.3-0.5 g/cm{sup 3}) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  6. High-pressure xenon detector development at Constellation Technology Corporation

    Science.gov (United States)

    Austin, Robert A.

    2007-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas ( Z=54), moderate densities (˜0.3-0.5 g/cm 3) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  7. Intermittent exposure to xenon protects against gentamicin-induced nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Ping Jia

    Full Text Available Aminoglycoside antibiotics, especially gentamicin, are widely used to treat Gram-negative infections due to their efficacy and low cost. Nevertheless the use of gentamicin is limited by its major side effect, nephrotoxicity. Xenon (Xe provided substantial organoprotective effects in acute injury of the brain and the heart and protected against renal ischemic-reperfusion injury. In this study, we investigated whether xenon could protect against gentamicin-induced nephrotoxicity. Male Wistar rats were intermittently exposed to either 70% xenon or 70% nitrogen (N2 balanced with 30% oxygen before and during gentamicin administration at a dose of 100 mg/kg for 7 days to model gentamicin-induced kidney injury. We observed that intermittent exposure to Xe provided morphological and functional renoprotection, which was characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress, but not a reduction in inflammation. We also found that Xe pretreatment upregulated hypoxia-inducible factor 2α (HIF-2α and its downstream effector vascular endothelial growth factor, but not HIF-1α. With regard to the three HIF prolyl hydroxylases, Xe pretreatment upregulated prolyl hydroxylase domain-containing protein-2 (PHD2, suppressed PHD1, and had no influence on PHD3 in the rat kidneys. Pretreatment with Xe also increased the expression of miR-21, a microRNA known to have anti-apoptotic effects. These results support Xe renoprotection against gentamicin-induced nephrotoxicity.

  8. INTERACTION OF A SCREW DISLOCATION IN THE INTERPHASE LAYER WITH THE INCLUSION AND MATRIX

    Institute of Scientific and Technical Information of China (English)

    蒋持平; 刘又文; 徐耀玲

    2003-01-01

    The interaction of a screw dislocation in the interphase layer with the circular inhomogeneity and matrix was dealt with. An efficient method for multiply connected regions was developed by combining the sectionally subholomorphic function theory, Schwarz symmetric principle and Cauchy integral technique. The Hilbert problem of the complex potentials for three material regions was reduced to a functional equation in the complex potential of the interphase layer, resulting in an explicit series solution. By using the present solution the interaction energy and force acting dislocation were evaluated and discussed.

  9. Laser uv microirradiation of interphase nuclei and post-treatment with caffeine. A new approach to establish the arrangement of interphase chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, C.; Cremer, T.; Cremer, C.; Zimmer, J.

    1976-12-29

    Laser uv microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: (I) intact metaphase figures, (II) chromosome damage confined to a small area of the metaphase spread, (III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus.

  10. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Holly Caroline [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ~1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  11. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    Science.gov (United States)

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  12. The afterglow characteristics of xenon pulsed plasma for mercury-free fluorescent lamps

    Science.gov (United States)

    Jinno, Masafumi; Kurokawa, Hisayoshi; Aono, Masaharu; Ninomiya, Hideki

    2000-03-01

    In this study, the spectroscopic characteristics of radiations from xenon pulsed plasma are measured experimentally as a study on a mercury-free fluorescent lamp. Each radiation waveform has two peaks and they vary according to the inner diameter of lamp and the pressure of xenon as follows: (a) As the inner diameter of lamps increases, the afterglow radiation, that is the second peak, decays faster. (b) As the xenon pressure increases the first peak of radiation just after the start of discharge decreases and the afterglow increases. The characteristics of afterglow are explained by the rate equation of metastable xenon atoms Xem, and its coefficients are determined through the experimental results. This equation shows that in order to obtain intense phosphor afterglow, i.e. strong radiation of xenon excimer, high pressure of xenon and large lamp diameter are desirable. Moreover, high pressure of xenon brings fast decay of afterglow. Then the afterglow radiation has no overlap on the first peak of next discharge at a high frequency. Consequently, higher pressure of xenon and large lamp diameter are desirable for high intensity and high efficacy for xenon fluorescent lamps.

  13. Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells.

    Directory of Open Access Journals (Sweden)

    Iris Müller

    Full Text Available Despite the distinctive structure of mitotic chromosomes, it has not been possible to visualise individual chromosomes in living interphase cells, where chromosomes spend over 90% of their time. Studies of interphase chromosome structure and dynamics use fluorescence in-situ hybridisation (FISH on fixed cells, which potentially damages structure and loses dynamic information. We have developed a new methodology, involving photoactivation of labelled histone H3 at mitosis, to visualise individual and specific human chromosomes in living interphase cells. Our data revealed bulk chromosome volume and morphology are established rapidly after mitosis, changing only incrementally after the first hour of G1. This contrasted with the behaviour of specific loci on labelled chromosomes, which showed more progressive reorganisation, and revealed that "looping out" of chromatin from chromosome territories is a dynamic state. We measured considerable heterogeneity in chromosome decondensation, even between sister chromatids, which may reflect local structural impediments to decondensation and could potentially amplify transcriptional noise. Chromosome structure showed tremendous resistance to inhibitors of transcription, histone deacetylation and chromatin remodelling. Together, these data indicate steric constraints determine structure, rather than innate chromosome architecture or function-driven anchoring, with interphase chromatin organisation governed primarily by opposition between needs for decondensation and the space available for this to happen.

  14. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis.

    Science.gov (United States)

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K; Minc, Nicolas; Bellaïche, Yohanns

    2016-02-25

    The orientation of cell division along the long axis of the interphase cell--the century-old Hertwig's rule--has profound roles in tissue proliferation, morphogenesis, architecture and mechanics. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways. At mitosis, epithelial cells usually adopt a rounded shape to ensure faithful chromosome segregation and to promote morphogenesis. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. Here we show that in Drosophila epithelia, tricellular junctions (TCJs) localize force generators, pulling on astral microtubules and orienting cell division via the Dynein-associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJs emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.

  15. Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor

    Science.gov (United States)

    Saayman, Jean; Nicol, Willie

    2011-01-01

    A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…

  16. Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor

    Science.gov (United States)

    Saayman, Jean; Nicol, Willie

    2011-01-01

    A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…

  17. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte Carl

  18. Three-dimensional organization of chromosome territories in the human interphase cell nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1999-01-01

    markdownabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte Carl

  19. The use of an interphase to improve the transverse properties of unidirectional glass fibre reinforced polymer composites

    Science.gov (United States)

    Ellis, Keith

    The aim of the project was to improve the transverse mechanical properties of unidirectional glass fibre reinforced plastics (G.R.P.)* In addition it was intended that the longitudinal mechanical properties should not be Significantly a result of the transverse improvement The scientific and commercial literature were consulted to determine the most feasible means of improving the transverse properties. Four possible methods were identified, the most promising of which was interfacial modification. Interfacial modification involves the introduction of a third material ("the interphase" ) at the interface between the fibre and the matrix. For this project the interphase material was selected to be compliant or rubbery in nature. The Kies model for predicting the magnification of strain in the resin between fibres was extended to include an interphase. The model was developed for two modes of applied stress. The first was pure tension acting transverse to the fibre axis. The second was shear in the plane transverse to the fibre axis. A novel apparatus was constructed to manufacture composites with a compliant interphase. The apparatus combined a self-regulating coating technique with filament winding to give a continuous production facility. A range of mechanical tests were performed on composites both with and without an interphase. Presence of an interphase improved the following properties: transverse flexural strength, interlaminar and intralaminar shear strength , and transverse fiexural fracture energy. No improvement was noted for pure transverse tension. These results indicated that the interphase acted beneficially only when the composite was stressed in a predominantly shear mode. Conclusions from mechanical test results were supported by S.E.M. fractography. Considerable deformation of the interphase was found in composite tested in shear. This deformation was absent in composite tested in tension. It was postulated that these differences between behaviour

  20. Methods of fiber surface grafting for interphase design and tailored composite response

    Science.gov (United States)

    Arnold, Jesse Judson

    1997-11-01

    The objective of this research was to develop methods of fiber surface grafting for interphase formation, and to experimentally evaluate and model these interphases in order to further elucidate their role in fiber-reinforced composites. Surface modification by sp{60}Co gamma irradiation was used initially to graft acrylic polymers on the surface of ultra-high modulus (UHMPE) fibers. This technique utilized low dose rates and low total doses, and achieved grafting with retention of the exceptional UHMPE properties. The surface properties of the fibers were evaluated using fourier transform infra-red spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA), and mechanical tests and dynamic mechanical spectrometry (DMS) of discontinuous fiber composites. Depending on the glass transition temperature, Tg, and chemical structure of the graft, the fiber/matrix adhesion and the interfacial failure mechanism was tailored to provide either enhanced reinforcement or toughening. Using a three-phase block model, the DMS characteristics of the composites were modeled and the reinforcement efficiencies extrapolated as a function of surface treatment. The model successfully predicts the tan delta response of the composite and the appearance of additional loss dispersions associated with the interphase. However, the interactions between the high-energy gamma radiation and the fiber and grafts yield interphases that are difficult to characterize and control. The hydroperoxidation grafting method was subsequently developed, which permitted the grafting of tethered, linear chains by a free radical-type polymerization. Poly(styrene-stat-acrylonitrile) was grafted initially, in which the nitrogen in acrylonitrile was used as a marker to verify grafting and to estimate the grafting efficiency by ESCA analysis. Tapping modesp{TM} atomic force microscopy (TMAFM) images of the grafted fibers revealed a nodular surface topography with dimensions that were correlated to the

  1. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  2. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway.

    Directory of Open Access Journals (Sweden)

    Meera Govindaraghavan

    2014-03-01

    Full Text Available The Never in Mitosis A (NIMA kinase (the founding member of the Nek family of kinases has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell

  3. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found.

  4. Preparation and Purification of 125I With Neutron Irradiated Xenon in a Vacuum Circular system

    Institute of Scientific and Technical Information of China (English)

    MIAOZeng-xing; LIYu-cheng; YUNing-wen; WUJie; XIANGXue-qin; ZHAOXiu-yan

    2003-01-01

    This paper describes the preparation and purification of 125I with neutron irradiated xenon in a vacuum circular system, which is specially designed with an irradiate chamber set inside of the reactor and three decay chambers set outside of the reactor. The xenon is filled in this system and recurrently circulates between the irradiate chamber and the decay chambers during the reactor is operating.

  5. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics.

    Science.gov (United States)

    Korchak, Sergey; Kilian, Wolfgang; Schröder, Leif; Mitschang, Lorenz

    2016-04-01

    Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.

  6. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  7. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    Science.gov (United States)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  8. Development of Liquid Xenon Imaging Gamma-Ray Spectrophotometers

    Science.gov (United States)

    1990-07-01

    ground potential. The cathode plane is made from 63/rm diameter silver-plated beryllium copper wire set at 0.55mm pitch on a 15cm span. These wires are...100000 ( ! IUD i 10 10000 .. SCUID GAS Pressure Density (torr) 10 ,..........I (gm/cc) 10 1 1 100 120 140 160 180 200 220 240 260 280 300 Temperature (K...The freon is kept in a 30cm diameter by 10cm deep SS cryostat large enough to accomodate a 15cm diameter by 5cm deep liquid xenon cell and copper

  9. Detector r&d proposal liquid xenon(krypton) calorimetry

    CERN Document Server

    Séguinot, Jacques; Ypsilantis, Thomas; Bosteels, Michel; Chesi, Enrico Guido; Gougas, Andreas; Passardi, Giorgio; Tischhauser, Johann; Zichichi, Antonino; Ferreira-Marques, R; Lopes, M I; Policarpo, Armando; Kostrikov, M E; Ostankov, A P; Zaitsev, A; Giomataris, Ioanis; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    A proposal is made for R&D support to investigate the ultimate resolution achievable in a totally active liquid Xenon (Krypton) electromagnetic calorimeter which should lead to the construction of a 100 (400) litre prototype. Detection of either ionization or scintillation gives excellent energy resolution (sigmaE/E le 1%/sqrtE) while ionization alone gives precise determination of the direction (order 1mr) and vertex origin (order 1mm) of a high energy photon or electron (E ge 25 GeV). Large surface area photocathodes have been developed which efficiently detect the fast scintillation signal.

  10. Xenon excimer emission from multicapillary discharges in direct current mode

    Science.gov (United States)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon; Giapis, Konstantinos P.; Iberler, Marcus; Jacoby, Joachim; Frank, Klaus

    2011-08-01

    Microdischarges in xenon have been generated in a pressure range of 400-1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, the irradiance of the VUV emission is strongly dependent on pressure as well as the discharge current.

  11. Xenon excimer emission from multicapillary discharges in direct current mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Joon; Rahaman, Hasibur; Nam, Sang Hoon [Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784 (Korea, Republic of); Giapis, Konstantinos P. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); Iberler, Marcus; Jacoby, Joachim [Institute of Applied Physics, Goethe University, Max-von-Laue-St. 1, 60438 Frankfurt am Main (Germany); Frank, Klaus [Physics Department I, F.A., University of Erlangen-Nuremberg, D-91058 Erlangen (Germany)

    2011-08-15

    Microdischarges in xenon have been generated in a pressure range of 400-1013 mbar with a fixed flow rate of 100 sccm. These microdischarges are obtained from three metallic capillary tubes in series for excimer emission. Total discharge voltage is thrice as large as that of a single capillary discharge tube at current levels of up to 12 mA. Total spectral irradiance of vacuum ultraviolet (VUV) emission also increases significantly compared to that of the single capillary discharge. Further, the irradiance of the VUV emission is strongly dependent on pressure as well as the discharge current.

  12. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  13. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...... in both the haematocrit and tissue composition. In Xe washout studies of the blood flow of the urinary bladder, we recommend calculating the lambda for Xe from the actual haematocrit and from the median value of tissue composition found in the present study....

  14. Scalability, scintillation readout and charge drift in a kilogram scale solid xenon particle detector

    CERN Document Server

    Yoo, J; Jaskierny, W F; Markley, D; Pahlka, R B; Balakishiyeva, D; Saab, T; Filipenko, M

    2014-01-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  15. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging

    Science.gov (United States)

    Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola

    2016-04-01

    We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.

  16. The Electron Recoil Response of the XENON1T Dark Matter Experiment

    Science.gov (United States)

    Shockley, Evan; Xenon1T Collaboration

    2017-01-01

    XENON1T employs a two-phase xenon TPC to search for dark matter by detecting scintillation light produced by nuclear recoils in a 2 ton active volume of liquid xenon. However, nuclear recoils are not the only recoils that can occur since radiogenic electronic recoils are possible. Our only way of differentiating nuclear and electronic recoils is by comparing the relative fraction of scintillation (S1) and ionization (S2) signals. For the first Science Run of XENON1T, we must understand the response of our detector to S1 and S2 signals at the low keV energies where dark matter will present itself. Therefore, I will be discussing the current understanding of our signal and detection mechanisms at these energies. This work includes work using sources such as the Rn220 technique developed by XENON collaborators for understanding our rejection of electronic recoils.

  17. Shock-tube measurements of the excitational cross-section in xenon-hydrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ezumi, Hiromichi (Hiroshima Denki Inst. of Tech. (Japan)); Kawamura, Masahiko; Gohda, Noriaki

    1984-02-01

    The Ionization relaxation and radiative-cooling processes behind shock wave in xenon with or without a small amount of hydrogen have been investigated using a quadrature interferometer technique at shock Mach numbers Msub(s)--13 and the initial pressure P/sub 1/=2.0 Torr. By adding a small amount of hydrogen (--0.5% of the initial pressure) to xenon, the ionization relaxation time was drastically reduced to about one-third of its pure xenon value. From the comparison between theoretical values based on the two-step ionization model and experimental data, the slope constants of excitational cross-section against relative kinetic energy between xenon atom-atom collisions and xenon-hydrogen atom-atom collisions were determined to be 1.8x10/sup -19/ cm/sup 2//eV and 9.0x10/sup -19/ cm/sup 2//eV, respectively.

  18. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  19. Physics reach of the XENON1T dark matter experiment

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arazi, L; Arneodo, F; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Berger, T; Breur, P; Breskin, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Contreras, H; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Galloway, M; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Gross, E; Hampel, W; Hasterok, C; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Mayani, D; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; von Sivers, M; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2015-01-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \\pm 0.15) \\cdot 10^{-4}$ ($\\rm{kg} \\cdot day \\cdot keV)^{-1}$, mainly due to the decay of $^{222}\\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \\pm 0.1)$ ($\\rm{t} \\cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \\pm 0.3) \\cdot 10^{-2}$ ($\\rm{t} \\cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\\rm{t} \\cdot y)^{-1}$ from...

  20. MAC of xenon and halothane in rhesus monkeys.

    Science.gov (United States)

    Whitehurst, S L; Nemoto, E M; Yao, L; Yonas, H

    1994-10-01

    Local cerebral blood flow (LCBF) maps produced by 33% xenon-enhanced computed tomographic scanning (Xe/CT LCBF) are useful in the clinical diagnosis and management of patients with cerebrovascular disorders. However, observations in humans that 25-35% xenon (Xe) inhalation increases cerebral blood flow (CBF) have raised concerns that Xe/CT LCBF measurements may be inaccurate and that Xe inhalation may be hazardous in patients with decreased intracranial compliance. In contrast, 33% Xe does not increase CBF in rhesus monkeys. To determine whether this interspecies difference in the effect of Xe on CBF correlates with an interspecies difference in the anesthetic potency of Xe, we measured the minimum alveolar concentration (MAC) of Xe preventing movement to a tail-clamp stimulus in rhesus monkeys. Using a standard protocol for the determination of MAC in animals, we first measured the MAC of halothane (n = 5), and then used a combination of halothane and Xe to measure the MAC of Xe (n = 7). The halothane MAC was 0.99 +/- 0.12% (M +/- SD), and the Xe MAC was 98 +/- 15%. These results suggest that the MAC of Xe in rhesus monkeys is higher than the reported human Xe MAC value of 71%. Thus the absence of an effect of 33% Xe on CBF in the rhesus monkey may be related to its lower anesthetic potency.

  1. Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase

    Energy Technology Data Exchange (ETDEWEB)

    Prouhet, S.; Camus, G.; Labrugere, C.; Guette, A. (Lab. des Composites Thermostructuraux, Pessac (France)); Martin, E. (Univ. de Bordeaux, Talence (France). Lab. de Genie Mechanique de l' IUT A)

    1994-03-01

    The mechanical behavior of three CVI-processed 2D woven SiC/BN/SiC composite materials with different initial BN interphase thicknesses has been investigated by means of tensile and impact tests. The results have established the efficiency of a BN interphase in promoting a nonlinear/noncatastrophic tensile behavior and high impact resistance. The effect of the initial BN interphase thickness on the resulting mechanical behavior has also been demonstrated. AES and TEM has revealed the presence of a SiO[sub 2]/C double layer at the BN/fiber interface, which might result from a decomposition undergone by the Si-C(O) Nicalon fiber during processing. It has been suggested that the influence of the initial BN interphase thickness on the mechanical properties of the composites results from both changes occurring in the composition and morphology of the interfacial zones and modifications of the interfacial forces due to accommodation of the radial residual clamping stress.

  2. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.

    1997-08-01

    The overall specific aims of this project were: (1) to determine the large-scale structure of interphase and metaphase chromosomes, in order to establish new capabilities for genome mapping by fluorescence in situ hybridization (FISH); (2) to detect chromosome abnormalities associated with genetic disease and map DNA sequences relative to them in order to facilitate the identification of new genes with disease-causing mutations; (3) to establish medium resolution physical maps of selected chromosomal regions using a combined metaphase and interphase mapping strategy and to corroborate physical and genetic maps and integrate these maps with the cytogenetic map; (4) to analyze the polymorphism and sequence evolution of subtelomeric regions of human chromosomes; (5) to establish a state-of-the-art FISH and image processing facility in the Department of Molecular Biotechnology, University of Washington, in order to map DNA sequences rapidly and accurately to benefit the Human Genome Project.

  3. A model for interphase precipitation based on finite interface solute drag theory

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, R., E-mail: okamoto.riki@nsc.co.jp [Department of Materials Science and Engineering, KTH (Royal Institute of Technology), SE-10044 Stockholm (Sweden)] [Steel Products Lab.-1, Nippon Steel Corporation, 20-1, Shintomi, Futtu-shi, Chiba-ken 476-8686 (Japan); Agren, J. [Department of Materials Science and Engineering, KTH (Royal Institute of Technology), SE-10044 Stockholm (Sweden)

    2010-08-15

    A model for interphase precipitation with the ledge mechanism, based on a eutectoid reaction, has been developed and combined with the finite interface solute drag model and a numerical solution of the diffusion equations inside the migrating phase interface. In the model, niobium flows in two directions, i.e. perpendicular to the direction of the ledge migration by eutectoid-like reaction and simultaneously parallel to the direction of the ledge migration inside the ledge interface. The difference between ledge transformation and typical phase transformation is compared using this model and the effects of row spacing, temperature and segregation energy are discussed. The calculation results using the model are compared with experimental results and the critical driving force for interphase precipitation is evaluated. The estimations of the niobium carbide precipitation using this model are in good agreement with experimental results.

  4. Multiscale modeling of microscale fiber reinforced composites with nano-engineered interphases

    CERN Document Server

    Kundalwalal, S I; Wardle, B L

    2015-01-01

    This study is focused on the mechanical properties and stress transfer behavior of multiscale composite containing nano- and micro-scale fillers. A novel concept has been proposed to exploit the remarkable mechanical properties of carbon nanotubes (CNTs) to improve the stress transfer through the interphases, enabling their additional functionalities not available otherwise at the microscale. The distinctive feature of construction of this composite is such that CNTs are dispersed around the microscale fiber to modify fiber-matrix interfacial adhesion. Accordingly, models are developed for hybrid composites. First, molecular dynamics simulations in conjunction with the Mori-Tanaka method are used to determine the effective elastic properties of nano-engineered interphase layer comprised of CNT bundles and epoxy. Subsequently, a micromechanical pull-out model is developed for the resulting multiscale composite and its stress transfer behavior is studied for different orientations of CNT bundles. The current pu...

  5. Micromechanics Modeling of Functionally Graded Interphase Regions in Carbon Nanotube-Polymer Composites

    Science.gov (United States)

    Seidel, Gary D.; Lagoudas, Dimitris C.; Frankland, Sarah Jane V.; Gates, Thomas S.

    2006-01-01

    The effective elastic properties of a unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes are modeled herein through the use of a multi-scale method involving the molecular dynamics/equivalent continuum and micromechanics methods. The specific lamina representative volume element studied consists of a carbon fiber surrounded by a region of epoxy containing a radially varying concentration of carbon nanotubes which is then embedded in the pure epoxy matrix. The variable concentration of carbon nanotubes surrounding the carbon fiber results in a functionally graded interphase region as the properties of the interphase region vary according to the carbon nanotube volume fraction. Molecular dynamics and equivalent continuum methods are used to assess the local effective properties of the carbon nanotube/epoxy comprising the interphase region. Micromechanics in the form of the Mori-Tanaka method are then applied to obtain the global effective properties of the graded interphase region wherein the carbon nanotubes are randomly oriented. Finally, the multi-layer composite cylinders micromechanics approach is used to obtain the effective lamina properties from the lamina representative volume element. It was found that even very small quantities of carbon nanotubes (0.36% of lamina by volume) coating the surface of the carbon fibers in the lamina can have a significant effect (8% increase) on the transverse properties of the lamina (E22, k23, G23 and G12) with almost no affect on the lamina properties in the fiber direction (E11 and v12).

  6. Combined Fluorescent-Chromogenic In Situ Hybridization for Identification and Laser Microdissection of Interphase Chromosomes

    OpenAIRE

    Nerea Paz; Amaia Zabala; Félix Royo; África García-Orad; Zugaza, José L.; Parada, Luis A.

    2013-01-01

    Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting ...

  7. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus.

    Science.gov (United States)

    Fritz, Andrew J; Barutcu, A Rasim; Martin-Buley, Lori; van Wijnen, André J; Zaidi, Sayyed K; Imbalzano, Anthony N; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2016-01-01

    The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.

  8. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase.

    Directory of Open Access Journals (Sweden)

    Anaïs Estrada-Gelonch

    Full Text Available BACKGROUND: The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5. METHODOLOGY/PRINCIPAL FINDINGS: Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD. NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin. CONCLUSIONS/SIGNIFICANCE: Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export

  9. GraXe, graphene and xenon for neutrinoless double beta decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.; Vidal, J. Muñoz [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de Valencia, Calle Catedrático José Beltrán, 2, 46980 Valencia (Spain); Guinea, F. [Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz, 3, 28049 Madrid (Spain); Fogler, M.M. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Katsnelson, M.I., E-mail: gomez@mail.cern.ch, E-mail: paco.guinea@icmm.csic.es, E-mail: mfogler@ucsd.edu, E-mail: katsnel@sci.kun.nl, E-mail: justo.martin-albo@ific.uv.es, E-mail: francesc.monrabal@ific.uv.es, E-mail: jmunoz@ific.uv.es [Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  10. GraXe, graphene and xenon for neutrinoless double beta decay searches

    CERN Document Server

    Gomez-Cadenas, J J; Fogler, M M; Katsnelson, M I; Martin-Albo, J; Monrabal, F; Muñoz-Vidal, J

    2011-01-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. Our baseline design of GraXe is a balloon made of graphene (possibly held together with a very thin structure made of radiopure fiber) and filled with xenon enriched in the Xe-136 isotope. The balloon is immersed in a large tank containing 20 tons of natural liquid xenon and instrumented with large photomultipliers. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, an impermeable to the xenon. External backgrounds would be shielded by the buffer liquid xenon, and the inner volume has virtually zero background. Industrial graphene can be manufactured at a competitive cost to produce the inner balloon, and there is already near one ton of enriched Xenon available in the world...

