WorldWideScience

Sample records for laser-irradiated amorphous titania

  1. Agglomeration of amorphous silicon film with high energy density excimer laser irradiation

    International Nuclear Information System (INIS)

    He Ming; Ishihara, Ryoichi; Metselaar, Wim; Beenakker, Kees

    2007-01-01

    In this paper, agglomeration phenomena of amorphous Si (α-Si) films due to high energy density excimer laser irradiation are systematically investigated. The agglomeration, which creates holes or breaks the continuous Si film up into spherical beads, is a type of serious damage. Therefore, it determines an upper energy limit for excimer laser crystallization. It is speculated that the agglomeration is caused by the boiling of molten Si. During this process, outbursts of heterogeneously nucleated vapor bubbles are promoted by the poor wetting property of molten silicon on the SiO 2 layer underneath. The onset of the agglomeration is defined by extrapolating the hole density as a function of the energy density of the laser pulse. A SiO 2 capping layer (CL) is introduced on top of the α-Si film to investigate its influence on the agglomeration. It is found that effects of the CL depend on its thickness. The CL with a thickness less than 300 nm can be used to suppress the agglomeration. A thin CL acts as a confining layer and puts a constraint on bubble burst, and hence suppresses the agglomeration

  2. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  3. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  4. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Feng, Yuping [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Nieto, Daniel [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); García-Lecina, Eva [Unidad de Superficies Metálicas, IK4-CIDETEC, E20009 Donostia-San Sebastián Gipuzkoa (Spain); Mcdaniel, Clare [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Díaz-Marcos, Jordi [Unitat de Tècniques Nanomètriques, Centres Científics i Tecnològics, Universitat de Barcelona, E08028 Barcelona (Spain); Flores-Arias, María Teresa [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); O’Connor, Gerard M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Pellicer, Eva, E-mail: eva.pellicer@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); and others

    2016-05-15

    Highlights: • Formation of ripples after femtosecond pulsed laser irradiation (FSPLI) of metallic glass was studied. • Magnetic patterning at the surface of non-ferromagnetic amorphous steel was induced by FSPLI. • The origin of the generated ferromagnetism is the laser-induced devitrification. - Abstract: Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe{sub 3}C) and ferrimagnetic [(Fe,Mn){sub 3}O{sub 4} and Fe{sub 2}CrO{sub 4}] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  5. Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin films

    International Nuclear Information System (INIS)

    Al-Ghamdi, A.A.; Khan, Shamshad A.; Al-Heniti, S.; Al-Agel, F.A.; Al-Harbi, T.; Zulfequar, M.

    2010-01-01

    Amorphous thin films of Ga 15 Se 81 In 4 and Ga 15 Se 79 In 6 glassy alloys with thickness 3000 A were prepared by thermal evaporation onto chemically cleaned glass substrates. The changes in optical properties due to the influence of laser radiation on amorphous and thermally annealed thin films of Ga 15 Se 81 In 4 and Ga 15 Se 79 In 6 were calculated from absorbance and reflectance spectra as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. The optical band gaps observed to decrease with the increase of annealing temperatures. Furthermore, exposing thin films to laser irradiation leads to a decrease in optical band gap, absorption coefficient, refractive index and extinction coefficient for both as-prepared and annealed films. The decrease in the optical band gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of annealing temperature and by laser irradiation for 10 min exposure time. Outcomes of our study confirm that this system may be used for photovoltaic devices.

  6. Hydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.R.G. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)], E-mail: drm@ansto.gov.au; Triani, G.; Zhang, Z. [Institute of Materials Engineering, ANSTO, PMB 1, Menai, NSW 2234 (Australia)

    2008-10-01

    A two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130 deg. C) has been assessed. Titania thin films were deposited at 80 deg. C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120 deg. C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised.

  7. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2018-03-01

    Full Text Available Recyclable aggregates of mesoporous titania with different anatase–rutile ratios have been prepared by thermal treatments of either amorphous or peptized precursors. These last two have been obtained by hydrolysis of either Ti(OC2H54 or of Ti(OC2H54 in mixture with 5 mol % Zr(OC3H74 at room temperature in the presence of NH4OH as a catalyzing agent. The anatase–rutile ratio, the recyclable aggregates of the nano-sized particles, the mesoporosity, the surface area and the crystallinity of the resulting crystallized products of titania can be controlled by the synthesis parameters including: concentration of ammonia catalyst, stirring time and concentration of the peptizing HNO3, drying method of peptized precursors, calcination temperature, and finally the ramp rate up to the titania crystallization temperature. A broad range of synthesis parameters control the crystal sizes of titania particles produced. This allows catalyst preparation with very different crystal size, surface area, anatase to rutile crystal ratio and various mesoporous structures. Drying by lyophilization of precursors reduce the aggregation of the primary particles giving micro-/macroporous structures.