  11. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    Science.gov (United States)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  12. Barium Tagging in Solid Xenon for the nEXO Experiment

    Science.gov (United States)

    Chambers, Christopher; Craycraft, Adam; Walton, Timothy; Fairbank, William; nEXO Collaboration

    2016-09-01

    The proposed nEXO experiment utilizes a tonne-scale liquid xenon time projection chamber to search for neutrinoless double beta decay in xenon-136. Positive observation of this decay would determine the nature of the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. A critical concern for any rare decay search is reducing or eliminating backgrounds that cannot be distinguished from signal. A powerful background discrimination technique is positive identification of the daughter atom of the decay, in this case barium. This technique, called ``barium tagging'' may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Development is underway on a scheme to capture the barium daughter in solid xenon with a cryogenic probe and detect the barium by laser-induced fluorescence inside the solid xenon sample. This presentation reports results on imaging of single barium atoms frozen in a solid xenon matrix, as well as the progress on the freezing and removal of a solid xenon sample from liquid xenon. Graduated.

  13. Irradiated Xenon Isotopic Ratio Measurement for Failed Fuel Detection and Location in Fast Reactor

    Science.gov (United States)

    Ito, Chikara; Iguchi, Tetsuo; Harano, Hideki

    2009-08-01

    The accuracy of xenon isotopic ratio burn-up calculations used for failed fuel identification was evaluated by an irradiation test of xenon tag gas samples in the Joyo test reactor. The experiment was carried out using pressurized steel capsules containing unique blend ratios of stable xenon tag gases in an on-line creep rupture experiment in Joyo. The tag gas samples were irradiated to total neutron fluences of 1.6 to 4.8 × 1026 n/m2. Laser resonance ionization mass spectrometry was used to analyze the cover gas containing released tag gas diluted to isotopic ratios of 100 to 102 ppb. The isotopic ratios of xenon tag gases after irradiation were calculated using the ORIGEN2 code. The neutron cross sections of xenon nuclides were based on the JENDL-3.3 library. These cross sections were collapsed into one group using the neutron spectra of Joyo. The comparison of measured and calculated xenon isotopic ratios provided C/E values that ranged from 0.92 to 1.10. The differences between calculation and measurement were considered to be mainly due to the measurement errors and the xenon nuclide cross section uncertainties.

  14. Removing krypton from xenon by cryogenic distillation to the ppq level

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [Physik-Institut, University of Zurich, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Oskar Klein Centre, Department of Physics, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Huhmann, C.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lin, Q. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Torino (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-05-15

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter {sup 85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon {sup nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10{sup -15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10{sup 5} with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of {sup nat}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN. (orig.)

  15. The breakthrough curve combination for xenon sampling dynamics in a carbon molecular sieve column.

    Science.gov (United States)

    Shu-jiang, Liu; Zhan-ying, Chen; Yin-zhong, Chang; Shi-lian, Wang; Qi, Li; Yuan-qing, Fan; Huai-mao, Jia; Xin-jun, Zhang; Yun-gang, Zhao

    2015-01-21

    In the research of xenon sampling and xenon measurements, the xenon breakthrough curve plays a significant role in the xenon concentrating dynamics. In order to improve the theoretical comprehension of the xenon concentrating procedure from the atmosphere, the method of the breakthrough curve combination for sampling techniques should be developed and investigated under pulse injection conditions. In this paper, we describe a xenon breakthrough curve in a carbon molecular sieve column, the combination curve method for five conditions is shown and debated in detail; the fitting curves and the prediction equations are derived in theory and verified by the designed experiments. As a consequence, the curves of the derived equations are in good agreement with the fitting curves by tested. The retention times of the xenon in the column are 61.2, 42.2 and 23.5 at the flow rate of 1200, 1600 and 2000 mL min(-1), respectively, but the breakthrough times are 51.4, 38.6 and 35.1 min.

  16. Interphase and magnetotransport of LSMO-PMMA nanocomposites obtained by a sonochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Mariano [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Faccio, Ricardo [Centro NanoMat/Cryssmat Lab/Cátedra de Física – DETEMA – Facultad de Química – Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales – Universidad de la República (Uruguay); Tumelero, Milton A. [Laboratorio de filmes finos e superficies – Departamento de Física – Universidad Federal de Santa Catarina, Florianópolis (Brazil); and others

    2015-05-15

    In this report, we studied the structural, microstructural and compositional trends in a manganite-polymethylmethacrilate (LSMO-PMMA) nanocomposite prepared by a sonochemical method focusing in the study of its interphase and its correlation with magnetotransport. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman scattering and X-ray powder diffraction (XRPD) studies showed evidence of PMMA reactivity with partial decomposition at the LSMO nanoparticles interface. Additionally, grazing incidence small angle X-ray scattering (GISAXS) and high resolution transmission electron microscopy (HRTEM) showed information about the microstructure and the separation between nanoparticles in these nanocomposite materials. An enhancement in the low field magnetoresistance (LFMR) respect to pure LSMO was observed for a 20% weight fraction addition of PMMA in the high temperature regime (205–305 K) probably due to the increase in the magnetic disorder at the grain boundaries caused by the ultrasonic treatment. Nevertheless, lower PMMA weight fraction addition showed no enhancement in LFMR respect to pure LSMO, probably in agreement with the higher decomposition rate observed at the interphase. - Highlights: • We report the synthesis of LSMO-PMMA nanocomposites by a sonochemical method. • Compositional and microstructural trends were obtained from the interphase. • This method showed long-range homogeneity and enhancement of grain boundary disorder. • The enhancement on the LFMR respect to pure manganite was obtained at higher temperatures.

  17. Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate)

    Energy Technology Data Exchange (ETDEWEB)

    Signori, Francesca [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Pelagaggi, Martina [Universita di Pisa - Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, I-56126 Pisa (Italy); Bronco, Simona [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Righetti, Maria Cristina, E-mail: righetti@ipcf.cnr.it [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer The existence of intermolecular interactions between poly(butylene succinate) and hemp fibres was proved from specific heat capacities data. Black-Right-Pointing-Pointer Different degrees of mobility of the poly(butylene succinate) amorphous segments were evidenced at the amorphous/crystal interphase. Black-Right-Pointing-Pointer Devitrification of the rigid amorphous fraction in poly(butylene succinate) was found to occur before and simultaneously with the fusion. - Abstract: Poly(butylene succinate)-hemp composites (PBS-hemp), with hemp content in the range 0-40 wt.%, were prepared in the melt and characterized. This paper focuses on the detailed analysis of the thermal behaviour of the PBS-hemp composites, investigated by differential scanning calorimetry (DSC), to enlighten the polymer/fibre interphase features. The occurrence of specific intermolecular interactions between PBS and hemp was assessed from specific heat capacity data. Different degrees of mobility of the PBS amorphous segments were found at the amorphous/crystal interphases. A broadening of the bulk glass transition was observed, and attributed to the presence of polymer segments slightly constrained. Moreover, a rigid amorphous fraction that devitrifies at temperatures higher than the bulk glass transition, partly before the melting region and partly simultaneously with the fusion, was observed and quantified, and attributed to the presence of major constraints probably occurring in geometrically restricted areas.

  18. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  19. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    Science.gov (United States)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  20. Heterogeneous Nuclear Reactor Models for Optimal Xenon Control.

    Science.gov (United States)

    Gondal, Ishtiaq Ahmad

    Nuclear reactors are generally modeled as homogeneous mixtures of fuel, control, and other materials while in reality they are heterogeneous-homogeneous configurations comprised of fuel and control rods along with other materials. Similarly, for space-time studies of a nuclear reactor, homogeneous, usually one-group diffusion theory, models are used, and the system equations are solved by either nodal or modal expansion approximations. Study of xenon-induced problems has also been carried out using similar models and with the help of dynamic programming or classical calculus of variations or the minimum principle. In this study a thermal nuclear reactor is modeled as a two-dimensional lattice of fuel and control rods placed in an infinite-moderator in plane geometry. The two-group diffusion theory approximation is used for neutron transport. Space -time neutron balance equations are written for two groups and reduced to one space-time algebraic equation by using the two-dimensional Fourier transform. This equation is written at all fuel and control rod locations. Iodine -xenon and promethium-samarium dynamic equations are also written at fuel rod locations only. These equations are then linearized about an equilibrium point which is determined from the steady-state form of the original nonlinear system equations. After studying poisonless criticality, with and without control, and the stability of the open-loop system and after checking its controllability, a performance criterion is defined for the xenon-induced spatial flux oscillation problem in the form of a functional to be minimized. Linear -quadratic optimal control theory is then applied to solve the problem. To perform a variety of different additional useful studies, this formulation has potential for various extensions and variations; for example, different geometry of the problem, with possible extension to three dimensions, heterogeneous -homogeneous formulation to include, for example, homogeneously

  1. Transmission Electron Diffraction Studies of Xenon Adsorbed on Graphite.

    Science.gov (United States)

    Faisal, A. Q. D.

    1987-09-01

    Available from UMI in association with The British Library. Adsorption studies of xenon on graphite were performed using the Hitachi HU-11B Transmission Electron Microscope (TEM). It has been used as a Transmission High Energy Electron Diffraction (THEED) camera. This has been modified to include an Ultra High Vacuum (UHV) environmental chamber. This chamber was isolated from the microscope vacuum by two 400 μm diameter differentially pumped apertures. Pressures of {~}10 ^{-6} torr and {~ }10^{-9} torr were achieved inside the microscope column and the environmental chamber respectively. The chamber was fitted with a new sample holder designed with double "O" rings. The sample was cooled with liquid helium. Previous THEED experiments by Venables et al and Schabes-Retchkiman and Venables revealed the presence of a 2D-solid incommensurate (I)-commensurate (C) phase transition as the temperature is lowered. These results were confirmed and extended in the present work. Hong et al have recently interpreted their X-ray diffraction experiments as showing an incommensurate-striped domain phase transition at {~}65rm K. No evidence was found for the existence of a striped domain structure on any part of the xenon phase diagram studied. Experiments of xenon adsorbed on the basal plane (0001) of graphite were carried out at pressures from {~}1.5 times 10^{-5} torr to {~}1.8 times 10^{-8} torr over a temperature range from 55K^.90K. A set of lattice parameter (misfit) measurements were made as a function of temperature at constant pressure with an accuracy of +/-0.1% rather than +/-0.3% previously obtained. The misfit data was fitted to a power law formula, i.e. misfit m = B_{rm o} (rm T - rm T_{rm o})^{rm A} , where A is a constant and equal to 0.8. It was found that B_{rm o} and T_{rm o} are functions of log(P). The data fell into two groups corresponding to two phase transitions. The same power law was used for both sets of data. Two transitions were found, one is I-C and

  2. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  3. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  4. Online {sup 222}Rn removal by cryogenic distillation in the XENON100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-06-15

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant {sup 222}Rn background originating from radon emanation. After inserting an auxiliary {sup 222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the {sup 222}Rn activity concentration inside the XENON100 detector. (orig.)

  5. Electron motion enhanced high harmonic generation in xenon clusters

    CERN Document Server

    Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.

  6. Search for light dark matter in XENON10 data.

    Science.gov (United States)

    Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A I; Coelho, L C C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L M P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J A M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J M F; Schulte, S; Shagin, P; Shutt, T; Sorensen, P; Winant, C; Yamashita, M

    2011-07-29

    We report results of a search for light (≲10  GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42)  cm(2), for a dark matter particle mass m(χ)=7  GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

  7. Position Reconstruction in a Dual Phase Xenon Scintillation Detector

    CERN Document Server

    Solovov, V N; Akimov, D Yu; Araújo, H M; Barnes, E J; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2011-01-01

    We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. For the inner part of the detector (R<100 mm), spatial resolutions of 13 mm and 1.6 mm FWHM were measured in the horizontal plane for primary and secondary scintillation, respectively. An energy resolution of 8.1% FWHM was achieved at that energy. The possibility of using this technique for improving performance and reducing cost of scintillation cameras for medical applications is currently under study.

  8. A New Electrostatically-focused UV HPD for Liquid Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Priscilla Brooks [University of Minnesota

    2013-07-10

    Appropriate photodetectors are a major challenge for liquid xenon technology as proposed by the next generation of double beta decay, solar neutrino, and dark matter searches. The primary photon signal is tiny and in the hard ultraviolet, the installation is cryogenic, and the sensors themselves must not introduce background. Hybrid photodiodes (HPDs) provide an easy substitute for a conventional PMT with the added advantages of low radioactivity, better area coverage, and single photoelectron counting. A computer-controlled test setup capable of characterizing optical properties of ultraviolet photodetectors was installed. It was used to compare photomultiplier tubes, silicon photomultipliers, avalanche photodiodes, and a novel-design custom HPD developed by the DEP company under this proposal.

  9. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    CERN Document Server

    Haefner, Jonathan; Arthurs, Maris; Batista, Elizabeth; Morton, Daniel; Okunawo, Matt; Pushkin, Kirill; Sander, Aaron; Wang, Yuhan; Lorenzon, Wolfgang

    2016-01-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  10. A Linear RFQ Ion Trap for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Flatt, B.; Green, M.; Wodin, J.; DeVoe, R.; Fierlinger, P.; Gratta, G.; LePort, F.; Montero Diez, M.; Neilson, R.; O' Sullivan, K.; Pocar, A.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank Jr., W.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; Hauger, M.; Hodgson, J.; /Stanford U., Phys. Dept. /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U.

    2008-01-14

    The design, construction, and performance of a linear radio-frequency ion trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are described. EXO aims to detect the neutrinoless double-beta decay of {sup 136}Xe to {sup 136}Ba. To suppress possible backgrounds EXO will complement the measurement of decay energy and, to some extent, topology of candidate events in a Xe filled detector with the identification of the daughter nucleus ({sup 136}Ba). The ion trap described here is capable of accepting, cooling, and confining individual Ba ions extracted from the site of the candidate double-beta decay event. A single trapped ion can then be identified, with a large signal-to-noise ratio, via laser spectroscopy.

  11. Topological signature in the NEXT high pressure xenon TPC

    CERN Document Server

    ,

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qbb as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 +- 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 +- 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% +- 0.6% background acceptance for 66.9% +- 0.6% signal efficiency.

  12. Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance

    CERN Document Server

    Kuder, Tristan Anselm; Windschuh, Johannes; Laun, Frederik Bernd

    2012-01-01

    Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high interest. For a long time, determining pore shapes by NMR diffusion acquisitions seemed impossible, because the necessary phase information could not be preserved. Here we demonstrate experimentally using the measurement technique which we have recently proposed theoretically that the shape of arbitrary closed pores can be imaged by diffusion acquisitions, which yield the phase information. For this purpose, we use hyperpolarized xenon gas in well-defined geometries. The signal can be collected from the whole sample which mainly eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This could be used to non-invasively gain structural information inaccessible so far such as pore or cell shapes, cell density or axon integri...

  13. Investigation of many-body forces in krypton and xenon

    Science.gov (United States)

    Salacuse, J. J.; Egelstaff, P. A.

    1988-10-01

    The simplicity of the state dependence at relatively high temperatures of the many-body potential contribution to the pressure and energy has been pointed out previously [J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)]. In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  14. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Contreras, H.; Goetzke, L.W.; Fernandez, A.J.M.; Messina, M.; Plante, G.; Rizzo, A. [Columbia University, Physics Department, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Arazi, L.; Budnik, R.; Duchovni, E.; Gross, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Priel, N.; Vitells, O. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Arisaka, K.; Lyashenko, A.; Meng, Y.; Pantic, E.; Teymourian, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Arneodo, F.; Di Giovanni, A. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Auger, M.; Barrow, P.; Baudis, L.; Behrens, A.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F. [University of Zurich, Physik-Institut, Zurich (Switzerland); Balan, C.; Cardoso, J.M.R.; Lopes, J.A.M.; Santos, J.M.F. dos [University of Coimbra, Department of Physics, Coimbra (Portugal); Bauermeister, B.; Fattori, S.; Geis, C.; Grignon, C.; Oberlack, U.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Beltrame, P. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); University of Edinburgh, Edinburgh (United Kingdom); Brown, A.; Lang, R.F.; Macmullin, S.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Brown, E.; Levy, C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Bruenner, S.; Hampel, W.; Kaether, F.; Lindemann, S.; Lindner, M.; Undagoitia, T.M.; Rauch, L.; Schreiner, J.; Simgen, H.; Weber, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Buetikofer, L.; Coderre, D.; Schumann, M. [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C. [Nikhef and the University of Amsterdam, Amsterdam (Netherlands); Cussonneau, J.P.; Le Calloch, M.; Masbou, J.; Lavina, L.S.; Thers, D. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Ferella, A.D.; Fulgione, W.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [Bologna Univ., Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Miguez, B.; Molinario, A.; Trinchero, G. [INFN-Torino and Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P.; Wall, R. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Orrigo, S.E.A. [University of Coimbra, Department of Physics, Coimbra (Portugal); IFIC, CSIC-Universidad de Valencia, Valencia (Spain); Persiani, R. [Universite de Nantes, Subatech, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (FR); Bologna Univ., Department of Physics and Astrophysics, Bologna (IT); INFN, Bologna (IT); Collaboration: XENON Collaboration

    2015-11-15

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment. (orig.)

  15. Study of Static Adsorption Capacity of ACF for Xenon at 201 K

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The static adsorption performances of a series of active carbon fiber (ACF)for xenon at 201 K were measured with a model ASAP2010M specific surface area and aperture distribution instrument by changing the working gas of instrument from N2 to Xenon. Compared with grain active carbon(GAC): (1) the adsorption performance of Viscose-based ACF(VACF) adsorbents is better than that of GAC; (2) owing to the difference of aperture distribution, the adsorption performance of ACF with different radicales is different under the same experiment conditions though the specific surface area is similar; (3) there is no definite relationship between adsorption performance and specific surface area; (4) the VACF-A2 is the superior xenon adsorbent at the experimental temperature.Keyworls Active carbon fiber, CTBT, Xenon, Static adsorption, Adsorptive capacity, Adsorptive velocity

  16. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  17. Isotopic Composition of Xenon in Petroleum from the Shell Bullwinkle Field

    Indian Academy of Sciences (India)

    J Nuzzo*; M Hyman; M W Rowe; Mnraoz; R L Palma; J Westrich

    2000-03-01

    We have measured the abundance and isotopic composition of xenon in petroleum samples from the Shell Bullwinkle Field off the coast of Louisiana. We used an oxidation and purification procedure designed to insure complete extraction and clean up of xenon from the petroleum. The xenon isotopic composition was found to be similar to the atmospheric value for one petroleum sample. While the results of the second sample suggest possible enrichment of the heavier isotopes, the errors associated with these excesses preclude a definitive statement to that effect. No monoisotopic enrichment in 129Xe was detected in either sample, the presence of which might have allowed us to deduce the petroleum age. Our results represent only the second xenon measurement from petroleum, and the concentrations are within the range of values published in the earlier report.

  18. Measurement of Low Energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100

    Science.gov (United States)

    Ye, Jingqiang; Xenon Collaboration

    2017-01-01

    The XENON100 detector uses liquid xenon time projection chamber to search for nuclear recoils(NR) caused by hypothetical Weakly Interacting Massive Particles (WIMPs). The backgrounds are mostly electronic recoils(ER), thus it's crucial to distinguish NR from ER. Using high statistical calibration data from tritiated methane, AmBe and other sources in XENON100, the ER/NR discrimination under different electric fields are measured. The Photon yield and recombination fluctuation of low energy electronic recoils under different fields will also be presented and compared to results from NEST and other experiments, which is crucial to understanding the response of liquid xenon detectors in the energy regime of searching dark matter.

  19. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  20. Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Paulson, O

    1981-01-01

    A rapidly rotating single-photon emission tomograph was used to study regional cerebral blood flow by 133Xenon inhalation. Using a rotation speed of 180 degrees/5 sec a tomographic picture of the average Xenon concentration in 3 slices is obtained. By taking a sequence of 4 one-minute tomograms...... normal subjects and 10 unselected patients with stroke. The CBF tomograms localized appropriate ischemic areas in all 10 patients. In one patient the conventional x-ray tomogram was negative, while the flow tomogram clearly showed a decreased flow in consonance with the clinical findings. Regional...... cerebral blood flow measured tomographically by 133Xenon inhalation circumvents the extra-cranial contamination and the superposition of intracranial tissues that hamper 133Xenon inhalation flow studies using stationary detectors....

  1. [Anesthesia and sedation by admixture of xenon-oxygen in dentistry. Part I].

    Science.gov (United States)

    Rabinovich, S A; Zavodilenko, L A; Babikov, A S

    2014-01-01

    The modern out-patient dental treatment which is performed under combined anesthesia with of xenon-oxygen inhalations provides comfortable conditions for the doctor and the patient, effective anesthesia and safe level of the sedation controlled by dentist.

  2. Operation and technology development of the radioactive xenon and krypton detection equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wanno; Choi, Sangdo; Ji, Youngyong; Lim, Jong Myoung; Cho, Young Hyun; Kang, Han Beul; Lee, Hoon; Kang, Moon Ja; Choi, Kun Sik

    2013-03-15

    Operation and technology development of the radioactive xenon and krypton detection equipment - Advancement, independence of operation technology for BfS-IAR system(the simultaneous analysis of xenon and krypton) installed after North Korea nuclear tests in 2006 and establishment of background base-line for xenon and krypton radioactivity. - Enhanced detection and analysis capabilities for neighborhood nuclear activities through advanced research of noble gas detection technology. Results of the Project · The operation of xenon and krypton analysis system (BfS-IAR) · Operation of fixed adsorption system. · Operation of portable adsorption system · Exercise of emergency response and proficiency test with SAUNA. · Measurement of noble gas background at specific region in Korea. - Radioxenon levels at Dongdu Cheon is approximately 1.6 mBq/m{sup 3} · Development of automation filling system for absorber cooling.

  3. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    CERN Document Server

    Grace, Emily

    2015-01-01

    Like all the noble elements, argon and xenon are scintillators, \\emph{i.e.} they produce light when exposed to radiation. Large liquid argon detectors have become widely used in low background experiments, including dark matter and neutrino research. However, the index of refraction of liquid argon at the scintillation wavelength has not been measured and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using previously measured data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship. As a point of validation, we compare our extrapolated index of refraction for liquid xenon against the measured value and find agreement within the uncertainties. This method results in a Rayle...

  4. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  5. AXEL-a high pressure xenon gas TPC for neutrinoless double beta decay search

    Science.gov (United States)

    Nakamura, Kiseki; Ichikawa, Atsuko K.; Nakaya, Tsuyoshi; Minamino, Akihiro; Ban, Sei; Yanagita, Saori; Tanaka, Shunsuke; Hirose, Masanori; Sekiya, Hiroyuki; Ueshima, Kota; Miuchi, Kentaro

    2017-02-01

    To search for neutrinoless double beta decay, we have started developing a high pressure xenon gas time projection chamber as the AXEL (A Xenon ElectroLuminescence detector) project since 2014. We proposed a new scheme to measure energy deposit using electroluminescence lights to achieve high energy resolution, large mass and strong background rejection power. Important performances of compositions of our new readout scheme are shown: electric field simulation, VUV sensitivity of MPPC in high pressure gaseous xenon, response of MPPC for large amount of photons. To demonstrate as a whole system, we constructed a small prototype detector using 64 MPPCs filled with 4 bar xenon gas. Result of measurement with a 57Co gamma-ray source are shown.

  6. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E. [Physics Department, Columbia University, New York, NY (United States); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L’Aquila (Italy); Department of Physics and Astrophysics, University of Bologna and INFN-Bologna, Bologna (Italy); Alfonsi, M. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Institut für Physik & Exzellenzcluster PRISMA, Johannes Gutenberg-Universität Mainz, Mainz (Germany); Arazi, L. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot (Israel); Collaboration: XENON Collaboration; and others

    2015-11-23

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.

  7. Vacuum Ultraviolet Xenon Excimer Light Source Excited by a Pulsed Jet Discharge

    National Research Council Canada - National Science Library

    Eiji FUTAGAMI; Toshiaki TAKADA; Junji KAWANAKA; Shoichi KUBODERA; Wataru SASAKI; Kou KUROSAWA; Kenichi MITSUHASHI; Tatsushi IGARASHI

    1995-01-01

      We have developed a new xenon excimer light source in vacuum ultraviolet (VUV). The use of a pulsed gas jet discharge realized efficient cluster excitation and spatially localized emission in VUV with an extremely long pulse duration...

  8. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  9. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage.