  8. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  9. Regrowth of Si and Ge under laser irradiation

    International Nuclear Information System (INIS)

    Bertolotti, M.; Vitali, G.

    1979-01-01

    The effects of pulsed laser irradiation on amorphous layers of Si and Ge obtained via ion implantation are considered. Amorphous-polycrystalline, amorphous-single crystal and polycrystalline-single crystal transitions have been obtained. Residual disorder and mechanical damage are considered. (author)

  10. The investigations of nanoclusters and micron-sized periodic structures created at the surface of the crystal and amorphous silica by resonant CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Mukhamedgalieva A.F.

    2017-01-01

    Full Text Available The creation of nanoclasters and micrometer sized periodical structures at the surface of silica (crystal quartz and fused quartz by action of pulsed CO2 laser radiation (pulse energy of 1 J, pulse time of 70 ns have been investigated. The laser action on the surface of samples lead to appearance of two kind of structures – periodical micron-sized structures with the period length close to wave length of CO2 laser irradiation and nanoclusters with size close to 50-100 nanometers. This creation connects with the intensive ablation of matter at the maxima of standing waves which are a results of the interference of falling and surfaces waves. This connects with the resonant absorption of infrared laser radiation by silicate minerals.

  11. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  12. A Density Functional Tight Binding Study of Acetic Acid Adsorption on Crystalline and Amorphous Surfaces of Titania

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2015-02-01

    Full Text Available We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101, rutile (110 and (B-TiO2 (001, as well as to the surface of amorphous (a- TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, rutile and (B-TiO2, respectively. For monodentate configurations, the strongest Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.

  13. Seeded Growth of Titania Colloids with Refractive Index Tunability and Fluorophore-Free Luminescence

    NARCIS (Netherlands)

    Demirors, A.F.; Jannasch, A.; van Oostrum, P.D.J.; Schäffer, E.; Imhof, A.; van Blaaderen, A.

    2011-01-01

    Titania is an important material in modern materials science, chemistry, and physics because of its special catalytic, electric, and optical properties. Here, we describe a novel method to synthesize colloidal particles with a crystalline titania, anatase core and an amorphous titania-shell

  14. Effect of UV laser irradiation on tissue

    International Nuclear Information System (INIS)

    Nakayama, Takeyoshi; Kubo, Uichi

    1992-01-01

    Laser-tissue interactions have been investigated through Electron Probe Micro Analysis (EPMA), UV-visible optical absorption and Fourier Transform Infrared Spectroscopy (FTIR). Three excimer lasers, ArF, KrF and XeCl, were used to irradiate tissue; cow thighbone and gelatin thin film. Features of UV laser irradiation are described. (author)

  15. Application of Laser Irradiation for Restorative Treatments

    OpenAIRE

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal ...

  16. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  17. Time-resolved studies of ultrarapid solidification of highly undercooled molten silicon formed by pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Wood, R.F.; Carpenter, R.

    1984-01-01

    This paper reports new results of nanosecond-resolution time-resolved optical reflectivity measurements, during pulsed excimer (KrF, 248 nm) laser irradiation of Si-implanted amorphous (a) silicon layers, which, together with model calculations and post-irradiation TEM measurements, have allowed us to study both the transformation of a-Si to a highly undercooled liquid (l) phase and the subsequent ultrarapid solidification process

  18. Application of Laser Irradiation for Restorative Treatments.

    Science.gov (United States)

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  19. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.

    Science.gov (United States)

    Campanelli, Leonardo Contri; Bortolan, Carolina Catanio; da Silva, Paulo Sergio Carvalho Pereira; Bolfarini, Claudemiro; Oliveira, Nilson Tadeu Camarinho

    2017-01-01

    An array of self-organized TiO 2 nanotubes with an amorphous structure was produced on the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, and the resulting fatigue and corrosion behaviors were studied. The electrochemical response of the nanotubular oxide surfaces was investigated in Ringer physiological solution through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The absence of transpassivation in the chloride-containing solution, in addition to the micron-scale values of the passivation current density, indicated the excellent corrosion behavior of the coating and the satisfactory protection against the creation of potential stress concentrators in the surface. Axial fatigue tests were performed in physiological solution on polished and coated conditions, with characterization of the treated surfaces by scanning electron microscopy before and after the tests. The surface modification was not deleterious to the fatigue response of both alloys mainly due to the nano-scale dimension of the nanotubes layer. An estimation based on fracture mechanics revealed that a circumferential crack in the range of 5μm depth would be necessary to affect the fatigue performance, which is far from the thickness of the studied coating, although no cracks were actually observed in the oxide surfaces after the tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Kinetics of laser irradiated nanoparticles cloud

    Science.gov (United States)

    Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha

    2018-02-01

    A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.