    Science.gov (United States)

    Sheng, Siyuan P; Lei, Beilei; James, Michael L; Lascola, Christopher D; Venkatraman, Talaignair N; Jung, Jin Yong; Maze, Mervyn; Franks, Nicholas P; Pearlstein, Robert D; Sheng, Huaxin; Warner, David S

    2012-12-01

    Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval. Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured. Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures. Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.

  10. Disentangling xenon components in Nakhla: martian atmosphere, spallation and martian interior^1

    Science.gov (United States)

    Gilmour, J. D.; Whitby, J. A.; Turner, G.

    2001-01-01

    A powdered sample of Nakhla was separated into 3 subsamples. One was left otherwise untreated, one was washed in water and one etched with HNO 3 removing 6% of the original mass. We report results of isotopic analysis of xenon released by laser step heating on aliquots of each of these subsamples; some aliquots were neutron irradiated before isotopic analysis (to allow determination of I, Ba and U as daughter xenon isotopes) and some were not. There is evidence that water soluble phases contain both martian atmospheric xenon and a component with low 129Xe/ 132Xe, either martian interior xenon or terrestrial atmosphere. Higher temperature data from unirradiated aliquots of the water and acid treated samples reveal two-component mixing. One is a trapped xenon component with 129Xe/ 132Xe = 2.350 ± 0.026, isotopically identical to the martian atmosphere as measured in shock glass from shergottites. It is associated with leachable iodine, suggesting it is trapped close to grain boundaries. It may be a result of shock incorporation of adsorbed atmospheric gas. The second component is best explained as an intimate mixture of martian interior xenon and spallation xenon. The martian interior component is present at a concentration of ˜10 -12 cm 3 STP g -1 132Xe, around 40 times lower than that observed in Chassigny. Its association with spallation xenon (produced from Ba and light rare earth elements) suggests it is in the feldspathic mesostasis. We propose that it was trapped during crystallisation and reflects the mantle source of the parental magma.

  11. Shadowing in the muon-xenon inelastic scattering cross section at 490 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.R.; Carroll, T.J.; Halliwell, C.; Jaffe, D.E.; McLeod, D.; Magill, S. (Univ. Illinois, Chicago, IL (United States)); Aid, S.; Kunori, S.; O' Day, S.; Ramberg, E.J.; Skuja, A.; Snow, G.A.; Steinberg, P.H.; Talaga, R. (Univ. Maryland, College Park, MD (United States)); Anthony, P.L.; Baker, M.D.; Busza, W.; Osborne, L.; Ryan, J.J. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Bartlett, J.; Coutrakon, G.; Hanlon, J.; Kirk, T.; Krzywdzinski, S.; Melanson, H.; Montgomery, H.E.; Morfin, J.G.; Salgado, C.; Wolbers, S.A. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bhatti, A.A.; Davisson, R.; Dougherty, W.; Jansen, D.M.; Lord, J.J.; Lubatti, H.J.; Wilkes, J.; Zhao, T. (Univ. Washington, Seattle, WA (United States)); Braun, H.M.; Ecker, U.; Roeser, A. (Univ. Wuppertal (Germany)); Conrad, J.M.; Fang, G.; Michael, D.G.; Nickerson, R.B.; Pipkin, F.M.; Schmitt, M.; Wilson, R. (Harvard Univ., Cambridge, MA (United States)); Derado, I.; Eckardt, V.; Fermilab E665 Collaboration

    1992-08-13

    Inelastic scattering of 490 GeV {mu}{sup +} from deuterium and xenon nuclei has been studied for x{sub Bj}>0.001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x{sub Bj}, with a depletion in the kinematic range 0.001

  12. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  13. Wetting properties of model interphases coated with defined organic functional groups

    Science.gov (United States)

    Woche, Susanne K.; Goebel, Marc-O.; Guggenberger, Georg; Tunega, Daniel; Bachmann, Joerg

    2013-04-01

    Surface properties of soil particles are of particular interest regarding transport of water and sorption of solutes, especially hazardous xenobiotic species. Wetting properties (e.g. determined by contact angle, CA), governed by the functional groups exposed, are crucial to understand sorption processes in water repellent soils as well as for the geometry of water films sustaining microbial processes on the pore scale. Natural soil particle surfaces are characterized by a wide variety of mineralogical and chemical compounds. Their composition is almost impossible to identify in full. Hence, in order to get a better understanding about surface properties, an option is the usage of defined model surfaces, whereas the created surface should be comparable to natural soil interphases. We exposed smooth glass surfaces to different silane compounds, resulting in a coating covalently bound to the surface and exhibiting defined organic functional groups towards the pore space. The wetting properties as evaluated by CA and the surface free energy (SFE), calculated according to the Acid-Base Theory, were found to be a function of the specific functional group. Specifically, the treated surfaces showed a large variation of CA and SFE as function of chain length and polarity of the organic functional group. The study of wetting properties was accompanied by XPS analysis for selective detection of chemical compounds of the interphase. As the reaction mechanism of the coating process is known, the resulting interphase structure can be modeled based on energetic considerations. A next step is to use same coatings for the defined modification of the pore surfaces of porous media to study transport and sorption processes in complex three phase systems.

  14. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Science.gov (United States)

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  15. Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer

    Science.gov (United States)

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-01

    In order to utilize silicon wafer as electrode and substrate for integrated lithium-ion batteries, a composite film with in-situ formed porosity (lithium phosphorous oxynitride/tin oxide, LiPON/SnO2) is fabricated and directly exploited as the artificial solid electrolyte interphase film. Without the compromise of Coulombic efficiency, the capacity and cycle performance of silicon wafer are both developed, resulting from the reduced resistance and the dynamically stable coating. This work provides guidance to enhance the lithiation of bulk silicon, and the strategy of surface modification can be applied to other advanced materials or fields.

  16. Controlled Interphase Power Controller (IPC on the Base of Squashed Transformer

    Directory of Open Access Journals (Sweden)

    AMBROS, T.

    2007-11-01

    Full Text Available One of the perspective technical decisions in the field of management of modes of the electrical networks and systems are the Flexible Alternating Power Transmission Systems (FACTS or Power Controllers. Most perspective of them is Interphase Power Controller (IPC on the base of non-controllable phase-shifting transformer with the three working windings connected in 'delta' and constant shifting angle of 600. The analyses of its characteristics and working modes which are done in this paper are shone, then using multi-windings controllable transformer allows essentially to damage the required power of the phase-shifting transformer.

  17. Catalysis of the interphase reaction of. cap alpha. -methylstyrene with formaldehyde by alkylbenzenesulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, V.Z.; Kasymova, K.A.; Litvin, E.F.

    1986-11-10

    Alkylbenzenesulfonic acids accelerate condensation of ..cap alpha..-methylstyrene with formaldehyde (on conversion per acid group) significantly more strongly than sulfuric and oxalic acids. The observed event is due to interphase transfer under conditions of acid catalysts (Prins reaction). Schemes which include transfer of the olefin to the aqueous phase and formaldehyde to the organic phase were proposed. The catalytic cycle includes the formation of an ion pair of the alkylbenzenesulfonic acid with formaldehyde due to the occurrence of the reaction in the organic phase.

  18. Lithium batteries: Improving solid-electrolyte interphases via underpotential solvent electropolymerization

    Science.gov (United States)

    Kasmaee, Laleh Majari; Aryanfar, Asghar; Chikneyan, Zarui; Hoffmann, Michael R.; Colussi, Agustín J.

    2016-09-01

    Understanding the mechanism of formation of solid-electrolyte interphases (SEI) is key to the prospects of lithium metal batteries (LMB). Here, we investigate via cyclic voltammetry, impedance spectroscopy and chronoamperometry the role of kinetics in controlling the properties of the SEI generated from the reduction of propylene carbonate (PC, a typical solvent in LMB). Our observations are consistent with the operation of a radical chain PC electropolymerization into polymer units whose complexity increases at lower initiation rates. As proof-of-concept, we show that slow initiation rates via one-electron PC reduction at underpotentials consistently yields compact, electronically insulating, Li+-conducting, PC-impermeable SEI films.

  19. Control of Regime of Unified Interphase Power Controller by the Use of Rotary Transformer

    Directory of Open Access Journals (Sweden)

    Kalinin L.P.

    2015-12-01

    Full Text Available Interphase Power Controller (IPC has some properties of the source of the current. The use of these technical devices in electrical networks, in addition to optimization of the flow distribution, contributes to limiting of short-circuit currents and limits the level of distribution of electromechanical transients between energy systems. The increase of IPC controllability allows assigning some control function upon them and ensuring a more favorable operation of the energy system generators. We have studied a variant of such a device, which is controlled by a rotary phase-shifting transformer using the asynchronous electric machines with locked phase-wound rotor.

  20. Minimum alveolar concentration-awake of Xenon alone and in combination with isoflurane or sevoflurane.

    Science.gov (United States)

    Goto, T; Nakata, Y; Ishiguro, Y; Niimi, Y; Suwa, K; Morita, S

    2000-11-01

    The minimum alveolar concentration (MAC)-awake is a traditional index of hypnotic potency of an inhalational anesthetic. The MAC-awake of xenon, an inert gas with anesthetic properties (MAC = 71%), has not been determined. It is also unknown how xenon interacts with isoflurane or sevoflurane on the MAC-awake. In the first part of the study, 90 female patients received xenon, nitrous oxide (N2O), isoflurane, or sevoflurane supplemented with epidural anesthesia (n = 36 for xenon and n = 18 per group for other anesthetics). In the second part, 72 additional patients received either xenon or N2O combined with the 0.5 times MAC-awake concentration of isoflurane or sevoflurane (0.2% and 0.3%, respectively, based on the results of the first part; n = 18 per group). During emergence, the concentration of an assigned anesthetic (xenon or N2O only in the second part) was decreased in 0. 1 MAC decrements every 15 min from 0.8 MAC or from 70% in the case of N2O until the patient followed the command to either open her eyes or to squeeze and release the investigator's hand. The concentration midway between the value permitting the first response to command and that just preventing it was defined as the MAC-awake. The MAC-awake were as follows: xenon, 32.6 +/- 6.1% (mean +/- SD) or 0.46 +/- 0.09 MAC; N2O, 63.3 +/- 7.1% (0.61 +/- 0.07 MAC); isoflurane, 0.40 +/- 0.07% (0.35 +/- 0.06 MAC); and sevoflurane, 0.59 +/- 0.10% (0.35 +/- 0.06 MAC). Addition of the 0.5 MAC-awake concentrations of isoflurane and sevoflurane reduced the MAC-awake of xenon to 0.50 +/- 0.15 and 0.51 +/- 0.16 times its MAC-awake as a sole agent, but that of N2O to the values significantly greater than 0.5 times its MAC-awake as a sole agent (0.68 +/- 0.12 and 0.66 +/- 0.14 times MAC-awake; P MAC-awake of xenon is 33% or 0.46 times its MAC. In terms of the MAC-fraction, this is smaller than that for N2O but greater than those for isoflurane and sevoflurane. Unlike N2O, xenon interacts additively with isoflurane

  1. Krypton assay in xenon at the ppq level using a gas chromatographic system combined with a mass spectrometer

    CERN Document Server

    Lindemann, Sebastian

    2014-01-01

    We have developed a new method to measure krypton traces in xenon at so far unprecedented low concentrations. This is a mandatory task for many near-future low-background particle physics detectors. Our system is based on a cryogenic gas chromatographic krypton/xenon separation and a subsequent mass spectroscopic krypton quantification. We prove this system to reach a detection limit of 8 ppq (parts per quadrillion) and present results of distilled xenon with krypton concentrations below 1 ppt.

  2. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    Science.gov (United States)

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access.

  3. Single- and Multilayered Inter-phases in SiC/SiC Composites Exposed to Severe Environmental Conditions: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Naslain, R.R.; Pailler, R.J.F.; Lamon, J.L. [Univ Bordeaux, LCTS, F-33600 Pessac (France)

    2010-07-01

    Pyrocarbon (PyC), the common interphase for SiC/SiC, is not stable under severe environmental conditions. It could be replaced by boron nitride more resistant to oxidation but poorly compatible with nuclear applications. Other materials, such as ternary carbides seem promising but their use in SiC/SiC has not been demonstrated. The most efficient way to improve the behavior of PyC interphase in severe environments is to replace part of PyC by a material displaying a better compatibility, such as SiC itself. Issues related to the design and behavior of layered inter-phases are reviewed with a view to demonstrate their interest in high-temperature nuclear reactors. (authors)

  4. An homeopathic cure to pure Xenon large diffusion

    CERN Document Server

    Azevedo, C D R; Freitas, E.D.C.; Gonzalez-Diaz, D.; Monrabal, F.; Monteiro, C.M.B.; Santos, J. M. F. Dos; Veloso, J.F.C.A.; Gomez-Cadenas, J. J

    2016-01-01

    The NEXT neutrinoless double beta decay experiment will use a high- pressure gas electroluminescence-based TPC to search for the decay of Xe-136. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. The rejection potential associated to the topology reconstruction is limited by our capacity to prop- erly reconstruct the original path of the electrons in the gas. This reconstruction is limited by different factors that include the geometry of the detector, the density of the sensors in the tracking plane and the separation among them, etc. Ultimately, the resolution is limited by the physics of electron diffusion in the gas. In this paper we present a series of molecular additives that can be used in Xenon gas at very low partial pressure to reduce both longitudinal and transverse diffusion. We will show the results of different Monte-Carlo simulations of electron transport in the gas mixtures from wich we have extracted the value of...

  5. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    Science.gov (United States)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  6. Xenon Recovery at Room Temperature using Metal-Organic Frameworks.

    Science.gov (United States)

    Elsaidi, Sameh K; Ongari, Daniele; Xu, Wenqian; Mohamed, Mona H; Haranczyk, Maciej; Thallapally, Praveen K

    2017-08-10

    Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low-temperature distillation to recover Xe; this method is expensive to use in medical facilities. Herein, we propose a much simpler and more efficient system to recover and recycle Xe from exhaled anesthetic gas mixtures at room temperature using metal-organic frameworks (MOFs). Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity and Xe/O2 , Xe/N2 and Xe/CO2 selectivity at room temperature. The in situ synchrotron measurements suggest that Xe is occupies the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Noble Liquid (Xenon or Krypton) Totally Active Calorimetry

    CERN Multimedia

    2002-01-01

    Main Goals\\\\ \\\\ Determine ionization and scintillation yields in liquid Xenon (LXe) or Krypton.\\\\ \\\\ Determine the electron lifetime and photon mean free path in LXe or LKr. \\\\ \\\\ Determine energy resolution of LXe or LKr via ionization or scintillation.\\\\ \\\\ Determine correlation of fluctuations between ionization and scintillation. Summary of Results \\\\ \\\\ -~measured the electron lifetime in LXe, ($\\tau$~$>$~400 $\\mu$s).\\\\ \\\\ -~measured the energy to create an ionization electron in LXe, W=9.8 eV.\\\\ \\\\ -~measured the energy to create a LXe scintillation photon, W$ _{s} $~=~14.2~eV. \\\\ \\\\ -~measured the anticorrelation of scintillation and ionization yields. \\\\ \\\\ -~measured the energy resolution in LXe via ionization, $ sigma _{E} / $E=0.07\\%/$\\sqrt$E(GeV). \\\\ \\\\ -~measured resolution in LXe via scintillation $ sigma _{E} / $E=0.24\\%/$\\sqrt$E(GeV)+0.26\\%. \\\\ \\\\ -~measured electron drift velocity in LXe:~neat (2.5 mm/$\\mu$s), doped (4.4~mm/$\\mu$s). \\\\ \\\\ -~measured the photon mean free path in LXe vs $ lambd...

  8. Monte Carlo model for electron degradation in xenon gas

    CERN Document Server

    Mukundan, Vrinda

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...

  9. An Ultra-Low Background PMT for Liquid Xenon Detectors

    CERN Document Server

    Akerib, D S; Bernard, E; Bernstein, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chan, Y-D; Clark, K; Coffey, T; deViveiros, L; Dragowsky, M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Larsen, N; Lee, C; Lesko, K; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D; Mei, D; Mock, J; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Pech, K; Phelps, P; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sorensen, P; Spaans, J; Stiegler, T; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01

    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238 U / <0.3 232 Th / <8.3 40 K / 2.0+-0.2 60 Co mBq/PMT. This represents a large reduction, equal to a change of \\times 1/24 238U / \\times 1/9 232Th / \\times 1/8 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selec...

  10. Reactivity of Xenon with Ice at Planetary Conditions

    Science.gov (United States)

    Sanloup, Chrystèle; Bonev, Stanimir A.; Hochlaf, Majdi; Maynard-Casely, Helen E.

    2013-06-01

    We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K—conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and η-O2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth.

  11. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L' Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s(3/2)/sub 1//sup 0/ and 5d(3/2)/sub 1//sup 0/ states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe/sup +/ in either the /sup 2/P/sub 1/2/ or /sup 2/P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the (3+1) REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from (3+1) via the 7s(3/2)/sub 1//sup 0/ state into Xe/sup +/ /sup 2/P/sub 3/2/ (core preserving) or Xe/sup +/ /sup 2/P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs.

  12. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    Science.gov (United States)

    Bogdanov, E. A.; Kudryavtsev, A. A.; Arslanbekov, R. R.; Kolobov, V. I.

    2004-11-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C&M). However, some computational results of the work of C&M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C&M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C&M. Although these differences do not affect profoundly the plasma macro parameters measured in the C&M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

  13. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E A [St Petersburg State University, St Petersburg (Russian Federation); Kudryavtsev, A A [St Petersburg State University, St Petersburg (Russian Federation); Arslanbekov, R R [CFD Research Corporation, Huntsville (United States); Kolobov, V I [CFD Research Corporation, Huntsville (United States)

    2004-11-07

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage.

  14. NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon

    CERN Document Server

    Szydagis, M; Kazkaz, K; Mock, J; Stolp, D; Sweany, M; Tripathi, M; Uvarov, S; Walsh, N; Woods, M

    2011-01-01

    A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Tech...

  15. A metastable xenon isotope detector for treaty verification

    CERN Document Server

    Lopes, J A M; Conde, C A N

    2003-01-01

    A system to selectively detect and quantify the xenon metastable isotopes sup 1 sup 3 sup 1 sup m Xe, sup 1 sup 3 sup 3 sup m Xe, sup 1 sup 3 sup 3 Xe, and sup 1 sup 3 sup 5 Xe has been designed, fabricated, and tested. The system combines high-resolution electron and gamma-ray spectrometry with coincidence/anti-coincidence timing for signal selectivity and background rejection. By utilizing X-ray-fluorescence gating, backgrounds from other sources are expected to be reduced to the sub-becquerel level. Coincidence and anti-coincidence triggers are formed from the several individual detectors that comprise the system and used to identify K-shell conversion electrons and fluorescence X-rays from a sup 1 sup 0 sup 9 Cd test source with good efficiencies and energy resolutions (20 keV for the low-energy electrons, approx 1.2 keV for the fluorescence X-rays, respectively).

  16. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    Science.gov (United States)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  17. Is Missing Xenon in the Earth's Inner Core

    CERN Document Server

    Zhu, Li; Zou, Guangtian; Ma, Yanming

    2013-01-01

    Atmospheric studies of Earth have shown that more than 90% of xenon (Xe) is depleted if compared to the abundance of chondritic meteorites1,2. This missing Xe paradox remains a long-standing mystery and has become an extensive debate2-18. Earlier high pressure experimental and theoretical studies3-5 that were unable to find the reaction of Xe with iron (Fe), the main constituent of the Earth's inner core, seemingly excluded the Earth's inner core from the Xe reservoir. Here we report the first evidence on the chemical reaction of Xe with Fe at conditions of Earth's inner core predicted through our developed first-principles structure searching technique unbiased by any known structural knowledge. We find that Xe and Fe form stable inter-metallic compound of XeFe3 stoichiometry by adopting a Cu3Au-type cubic structure. By virtue of an unusual Xe -> Fe charge transfer, Xe loses its chemical inertness by opening up the completed filled 5p electron shell and thereby functions as a 5p-like element, while Fe is neg...

  18. Production of fusion radionuclides: Molybdenum-99/ Iodine - 131 and Xenon-133; Produccion de los radionucleidos de fision: Molibdeno-99, Yodo-131 y Xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Carrillo, D.

    1982-07-01

    This report presents a new radiochemical method for industrial production of the radionuclides: molybdenum-99, iodine-131 and xenon-133. The above mentioned method based on the alkaline metathesis reaction of irradiated uranium (IV) fluoride, presents the best characteristics for the proposed objective. The study deals with the analysis of that reaction and the separation and purification processes. (Author) 71 refs.

  19. Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    Science.gov (United States)

    2010-01-01

    Background Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied. Methods ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6. Results The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001). Conclusions The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results. Trial Registration The trial was registered with the number ISRCTN01110844 http://www.controlled-trials.com/isrctn/pf/01110844. PMID:20459661

  20. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  1. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

    KAUST Repository

    Wu, Hui

    2012-03-25

    Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage 1-5. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles 6-11. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour). © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Detection of beta-tubulin in the cytoplasm of the interphasic Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Gómez-Conde, Eduardo; Vargas-Mejía, Miguel Ángel; Díaz-Orea, María Alicia; Hernández-Rivas, Rosaura; Cárdenas-Perea, María Elena; Guerrero-González, Tayde; González-Barrios, Juan Antonio; Montiel-Jarquín, Álvaro José

    2016-08-01

    It is known that the microtubules (MT) of Entamoeba histolytica trophozoites form an intranuclear mitotic spindle. However, electron microscopy studies and the employment of anti-beta-tubulin (β-tubulin) antibodies have not exhibited these cytoskeletal structures in the cytoplasm of these parasites. The purpose of this work was to detect β-tubulin in the cytoplasm of interphasic E. histolytica trophozoites. Activated or non-activated HMI-IMSS-strain E. histolytica trophozoites were used and cultured for 72 h at 37 °C in TYI-S-33 medium, and then these were incubated with the anti-β-tubulin antibody of E. histolytica. The anti-β-tubulin antibody reacted with the intranuclear mitotic spindle of E. histolytica-activated trophozoites as control. In contrast, in non-activated interphasic parasites, anti-β-tubulin antibody reacted with diverse puntiform structures in the cytoplasm and with ring-shaped structures localized in the cytoplasm, cellular membrane and endocytic stomas. In this work, for the first time, the presence of β-tubulin is shown in the cytoplasm of E. histolytica trophozoites.

  3. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy.

  4. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries.

    Science.gov (United States)

    Gao, Hongcai; Xue, Leigang; Xin, Sen; Park, Kyusung; Goodenough, John B

    2017-05-08

    The development of all-solid-state rechargeable batteries is plagued by a large interfacial resistance between a solid cathode and a solid electrolyte that increases with each charge-discharge cycle. The introduction of a plastic-crystal electrolyte interphase between a solid electrolyte and solid cathode particles reduces the interfacial resistance, increases the cycle life, and allows a high rate performance. Comparison of solid-state sodium cells with 1) solid electrolyte Na3 Zr2 (Si2 PO4 ) particles versus 2) plastic-crystal electrolyte in the cathode composites shows that the former suffers from a huge irreversible capacity loss on cycling whereas the latter exhibits a dramatically improved electrochemical performance with retention of capacity for over 100 cycles and cycling at 5 C rate. The application of a plastic-crystal electrolyte interphase between a solid electrolyte and a solid cathode may be extended to other all-solid-state battery cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Imaging the interphase of carbon fiber composites using transmission electron microscopy:Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Institute of Scientific and Technical Information of China (English)

    Wu Qing; Li Min; Gu Yizhuo; Wang Shaokai; Zhang Zuoguang

    2015-01-01

    Three sample preparation techniques, focused ion beam (FIB), ion beam (IB) etching, and ultramicrotomy (UM) were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  6. Setup for SiPM characterization in liquid xenon for the nEXO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hufschmidt, Patrick; Bayerlein, Reimund; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Wredel, Gerrit; Ziegler, Tobias; Anton, Gisela; Hoessl, Juergen; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen Nuernberg (Germany)

    2016-07-01

    The nEXO (next enriched xenon observatory) is a future experiment to search for the neutrinoless double beta decay of Xe-136 with a single-phase time-projection-chamber filled with liquid xenon. Besides position resolved detection of the released charge with low noise electronics, efficient collection and detection of the xenon scintillation light with its short wavelength of 175 nm is important to obtain good energy resolution. Due to the demands on radiopurity of the materials employed in the detector, Silicon Photomultipliers (SiPM) shall be used to detect the scintillation light. Dedicated SiPMs, compatible with the requirements of the experiment, have to be developed. In order to characterize SiPMs - for example with respect to photon detection efficiency at 175 nm, cross-talk probability, dark-rate, after-pulse probability - we have set up a SiPM test stand in which SiPMs can be operated in liquid or in gaseous xenon. Cooling is performed with a cold finger immersed in liquid nitrogen. Scintillation photons are produced by the interaction of alpha particles from a radioactive source. In addition to the SiPMs, a VUV-sensitive photomultiplier tube is present in the xenon cell so that coincidence measurements can be performed. In this contribution we present the status of our test setup.

  7. Nitrous oxide and xenon enhance phospholipid-N-methylation in rat brain synaptic plasma membranes.

    Science.gov (United States)

    Horn, J L; Janicki, P K; Franks, J J

    1995-01-01

    Halothane and isoflurane increase the rate of phospholipid methylation (PLM) in rat brain synaptosomal membranes, a process linked to the coupling of neuronal excitation to neurotransmitter release. In contrast, synaptic plasma membrane (SPM) Ca2+ ATPase (PMCA) pumping is reduced by exposure to halothane, isoflurane, xenon and nitrous oxide (N2O). To examine further the relationship between PLM, PMCA and anesthetic action, we investigated the effect of clinically relevant concentrations of two less potent anesthetic gases, N2O and xenon, on PLM in SPM. Biochemical assays were performed on SPM exposed to 1.3 MAC of N2O (2 atm), 1.3 MAC of xenon (1.23 atm) or an equivalent pressure of helium for control. N2O or xenon exposure increased PLM to 115% or 113%, respectively, of helium control (p xenon depressed PMCA activity to 78% and 85% of control (p < 0.05). Observations that PLM and PMCA are both altered by a wide variety of inhalation anesthetic agents at clinically relevant partial pressures lend support to a possible involvement and interaction of these processes in anesthetic action.

  8. Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector

    CERN Document Server

    Barrow, P; Cichon, D; Danisch, M; Franco, D; Kaether, F; Kish, A; Lindner, M; Undagoitia, T Marrodan; Mayani, D; Rauch, L; Wei, Y; Wulf, J

    2016-01-01

    The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are...

  9. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    Science.gov (United States)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  10. Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans

    National Research Council Canada - National Science Library

    Rex, S; Meyer, P. T; Baumert, J.-H; Rossaint, R; Fries, M; Büll, U; Schaefer, W. M

    2008-01-01

    Background The effects of xenon on regional cerebral blood flow (rCBF) are controversial. Moreover, the precise sites of action at which xenon exerts its effects in the human brain remain to be established...

  11. Iodine-xenon studies and the relax mass spectrometer

    Science.gov (United States)

    Gilmour, J. D.; Ash, R. D.; Lyon, I. C.; Johnston, W. A.; Hutchison, R.; Bridges, J. C.; Turner, G.

    1994-07-01

    RELAX combines a resonance ionization ion source with a cryogenic sample concentrator to achieve ultrasensitivity. Gas is extracted from samples using either a continuous wave laser microprobe based on an argon-ion laser or a filament microfurnace. Recent refinements in the operating procedure have resulted in optimum sensitivities such that detection rates of 1 cps are achieved from fewer than 500 atoms. A Xe-128 spike reservoir has also been added and characterized, allowing accurate determinations of absolute amounts of gas. We have completed a preliminary study of the iodine-xenon system in samples from the Bjurbole and Parnallee meteorites. Bjurbole chondrules ranging in mass from 5.45 mg to 260 micrograms were analyzed by laser microprobe. The results from these samples are consistent with an effectively uniform formation age, suggesting that the use of Bjurbole chondrules for calibration of this chronometer can be extended to samples in this size range. Samples from two chondrules from the Parnallee meteorite have been analyzed to date. An alpha-cristobalite-bearing chondrule (designated CB1) was found to have a formation age 4.62 +/- 0.44 Ma after Bjurboele, while a porphyritic olivine macrochondrule appears to have been reset after the decay of I-129(t1/2 17 Ma). Consideration of these results alongside Ar-Ar data from the macrochondrule and whole rock samples suggests that Parnallee has a complex history: The macrochondrule underwent an early postcrystallization degassing event but appears to have been essentially unaffected by the later (1.9 Ga) partial resetting of the bulk meteorite.

  12. A New Wide-Range Equation of State for Xenon

    Science.gov (United States)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Analytic and computational micromechanics of clustering and interphase effects in carbon nanotube composites.

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Gary D.; Hammerand, Daniel Carl; Lagoudas, Dimitris C. (Texas A& M University, College Station, TX)

    2006-01-01

    Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. Using the in-plane elastic properties of graphene, the effective properties of carbon nanotubes are calculated utilizing a composite cylinders micromechanics technique as a first step in a two-step process. These effective properties are then used in the self-consistent and Mori-Tanaka methods to obtain effective elastic properties of composites consisting of aligned single or multi-walled carbon nanotubes embedded in a polymer matrix. Effective composite properties from these averaging methods are compared to a direct composite cylinders approach extended from the work of Hashin and Rosen (1964) and Christensen and Lo (1979). Comparisons with finite element simulations are also performed. The effects of an interphase layer between the nanotubes and the polymer matrix as result of functionalization is also investigated using a multi-layer composite cylinders approach. Finally, the modeling of the clustering of nanotubes into bundles due to interatomic forces is accomplished herein using a tessellation method in conjunction with a multi-phase Mori-Tanaka technique. In addition to aligned nanotube composites, modeling of the effective elastic properties of randomly dispersed nanotubes into a matrix is performed using the Mori-Tanaka method, and comparisons with experimental data are made. Computational micromechanical analysis of high-stiffness hollow fiber nanocomposites is performed using the finite element method. The high-stiffness hollow fibers are modeled either directly as isotropic hollow tubes or equivalent transversely isotropic effective solid cylinders with properties computed using a micromechanics based composite cylinders method. Using a representative volume element for clustered high-stiffness hollow fibers embedded in a compliant matrix with the appropriate periodic boundary conditions, the effective elastic properties

  14. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    Science.gov (United States)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  15. A simple high-sensitivity technique for purity analysis of xenon gas

    CERN Document Server

    Leonard, D S; Hall, C; Kaufman, L; Langford, T; Slutsky, S; Yen, Y R

    2010-01-01

    We report on the development and performance of a high-sensitivity purity-analysis technique for gaseous xenon. The gas is sampled at macroscopic pressure from the system of interest using a UHV leak valve. The xenon present in the sample is removed with a liquid-nitrogen cold trap, and the remaining impurities are observed with a standard vacuum mass-spectroscopy device. Using calibrated samples of xenon gas spiked with known levels of impurities, we find that the minimum detectable levels of N2, O2, and methane are 1 ppb, 160 ppt, and 60 ppt respectively. This represents an improvement of about a factor of 10,000 compared to measurements performed without a coldtrap.

  16. Determination of Xenon in Air by a Pulse-discharge Helium Ionization Detector

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan-ying; CHANG Yin-zhong; LIU Shu-jiang; ZHANG Hai-tao; WANG Shi-lian; LI Qi

    2012-01-01

    A pulse-discharge helium ionization detector(Valco,PD-D3-I) was used to measure xenon concentration in air.The dependences of the detector relative response on various gas chromatograph parameters were investigated.Based on the well prepared gas connections for the detector system and optimized gas ehromatography(GC) working conditions,the atmospheric xenon concentration could be measured by the cheap GC method with a detection level of 0.7×10-9(parts by volume).Moreover,the xenon concentration in the ground level air around our laboratory was measured with the result of 0.085 × 10-6(parts by volume) and RSD of 0.91%.

  17. Dark matter results from 100 live days of XENON100 data.

    Science.gov (United States)

    Aprile, E; Arisaka, K; Arneodo, F; Askin, A; Baudis, L; Behrens, A; Bokeloh, K; Brown, E; Bruch, T; Bruno, G; Cardoso, J M R; Chen, W-T; Choi, B; Cline, D; Duchovni, E; Fattori, S; Ferella, A D; Gao, F; Giboni, K-L; Gross, E; Kish, A; Lam, C W; Lamblin, J; Lang, R F; Levy, C; Lim, K E; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Lung, K; Undagoitia, T Marrodán; Mei, Y; Fernandez, A J Melgarejo; Ni, K; Oberlack, U; Orrigo, S E A; Pantic, E; Persiani, R; Plante, G; Ribeiro, A C C; Santorelli, R; dos Santos, J M F; Sartorelli, G; Schumann, M; Selvi, M; Shagin, P; Simgen, H; Teymourian, A; Thers, D; Vitells, O; Wang, H; Weber, M; Weinheimer, C

    2011-09-23

    We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.

  18. Probe of Multi-electron Dynamics in Xenon by Caustics in High Order Harmonic Generation

    CERN Document Server

    Faccialà, Davide; Bruner, Barry D; Ciriolo, Anna G; De Silvestri, Sandro; Devetta, Michele; Negro, Matteo; Soifer, Hadas; Stagira, Salvatore; Dudovich, Nirit; Vozzi, Caterina

    2016-01-01

    We investigated the giant resonance in Xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a non-perturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring sub-cycles resulting in the appearance of spectral caustics at two distinct cut-off energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this paper we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in Xenon. The collective excitations of the giant dipole resonance in Xenon combined with the spectral manipulation associated with the two color driving field allow to see features that are normally not accessible and to obtain a quantitative good agreement between the experimental results and the theoretical predictions.

  19. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  20. Numerical simulation and experiment of optothermal response of biological tissue irradiated by continuous xenon lamp

    Institute of Scientific and Technical Information of China (English)

    Meizhen Huang; Yaxing Tong

    2012-01-01

    A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment.A continuous xenon lamp is employed as an example.First,the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths,different energies,and certain bandwidth.Next,according to the reported thermal and optical parameters of porcine skin and porcine liver,the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated.Then,the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution.Moreover,the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out.The results of the simulation and experiment are analyzed and compared,and are found to be commendably matched.

  1. Status of the 2D Bayesian analysis of XENON100 data

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Stefan [JGU, Staudingerweg 7, 55128 Mainz (Germany)

    2015-07-01

    The XENON100 experiment is located in the underground laboratory at LNGS in Italy. Since Dark Matter particles will only interact very rarely with normal matter, an environment with ultra low background, which is shielded from cosmic radiation is needed. The standard analysis of XENON100 data has made use of the profile likelihood method (a most frequent approach) and still provides one of the most sensitive exclusion limits to WIMP Dark Matter. Here we present work towards a Bayesian approach to the analysis of XENON100 data, where we attempt to include the measured primary (S1) and secondary (S2) scintillation signals in a more complete way. The background and signal models in the S1-S2 space have to be defined and a corresponding likelihood function, describing these models, has to be constructed.

  2. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  3. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2016-01-01

    Proper cell-cycle progression requires tight temporal control of the Anaphase Promoting Complex/Cyclosome (APC/C), a large ubiquitin ligase that is activated by one of two co-activators, Cdh1 or Cdc20. APC/C and Cdc20 are already present during interphase but APC/C-Cdc20 regulation during...

  4. The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs

    DEFF Research Database (Denmark)

    Kornum, Birgitte Rahbek; Thygesen, Kristin Sjølie; Nielsen, Thomas Rune

    2007-01-01

    In the neuroscience community interest for using the pig is growing. Several disease models have been developed creating a need for validation of behavioural paradigms in these animals. Here, we report the effect of different inter-phase delay intervals on the performance of Göttingen minipigs in...

  5. In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research

    Directory of Open Access Journals (Sweden)

    Shaw Peter

    2006-11-01

    Full Text Available Abstract Genetic engineering of commercially important crops has become routine in many laboratories. However, the inability to predict where a transgene will integrate and to efficiently select plants with stable levels of transgenic expression remains a limitation of this technology. Fluorescence in situ hybridization (FISH is a powerful technique that can be used to visualize transgene integration sites and provide a better understanding of transgene behavior. Studies using FISH to characterize transgene integration have focused primarily on metaphase chromosomes, because the number and position of integration sites on the chromosomes are more easily determined at this stage. However gene (and transgene expression occurs mainly during interphase. In order to accurately predict the activity of a transgene, it is critical to understand its location and dynamics in the three-dimensional interphase nucleus. We and others have developed in situ methods to visualize transgenes (including single copy genes and their transcripts during interphase from different tissues and plant species. These techniques reduce the time necessary for characterization of transgene integration by eliminating the need for time-consuming segregation analysis, and extend characterization to the interphase nucleus, thus increasing the likelihood of accurate prediction of transgene activity. Furthermore, this approach is useful for studying nuclear organization and the dynamics of genes and chromatin.

  6. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  7. Xenon behavior in TiN: A coupled XAS/TEM study

    Science.gov (United States)

    Bès, R.; Gaillard, C.; Millard-Pinard, N.; Gavarini, S.; Martin, P.; Cardinal, S.; Esnouf, C.; Malchère, A.; Perrat-Mabilon, A.

    2013-03-01

    Titanium nitride is a refractory material that is being considered as an inert matrix in future Generation IV nuclear reactors, in particular in relation to the Gas-cooled Fast Reactor. The main role of this matrix would be to act as a barrier against the release of fission products, in particular gaseous ones like xenon. This release phenomenon will be enhanced by high temperatures expected in the fuel vicinity: 1200 °C under normal conditions, and up to 1800 °C under accidental conditions. It is therefore necessary to investigate the behavior of volatile fission products in TiN under high temperature and irradiation. Indeed, these basic data are very useful to predict the volatile fission products released under these extreme conditions. Our previous work has shown that Xe introduced by ion implantation in sintered TiN tends to be released as a result of annealing, due to a transport mechanism towards the sample surface. The aim of the present work is to determine under which physical state Xe is in TiN. Xenon was first introduced using ion implantation at 800 keV in TiN samples obtained by hot pressing at several concentrations ranging from 0.4 to 8 at.%. Secondly, samples were annealed at high temperature, from 1000 °C to 1500 °C. Xe was then characterized by X-ray Absorption Spectroscopy and Transmission Electron Microscopy. The formation of intragranular xenon bubbles was demonstrated, and the xenon concentration which is sufficient to form bubbles is found to be lower than 0.4 at.% under our experimental conditions. These bubbles were found unpressurised at 15 K. Their size increases with the temperature and the local xenon concentration. For the highest xenon concentrations, a mechanism involving the formation of a Xe interconnected bubble network is proposed to explain Xe massive release observed by Rutherford Backscattering Spectrometry experiments.

  8. Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel.

    Science.gov (United States)

    Gordon, Lyle M; Joester, Derk

    2015-01-01

    Dental enamel has evolved to resist the most grueling conditions of mechanical stress, fatigue, and wear. Adding insult to injury, it is exposed to the frequently corrosive environment of the oral cavity. While its hierarchical structure is unrivaled in its mechanical resilience, heterogeneity in the distribution of magnesium ions and the presence of Mg-substituted amorphous calcium phosphate (Mg-ACP) as an intergranular phase have recently been shown to increase the susceptibility of mouse enamel to acid attack. Herein we investigate the distribution of two important constituents of enamel, residual organic matter and inorganic carbonate. We find that organics, carbonate, and possibly water show distinct distribution patterns in the mouse enamel crystallites, at simple grain boundaries, and in the amorphous interphase at multiple grain boundaries. This has implications for the resistance to acid corrosion, mechanical properties, and the mechanism by which enamel crystals grow during amelogenesis.

  9. [Chromosome territories in the interphase nucleus in normal or pathological condition].

    Science.gov (United States)

    Lavrov, A V; Vol'dgorn, Ia I; Bochkov, N P

    2011-01-01

    The non-random arrangement of chromosomes in the interphase nucleus was observed for the first time in the late XIX century. However, considerable progress in studying chromosome territories became possible only in the end of the XX century mainly due to advances in microscopy and molecular biology. At present, chromosome territories are believed to play an important role in epigenetic regulation of genome activity during various cell processes including but not limited to cell cycle, differentiation, stress response. 3D structure of genome also plays an important role in pathogenesis of various hereditary diseases and cancer. This article describes main provisions of the chromosome territory theory and current trends toward further development of human genetics based on the new knowledge about the role of chromosome territories.

  10. Effect of Microstructure of Cementite on Interphase Stress State in Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    CHE Lei; GOTOH Masahide; HORIMOTO Yoshiaki; HIROSE Yukio

    2007-01-01

    The experiments related to stress states of ferrite and cementite in carbon steels were carried out including in situ four-point bending and tensile test by X-ray diffraction technique. Stresses in the cementite phase can be measured by conventional X-ray diffraction instrument after a specific treatment on the specimen surface. In order to estimate the stress states in two phases, the X-ray elastic constants of two phases in single-phase state (PXEC) are determined by the experimental X-ray elastic constants of them in composite state (CXEC). The effects of volume fraction and particle size of spheroidal cementite on the interphase stress state are estimated. The experimental results are in good agreement with the theoretical relationships reported in the previous studies.

  11. The Centrosome Undergoes Plk1-Independent Interphase Maturation during Inflammation and Mediates Cytokine Release.

    Science.gov (United States)

    Vertii, Anastassiia; Ivshina, Maria; Zimmerman, Wendy; Hehnly, Heidi; Kant, Shashi; Doxsey, Stephen

    2016-05-23

    Cytokine production is a necessary event in the immune response during inflammation and is associated with mortality during sepsis, autoimmune disorders, cancer, and diabetes. Stress-activated MAP kinase signaling cascades that mediate cytokine synthesis are well established. However, the downstream fate of cytokines before they are secreted remains elusive. We report that pro-inflammatory stimuli lead to recruitment of pericentriolar material, specifically pericentrin and γ-tubulin, to the centrosome. This is accompanied by enhanced microtubule nucleation and enrichment of the recycling endosome component FIP3, all of which are hallmarks of centrosome maturation during mitosis. Intriguingly, centrosome maturation occurs during interphase in an MLK-dependent manner, independent of the classic mitotic kinase, Plk1. Centrosome disruption by chemical prevention of centriole assembly or genetic ablation of pericentrin attenuated interleukin-6, interleukin-10, and MCP1 secretion, suggesting that the centrosome is critical for cytokine production. Our results reveal a function of the centrosome in innate immunity.

  12. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  13. Self-shielding effect of a single phase liquid xenon detector for direct dark matter search

    CERN Document Server

    Minamino, A; Ashie, Y; Hosaka, J; Ishihara, K; Kobayashi, K; Koshio, Y; Mitsuda, C; Moriyama, S; Nakahata, M; Nakajima, Y; Namba, T; Ogawa, H; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takeuchi, Y; Taki, K; Ueshima, K; Ebizuka, Y; Ota, A; Suzuki, S; Hagiwara, H; Hashimoto, Y; Kamada, S; Kikuchi, M; Kobayashi, N; Nagase, T; Nakamura, S; Tomita, K; Uchida, Y; Fukuda, Y; Sato, T; Nishijima, K; Maruyama, T; Motoki, D; Itow, Y; Kim, Y D; Lee, J I; Moon, S H; Lim, K E; Cravens, J P; Smy, M B

    2009-01-01

    Liquid xenon is a suitable material for a dark matter search. For future large scale experiments, single phase detectors are attractive due to their simple configuration and scalability. However, in order to reduce backgrounds, they need to fully rely on liquid xenon's self-shielding property. A prototype detector was developed at Kamioka Observatory to establish vertex and energy reconstruction methods and to demonstrate the self-shielding power against gamma rays from outside of the detector. Sufficient self-shielding power for future experiments was obtained.

  14. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Science.gov (United States)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  15. Noninvasive xenon-133 measurements of cerebral blood flow using stationary detectors compared with dynamic emission tomography

    DEFF Research Database (Denmark)

    Schroeder, T; Vorstrup, S; Lassen, N A;

    1986-01-01

    Repeated bedside measurements of CBF have been made possible by the recent development of a mobile unit with 10 stationary detectors using the intravenous xenon-133 method. To evaluate this technique, comparative CBF studies at rest and following the application of a cerebral vasodilatory stimulus...... (acetazolamide, 1 g i.v.) were performed with the mobile equipment and with xenon-133 single-photon emission inhalation tomography in patients with cerebrovascular disease. The CBF level and the flow response to acetazolamide as determined with the two methods were well correlated, although at low flow levels...

  16. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  17. First-principles calculation of the reflectance of shock-compressed xenon

    Energy Technology Data Exchange (ETDEWEB)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V. [Russian Academy of Sciences, Institute of High Temperatures (Russian Federation)

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  18. Spin polarization of xenon films at low-temperature induced by {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Biskup, N.; Kalechofsky, N.; Candela, D

    2003-05-01

    We have measured the {sup 129}Xe spin-lattice relaxation time T{sub 1} for xenon films adsorbed on silica gel in an 8 T magnetic field at dilution refrigerator temperatures, both with and without {sup 3}He filling the sample cell. Without {sup 3}He, T{sub 1} increases rapidly as the temperature is lowered. With {sup 3}He, T{sub 1} is considerably shortened, and is consistent with temperature-independent quantum relaxation. Using this technique, it is possible to brute-force polarize large quantities of xenon in high B/T conditions.

  19. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  20. Effects of xenon irradiation of the stellate ganglion region on fibromyalgia

    OpenAIRE

    Nakajima, Fukami; Komoda, Akihiro; Aratani, Satoko; Fujita, Hidetoshi; Kawate, Mariko; Nakatani, Kou; Akiyama, Masako; Makita, Koshi; Nakajima, Toshihiro

    2015-01-01

    [Purpose] The aim of the study was to determine the effect of xenon irradiation of the stellate ganglion region on fibromyalgia. [Subjects] The study included 5 men and 22 women (age, 56.4 ± 16.3 years [range, 25–84 years]) who were diagnosed with fibromyalgia according to the modified 2010 criteria of the American College of Rheumatology between July and August 2013. [Methods] Bilateral xenon light irradiation (0.38–1.1 μm) around the stellate ganglion was performed in the supine position by...

  1. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding.

    Directory of Open Access Journals (Sweden)

    Koh-ichi Utani

    Full Text Available Micronucleation, mediated by interphase nuclear budding, has been repeatedly suggested, but the process is still enigmatic. In the present study, we confirmed the previous observation that there are lamin B1-negative micronuclei in addition to the positive ones. A large cytoplasmic bleb was found to frequently entrap lamin B1-negative micronuclei, which were connected to the nucleus by a thin chromatin stalk. At the bottom of the stalk, the nuclear lamin B1 structure appeared broken. Chromatin extrusion through lamina breaks has been referred to as herniation or a blister of the nucleus, and has been observed after the expression of viral proteins. A cell line in which extrachromosomal double minutes and lamin B1 protein were simultaneously visualized in different colors in live cells was established. By using these cells, time-lapse microscopy revealed that cytoplasmic membrane blebbing occurred simultaneously with the extrusion of nuclear content, which generated lamin B1-negative micronuclei during interphase. Furthermore, activation of cytoplasmic membrane blebbing by the addition of fresh serum or camptothecin induced nuclear budding within 1 to 10 minutes, which suggested that blebbing might be the cause of the budding. After the induction of blebbing, the frequency of lamin-negative micronuclei increased. The budding was most frequent during S phase and more efficiently entrapped small extrachromosomal chromatin than the large chromosome arm. Based on these results, we suggest a novel mechanism in which cytoplasmic membrane dynamics pulls the chromatin out of the nucleus through the lamina break. Evidence for such a mechanism was obtained in certain cancer cell lines including human COLO 320 and HeLa. The mechanism could significantly perturb the genome and influence cancer cell phenotypes.

  2. Local properties of a functionally graded interphase between cementum and dentin.

    Science.gov (United States)

    Ho, Sunita P; Balooch, Mehdi; Marshall, Sally J; Marshall, Grayson W

    2004-09-01

    The study of natural interfaces may provide information necessary to engineer functionally graded biomaterials for bioengineering applications. In this study, the mechanical, structural, and chemical composition variations associated with a region between cementum and dentin were studied with the use of nanoindentation, microindentation, optical microscopy, and Raman microspectroscopy techniques. Three-millimeter-thick transverse sections (N = 5) were obtained from the apical one-third of the roots of sterilized human molars. The samples were ultrasectioned at room temperature with the use of a diamond knife and an ultramicrotome. Longitudinal ground sections of 100 microm thickness were prepared and stained with von Kossa stain to determine the mineralized regions within the molar roots. Raman microspectroscopy was used to determine the relative inorganic content, mainly apatite (PO4(3-)nu1 mode at 960 cm(-1)) and organic content, mainly collagen (C--H stretch at 2940 cm(-1)) between cementum and dentin bulk tissues. The microindentation and nanoindentation results indicated a gradual transition in hardness from cementum to dentin over a width ranging from 100 to 200 microm. However, the variation in hardness data for cementum and dentin by nanoindentation was larger (0.62 +/- 0.21, 0.77 +/- 0.14 GPa) than from microindentation (0.49 +/- 0.03, 0.69 +/- 0.07 GPa). Within the 100 to 200 microm region there was a 10 to 50 microm fibrillar hydrophilic cementum-dentin junction (CDJ) with mechanical properties significantly lower than either the cementum or the dentin side of CDJ. Light microscopy revealed a 100 to 200 microm translucent region between cementum and dentin. Raman microspectroscopy results showed a variation in organic and inorganic composition 80 to 140 microm wide. It was concluded that a morphologically and biomechanically different CDJ lies within a wider cementum-dentin interphase. Hence, cementum, dentin, and the interphase can be classified as a

  3. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  4. Electron attachment of oxygen in a drift chamber filled with xenon + 10% methane

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Y.; Hayashibara, I.; Ohsugi, T.; Sakanoue, T.; Taketani, A.; Terunuma, N.; Suzuki, Y.; Tsukamoto, A.; Yamamoto, H.; Fukushima, Y.

    1988-06-01

    The existence of O/sub 2/ contamination attenuates the pulse height and degrades its resolution in a drift chamber filled with xenon-methane (90/10) gas. The first measurement of the electron attachment coefficient due to oxygen in such a mixture is reported.