  1. Heat profiles of laser-irradiated nails.

    Science.gov (United States)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  2. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    increased absorption at 10.6 microns enables enhanced CO2 laser drilling and cutting rates in electrolytic Cu at incident intensities, I(0) of approximately 10(exp 6) W cm(exp -2). Data showing enhanced drilling rates in Al 1100-H14 is also presented. In these regimes the majority of material is removed in the liquid state. The amount of molten material formed can be directly attributed to the enhanced initial coupling of the excimer laser irradiated surface. Previously, to process Cu and Al it has been required to increase I(0) until material removal occurs through vaporization. This fundamental data and analysis provides a basic framework for further work in this new field of study. lasers is growing. &It is expected that applications beyond those described here will soon be explored.

  3. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  4. Parameter optimization for steel quenching by C02-laser irradiation

    International Nuclear Information System (INIS)

    Moryashchev, S.F.; Kislitsyn, A.A.; Kosyrev, F.K.

    1984-01-01

    The dependence of average absorption factor on maximal temperature of the article surface during quenching by CO 2 -laser irradiation was determined empirically. The calculations of depth of a hardening zone and process productivity in 40 Kh, 4Kh13 steels and Armco-iron with regard to this dependence were conducted

  5. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.

  6. Characterization of phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films by laser-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: alveema@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Zulfequar, M. [Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Effect of laser-irradiation on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by X-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Laser-irradiation causes a decrease in optical band gap in Ga{sub 15}Se{sub 77}Ag{sub 8} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non-direct transitions predominate. - Abstract: Phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films were prepared by thermal evaporation technique. Thin films were then irradiated by Transverse Electrical Excitation at Atmospheric Pressure (TEA) nitrogen laser for different time intervals. The X-ray structural characterization revealed the amorphous nature of as-prepared films while the laser irradiated films show the polycrystalline nature. Field Emission Scanning Electron Microscope (FESEM) has been used to study the structural changes. The results are discussed in terms of the structural aspects and amorphous to crystalline phase change in Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The observed changes are associated with the interaction of the incident photon and the lone-pairs electrons which affects the band gap of the Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The optical constants of these thin films are measured by using the absorption spectra measurements as a function of photon energy in the wavelength region 400-1100 nm. It is found that the optical band gap decreases while the absorption coefficient and extinction coefficient increases with increasing the laser-irradiation time. The decrease in the optical band gap has been explained on the basis of change in nature of films, from amorphous to polycrystalline state. The dc

  7. Single event upset threshold estimation based on local laser irradiation

    International Nuclear Information System (INIS)

    Chumakov, A.I.; Egorov, A.N.; Mavritsky, O.B.; Yanenko, A.V.

    1999-01-01

    An approach for estimation of ion-induced SEU threshold based on local laser irradiation is presented. Comparative experiment and software simulation research were performed at various pulse duration and spot size. Correlation of single event threshold LET to upset threshold laser energy under local irradiation was found. The computer analysis of local laser irradiation of IC structures was developed for SEU threshold LET estimation. The correlation of local laser threshold energy with SEU threshold LET was shown. Two estimation techniques were suggested. The first one is based on the determination of local laser threshold dose taking into account the relation of sensitive area to local irradiated area. The second technique uses the photocurrent peak value instead of this relation. The agreement between the predicted and experimental results demonstrates the applicability of this approach. (authors)

  8. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  9. Effect Of Laser Irradiation On Biosynthesis Of Antibiotics

    International Nuclear Information System (INIS)

    SALAMA, S.M.; MAHMOUD, S.M.; EL-KABBANY, H.M.