  5. Electron attachment of oxygen in a drift chamber filled with xenon + 10% methane

    Science.gov (United States)

    Chiba, Y.; Hayashibara, I.; Ohsugi, T.; Sakanoue, T.; Taketani, A.; Terunuma, N.; Suzuki, Y.; Tsukamoto, A.; Yamamoto, H.; Fukushima, Y.; Kohriki, T.; Nakamura, S.; Sakuda, M.; Watase, Y.

    1988-06-01

    The existence of O 2 contamination attenuates the pulse height and degrades its resolution in a drift chamber filled with xenon-methane (90/10) gas. The first measurement of the electron attachment coefficient due to oxygen in such a mixture is reported.

  6. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    Science.gov (United States)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  7. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our

  8. Metal-organic framework with optimally selective xenon adsorption and separation

    Science.gov (United States)

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-06-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  9. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data

    NARCIS (Netherlands)

    Aprile, E.; et al., [Unknown; Alfonsi, M.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Tiseni, A.; Tunnell, C.

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our e

  10. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  11. XAMS - development of liquid xenon detector technology for dark matter searches

    NARCIS (Netherlands)

    Schön, R.

    2015-01-01

    One of the most promising detector technologies to directly detect weakly interacting massive particle (WIMP) dark matter are time projection chambers (TPCs) filled with dual-phase (liquid and gaseous) xenon. The hypothetical WIMP could scatter with atoms in the liquid and the transferred recoil ene

  12. A liquid xenon ionization chamber in an all-fluoropolymer vessel

    CERN Document Server

    LePort, F; Baussan, E; Breidenbach, M; Conley, R; DeVoe, R; Diez, M M; Fairbank, W; Farine, J; Fierlinger, P; Flatt, B; Gratta, G; Green, M; Hall, C; Hall, K; Hallman, D; Hargrove, C K; Hodgson, J; Jeng, S; Koffas, T; Leonard, D S; Mackay, D; Martin, Y; Neilson, R; O'Sullivan, K; Odian, A; Ounalli, L; Piepke, A; Pocar, A; Prescott, C Y; Rowson, P C; Schenker, D; Sinclair, D; Skarpaas, K V; Stekhanov, V; Strickland, V; Virtue, C; Vuilleumier, J L; Vuilleumier, J M; Waldman, S J; Wamba, K; Weber, P; Wodin, J; Woisard, D

    2006-01-01

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  13. Two-body depolarized cils spectra of krypton and xenon at 295 K

    Science.gov (United States)

    Zoppi, M.; Moraldi, M.; Barocchi, F.; Magli, R.; Bafile, U.

    1981-10-01

    We have experimentally determined the two-body depolarized CILS spectra of krypton and xenon at room temperature between 2 and 120 cm-1. Comparison of the first three even experimental moments of the spectra with theoretical calculations shows, as in argon, the necessity of introducing a short-range negative contribution to the induced pair polarizability.

  14. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  15. Safety and efficacy of xenon in routine use as an inhalational anaesthetic

    NARCIS (Netherlands)

    B.F. Lachmann (Burkhard); S. Armbruster (S.); W. Schairer (W.); A.M. Landstra (A. M.); A. Trouwborst (Adrianus); G.J. van Daal; A. Kusuma (Ari); W. Erdmann (Wilhelm)

    1990-01-01

    markdownabstractAbstract 40 patients (24 male, 16 female, aged 21-59 years) of American Society of Anesthesiologists class I or II who were undergoing routine surgery took part in a randomised, double-blind comparison of the anaesthetic efficacy and potency of xenon and nitrous oxide and their eff

  16. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C.; Cei, F.; Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L.; Gallucci, G.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Sergiampietri, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  17. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    Energy Technology Data Exchange (ETDEWEB)

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O' Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W., Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; /Stanford U., Phys. Dept. /Applied Plastics Technology, Bristol

    2007-02-26

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  18. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  19. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    DEFF Research Database (Denmark)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...

  20. The effect of xenon on isoflurane protection against experimental myocardial infarction.

    NARCIS (Netherlands)

    Baumert, J.H.; Hein, M.; Gerets, C.; Baltus, T.; Hecker, K.E.; Rossaint, R.

    2009-01-01

    OBJECTIVES: To investigate if the protective effects of xenon and isoflurane against myocardial ischemia-reperfusion damage would be additive. DESIGN: A prospective, randomized laboratory investigation. SETTING: An animal laboratory of a university hospital. PARTICIPANTS: Thirty-six pigs (female Ger

  1. XAMS - development of liquid xenon detector technology for dark matter searches

    NARCIS (Netherlands)

    Schön, R.

    2015-01-01

    One of the most promising detector technologies to directly detect weakly interacting massive particle (WIMP) dark matter are time projection chambers (TPCs) filled with dual-phase (liquid and gaseous) xenon. The hypothetical WIMP could scatter with atoms in the liquid and the transferred recoil

  2. Optical and electron spin resonance studies of xenon-nitrogen-helium condensates containing nitrogen and oxygen atoms.

    Science.gov (United States)

    Boltnev, Roman E; Bykhalo, Igor B; Krushinskaya, Irina N; Pelmenev, Alexander A; Khmelenko, Vladimir V; Mao, Shun; Meraki, Adil; Wilde, Scott C; McColgan, Patrick T; Lee, David M

    2015-03-19

    We present the first observations of excimer XeO* molecules in molecular nitrogen films surrounding xenon cores of nanoclusters. Multishell nanoclusters form upon the fast cooling of a helium jet containing small admixtures of nitrogen and xenon by cold helium vapor (T = 1.5 K). Such nanoclusters injected into superfluid helium aggregate into porous impurity-helium condensates. Passage of helium gas with admixtures through a radio frequency discharge allows the storage of high densities of radicals stabilized in impurity-helium condensates. Intense recombination of the radicals occurs during destruction of such condensates and generates excited species observable because of optical emission. Rich spectra of xenon-oxygen complexes have been detected upon destruction of xenon-nitrogen-helium condensates. A xenon environment quenches metastable N((2)D) atoms but has a much weaker effect on the luminescence of N((2)P) atoms. Electron spin resonance spectra of N((4)S) atoms trapped in xenon-nitrogen-helium condensates have been studied. High local concentrations of nitrogen atoms (up to 10(21) cm(-3)) stabilized in xenon-nitrogen nanoclusters have been revealed.

  3. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Nam Kug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai Rhan [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfi eld unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 {+-} 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung

  4. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    Science.gov (United States)

    Liu, Shuhai; Neiger, Manfred

    2003-07-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power.

  5. Phase behavior of mixed submonolayer films of krypton and xenon on graphite

    Science.gov (United States)

    Patrykiejew, A.; Sokołowski, S.

    2012-04-01

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√{3}× √{3})R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  6. Chemically fractionated fission-xenon in meteorites and on the earth

    Science.gov (United States)

    Shukolyukov, Yuri A.; Jessberger, Elmar K.; Meshik, Alexander P.; Vu Minh, Dang; Jordan, Jimmy L.

    1994-07-01

    This is a report on the nature of isotopically anomalous xenon, which has been detected in two Ca-Al-rich inclusions of the Allende carbonaceous chondrite. It is extremely enriched in 132Xe, 129Xe, and to a lesser extent in 131Xe. Similar large excesses of 132Xe as well as of 131Xe, 134Xe, and 129Xe have previously been found in material processed in a natural nuclear reactor (Oklo phenomenon). Excess of these isotopes had also been encountered in MORB-glasses, in an ancient Greenland anorthosite. Thus, this Xe-type, which had previously been termed "alien" ( JORDON et al., 1980a) does not seem to be unique. To determine the origin of "alien" Xe, we analysed Xe (a) in neutron irradiated pitchblende and in the irradiation capsule, (b) in non-irradiated extremely fine-grained pitchblende (so-called Colorado-type deposit), and (c) in sandstone taken from the epicentre of an atomic explosion. In addition, the isotopic composition of xenon released by stepwise degassing and after selective dissolving of rocks from the Oklo natural reactor was determined. The results of these dedicated experiments demonstrate that the formation of alien Xe is due to the migration of the radioactive precursors of the stable isotopes 134Xe, 132Xe, 131Xe, and 129Xe. Due to this reason we now call it CFF-Xe - Chemically Fractionated Fission Xenon. Prerequisites for its formation are the simultaneous prevalence of two conditions: (1) fission (of 238U, 235U, and/ or 244Pu) and (2) a physicochemical environment (temperature, pressure, fluidity) at which the precursors of xenon (mainly Te and I) are mobile. Taking into account the occurrence of xenon in meteorites and terrestrial rocks, not all excesses of 129Xe in mantle rocks and natural gases are necessarily connected with the decay of primordial 129I.

  7. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    Science.gov (United States)

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology

  8. Durability of polymer matrix composites for infrastructure: The role of the interphase

    Science.gov (United States)

    Verghese, Kandathil Nikhil Eapen

    1999-12-01

    As fiber reinforced polymer matrix composites find greater use in markets such as civil infrastructure and ground transportation, the expectations placed on these materials are ever increasing. The overall cost and reliability have become the drivers of these high performance materials and have led to the disappearance of resins such as bismaleimides (BMI). cyanate esters and other high performance polyimides and epoxys. In their place polymers, such polyester and vinylester have arisen. The reinforcing fiber scenario has also undergone changes from the high quality and performance assured IM7 and AS4 to cheaper and hybrid systems consisting of both glass and low cost carbon. Manufacturing processes have had their share of changes too with processes such as pultrusion and other mass production techniques replacing hand lay-up and resin transfer molding. All of this has however come with little or no concession on material performance. The motivation of the present research has therefore been to try to improve the properties of these low cost composites by better understanding the constituent materials (fiber and matrix) and the region that lies in-between them namely the interphase. In order to achieve this. working with controls is necessary and the present discourse therefore deals with the AS4 fiber system from Hexcel Corporation and the vinyl ester resin, Derakane 441-400 from The Dow Chemical Company. The following eight chapters sum up the work done thus far on composites made with sized fibers and the above mentioned resin and fiber systems. They are in the form of publications that have either been accepted. submitted or going to be submitted to various peer reviewed journals. The sizings used have been poly(vinylpyrrolidone) PVP and Polyhydroxyether (Phenoxy) thermoplastic polymers and G' an industrial sizing material supplied by Hexcel. A number of issues have been addressed ranging from viscoelastic relaxation to enviro-mechanical durability. Chapter 1

  9. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    Science.gov (United States)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations

  10. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    Science.gov (United States)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-10-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  11. Development of a zinc oxide nanowire interphase for enhanced structural composites

    Science.gov (United States)

    Ehlert, Gregory John

    Continuous fiber reinforced polymers (CFRPs) form the backbone of the high strength, low density material systems that will be central to the next generation of transportation vehicles. CFRPs, with a compliant matrix between relatively stiff fibers, localize stress at the interface between the two different phases to cause the interface to dominate many bulk material properties. As such, the two phase composite design problem generally has three selections; fiber, matrix and the interface between the two. This work has developed a unique ZnO nanowire interphase to improve the properties of the interface. Whiskerization, the deposition of an array of whiskers on the surface of a fiber, enables enhancement of the interfacial properties by causing fibers to interlock thus allowing the formation of a graded interface to reduce the stress concentration between the two phases. Whiskerization techniques have existed for some time; however ZnO nanowires offer a radical departure from existing technologies because ZnO nanowires can be deposited at low temperatures (90 °C) aqueous solutions. The high performance afforded by ZnO nanowires is documented for the first time in this work. This work will demonstrate the ability of a ZnO nanowire interphase to reinforce the interface of both aramid and carbon fiber composites. The interfacial shear strength of single fiber aramid composites is enhanced by 41% and single carbon fiber composite are improved by 110% with this process. Lamina scale testing on unidirectional carbon fiber composites demonstrates a 37% increase in shear strength and a 38% increase in shear modulus for the affected fibers. Given that ZnO nanowires are grown directly onto the underlying fiber, the interface between the nanowires and fiber will have low surface area and minimal interlocking, which implies that the chemical adhesion of the nanowires is strong. This work develops new functionalization procedures that directly control the interface chemistry

  12. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    OpenAIRE

    K. S. Adegbie; F. I. Alao

    2012-01-01

    A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i) ignition of reacting gas, (ii) accumulation of heat by the solid particles during combustion process (iii) evapor...

  13. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  14. International Conference Intergranular and Interphase Boundaries (9th) (IIB󈨦) Held in Prague, Czech Republic, 6 - 9 July 1998

    Science.gov (United States)

    2007-11-02

    thermomechanical processing steps on the segregation behaviour . P217 SEGREGATION AT INTERPHASE BOUNDARIES IN OXIDE - DISPERSION STRENGTHENED FERRITIC...metallurgy Fe-Cr ferritic steel strengthened by disperse TiO 2 particles is studied by Auger electron spectroscopy as a function of annealing time...technique. All specimens were doped with various Bi bulk concentrations and annealed at various temperatures. We studied the segregation by energy dispersive

  15. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage

    OpenAIRE

    Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; Qiao, Ruimin; Wang, Guofeng; Yang, Wanli; Feygenson, Mikhail; Su, Dong; Teng, Xiaowei

    2016-01-01

    Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable po...

  16. A time-series method for automated measurement of changes in mitotic and interphase duration from time-lapse movies.

    Directory of Open Access Journals (Sweden)

    Frederic D Sigoillot

    Full Text Available BACKGROUND: Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. METHODOLOGY/PRINCIPAL FINDINGS: Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. CONCLUSIONS/SIGNIFICANCE: This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.

  17. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Baumann, H.; Cremer, C.; Schneider, T.; Hens, L.; Kirsch-Volders, M.

    1982-01-01

    Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (lambda=257 nm) in the nucleus either at its central part or at its periphery. After 7-9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after microirradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combination of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed.

  18. Sexing the human fetus and identification of polyploid nuclei by DNA-DNA in situ hybridisation in interphase nuclei.

    Science.gov (United States)

    West, J D; Gosden, C M; Gosden, J R; West, K M; Davidson, Z; Davidson, C; Nicolaides, K H

    1989-01-01

    Samples of human adult lymphocytes, fetal lymphocytes, amniotic fluid cells, and chorionic villus cells were sexed independently by cytogenetics and DNA-DNA in situ hybridisation to a tritiated Y probe. For the in situ hybridisation analysis, the presence of Y bodies (hybridisation bodies) in 100 interphase nuclei were scored after autoradiography. In all, 82/83 samples were sexed in this way (one technical failure) and 78/82 were sexed by both in situ hybridisation and cytogenetics. There was complete agreement between the two methods. There was a considerable variation (40-100%) in the percentage of interphase nuclei with a hybridisation body among the male samples, but very few nuclei from female samples showed significant hybridisation. In situ hybridisation could be used to sex the conceptus when males but not females are at risk for various X-linked genetic disorders and may also be useful for detecting 45,X/46,XY mosaicism or polyploid/diploid mosaicism. This would be particularly useful for direct preparations of chorionic villus samples, which often prove difficult to analyse cytogenetically but offer the best means of avoiding maternal contamination. Some interphase nuclei had more than one hybridisation body, and this was most commonly found among amniotic fluid cells. Comparison of sizes of nuclei with one or two hybridisation bodies strongly suggested that most of the amniotic fluid cell nuclei with two hybridisation bodies were tetraploid.

  19. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yang, Dong Hyun; Seo, Joon Beom; Chae, Eun Jin; Lee, Jeongjin [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-gu, Seoul (Korea); Hong, Soo-Jong; Yu, Jinho; Kim, Byoung-Ju [University of Ulsan College of Medicine, Department of Pediatrics, Asan Medical Center, Seoul (Korea); Krauss, Bernhard [Siemens Medical Solutions AG-Computed Tomography, Forchheim (Germany)

    2010-09-15

    Xenon ventilation CT using dual-source and dual-energy technique is a recently introduced, promising functional lung imaging method. To expand its clinical applications evidence of additional diagnostic value of xenon ventilation CT over conventional chest CT is required. To evaluate the usefulness of xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans (BO). Seventeen children (age 7-18 years; 11 boys) with BO underwent xenon ventilation CT using dual-source and dual-energy technique. Xenon and CT density values were measured in normal and hyperlucent lung regions on CT and were compared between the two regions. Volumes of hyperlucent regions and ventilation defects were calculated with thresholds determined by visual and histogram-based analysis. Indexed volumes of hyperlucent lung regions and ventilation defects were correlated with pulmonary function test results. Effective doses of xenon CT were calculated. Xenon (14.6 {+-} 6.4 HU vs 26.1 {+-} 6.5 HU; P < 0.001) and CT density (-892.8 {+-} 25.4 HU vs -812.3 {+-} 38.7 HU; P < 0.001) values were significantly lower in hyperlucent regions than in normal lung regions. Xenon and CT density values showed significant positive correlation for the entire lung in 16 children ({gamma} = 0.55 {+-} 0.17, P < 0.001 or =0.017) and for hyperlucent regions in 13 children ({gamma} = 0.44 {+-} 0.16, P < 0.001 or =0.001-0.019). Indexed volumes and volume percentages of hyperlucent lung regions and ventilation defects showed strong negative correlations with forced expiratory volume [FEV1, ({gamma} = -0.64-0.85, P {<=} 0.006)], FEV1/forced vital capacity [FVC, ({gamma} = -0.63-0.84, P {<=} 0.008)], and forced midexpiratory flow rate [FEF{sub 25-75}, ({gamma} = -0.68-0.88, P {<=} 0.002). Volume percentages of xenon ventilation defects (35.0 {+-} 16.4%)] were not significantly different from those of hyperlucent lung regions (38.2 {+-} 18.6%). However, mismatches between the

  20. Synchronization of interphase events depends neither on mitosis nor on cdk1.

    Science.gov (United States)

    Laronne, Ayelet; Rotkopf, Shay; Hellman, Asaf; Gruenbaum, Yosef; Porter, Andrew C G; Brandeis, Michael

    2003-09-01

    Human HT2-19 cells with a conditional cdk1 mutation stop dividing upon cdk1 inactivation and undergo multiple rounds of endoreplication. We show herein that major cell cycle events remain synchronized in these endoreplicating cells. DNA replication alternates with gap phases and cell cycle-specific cyclin E expression is maintained. Centrosomes duplicate in synchrony with chromosome replication, giving rise to polyploid cells with multiple centrosomes. Centrosome migration, a typical prophase event, also takes place in endoreplicating cells. The timing of these events is unaffected by cdk1 inactivation compared with normally dividing cells. Nuclear lamina breakdown, in contrast, previously shown to be dependent on cdk1, does not take place in endoreplicating HT2-19 cells. Moreover, breakdown of all other major components of the nuclear lamina, like the inner nuclear membrane proteins and nuclear pore complexes, seems also to depend on cdk1. Interestingly, the APC/C ubiquitin ligase is activated in these endoreplicating cells by fzr but not by fzy. The oscillations of interphase events are thus independent of cdk1 and of mitosis but may depend on APC/Cfzr activity.

  1. Polymeric artificial solid/electrolyte interphases for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Nae-Lih Wu

    2015-12-01

    Full Text Available During the operation of Li-ion batteries (LIBs, solvent and electrolyte decomposition takes place at the electrode surface to form a so-called solid-electrode interphase (SEI passivating-layer. The physical structure and chemical composition of the SEI exert profound effects on various aspects of the electrode performance of the batteries. A new concept of forming polymeric artificial SEIs (A-SEIs based on rational design of multifunctional polymer-blend coating to achieve favorable electrode/A-SEI/electrolyte interfacial properties is described. Three examples using binary and ternary polymer blends to form mechanically robust and highly Li-ion permeable surface coatings with selected functionalities in the cases of graphite and silicon–graphite composite electrodes have demonstrated greatly enhanced capacity, rate and cycle performance. Given the rich chemistry available from polymer blends, this surface preconditioning approach holds great promise for improving the performance of various negative electrodes to meet the requirements for advanced LIBs.

  2. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase

    Directory of Open Access Journals (Sweden)

    B. E. B. Uribe

    2017-01-01

    Full Text Available In this paper, a cost-effective and eco-friendly method to improve mechanical performance in continuous carbon fiber-reinforced polymer (CFRP matrix composites is presented. Unsized fiber fabric preforms are coated with self-assembling sugarcane bagasse microfibrillated cellulose, and undergo vacuum-assisted liquid epoxy resin infusion to produce solid laminates after curing at ambient temperature. Quasi-static tensile, flexural and short beam testing at room temperature indicated that the stiffness, ultimate strength and toughness at ultimate load of the brand-new two-level hierarchical composite are substantially higher than in baseline, unsized fiber-reinforced epoxy laminate. Atomic force microscopy for height and phase imaging, along with scanning electron microscopy for the fracture surface survey, revealed a 400 nm-thick fiber/matrix interphase wherein microfibrillated cellulose exerts strengthening and toughening roles in the hybrid laminate. Market expansion of this class of continuous fiber-reinforced-polymer matrix composites exhibiting remarkable mechanical performance/cost ratios is thus conceivable.

  3. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    Science.gov (United States)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  4. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie; Lu, Wei

    2015-06-01

    The deposition of manganese ions dissolved from the cathode onto the interface between the solid electrolyte interphase (SEI) and graphite causes severe capacity fading in manganese oxide-based cells. The evolution of the SEI layer containing these Mn compounds and the corresponding instability of the layer are thoroughly investigated by artificially introducing soluble Mn ions into a 1 mol L-1 LiPF6 electrolyte solution. Deposition of dissolved Mn ions induces an oxygen-rich SEI layer that results from increased electrolyte decomposition, accelerating SEI growth. The spatial distribution of Mn shows that dissolved Mn ions diffuse through the porous layer and are deposited mostly at the inorganic layer/graphite interface. The Mn compound deposited on the anode, identified as MnF2, originates from a metathesis reaction between LiF and dissolved Mn ion. It is confirmed that ion-exchange reaction occurs in the inorganic layer, converting SEI species to Mn compounds. Some of the Mn is observed inside the graphite; this may cause surface structural disordering in the graphite, limiting lithium-ion intercalation. The continuous reaction that occurs at the inorganic layer/graphite interfacial regions and the modification of the original SEI layer in the presence of Mn ions are critically related to capacity fade and impedance rise currently plaguing Li-ion cells.

  5. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    Science.gov (United States)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  6. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamideh Karimi

    2007-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  7. The rapid interphase chromosome assay (RICA implementation: comparison with other PCC methods

    Directory of Open Access Journals (Sweden)

    Sommer Sylwester

    2015-12-01

    Full Text Available A report is presented on the advantages of the rapid interphase chromosome assay (RICA and the difficulties that may be met while implementing this method for application in biological dosimetry. The RICA test can be applied on unstimulated human lymphocytes; this is an advantage in comparison with the dicentric chromosomes or micronucleus tests. In the former two tests, stimulated lymphocytes are examined and hence, 48 h more are needed to obtain cells traversing the cell cycle. Due to the use of unstimulated nondividing cells, higher numbers of cells are available for RICA analysis than for dicentric chromosomes or micronuclei tests. Moreover, the method can be applied after exposure to ionizing radiation doses in excess of 5 Gy. Such doses cause a significant cell cycle delay or result in the loss of G2 phase and mitotic cells because of apoptosis. Therefore, the traditional biodosimetry based on the evaluation of the incidence of damage to chromosomes is very difficult to carry out. This is due to the lack of an adequate number of mitotic cells for analysis. RICA is free of this disadvantage. An automatic microscope can be used to retrieve cell images; automatic image analysis can also be used.

  8. [Prostate cancers and potential precancerous conditions: DNA cytometric investigations and interphase cytogenetics].

    Science.gov (United States)

    Baretton, G; Vogt, T; Valina, C; Schneiderbanger, K; Löhrs, U

    1993-01-01

    The topic of this investigation was to compare precancerous lesions of the prostate (prostatic intraepithelial neoplasia -PIN- and atypical hyperplasia -AH-) and invasive carcinomas concerning DNA ploidy (image cytometry/ICM) and morphologically feasible chromosomal aberrations (interphase cytogenetics/NISH). The aim was to find clues to formal pathogenesis of prostatic cancer. Prostatic tissue of 76 patients (76 areas with carcinoma, 71 with PIN, and 12 with AH) was examined by means of ICM. In 44 cases of coincidental PIN and carcinoma, the gradings of PIN and carcinoma correlated. C-values, 2,5c-exceeding-rate, and aneuploidy rate turned out to increase in PIN and carcinoma with increasing grading (P < 0.01). In some of these cases NISH was carried out in serial sections by applying centromer-(X,Y,1,7,8,10,17,18) and telomer-(1p) specific DNA probes. The result of this approach was an increase in the number of chromosomal aberrations and chromosomes involved correlating with the grading. Our conclusion is that PIN 1 could be regarded as the precancerous lesion mainly to higher differentiated carcinomas, whereas PIN 2 and 3 should be considered a preneoplastic condition mainly of moderately and low differentiated carcinomas.

  9. Evidence of Chromosomal Instability in Prostate Cancer Determined by Spectral Karyotyping (SKY and Interphase FISH Analysis

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2001-01-01

    Full Text Available The way in which cytogenetic aberrations develop in prostate cancer (Cap is poorly understood. Spectral karyotype (SKY analysis of Cap cell lines has shown that they have unstable karyotypes and also have features associated with chromosomal instability (CIN. To accurately determine the incidence of de novo structural and numerical aberrations in vitro in Cap, we performed SKY analysis of three independent clones derived from one representative cell line, DU145. The frequent generation of new chromosomal rearrangements and a wide variation in the number of structural aberrations within two to five passages suggested that this cell line exhibited some of the features associated with a CIN phenotype. To study numerical cell-to-cell variation, chromosome 8 aneusomy was assessed in the LNCaP, DU145, and PC-3 cell lines and a patient cohort of 15 Cap primary tumors by interphase fluorescence in situ hybridization (FISH. This analysis showed that a high frequency of numerical alteration affecting chromosome 8 was present in both in vitro and in Cap tissues. In comparison to normal controls, the patient cohort had a statistically significant (P<.05, greater frequency of cells with one and three centromere 8 copies. These data suggest that a CIN-like process may be contributing towards the generation of de novo numerical and structural chromosome abnormalities in Cap.

  10. Towards a full karyotype screening of interphase cells: 'FISH and chip' technology

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulli G.; Munne, Santiago; Lersch, Robert A.; Hsieh, H.-Ben; Smida, Jan; Chen, Xiao-Ning; Korenberg, Julie R.; Pedersen, Roger A.; Fung, Jingley

    2003-06-23

    Numerical chromosome aberrations are incompatible with normal human development. Our laboratories develop hybridization based screening tools that generate a maximum of cytogenetic information for each polar body or blastomere analyzed. The methods are developed considering that the abnormality might require preparation of case-specific probes and that only one or two cells will be available for diagnosis, most of which might be in the interphase stage. Further more, assay efficiencies have to be high, since there is typically not enough time to repeat an experiment or reconfirm a result prior to fertilization or embryo transfer. Structural alterations are delineated with break point-spanning probes. When screening for numerical abnormalities, we apply a Spectral Imaging-based approach to simultaneously score as many as ten different chromosome types in individual inter phase cells. Finally, DNA micro-arrays are under development to score all of the human chromosomes in a single experiment and to increase the resolution with which micro-deletions can be delineated.

  11. Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes

    Science.gov (United States)

    Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Smith, M. E.; Howes, A.; Hollenkamp, A. F.; Bastow, T.; Hale, P.; Forsyth, M.

    An understanding of the solid electrolyte interphase (SEI) that forms on the lithium-metal surface is essential to the further development of rechargeable lithium-metal batteries. Currently, the formation of dendrites during cycling, which can lead to catastrophic failure of the cell, has mostly halted research on these power sources. The discovery of ionic liquids as electrolytes has rekindled the possibility of safe, rechargeable, lithium-metal batteries. The current limitation of ionic liquid electrolytes, however, is that when compared with conventional non-aqueous electrolytes the device rate capability is limited. Recently, we have shown that the addition of a zwitterion such as N-methyl- N-(butyl sulfonate) pyrrolidinium resulted in enhancement of the achievable current densities by 100%. It was also found that the resistance of the SEI layer in the presence of a zwitterion is 50% lower. In this study, a detailed chemical and electrochemical analysis of the SEI that forms in both the presence and absence of a zwitterion has been conducted. Clear differences in the chemical nature and also the thickness of the SEI are observed and these may account for the enhancement of operating current densities.

  12. [Optimized protocols for interphase FISH analysis of imprints and sections using split signal probes].

    Science.gov (United States)

    Pelluard-Nehme, F; Dupont, T; Turmo, M; Merlio, J-P; Belaud-Rotureau, M-A

    2007-03-01

    Fluorescent in situ hybridization (FISH) analysis is a molecular technique allowing the detection of recurrent translocations in cancer. Several hybridization protocols were assayed in order to evaluate their performances for interphase FISH analysis of histological sections and imprints using split probes. Adult and foetal lymphoid tissues were selected. Touch imprints of fresh (EF) or frozen (EC) tissues, sections (CF) and isolated nuclei (NI) of formol-fixed paraffin-embedded tissues were performed. The cut-off values of the IGH, IGlambda, BCL-2, BCL-6, CCND1 and MYC DNA FISH split signal probes were calculated for adult reactive lymph nodes on the different histological preparations (EC, CF, CC, NI) and on several tissues for the IGH and BCL-6 probes. In reactive lymph nodes, the cut-off values of the probes were between 3 and 13% and found independent of the preparation type. Conversely, slight but significant variations of the cut-off level were observed when different foetal control tissues were assayed with the same probe set. Finally, this study provided optimized-protocols for FISH analysis of either fresh/frozen imprints or formalin-fixed paraffin-embedded sections using split signal DNA probes.

  13. In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Balbuena, Perla B.; Mueller, Karl T.; Murugesan, Vijayakumar

    2017-05-16

    Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modeling and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.

  14. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  15. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  16. Effect of water on solid electrolyte interphase formation in Li-ion batteries

    Science.gov (United States)

    Saito, M.; Fujita, M.; Aoki, Y.; Yoshikawa, M.; Yasuda, K.; Ishigami, R.; Nakata, Y.

    2016-03-01

    Time-of-flight-elastic recoil detection analysis (TOF-ERDA) with 20 MeV Cu ions has been applied to measure the depth profiles of solid electrolyte interphase (SEI) layers on the negative electrode of lithium ion batteries (LIB). In order to obtain quantitative depth profiles, the detector efficiency was first assessed, and the test highlighted a strong mass and energy dependence of the recoiled particles, especially H and He. Subsequently, we prepared LIB cells with different water contents in the electrolyte, and subjected them to different charge-discharge cycle tests. TOF-ERDA, X-ray photoelectron spectrometry (XPS), gas chromatography (GC), ion chromatography (IC), and 1H nuclear magnetic resonance (1H NMR) were applied to characterize the SEI region of the negative electrode. The results showed that the SEI layer is formed after 300 cycle tests, and a 500 ppm water concentration in the electrolyte does not appear to cause significant differences in the elemental and organic content of the SEI.

  17. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  18. Artificial Solid Electrolyte Interphase to Address the Electrochemical Degradation of Silicon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J [ORNL; Nanda, Jagjit [ORNL; Liang, Chengdu [ORNL; Li, Juchuan [ORNL

    2014-01-01

    Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40 nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.

  19. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamid Gourabi

    2008-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  20. Quantifying lithium in the solid electrolyte interphase layer and beyond using Lithium- Nuclear Reaction Analysis technique

    Science.gov (United States)

    Schulz, Adam; Bakhru, Hassaram; DeRosa, Don; Higashiya, Seiichiro; Rane-Fondacaro, Manisha; Haldar, Pradeep

    2017-08-01

    Accurate knowledge of lithium content within the solid electrolyte interphase (SEI) layer and anode would significantly enhance the current understanding of the lithium ion battery (LIB) degradation mechanisms, enabling knowledge-based improvements in the technology. For the first time, we have demonstrated the capabilities of highly selective Lithium Nuclear Reaction Analysis (Li-NRA) as a non-destructive depth profiling technique for quantifying Li within the SEI and anode without accurate knowledge of the composition, which is unavailable with other depth profiling techniques. The Li-NRA technique detects the gamma radiation resulting from a nuclear reaction at characteristic resonance energy between an incident high-energy proton and Li. The intensity of γ-ray is directly proportional to the Li content, and the energy of the incident proton is increased stepwise to depth profile the sample. We performed Li-NRA on the carbonaceous negative electrodes of commercial LIB coin cells at varying states of charge (SOC) and states of health (SOH) conditions. We used three simple models for the composition of SEI and anode material to show concurrence between theoretical and experimental value for Li content at varying SOC conditions, estimated the average SEI layer thickness, and correlated the residual Li content within the SOH samples with electrochemical data.

  1. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  2. Design and First Results of the CoDeX Liquid-Xenon Compton-Imaging Detector

    Science.gov (United States)

    Tennyson, Brian; Cahn, Sidney; Bernard, Ethan; Boulton, Elizabeth; Destefano, Nicholas; Edwards, Blair; Hackenburg, Ariana; Horn, Markus; Larsen, Nicole; Nikkel, James; Wahl, Christopher; Gai, Moshe; McKinsey, Daniel

    2016-03-01

    CoDeX (Compton-imaging Detector in Xenon) is an R&D Compton gamma-ray imaging detector that uses 30 kg of xenon in a two-phase time projection chamber. Time projection relative to the initial scintillation signal provides the vertical interaction positions, and either PMT-sensed gas electroluminescence or a charge-sensitive amplifier quantifies the drifted ionization signal. Detector features to enable Compton imaging are a pair of instrumented wire grids added to sense the horizontal position of clouds of drifted electrons that traverse the detector. Each wire is individually amplified in the cold xenon environment. Design choices addressing the thermodynamic and xenon purity constraints of this system will be discussed. We will also discuss the mechanical designs, engineering challenges, and performance of this Compton-imaging detector.

  3. Halothane, isoflurane, xenon, and nitrous oxide inhibit calcium ATPase pump activity in rat brain synaptic plasma membranes

    National Research Council Canada - National Science Library

    Franks, J J; Horn, J L; Janicki, P K; Singh, G

    1995-01-01

    .... For studies of anesthetic effects on PMCA activity, Ca2+ uptake or Pi release was measured in SPM exposed to halothane, isoflurane, xenon, and nitrous oxide at partial pressures ranging from 0 to 1.6 MAC equivalents...

  4. The Development of the improved equipment for the measurement radionuclides of xenon in atmospheric air

    Science.gov (United States)

    Pakhomov, S. A.; Dubasov, Y. V.

    2009-04-01

    The Radium Khlopin Institute have developed the mobile (vehicle based) equipment attended for the providing of the monitoring of radioactive xenon isotopes in atmospheric air on territories, neighboring with NPP. This equipment comprises the improved sampling installation with sample-processing unit and specialized spectrometer of β-γ-coincidences. The principal specificity of sampling installation is the using of the gas-cooling machine attended for the reaching of the cryogenic temperatures, which works without helium, using for cooling the processed air itself. The capacity of sampling reaches 20 cubic meters per hour with the xenon extraction factor of 75%. The duration of the sampling cycle forms 3 - 7 hours depending of the xenon volume requirements. The sample-processing unit is designed on preparative gas chromatograph scheme. Duration of sample-processing procedure does not exceed one and half hour. The volume of the prepared sample is around half liter, it contains 3 - 7 cubic centimeters of the xenon, depending of sampling cycle time. For measurements of xenon radioisotopes containing in obtained sample, was developed a β-γ-coincidences spectrometer on the base of the "ORTEC" HP Ge detector equipped with scintillation β-detector designed as Marinelli chamber of 700 cm3 volume. This spectrometer allows to reduce the ambient background more than in 20 times, with γ-channel efficiency reduction not more than in 1.5 times. The minimum detectable activity of 133Хе (MDA), evaluated by Currie formula for probability 95 % is 0.05 Bq at the exposition of 20 hours. Spectrometer is also intended for determination of the stable krypton and xenon concentrations in β-chamber by X-ray-fluorescent method. Therefore, in a shield of the spectrometer collimating pinhole is made and 241Am source is installed. To improve the sensitivity of the analysis beryllium window is made in β-chamber wall, adjoining to the HPGe detector. X-ray-fluorescent analysis allows to

  5. Study on LXe system for particle detector (2). Boiling heat transfer characteristics of LXe; Ryushi kenshutsu yo ekitai Xenon shisutemu no kenkyu (2). Ekitai Xenon no futto netsudentatsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, T. [High Energy Accelerator Research Organization, Tsukuba (Japan)

    2000-05-29

    In the experiments using a large quantity of liquid xenon as caloric meter, in order to catch the scintillation light generated by collision of the injected high-energy particles with the liquid Xenon, a plurality of photomultiplier cells is arranged in the liquid. At this time, density variation of the liquid is caused as the chip resistance for signal processing generates heat in the liquid Xenon, and makes influence on the scintillation light. Therefore, the basic data concerning heat transfer characteristics such as convection and boiling of the liquid Xenon are necessary. In this study, the heat transfer characteristics of the liquid Xenon is investigated using a Xenon liquefier including a pulse tube-refrigerating machine. Platinum fine wire horizontally placed and a copper round plate are used as a heating element. The system for the experiment is an installation of installing the small pulse tube refrigerating machine for 80K to a glass Dewar. Experimental values of natural convection region and the nucleate boiling region agree comparatively well with the calculation results according to empirical formula. (NEDO)

  6. Mecanobiología de la interfase hueso-implante dental Mechanobiology of bone-dental implant interphase

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vanegas Acosta

    2010-03-01

    Full Text Available La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales.The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing

  7. Improvement of xenon purification system using a combination of a pulse tube refrigerator and a coaxial heat exchanger

    CERN Document Server

    Chen, Wan-Ting; Cussonneau, J -P; Donnard, J; Duval, S; Lemaire, O; Calloch, M Le; Ray, P Le; Mohamad-Hadi, A -F; Morteau, E; Oger, T; Scotto-Lavina, L; Stutzmann, J -S; Thers, D; Briend, P; Haruyama, T; Mihara, S; Tauchi, T

    2012-01-01

    We have developed a compact cryogenic system with a pulse tube refrigerator and a coaxial heat exchanger. This liquefaction-purification system not only saves the cooling power used to reach high gaseous recirculation rate, but also reduces the impurity level with high speed. The heat exchanger operates with an efficiency of 99%, which indicates the possibility for fast xenon gas recirculation in a highpressurized large-scale xenon storage with much less thermal losses.

  8. Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon

    Science.gov (United States)

    Grace, Emily; Butcher, Alistair; Monroe, Jocelyn; Nikkel, James A.

    2017-09-01

    Large liquid argon detectors have become widely used in low rate experiments, including dark matter and neutrino research. However, the optical properties of liquid argon are not well understood at the large scales relevant for current and near-future detectors. The index of refraction of liquid argon at the scintillation wavelength has not been measured, and current Rayleigh scattering length calculations disagree with measurements. Furthermore, the Rayleigh scattering length and index of refraction of solid argon and solid xenon at their scintillation wavelengths have not been previously measured or calculated. We introduce a new calculation using existing data in liquid and solid argon and xenon to extrapolate the optical properties at the scintillation wavelengths using the Sellmeier dispersion relationship.

  9. A neuro-fuzzy controller for xenon spatial oscillations in load-following operation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Man Gyun [Chosun University, Kwangju (Korea, Republic of); Upadhyaya, Belle R. [The University of Tennessee, Knoxville (United States)

    1997-12-31

    A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent method. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control method exhibits very responses to a step or a ramp change of target axial offest without any residual flux oscillations. 9 refs., 5 figs. (Author)

  10. Mirror dark matter will be confirmed or excluded by XENON1T

    CERN Document Server

    Clarke, J D

    2016-01-01

    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative - losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that these lower limits are expected to be surpassed by both nuclear recoil and electron recoil searches in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that t...

  11. Mirror dark matter will be confirmed or excluded by XENON1T

    Science.gov (United States)

    Clarke, J. D.; Foot, R.

    2017-03-01

    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative - losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  12. 2D simulations of short-pulsed dielectric barrier discharge xenon excimer lamp

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, E.A.; Kudryavtsev, A.A. [St. Petersburg State University, St. Petersburg (Russian Federation); Arslanbekov, R.R. [CFD Research Corporation, Huntsville (United States)

    2006-07-01

    Self-consistent two-dimensional (2D) simulations of short-pulsed dielectric barrier discharge (DBD) in pure xenon have been performed. It is shown that during short current pulse the traversal inhomogeneity of the plasma parameters can be important only at the end of the current pulse as an edge effect close to the side walls. During the current pulse, the gap voltage drops until the ionization wave reaches the cathode so the current in the cathode sheath is the displacement current. This means that almost all of the absorbed power is deposited into excitation of xenon atoms and not to the ion heating in the cathode sheath as in the traditional glow discharges. This fact is one of the reasons of high efficiency of short-pulsed DBD. The developed model allows one to estimate the temporal position of the plasma-sheath boundary. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Variational Assimilation for Xenon Dynamical Forecasts in Neutronic using Advanced Background Error Covariance Matrix

    CERN Document Server

    Ponçot, Angélique; Bouriquet, Bertrand; Erhard, Patrick; Gratton, Serge; Thual, Olivier

    2013-01-01

    Data assimilation method consists in combining all available pieces of information about a system to obtain optimal estimates of initial states. The different sources of information are weighted according to their accuracy by the means of error covariance matrices. Our purpose here is to evaluate the efficiency of variational data assimilation for the xenon induced oscillations forecasts in nuclear cores. In this paper we focus on the comparison between 3DVAR schemes with optimised background error covariance matrix B and a 4DVAR scheme. Tests were made in twin experiments using a simulation code which implements a mono-dimensional coupled model of xenon dynamics, thermal, and thermal-hydraulic processes. We enlighten the very good efficiency of the 4DVAR scheme as well as good results with the 3DVAR one using a careful multivariate modelling of B.

  14. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase.

    Science.gov (United States)

    Whittington, D A; Rosenzweig, A C; Frederick, C A; Lippard, S J

    2001-03-27

    To investigate the role of protein cavities in facilitating movement of the substrates, methane and dioxygen, in the soluble methane monooxygenase hydroxylase (MMOH), we determined the X-ray structures of MMOH from Methylococcus capsulatus (Bath) cocrystallized with dibromomethane or iodoethane, or by using crystals pressurized with xenon gas. The halogenated alkanes bind in two cavities within the alpha-subunit that extend from one surface of the protein to the buried dinuclear iron active site. Two additional binding sites were located in the beta-subunit. Pressurization of two crystal forms of MMOH with xenon resulted in the identification of six binding sites located exclusively in the alpha-subunit. These results indicate that hydrophobic species bind preferentially in preexisting cavities in MMOH and support the hypothesis that such cavities may play a functional role in sequestering and enhancing the availability of the physiological substrates for reaction at the active site.

  15. Development and Characterization of a Multi-APD Xenon Electroluminescence TPC

    CERN Document Server

    Lux, T; Ballester, O; Bordoni, S; Gil-Botella, I; Hamer, N; Illa, J; Mañas, G Jover; Martin-Mari, C; Palomares, C; Rico, J; Sanchez, F; Santorelli, R; Verdugo, A

    2014-01-01

    The performance of an electroluminescence (EL) time projection chamber (TPC) with a multi avalanche photodiode (APD) readout was studied in pure xenon at 3.8 bar. Intercalibration and reconstruction methods were developed and applied to the data yielding energy resolutions as good as 5.3$+-$0.1 % FWHM for 59.5 keV gammas from 241-Am. The result was verified with a Monte Carlo (MC) based on Geant4 and Penelope predicting 5.2 % FWHM for the used setup. Point resolutions of about 0.5 mm were obtained by a pitch of 15 mm between the APDs. The results show that a multi-APD readout is a competitive technology for EL detectors filled with pure xenon with possible applications as Compton Cameras.

  16. Ab initio electron scattering cross-sections and transport in liquid xenon

    Science.gov (United States)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  17. Search for solar axions in XMASS, a large liquid-xenon detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Ogawa, H; Oka, N; Sekiya, H; Suzuki, A Shinozaki Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Masuda, K; Nishitani, Y; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2012-01-01

    XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the coupling for mass $\\ll$ 1keV is $|g_{aee}|< 5.4\\times 10^{-11}$ (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.

  18. SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon

    Science.gov (United States)

    Ringbom, A.; Larson, T.; Axelsson, A.; Elmgren, K.; Johansson, C.

    2003-08-01

    A system for automatic sampling, processing, and analysis of atmospheric radioxenon has been developed. From an air sample of about 7 m3 collected during 12 h, 0.5 cm3 of xenon is extracted, and the atmospheric activities from the four xenon isotopes 133Xe, 135Xe, 131mXe, and 133mXe are determined with a beta-gamma coincidence technique. The collection is performed using activated charcoal and molecular sieves at ambient temperature. The sample preparation and quantification are performed using preparative gas chromatography. The system was tested under routine conditions for a 5-month period, with average minimum detectable concentrations below 1 mBq/ m3 for all four isotopes.

  19. Modeling Integrated High-Yield IFE Target Explosions in Xenon Filled Chambers

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2010-11-01

    We will present the results of several radiation-hydrodynamics simulations which model the aftermath of an exploding high yield (200 MJ) indirect drive target in a xenon filled reactor chamber. The goal is to determine the radial extent to which debris from the target and hohlraum expands into the target chamber. The 1D radiation-hydrodynamics code BUCKY is used to perform integrated simulations of the target explosion beginning from ignition and includes interactions between the chamber gas and tungsten first wall. The 3D radiation-hydrodynamics code Cooper will be used to model the growth of fluid instabilities as the target material expands into the xenon gas. Cooper will also be used to investigate the early-time interaction between the burning target and hohlraum shortly after ignition.

  20. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    CERN Document Server

    Mong, B; Walton, T; Chambers, C; Craycraft, A; Benitez-Medina, C; Hall, K; Fairbank, W; Albert, J B; Auty, D J; Barbeau, P S; Basque, V; Beck, D; Breidenbach, M; Brunner, T; Cao, G F; Cleveland, B; Coon, M; Daniels, T; Daugherty, S J; DeVoe, R; Didberidze, T; Dilling, J; Dolinski, M J; Dunford, M; Fabris, L; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Heffner, M; Hughes, M; Jiang, X S; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krucken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Moore, D; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Retiere, F; Rowson, P C; Rozo, M P; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Twelker, K; Vuilleumier, J -L; Walton, J; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zhao, Y B

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of $\\le10^4$ Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  1. Interaction of cover and target with xenon gas in the IFE-reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    Interaction of a direct drive target and a cover, which is shielding the target against gas particle and heat flows in the reaction chamber of the Inertial Confinement Reactor, is considered. The cover is produced from solid gas -deuterium, neon of xenon. It is shown that at the SOMBRERO parameters the xenon cover with 5.6-mm size significantly reduces the heat flows onto the 4-mm target. The gas drag produces the deceleration of the target much larger than that for the cover due to large mass difference between them. The distance between the target and the cover is about 15 mm at the explosion point, which is sufficient for normal irradiation of the target by laser beams. Protection of the target against the wall radiation is necessary during the flight. Along with creation of reflecting layers over the target surface ablating layers from solid hydrogen or neon seem to be a solution. (author)

  2. Search for solar axions in XMASS, a large liquid-xenon detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M.; Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Oka, N. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Sekiya, H. [Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-09

    XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6 ton days of liquid xenon, the model-independent limit on the coupling for mass ≪1 keV is |g{sub aee}|<5.4×10{sup −11} (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250 eV, respectively. In the mass range of 10–40 keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.

  3. Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Butikofer, L; Calven, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; dePerio, P; DiGangi, P; DiGiovanni, A; Diglio, S; Duchovni, E; Eurin, G; Fei, J; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Rosso, A Gallo; Galloway, M; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Grandi, L; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Itay, R; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; LeCalloch, M; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Manfredini, A; Maris, I; Undagoitia, T Marrodan; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Piro, M -C; lante, G P; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Saldanha, R; dosSantos, J M F; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Shockley, E; Silva, M; Simgen, H; Sivers, M v; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Upole, N; Wang, H; Wei, Y; Weinheimer, C; Wulf, J; Ye, J; Zhang, Y

    2016-01-01

    A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220/Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t = 293.9+-(1.0)+-(0.6) ns.

  4. Barium Tagging in Liquid Xenon for the nEXO Experiment

    Science.gov (United States)

    Kravitz, Scott; nEXO Collaboration

    2016-09-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of xenon-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a MAJORANA particle, as well as measure the absolute neutrino mass scale. In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, barium-136. Barium tagging may be available for a second phase of nEXO operation, allowing for neutrino mass sensitivity beyond the inverted mass hierarchy. Tagging methods for this phase include barium-ion capture on a probe with identification by resonance ionization laser spectroscopy. Inclusion of an argon ion gun in this system allows for improved cleaning and preparation of the barium deposition substrate, with recent results reported in this presentation.

  5. Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arneodo, F; Barrow, P; Baudis, L; Bauermeister, B; Benabderrahmane, M L; Berger, T; Breur, P A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Calvén, J; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Diglio, S; Duchovni, E; Fei, J; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Rosso, A Gallo; Galloway, M; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Hasterok, C; Hogenbirk, E; Itay, R; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Masson, D; Mayani, D; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Piro, M -C; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Silva, M; Simgen, H; Sivers, M v; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C D; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2016-01-01

    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}>6.5\\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of $T_{1/2}>6.1\\times10^{22}$ yr after an exposure of 2 t$\\cdot$yr.

  6. Optimization of a single-phase liquid xenon Compton camera for 3γ medical imaging

    OpenAIRE

    Gallego Manzano, Lucia

    2016-01-01

    The work described in this thesis is focused on the characterization and optimization of a single-phaseliquid xenon Compton camera for medical imaging applications. The detector has been conceived to exploit the advantages of an innovative medical imaging technique called 3γ imaging, which aims to obtain aprecise 3D location of a radioactive source with high sensitivity and an important reduction of the dose administered to the patient. The 3γ imaging technique is based on the detection in co...

  7. Surface coatings as xenon diffusion barriers on plastic scintillators : Improving Nuclear-Test-Ban Treaty verification

    OpenAIRE

    Bläckberg, Lisa

    2011-01-01

    This thesis investigates the ability of transparent surface coatings to reduce xenon diffusion into plastic scintillators. The motivation for the work is improved radioxenon monitoring equipment, used with in the framework of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. A large part of the equipment used in this context incorporates plastic scintillators which are in direct contact with the radioactive gas to be detected. One problem with such setup is that radioxenon...

  8. Surface Coatings as Xenon Diffusion Barriers for Improved Detection of Clandestine Nuclear Explosions

    OpenAIRE

    Bläckberg, Lisa

    2014-01-01

    This thesis investigates surface coatings as xenon diffusion barriers on plastic scintillators. The motivation for the work is improved radioxenon detection systems, used within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). One type of radioxenon detection systems used in this context is the Swedish SAUNA system. This system uses a cylindrical plastic scintillator cell to measure the beta decay from radioxenon isotopes. The detector cell also acts as a container...

  9. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Ruben C. Franceschi

    2013-01-01

    Full Text Available OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13 or Control (C; n = 13 groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg-1 in the C group and 40 mL.kg-1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001 and mean arterial pressure (p<0.001. These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05. Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts.

  10. An Interactive Code for a Pressurized Water Reactor Incorporating Temperature and Xenon Feedback.

    Science.gov (United States)

    1980-06-01

    Xenon-135 is the most significant fission product poidon because of its enormous thermal neutron absorption cross section and relatively large...density (atoms/cm ) 02’ = Microscopic thermal neutron absorption cross section of 235U (cm2) A perturbation in neuton flux ( o’) is directly...fission yield NJI = 1351 decay constant (sec- ) AkX = 135Xe decay constant (sec-I ) = 135Xe thermal neutron absorption cross section (cm 2) Let I(t

  11. Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO

    OpenAIRE

    Mong, B.; Cook, S; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank Jr., W.; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Basque, V.; Beck, D.; Breidenbach, M.; Brunner, T.

    2014-01-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba$^+$ deposits is identified with some type of barium hydride molecule. Lower limits for the fl...

  12. Investigation of the scintillation light from liquid argon doped with xenon

    Science.gov (United States)

    Minerskjöld, Maxim; Lindblad, Thomas; Lund-Jensen, Bengt; Székely, Géza

    1993-11-01

    The scintillation light induced by 241Am 5.5 MeV α- particles in liquid argon doped with about 2% xenon detected with a fused silica UV photomultiplier tube is investigated. The pulse-height spectrum, the anode pulse shape and the attenuation of the light output are measured. The latter measurement was the main task of the present investigation and an effective half-length of more than 35 mm was found.

  13. Ab-initio electron scattering cross-sections and transport in liquid xenon

    CERN Document Server

    Boyle, Greg; Cocks, Daniel; Brunger, Michael; Buckman, Steve; Dujko, Sasa; White, Ron

    2016-01-01

    Ab-initio electron - liquid phase xenon fully differential cross-sections for electrons scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework [1] which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann's equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10^{-4} to 1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to transform highly accurate gas-phase cross-sections to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculatio...

  14. Influence of different illuminations with xenon or microwave sulfur lamp on jointing and tillering of wheat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The emission of microwave sulfur lamp is mainly composed of visible light. The sulfur lamp, producing little infrared radiation, has high efficiency, long duration of illumination and less energy consumption. In order to probe the agricultural application of the lamp, experiments were carried out with wheat (cv. Yangmai 158) to emphatically study illuminating effects of xenon or sulfur lamp on tillering, jointing and net photosynthetic rate during tillering and jointing periods. Results indicated that there is almost no difference in net photosynthetic rate of wheat leaves growing under different lamps. Xenon lamp significantly advanced the time of jointing, decreased number of tillers, number of total leaves per plant and leaf size, as well as inhibited root growth. In contrast with xenon lamp, sulfur lamp evidently delays the time of heading and grain maturation, increased number of heads per plant, head length, total number of grains per plant, head weight and total grain weight per plant, accordingly significantly increased yield per plant. Strong infrared radiation might be the main cause to influence jointing and tillering. The development characteristics of wheat under sulfur lamp were much similar with those in natural condition.

  15. Highly Accelerated Aging Method for Poly(ethylene terephthalate Film Using Xenon Lamp with Heating System

    Directory of Open Access Journals (Sweden)

    Masahiro Funabashi

    2016-01-01

    Full Text Available PET films were degraded at temperature higher than 100°C with steam and xenon light by using the newly developed system. Degradation products obtained using the proposed and conventional systems were essentially the same, as indicated by the similar increase in the intensity of the carbonyl peak near 1685 cm−1 in the FT-IR spectra of irradiated specimens and spectrum of original PET film. Elastic moduli derived from the stress-strain (SS curves obtained in tensile tests were almost the same in the case of the proposed and conventional systems and were independent of the heating temperature, light intensity, and irradiation time. Tensile strength of degraded PET films decreases with increasing heating temperature. Tensile strengths of PET films degraded at same temperature decrease linearly with increasing intensity of xenon light. The lifetime at 90% strength of PET films was calculated. Attempts were made to express this lifetime as functions of the light intensity and the reciprocal of the absolute temperature by using the Eyring model. Estimated lifetime 15.9 h of tensile test using Eyring model for PET film agreed with the lifetime 22.7 h derived from data measured using the xenon weather meter.

  16. Progress in characterization of the Photomultiplier Tubes for XENON1T Dark Matter Experiment

    CERN Document Server

    Lyashenko, Alexey

    2015-01-01

    We report on the progress in characterization of the Hamamatsu model R11410-21 Photomultiplier tubes (PMTs) for XENON1T dark matter experiment. The absolute quantum efficiency (QE) of the PMT was measured at low temperatures down to -110 $^0$C (a typical the PMT operation temperature in liquid xenon detectors) in a spectral range from 154.5 nm to 400 nm. At -110 $^0$C the absolute QE increased by 10-15\\% at 175 nm compared to that measured at room temperature. A new low power consumption, low radioactivity voltage divider for the PMTs is being developed. The measurement results showed that the PMT with the current version of the divider demonstrated a linear response (within 5\\%) down to 5$\\cdot$10$^4$ photoelectrons at a rate of 200 Hz. The radioactive contamination induced by the PMT and the PMT voltage divider materials satisfies the requirements for XENON1T detector not to exceed a total radioactive contamination in the detector of 0.5 evts/year/1tonn. Most of the PMTs received from the manufacturer showe...

  17. The health of SUSY after the Higgs discovery and the XENON100 data

    CERN Document Server

    Cabrera, Maria Eugenia; de Austri, Roberto Ruiz

    2012-01-01

    We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detec...

  18. First Demonstration of a Scintillating Xenon Bubble Chamber for Dark Matter and CE$\

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, D. [Fermilab; Chen, C. J. [Northwestern U.; Crisler, M. [PNL, Richland; Cwiok, T. [Northwestern U.; Dahl, C. E. [Fermilab; Grimsted, A. [Evanston Township High School; Gupta, J. [Northwestern U.; Jin, M. [Northwestern U.; Puig, R. [Northwestern U.; Temples, D. [Northwestern U; Zhang, J. [Northwestern U.

    2017-02-28

    A 30-gram xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in liquid xenon. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind PMT to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time-of-nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. The observed single- and multiple-bubble rates when exposed to a $^{252}$Cf neutron source indicate that, for a thermodynamic "Seitz" threshold of 8.3 keV, the minimum nuclear recoil energy required to nucleate a bubble is between 11 and 25 keV. This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at the thresholds studied, setting a 90% CL upper limit of $6.3\\times10^{-7}$ bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF$_3$I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for WIMP and CE$\

  19. Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon

    Science.gov (United States)

    Yoshinaga, T.

    1973-01-01

    Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.

  20. Limits on GeV-scale WIMPs using charge signals in XENON100

    Science.gov (United States)

    Wall, Richard

    2014-03-01

    Various theoretical models and recent experimental results have led to growing interest in the search for WIMP-like dark matter in the mass range of a few GeV. One important class of detector used in this study is based on the liquid-gas, dual-phase Xenon time projection chamber (as in XENON100 and LUX). These detectors nominally use both scintillation (S1) and ionization (S2) signals to localize collision events in their sensitive volumes and thus reject background events, but it is known that the efficiency for detecting small S1 signals (such as are expected from a GeV-scale WIMP interaction) is much smaller than the efficiency for detecting an S2 from the same recoil. By removing the requirement of an observed S1 signal, one can thus effectively lower the energy threshold of the detector, and study GeV-scale WIMPs with greater sensitivity. With this in mind, we measure the rate of WIMP candidates in 225 live days of XENON100 data in events with small S2 signals (with or without an accompanying S1) and which pass other simple selection cuts optimized for GeV-scale WIMPs. This rate is then used to set a limit on the WIMP-nucleon cross-section for the mass range 1-10 GeV.

  1. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    CERN Document Server

    Goetzke, L W; Anthony, M; Plante, G; Weber, M

    2016-01-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV/cm. Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anti-correlated above 3 keV, and that the field dependence becomes negligible below 6 keV. However, below 3 keV we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  2. Intramolecular proton transfer and tunnelling reactions of hydroxyphenylbenzoxazole derivatives in Xenon at 15 K

    Energy Technology Data Exchange (ETDEWEB)

    Walla, Peter J. [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany) and Department for Biophysical Chemistry, Technical University of Brunswick, Institute for Physical and Theoretical Chemistry, Hans-Sommerstr. 10, D-38106 Braunschweig (Germany)]. E-mail: pwalla@gwdg.de; Nickel, Bernhard [Max-Planck-Institute for Biophysical Chemistry, Department 010, Spectroscopy and Photochemical Kinetics, Am Fassberg 11, D-37077 Goettingen (Germany)

    2005-06-06

    We investigated the site dependence and the tunnelling processes of the intramolecular proton and deuteron transfer in the triplet state of the compounds 2-(2'-hydroxy-4'-methylphenyl)benzoxazole (m-MeHBO) and 2-(2'-hydroxy-3'-methylphenyl)benzoxazoles (o-MeHBO) and their deuterio-oxy analogues in a solid xenon matrix. After singlet excitation there occurs an ultrafast intramolecular enol {yields} keto proton transfer and subsequent intersystem crossing mainly to the keto triplet state. In the triplet state of m-MeHBO, the proton transfer back to the lower enol triplet state is governed by tunnelling processes. In o-MeHBO, however, the enol triplet state is higher and therefore normally no tunnel reaction can be observed. Because of the external heavy atom-effect in a xenon matrix, we were able to investigate the reverse enol-keto-tunnelling after exciting directly the enol triplet state of deuterated o-MeHBO. The time constants of the reverse enol-keto tautomerization are similar to those of the normal keto-enol tautomerization. In a xenon matrix, the observed site-selective phosphorescence spectra are very well-resolved vibrationally. This allowed the study of the tunnel rates in different well-defined sites. The vibrational energies obtained in the spectra are in good agreement with vibrational energies found in resonant Raman and IR spectra of 2-(2'-hydroxyphenyl)benzoxazole (HBO)

  3. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  4. High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keiko, E-mail: fujii-keiko-nv@ynu.jp [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Endo, Yuya; Torigoe, Yui; Nakamura, Shogo [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Haruyama, Tomiyoshi; Kasami, Katsuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, Satoshi; Saito, Kiwamu; Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); The Graduate School of Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tawara, Hiroko [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2015-09-21

    The emission spectrum of cryogenic liquid xenon in the vacuum ultraviolet region was measured by irradiating liquid xenon with gamma-rays from a radioactive source. To achieve a high signal-to-noise ratio, we employed coincident photon counting. Additionally, the charge of the photo-sensor signals was measured to estimate the number of detected photons accurately. In addition, proper corrections were incorporated for the wavelength; response functions of the apparatus obtained using a low-pressure mercury lamp, and photon detection efficiencies of the optical system were considered. The obtained emission spectrum is found to be in the shape of a Gaussian function, with the center at 57,199±34 (stat.)±33 (syst.) cm{sup −1} (174.8±0.1 (stat.)±0.1 (syst.) nm) and the full width at half maximum of 3328±72 (stat.)±65 (syst.) cm{sup −1} (10.2±0.2 (stat.)±0.2 (sys.) nm). These results are the most accurate values obtained in terms of the data acquisition method and the calibration for the experimental system and provide valuable information regarding the high-precision instruments that employ a liquid-xenon scintillator.

  5. NEXT: Searching for the neutrinoless double beta decay with a gas-xenon TPC

    Energy Technology Data Exchange (ETDEWEB)

    Novella, P, E-mail: pau.novella@ciemat.e [CIEMAT, Av. Complutense 22, 28040 Madrid (Spain)

    2010-01-01

    Although different techniques are used to search for the neutrinoless double beta decay, the common challenges for all the existing or planned experiments are to achieve a good energy resolution and large background rejection factors. The NEXT collaboration addresses these two challenges with a high-pressure gas-Xenon TPC. Natural Xenon consists of almost 9% of {sup 136}Xe, a {beta}{beta}{sup 0{nu}} candidate emitter, and can be easily enriched. When used as a calorimeter, {sup 136}Xe yields an excellent energy resolution. This fact, combined with the expected long life of the {beta}{beta}{sup 2{nu}} mode, accounts for negligible intrinsic backgrounds up to masses of 1 ton. Furthermore, external backgrounds can be rejected with high efficiency by means of the electron tracking capabilities of the TPC. A detector containing about 100 kg of enriched Xenon is expected to be installed at Canfranc Underground Laboratory (LSC) within the next 5 years, with the twofold aim of exploring the degenerated hierarchy of the neutrino mass and providing deep understanding of the experimental techniques which allow extrapolation to larger detectors.

  6. Generation of soft x-ray radiation by laser irradiation of a gas puff xenon target

    Energy Technology Data Exchange (ETDEWEB)

    Fiedorowicz, H.; Bartnik, A.; Szczurek, M. [Military Univ. of Technology, Warsaw (Poland). Inst. of Optoelectronics] [and others

    1995-12-31

    Plasmas produced from laser-irradiated gas puff xenon targets, created by pulsed injection of xenon with high-pressure solenoid valve, offer the possibility of realizing a debrisless x-ray point source for the x-ray lithography applications. In this paper the authors present results of the experimental investigations on the x-ray generation from a gas puff xenon target irradiated with nanosecond high-power laser pulses produced using two different laser facilities: a Nd:glass laser operating at 1.06 {micro}m, which generated 10--15 J pulses in 1 ns FWHM, and Nd:glass slab laser, producing pulses of 10 ns duration with energy reaching 12 J for a 0.53 {micro}m wavelength or 20 J for 1.05 {micro}m. To study the x-ray emission different x-ray diagnostic methods have been used. X-ray spectra were registered using a flat CsAP crystal spectrograph with an x-ray film or a curved KAP crystal spectrograph with a convex curvature to an x-ray CCD readout detector. X-ray images have been taken using pinhole cameras with an x-ray film or a CCD array. X-ray yield was measured with the use of semiconductor detectors (silicon photodiodes or diamond photoconductors).

  7. Evaluation of periventricular hypodensity in adult hydrocephalus with CT cisternography and xenon-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Masaru (Tokyo Medical and Dental Univ. (Japan). School of Medicine)

    1984-06-01

    Metrizamide CT cisternography and Xenon-enhanced CT were employed to evaluate the periventricular hypodensity (PVH). CT cisternography was performed on adult cases with suspected communicating hydrocephalus, of which 43 cases showing ventricular reflux were investigated. In those cases in which significant transition of metrizamide into the area of PVH was followed after the ventricular reflux and stasis, the shunt operation was effective. The PVH disappeared post-operatively. However, in cases with PVH in which the metrizamide penetration did not occur, the PVH did not disappear post-operatively and clinical improvement was not detected. Xenon-enhanced CT was performed in six cases. Three cases exhibited communicating hydrocephalus, in which the area of PVH was not enhanced by metrizamide with CT cisternography. The other cases demonstrated acute high pressure hydrocephalus. The PVH in the former cases was neither enhanced by Xenon nor metrizamide, while the latter was enhanced significantly. Studies suggested that the reversible PVH was the result of an abnormally increased transition of cerebrospinal fluid through the ependymal layer, while the irreversible PVH resulted from the axonal destruction or demyelination of the periventricular white matter.

  8. Characterisation of NEXT-DEMO using xenon K$_{\\alpha}$ X-rays

    CERN Document Server

    Lorca, D; Laing, A; Ferrario, P; Gómez-Cadenas, J J; Álvarez, V; Borges, F I G; Camargo, M; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Ferreira, A L; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez, H; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Labarga, L; Liubarsky, I; Losada, M; Luzón, G; Marí, A; Martínez-Lema, G; Martínez, A; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2014-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of $^{136}$Xe in a high pressure gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon k-shell x-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of p...

  9. Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, L M P; Freitas, E D C; Monteiro, C M B; Santos, J M F dos [Instrumentation Centre, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal); Ball, M; Gomez-Cadenas, J J; Yahlali, N [Instituto de Fisica Corpuscular, E-46071, Valencia (Spain); Nygren, D, E-mail: pancho@gian.fis.uc.p [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-09-15

    NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm{sup -1} torr{sup -1} in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 {+-} 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 {+-} 6 eV to produce a primary scintillation photon in xenon.

  10. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    CERN Document Server

    Wahl, Christopher G; Lippincott, W Hugh; Nikkel, James A; Shin, Yunchang; McKinsey, Daniel N

    2014-01-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 +/- 5 ppm to 1100 +/- 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 +/- 0.1 photoelectrons/keV improved to 5.0 +/- 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 +/- 0.2)% ({\\sigma}) to (3.5 +/- 0.2)% ({\\sigma}) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopa...

  11. PETALO, a new concept for a Positron Emission TOF Apparatus based on Liquid xenOn

    CERN Document Server

    Benlloch-Rodriguez, J M

    2016-01-01

    This master thesis presents a new type of Positron Emission TOF Apparatus using Liquid xenOn (PETALO). The detector is based in the Liquid Xenon Scintillating Cell (LXSC). The cell is a box filled with liquid xenon (LXe) whose transverse dimensions are chosen to optimize packing and with a thickness optimized to contain a large fraction of the incoming photons. The entry and exit faces of the box (relative to the incoming gammas direction) are instrumented with large silicon photomultipliers (SiPMs), coated with a wavelength shifter, tetraphenyl butadiene (TPB). The non-instrumented faces are covered by reflecting Teflon coated with TPB. In this thesis we show that the LXSC can display an energy resolution of 5% FWHM, much better than that of conventional solid scintillators such as LSO/LYSO. The LXSC can measure the interaction point of the incoming photon with a resolution in the three coordinates of 1 mm. The very fast scintillation time of LXe (2 ns) and the availability of suitable sensors and electronic...

  12. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression.

    Science.gov (United States)

    Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  13. Crossover Equation of State Models Applied to the Critical Behavior of Xenon

    Science.gov (United States)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Guillaument, R.; Beysens, D.; Hahn, I.

    2015-03-01

    The turbidity () measurements of Güttinger and Cannell (Phys Rev A 24:3188-3201, 1981) in the temperature range along the critical isochore of homogeneous xenon are reanalyzed. The singular behaviors of the isothermal compressibility () and the correlation length () predicted from the master crossover functions are introduced in the turbidity functional form derived by Puglielli and Ford (Phys Rev Lett 25:143-146, 1970). We show that the turbidity data are thus well represented by the Ornstein-Zernike approximant, within 1 % precision. We also introduce a new crossover master model (CMM) of the parametric equation of state for a simple fluid system with no adjustable parameter. The CMM model and the phenomenological crossover parametric model are compared with the turbidity data and the coexisting liquid-gas density difference (). The excellent agreement observed for , , , and in a finite temperature range well beyond the Ising-like preasymptotic domain confirms that the Ising-like critical crossover behavior of xenon can be described in conformity with the universal features estimated by the renormalization-group methods. Only 4 critical coordinates of the vapor-liquid critical point are needed in the (pressure, temperature, molecular volume) phase surface of xenon.

  14. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    CERN Document Server

    Lang, Rafael F; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-01-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavours of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 sigma, observing approximately 35 (123; 704) events from a 27 solar-mass supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of a...

  15. Proximity Within Interphase Chromosome Contributes to the Breakpoint Distribution in Radiation-Induced Intrachromosomal Exchanges

    Science.gov (United States)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2015-01-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome3 in human mammary epithelial cells after exposures to either low-or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations. Further investigations suggest that the 3D chromosome folding is cell type and culture condition dependent.

  16. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast.

    Science.gov (United States)

    Thieme, Sven F; Möller, Winfried; Becker, Sven; Schuschnig, Uwe; Eickelberg, Oliver; Helck, Andreas D; Reiser, Maximilian F; Johnson, Thorsten R C

    2012-10-01

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. • Ventilation of the paranasal sinuses is poorly understood. • Dual-energy CT ventilation imaging has been explored using phantom simulation. • Xenon can be seen in the paranasal sinuses using pulsating xenon flow. • Dual-energy CT uses a lower radiation dose compared with dynamic ventilation CT.

  17. Differential localization of cytoplasmic myosin II isoforms A and B in avian interphase and dividing embryonic and immortalized cardiomyocytes and other cell types in vitro

    Science.gov (United States)

    Conrad, A. H.; Jaffredo, T.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Two principal isoforms of cytoplasmic myosin II, A and B (CMIIA and CMIIB), are present in different proportions in different tissues. Isoform-specific monoclonal and polyclonal antibodies to avian CMIIA and CMIIB reveal the cellular distributions of these isoforms in interphase and dividing embryonic avian cardiac, intestinal epithelial, spleen, and dorsal root ganglia cells in primary cell culture. Embryonic cardiomyocytes react with antibodies to CMIIB but not to CMIIA, localize CMIIB in stress-fiber-like-structures during interphase, and markedly concentrate CMIIB in networks in the cleavage furrow during cytokinesis. In contrast, cardiac fibroblasts localize both CMIIA and CMIIB in stress fibers and networks during interphase, and demonstrate slight and independently regulated concentration of CMIIA and CMIIB in networks in their cleavage furrows. V-myc-immortalized cardiomyocytes, an established cell line, have regained the ability to express CMIIA, as well as CMIIB, and localize both CMIIA and CMIIB in stress fibers and networks in interphase cells and in cleavage furrows in dividing cells. Conversely, some intestinal epithelial, spleen, and dorsal root ganglia interphase cells express only CMIIA, organized primarily in networks. Of these, intestinal epithelial cells express both CMIIA and CMIIB when they divide, whereas some dividing cells from both spleen and dorsal root ganglia express only CMIIA and concentrate it in their cleavage furrows. These results suggest that within a given tissue, different cell types express different isoforms of CMII, and that cells expressing either CMIIA or CMIIB alone, or simultaneously, can form a cleavage furrow and divide.

  18. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  19. Chromosomal imbalances detected in primary bone tumors by comparative genomic hybridization and interphase fluorescence in situ hybridization

    OpenAIRE

    Baruffi Marcelo Razera; Engel Edgard Edward; Squire Jeremy Andrew; Tone Luis Gonzaga; Rogatto Silvia Regina

    2003-01-01

    We applied a combination of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH), to characterize the genetic aberrations in three osteosarcomas (OS) and one Ewing's sarcoma. CGH identified recurrent chromosomal losses at 10p14-pter and gains at 8q22.3-24.1 in OS. Interphase FISH allowed to confirm 8q gain in two cases. A high amplification level of 11q12-qter was detected in one OS. The Ewing's sarcoma showed gain at 1p32-36.1 as the sole chromosome alteratio...

  20. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  1. A model for interphase chromosomes and evaluation of radiation-induced aberrations

    Science.gov (United States)

    Holley, W. R.; Mian, I. S.; Park, S. J.; Rydberg, B.; Chatterjee, A.

    2002-01-01

    We have developed a theoretical model for evaluating radiation-induced chromosomal exchanges by explicitly taking into account interphase (G(0)/G(1)) chromosome structure, nuclear organization of chromosomes, the production of double-strand breaks (DSBs), and the subsequent rejoinings in a faithful or unfaithful manner. Each of the 46 chromosomes for human lymphocytes (40 chromosomes for mouse lymphocytes) is modeled as a random polymer inside a spherical volume. The chromosome spheres are packed randomly inside a spherical nucleus with an allowed overlap controlled by a parameter Omega. The rejoining of DSBs is determined by a Monte Carlo procedure using a Gaussian proximity function with an interaction range parameter sigma. Values of Omega and sigma have been found which yield calculated results of interchromosomal aberration frequencies that agree with a wide range of experimental data. Our preferred solution is one with an interaction range of 0.5 microm coupled with a relatively small overlap parameter of 0.675 microm, which more or less confirms previous estimates. We have used our model with these parameter values and with resolution or detectability limits to calculate yields of translocations and dicentrics for human lymphocytes exposed to low-LET radiation that agree with experiments in the dose range 0.09 to 4 Gy. Five different experimental data sets have been compared with the theoretical results. Essentially all of the experimental data fall between theoretical curves corresponding to resolution limits of 1 Mbp and 20 Mbp, which may reflect the fact that different investigators use different limits for sensitivity or detectability. Translocation yields for mouse lymphocytes have also been calculated and are in good agreement with experimental data from 1 cGy to 10 cGy. There is also good agreement with recent data on complex aberrations. Our model is expected to be applicable to both low- and high-LET radiation, and we include a sample prediction of

  2. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results. © 2013 Elsevier B.V. All rights reserved.

  3. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    Directory of Open Access Journals (Sweden)

    K. S. Adegbie

    2012-01-01

    Full Text Available A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i ignition of reacting gas, (ii accumulation of heat by the solid particles during combustion process (iii evaporation of the liquid fuel droplets, and (iv consumption of reacting gas concentration. The equations governing the physical model with realistic assumptions are stated and nondimensionalised leading to an intractable system of first-order coupled nonlinear differential equations, which is not amenable to exact methods of solution. Therefore, we present numerical solutions as well as different qualitative effects of varying interphase heat exchange parameter. Graphs and Table feature prominently to explain the results obtained.

  4. SPALAX new generation: New process design for a more efficient xenon production system for the CTBT noble gas network.

    Science.gov (United States)

    Topin, Sylvain; Greau, Claire; Deliere, Ludovic; Hovesepian, Alexandre; Taffary, Thomas; Le Petit, Gilbert; Douysset, Guilhem; Moulin, Christophe

    2015-11-01

    The SPALAX (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon) is one of the systems used in the International Monitoring System of the Comprehensive Nuclear Test Ban Treaty (CTBT) to detect radioactive xenon releases following a nuclear explosion. Approximately 10 years after the industrialization of the first system, the CEA has developed the SPALAX New Generation, SPALAX-NG, with the aim of increasing the global sensitivity and reducing the overall size of the system. A major breakthrough has been obtained by improving the sampling stage and the purification/concentration stage. The sampling stage evolution consists of increasing the sampling capacity and improving the gas treatment efficiency across new permeation membranes, leading to an increase in the xenon production capacity by a factor of 2-3. The purification/concentration stage evolution consists of using a new adsorbent Ag@ZSM-5 (or Ag-PZ2-25) with a much larger xenon retention capacity than activated charcoal, enabling a significant reduction in the overall size of this stage. The energy consumption of the system is similar to that of the current SPALAX system. The SPALAX-NG process is able to produce samples of almost 7 cm(3) of xenon every 12 h, making it the most productive xenon process among the IMS systems.

  5. Quantitative analysis of dynamic airway changes after methacholine and salbutamol inhalation on xenon-enhanced chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Goo, Jin Mo; Kim, Jong Hyo; Park, Eun-Ah [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul (Korea, Republic of); Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Jung, Jae-Woo; Park, Heung-Woo [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of); Cho, Sang-Heon [Seoul National University Hospital, Healthcare Gangnam Center, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Institute of Allergy and Clinical Immunology, Seoul (Korea, Republic of)

    2012-11-15

    To investigate the dynamic changes in airways in response to methacholine and salbutamol inhalation and to correlate the xenon ventilation index on xenon-enhanced chest CTs in asthmatics. Thirty-one non-smokers (6 normal, 25 asthmatics) underwent xenon-enhanced chest CT and pulmonary function tests. Images were obtained at three stages (basal state, after methacholine inhalation and after salbutamol inhalation), and the total xenon ventilation index (TXVI) as well as airway values were measured and calculated. The repeated measures ANOVA and Spearman's correlation coefficient were used for statistical analysis. TXVI in the normal group did not significantly change (P > 0.05) with methacholine and salbutamol. For asthmatics, however, the TXVI significantly decreased after methacholine inhalation and increased after salbutamol inhalation (P < 0.05). Of the airway parameters, the airway inner area (IA) significantly increased after salbutamol inhalation in all airways (P < 0.01) in asthmatics. Airway IA, wall thickness and wall area percentage did not significantly decrease after methacholine inhalation (P > 0.05). IA of the large airways was well correlated with basal TXVI, FEV{sub 1} and FVC (P < 0.05). Airway IA is the most reliable parameter for reflecting the dynamic changes after methacholine and salbutamol inhalation, and correlates well with TXVI in asthmatics on xenon-enhanced CT. (orig.)

  6. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure

    Science.gov (United States)

    Dewaele, Agnès; Worth, Nicholas; Pickard, Chris J.; Needs, Richard J.; Pascarelli, Sakura; Mathon, Olivier; Mezouar, Mohamed; Irifune, Tetsuo

    2016-08-01

    The noble gases are the most inert group of the periodic table, but their reactivity increases with pressure. Diamond-anvil-cell experiments and ab initio modelling have been used to investigate a possible direct reaction between xenon and oxygen at high pressures. We have now synthesized two oxides below 100 GPa (Xe2O5 under oxygen-rich conditions, and Xe3O2 under oxygen-poor conditions), which shows that xenon is more reactive under pressure than predicted previously. Xe2O5 was observed using X-ray diffraction methods, its structure identified through ab initio random structure searching and confirmed using X-ray absorption and Raman spectroscopies. The experiments confirm the recent prediction of Xe3O2 as a stable xenon oxide under high pressure. Xenon atoms adopt mixed oxidation states of 0 and +4 in Xe3O2 and +4 and +6 in Xe2O5. Xe3O2 and Xe2O5 form extended networks that incorporate oxygen-sharing XeO4 squares, and Xe2O5 additionally incorporates oxygen-sharing XeO5 pyramids. Other xenon oxides (XeO2, XeO3) are expected to form at higher pressures.

  7. Study of the short-lived fission products. Separation of iodine and xenon fission radionuclides; Estudio de los productos de fision de periodo corto. Separacion de los radionuclidos de fision del yodo y del xenon

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Villar, M. A.

    1965-07-01

    The separation by distillation in a sulfuric acid or phosphoric acid-hydrogen peroxide medium of the iodine isotopes (8 day iodine-131, 2,3 hour iodine-132 21 hour iodine-133, 53 minute iodine-134 and 6,7 hour iodine-135) present in a uranium sample after different irradiation and cooling times is here described. It is also reported the use of active charcoal columns for the retention of xenon isotopes (5,27 days xenon-133 and 9,2 hours xenon-135) either released during the dissolution of the uranium irradiated samples or generated along the fission isobaric chains in the solutions of distillated iodine. In both cases the radiochemical purity of the separated products is established by gamma spectrometry. (Author) 15 refs.

  8. Investigation of interphase effects in silica-polystyrene nanocomposites based on a hybrid molecular-dynamics-finite-element simulation framework

    Science.gov (United States)

    Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.

    2016-05-01

    A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.

  9. Improved signal recognition for interphase fluorescent in-situ hybridization using a non-ionic detergent (NP-40) pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.M.; Day-Salvatore, D.L.; Sciorra, L.J. [Univ. of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States)] [and others

    1994-09-01

    We have reported that the non-ionic detergent ethylphenolpoly (ethyleneglycolether)x known as Noniet-P40 (Shell International Petroleum) can gently disrupt cell membranes, resulting in cells with varying degrees of free chromatin release. The extent of this phenomena is dependent upon the concentration of NP-40 and the detergent`s exposure time to the cells. Treated cells can range from halos of DNA around the cells to fully extended free chromatin configurations. We have demonstrated that these treated cells are excellent targets for many different fluorescently labelled probes used for in situ hybridization studies. Recently, we have compared NP-40 harvested lymphocytes with normally harvested cells to see if we could improve upon the number of cells showing discreet signals in interphase fluorescent in situ hybridization. Preliminary work has shown that using a trisomy 21 cell line, one can get a statistically significant improvement with NP-40 pretreatment cells over control levels, in the number of cells having three discreet signals in interphase {open_quotes}FISH{close_quotes}. Such a pretreatment is simple to perform and may be of value when the number of cells available for analysis is low, as in the search for fetal cells from maternal circulation.

  10. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma.

    Science.gov (United States)

    Shipley, J; Crew, J; Birdsall, S; Gill, S; Clark, J; Fisher, C; Kelsey, A; Nojima, T; Sonobe, H; Cooper, C; Gusterson, B

    1996-02-01

    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results in fusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease.

  11. Visualization and Characterization of High-Order Chromatin Fibers under Light Microscope during Interphase and Mitotic Stages in Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using genomic in situ hybridization with genomic DNA.high-order chromatin fibers were successfully exhibited under a light microscope through the cell cycle in barley,rice,maize and field bean.From the interphase to prophase and metaphase of mitosis,the fibers were basically similar.Each was estimated to be around 200 nm in diameter,but the strength of signals was not the same along the fiber length.Through the cell cycle a series of dynamic distribution changes occurred in the fibers.In the interphase,they were unraveled.At the early prophase they were arranged with parallel and mirror symmetry.During late-prophase and metaphase,the fibers were bundled and became different visible chromosomes.The parallel coiling and mirror symmetry structures were visible clearly until the metaphase.In anaphase they disappeared.During telophase,in peripheral regions of congregated chromosome group,borderlines of the chromosomes disappeared and the fibers were unraveled.This demonstrated that mitotic chromosomes are assembled and organized by parallel and adjacent coiling of the fibers and the fibers should be the highest order structure for DNA coiling.

  12. The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material

    Directory of Open Access Journals (Sweden)

    Vasiliki I. Hatzi

    2006-01-01

    Full Text Available Nowadays, there is a constantly increasing concern regarding the mutagenic and carcinogenic potential of a variety of harmful environmental factors to which humans are exposed in their natural and anthropogenic environment. These factors exert their hazardous potential in humans' personal (diet, smoking, pharmaceuticals, cosmetics and occupational environment that constitute part of the anthropogenic environment. It is well known that genetic damage due to these factors has dramatic implications for human health. Since most of the environmental genotoxic factors induce arrest or delay in cell cycle progression, the conventional analysis of chromosomes at metaphase may underestimate their genotoxic potential. Premature Chromosome Condensation (PCC induced either by means of cell fusion or specific chemicals, enables the microscopic visualization of interphase chromosomes whose morphology depends on the cell cycle stage, as well as the analysis of structural and numerical aberrations at the G1 and G2 phases of the cell cycle. The PCC has been successfully used in problems involving cell cycle analysis, diagnosis and prognosis of human leukaemia, assessment of interphase chromosome malformations resulting from exposure to radiation or chemicals, as well as elucidation of the mechanisms underlying the conversion of DNA damage into chromosomal damage. In this report, particular emphasis is given to the advantages of the PCC methodology used as an alternative to conventional metaphase analysis in answering questions in the fields of radiobiology, biological dosimetry, toxicogenetics, clinical cytogenetics and experimental therapeutics.

  13. Electrolyte Volume Effects on Electrochemical Performance and Solid Electrolyte Interphase in Si-Graphite/NMC Lithium-Ion Pouch Cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Seong Jin; Li, Jianlin; Daniel, Claus; Meyer, Harry M.; Trask, Stephen E.; Polzin, Bryant J.; Wood, David L.

    2017-05-23

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite / LiNi0.5Mn0.3CO0.2O2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendrites are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. Solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.

  14. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage

    Science.gov (United States)

    Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; Qiao, Ruimin; Wang, Guofeng; Yang, Wanli; Feygenson, Mikhail; Su, Dong; Teng, Xiaowei

    2016-11-01

    Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (~1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn5O8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn2+/Mn4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn5O8.

  15. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage.

    Science.gov (United States)

    Shan, Xiaoqiang; Charles, Daniel S; Lei, Yinkai; Qiao, Ruimin; Wang, Guofeng; Yang, Wanli; Feygenson, Mikhail; Su, Dong; Teng, Xiaowei

    2016-11-15

    Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn5O8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn(2+)/Mn(4+) redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn5O8.

  16. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    Science.gov (United States)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our

  17. The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Dyakin, V.M.; Faenov, A.Ya. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation); Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland); Biemont, E. [Institut de Physique Nucleaire Experimentale, Universite de Liege, Liege (Belgium); Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Nilsen, J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Behar, E.; Doron, R.; Mandelbaum, P.; Schwob, J.L. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem (Israel)

    1999-01-14

    Emission spectra of multicharged xenon ions produced by a laser gas puff are observed with high spectral resolution in the 8.5-9.5 and 17-19 A wavelength ranges. Three different theoretical methods are employed to obtain 3l-n'l'(n' = 4 to 10) wavelengths and Einstein coefficients for Ni-like Xe{sup 26+}. For the 3d-4p transitions, very good agreement is found between the experimental wavelengths and the various theoretical wavelengths. These accurate energy level measurements can be useful for studying the Ni-like xenon x-ray laser scheme. On the other hand, several intense spectral lines could not be identified as 3l-n'l' lines of Ni-like xenon, despite the very good agreement between the wavelengths and Einstein coefficients calculated for these transitions using the three different methods. (author)

  18. Identification of hidden fissile materials using high-pressure xenon gamma-ray detectors

    Science.gov (United States)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Sokolov, D. V.; Uteshev, Z. M.; Chernysheva, I. V.; Vlasik, K. F.

    2001-12-01

    The description of the High Pressure Xenon Gamma-Ray Detector (HPXeD) and its main characteristics are considered in the context of the search for hidden fissile materials. The results of HPXeD measurements of gamma-radiation from radioactive sources, which are covered by lead, iron and aluminium shields, are analyzed and discussed. The use of special software for processing data is shown to improve the potential of radioactive material detection, including the identification and estimation of the main protective shield parameters.

  19. Density profile in shock wave fronts of partially ionized xenon plasmas

    CERN Document Server

    Reinholz, H; Morozov, I; Mintsev, V; Zaparoghets, Y; Fortov, V; Wierling, A

    2003-01-01

    Results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.6-20 GPa and temperatures around 30 000 K are interpreted. In addition to former experiments using laser beams with lambda = 1.06 mu m, measurements at lambda = 0.694 mu m have been performed recently. Reflectivities typical for metallic systems are found at high densities. Besides free carriers, the theoretical description also takes into account the influence of the neutral component of the plasma on the reflectivity. A consistent description of the measured reflectivities is achieved only if a finite width of the shock wave front is considered.

  20. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  1. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Science.gov (United States)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  2. Multiwavelength anomalous diffraction analyses of protein structures based on xenon and selenium resonances

    Science.gov (United States)

    Slama, Betty Nicole

    The 'phase problem' is central to X-ray crystallography, and multiwavelength anomalous diffraction (MAD) provides an elegant and broadly accessible solution. In the first part, the use of MAD at the xenon L3 edge is explored, as an alternative to the well established selenium K-edge phasing. In the second part, the structure of the bacterial protein Vibrio cholerae LuxQ, part of a two component signaling system involved in quorum sensing, is solved and analyzed. Keywords: anomalous scattering, x-ray diffraction, phasing, protein structure.

  3. Direct detection prospects of dark vectors with xenon-based dark matter experiments

    CERN Document Server

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2015-01-01

    Dark matter experiments primarily search for the scattering of WIMPs on target nuclei of well shielded underground detectors. The results from liquid scintillator experiments furthermore provide precise probes of very light and very weakly coupled particles that may be absorbed by electrons. In these proceedings we summarize previously obtained constraints on long-lived dark matter vector particles $V$ (dark photons) in the $0.01-100$ keV mass range. In addition, we provide a first projected sensitivity reach for the upcoming XENON1T dark matter search to detect dark photons.

  4. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    Science.gov (United States)

    2016-09-14

    industrial demand for items such as high efficiency lighting and windows, as well as plasma based micro-fabrication, has produced wide price swings in the...past decade. Xenon prices have varied by as much as factor of ten in the past five years alone. For missions that benefit from higher specific impulse...Concentration ppb 87 1000 Stable Isotopes 9 6 Odd Isotopes 2 1 Critical Pressure MPa 5.84 5.50 Critical Temperature K 290 209 Boiling Point (1 atm) K 161 120

  5. Temperature rise induced in Si by continuous xenon arc lamp radiation

    Science.gov (United States)

    Lietoila, A.; Gold, R. B.; Gibbons, J. F.

    1982-02-01

    It is shown that practical beam annealing of silicon can be accomplished with a high intensity arc lamp. The use of a one-dimensional, steady-state solution for temperature is justified. The Kirchhoff transform is utilized to include the temperature dependence of the thermal conductivity. Surface temperatures produced by a xenon arc lamp are calculated for 300- and 375-μm thick silicon samples, using substrate temperatures of 350 and 500 °C. It is shown that substantial reduction of the radiation intensity required for a given surface temperature can be obtained by placing a quartz wafer between the silicon sample and the heat sink.

  6. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Science.gov (United States)

    Li, Zhi-Gang; Tang, Da-Wei; Li, Tie; Du, Jing-Long

    2011-05-01

    We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface. Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solar-thermal efficiency of 67.1%.

  7. Equation of State for Shock Compressed Xenon in the Ionization Regime:ab Initio Study

    Institute of Scientific and Technical Information of China (English)

    王聪; 顾云军; 陈其峰; 贺贤土; 张平

    2012-01-01

    Quantum molecular dynamic (QMD) simulations have been applied to study the thermophysical properties of liquid xenon under dynamic compressions. The equation of state (EOS) obtained from QMD calculations are corrected according to Saha equation, and contributions from atomic ionization, which are of predominance in determining the EOS at high temperature and pressure, are considered. For the pressures below 160 GPa, the necessity in accounting for the atomic ionization has been demonstrated by the Hugoniot curve, which shows excellent agreement with previous experimental measurements, and three levels of ionization have been proved to be sufficient at this stage.

  8. New xenon gamma-ray spectrometer for sorting of radioactive waste

    Science.gov (United States)

    Ulin, Sergey E.; Novikov, Alexander S.; Dmitrenko, Valery V.; Vlasik, Konstantin F.; Uteshev, Ziyaetdin M.; Shustov, Alexander E.; Petrenko, Denis V.

    2016-09-01

    A gamma-ray spectrometer for radioactive waste sorting is presented. The equipment is based on a new "thin-walled" xenon gamma-ray detector with sensitive volume of 4 liters and a digital electronics unit. Use of the thin wall (0.5 mm of stainless steel covered with fiberglass) provides lower absorption of gamma-rays by the detector's walls and expansion of the energy range of radiation being registered. The digital electronics unit makes it possible to use the equipment in unfavorable field conditions such as high levels of acoustic influence.

  9. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C., E-mail: gomez@mail.cern.ch, E-mail: jmalbos@ific.uv.es, E-mail: jmunoz@ific.uv.es, E-mail: penya@ific.uv.es [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de Valencia Calle Catedrático José Beltrán, 2, 46090 Paterna, Valencia (Spain)

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.

  10. Study on LXe system for particle detector. Liquefaction test by pulse tube refrigerator; Ryushi kenshutsuyo ekitai Xenon shisutemu no kenkyu. Parusu kan reitokini yoru ekika

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, T.; Kasami, K. [High energy Accelerator Research Organization, Tsukuba (Japan)

    1999-11-10

    It is supersensitively used for the particle detection from electrons and that they release the light, that it can deal with fast process, etc. for the high-energy particle which emits liquid Xenon. It recently proposes the experiment which uses large liquid Xenon as a calorimeter in order to detect {gamma}ray of the high energy. It examines the thermal characteristic of liquid Xenon, while this study attempts the optimization in liquefying Xenon by pulse tube refrigerating machine. This time, the following are reported: Introduction of the Xenon gas system for the small-scale liquefaction experiment and experiment near 165K of small pulse tube refrigerating machine on a refrigerating capacity. (NEDO)

  11. Renal function following xenon anesthesia for partial nephrectomy—An explorative analysis of a randomized controlled study

    Science.gov (United States)

    Schaefer, Patrick; Coburn, Mark; Rossaint, Rolf; Stoppe, Christian; Boor, Peter; Pfister, David; Heidenreich, Axel; Christ, Hildegard; Hellmich, Martin; Fahlenkamp, Astrid V.

    2017-01-01

    Background Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. Objective We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. Design A prospective randomized, single-blinded, controlled study. Setting Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. Patients Forty-six patients with regular renal function undergoing partial nephrectomy. Interventions Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. Main outcome measures Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3–6 months. Results Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3–6 months. Conclusion Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible

  12. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Astrid V Fahlenkamp

    Full Text Available Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV. We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis.220 subjects with elevated PONV risk (Apfel score ≥2 undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up.Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02-5.19, p = 0.044. Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138. After xenon, nausea occurred significantly earlier (p = 0.014, was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups.In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea.EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663.

  13. The discovery potential of laser polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Markus [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics and Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-12-15

    Currently, a number of experiments are searching for vacuum magnetic birefringence and dichroism, i.e. for dispersive and absorptive features in the propagation of polarized light along a transverse magnetic field in vacuum. In this note we calculate the Standard Model contributions to these signatures, thereby illuminating the discovery potential of such experiments in the search for new physics. We discuss the three main sources for a Standard Model contribution to a dichroism signal: photon splitting, neutrino pair production and production of gravitons. (orig.)

  14. Mirror dark matter will be confirmed or excluded by XENON1T

    Directory of Open Access Journals (Sweden)

    J.D. Clarke

    2017-03-01

    Full Text Available Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative – losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.

  15. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    Science.gov (United States)

    Belasri, A.; Harrache, Z.

    2010-12-01

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  16. The next enriched xenon observatory. A search for neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The question whether the neutrino could be its own antiparticle is still not answered. The most practical way to test this is the search for the neutrinoless double beta decay. The half-life of this decay is related to the value of a linear combination of the masses of the neutrino mass eigenstates and therefore provides information about the absolute mass scale of neutrinos. The nEXO experiment - the successor of EXO200 - is currently under research and development. The baseline concept comprises a single-phase liquid xenon (LXe) time projection chamber (TPC) filled with about 5 tons of liquid xenon enriched to about 80% Xe-136 as the double beta decay nuclide. In order to fully cover the range of the effective Majorana neutrino mass in the inverted hierarchy scheme, excellent energy resolution is required. Therefore, a position-resolving, low-noise charge readout and very efficient light collection and detection are mandatory. For the purpose of very low background levels radiopure Silicon Photomultipliers (SiPMs) have to be used to detect the scintillation light of LXe. Due to the large half-life a huge detector mass and long term measurement are needed. In this talk the baseline-concept of the experimental setup is presented.

  17. An improved measurement of electron-ion recombination in high-pressure xenon gas

    CERN Document Server

    Serra, L; Álvarez, V; Borges, F I G; Camargo, M; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Labarga, L; Laing, A; Liubarsky, I; Lopez-March, N; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Pérez, J; Aparicio, J L Pérez; Querol, M; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Shuman, D; Simón, A; Sofka, C; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2014-01-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8 % FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be $0.561\\pm 0.045$, translating into an average energy to produce a primary s...

  18. NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos

    CERN Document Server

    Gomez-Cadenas, J J; Monrabal, F

    2012-01-01

    In this paper we describe an innovative type of Time Projection Chamber (TPC), which uses high-pressure xenon gas (HPXe) and electroluminescence amplification of the ionization charge as the basis of a apparatus capable of fully reconstructing the energy and topological signal of rare events. We will discuss a specific design of such HPXe TPC, the NEXT-100 detector, that will search for neutrinoless double beta decay using 100-150 kg of xenon enriched in the isotope Xe-136. NEXT-100 is currently under construction, after completion of an accelerated and very successful R&D period. It will be installed at the Laboratorio Subterr\\'aneo de Canfranc (LSC), in Spain. The commissioning run is expected for late 2013 or early 2014. We will also present physics arguments that suggest that the HPXe technology can be extrapolated to the next-to-next generation (e.g, a fiducial mass of 1 ton of target), which will fully explore the Majorana nature of the neutrino if the mass hierarchy is inverse.

  19. Comparison of dynamic and xenon computed tomography in the evaluation of cerebrovascular ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Tomoaki; Kikuchi, Haruhiko; Kuriyama, Yoshihiro; Nagata, Izumi; Yamagata, Sen; Naruo, Yoshito; Minamikawa, Jun; Kaneko, Takaji; Sawada, Toru.

    1989-01-01

    Dynamic computed tomographic (DCT) scans with iodine contrast enhancement were compared with simultaneously obtained xenon CT studies of cerebral blood flow (CBF) in 15 patients with subacute or chronic cerebrovascular ischemic disease. Specifically, the width and corrected first moment (cMT1), as demonstrated by DCT, were compared with the regional CBF (rCBF) data and the rCBF map obtained with xenon CT. The DCT and rCBF images were well correlated in patients without, but poorly correlated in those with, leptomeningeal anastomotic collateral circulation. The correlation of rCBF and 1/width with 1/cMT1 was significant (r=0.78, p<0.01) in the former, but not in the latter. These data were thought to reflect a difference in the tracer inflow pattern between the patients with and those without leptomeningeal anastomoses. Our series did not include patterns with acute cerebral infarction or recanalization, which are thought to be associated with marked changes in cerebral blood volume in the affected region. However, the influence of cerebral blood volume should be studied in detail in our subacute or chronic series.

  20. The iodine-plutonium-xenon age of the Moon-Earth system revisited

    CERN Document Server

    Avice, Guillaume

    2015-01-01

    From iodine-plutonium-xenon isotope systematics, we re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radioactivites (129I, T1/2 = 15.6 Ma, and 244Pu, T1/2 = 80 Ma) have produced radiogenic 129Xe and fissiogenic 131-136Xe, respectively, within the Earth, which related isotope fingerprints are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archean eon. Here we build a model that takes into account these results. Correction for Xe loss permits to compute new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The minimum Xe formation interval for the Earth- atmosphere is 40 (-10+20) Ma after start of solar system formation, which may also date the Moon-forming impact.