    2010-01-01

    An investigation concerning the effect of He:Ne laser irradiation on some isolated actinomycetes was carried out. Seven isolated actinomycetes were considered as most potent producing broad spectrum antibiotics. The strains have been identified on the basis of taxonomic studies as Streptomyces nogalator (H12), Streptomyces griseoluteus (YM23), Amycolatopsis mediterranei (B40), Glycomyces harbinensis (KA16), Streptosporangium corrugatum (B67), Streptoalloteichus hindustamus (B74) and Streptomyces aurantiogriseus (S15). Seven genotypes were chosen after He:Ne laser irradiation as representative for each isolated strain. The active metabolite from most potent genotype of Streptomyces nogalator (H12) was extracted by ethyl acetate then concentrated under vacuo and the crude fraction was purified using thin layer and column chromatography. Ultra violet maximum absorption peak was recorded at 231.5 and 206 nm. The IR and NMR were consulted to confirm the chemical characteristics of the antibiotic. The biological activity and toxicity were also investigated.

  10. Influence of powerful pulses of laser irradiation on metallic films

    International Nuclear Information System (INIS)

    Besogonov, V.V.; Chudinov, V.G.

    1999-01-01

    The relaxation process of energy transferred by powerful pulses of laser irradiation to a superficial layer in metallic films has been investigated by the molecular dynamics technique. Beam energy transformation into mechanical energy of movement of irradiated atoms is shown to be possible due to changing pair interaction potentials. Variation of the Coulomb interaction screening of an ionic subsystem through the excitation of valence electrons is illustrated as major of the reasons for changing the potentials

  11. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  12. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    International Nuclear Information System (INIS)

    Pudovkin, M S; Korableva, S L; Krasheninnicova, A O; Nizamutdinov, A S; Semashko, V V; Zelenihin, P V; Alakshin, E M; Nevzorova, T A

    2014-01-01

    The article is devoted to exploration of biological effects of crystalline PrF 3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF 3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF 3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly

  13. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    Science.gov (United States)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  14. Communication: Mode bifurcation of droplet motion under stationary laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2014-08-07

    The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.

  15. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  16. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    Science.gov (United States)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  17. Effect of laser irradiation on Ag4In12Sb56Te28

    Science.gov (United States)

    Chinnusamy, Rangasami

    2018-04-01

    Ag4In12Sb56Te28 has been synthesized by melt-quench method. Phase homogeneity, crystal structure and effect of laser irradiation have been investigated using X-ray diffraction (XRD) and Raman spectroscopy. Rietveld refinement of crystal structure revealed that Ag4In12Sb56Te28 is a multiphase system with AgIn3Te5, Sb8Te3 and Sb phases. Combined optical microscopy and Raman spectroscopy have been used to understand the distribution of different phases on the surface of the samples, which substantiated the results of Rietveld analysis. Interaction of 20 mW laser beam with samples has been investigated using Raman measurements. The results have shown that regions with large phase fraction of AgIn3Te5 become amorphous during laser-sample interaction, but the starting phase remains nearly same after the interaction. Regions with AgIn3Te5 and nearly equal or larger amount of Sb8Te3 have shown significant growth of α-Sb2O3 during and after laser-sample interaction. Regions rich in Sb have shown formation of AgIn3Te5 and growth of α-Sb2O3 during and after interaction. These observations have been explained based on the maximum temperature rise at different regions during laser-sample interaction.

  18. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  19. Structure and density for As23Se67Ge10 amorphous films

    International Nuclear Information System (INIS)

    Shchurova, T.N.; Savchenko, N.D.

    1999-01-01

    The effect of thermal annealing and argon laser irradiation on structure and volume for thin amorphous As 23 Se 67 Ge 10 films deposited by thermal evaporation has been investigated. The short-range structure for the annealed films has been found to be more ordered as compared to the irradiated films. The decrease in film volume under thermal annealing and its increase under laser irradiation have been shown. The changes in film volume have been discussed in the context of non-ergodic model for the amorphous state equilibrium taking into account forces acting from the substrate

  20. Activity of respiratory system during laser irradiation of brain structures

    Science.gov (United States)

    Merkulova, N. A.; Sergeyeva, L. I.

    1984-06-01

    The performance of one of the principal links of the respiratory system, the respiratory center, was studied as a function of the exposure of the medulla oblongata and the sensomotor zone of the cerebral hemisphere cortex to low level laser irradiation in the red wavelength of the spectrum. Experiments were done on white rats under barbital anesthesia. Under such conditions a substantial effect was observed on the activity of the respiratory center. Laser light may display activating or inhibitory influences, in some cases the bilateral symmetry of the activity of the respiratory center is affected indicating deep changes in the integrative mechanism of the functioning of the right and left sides of the hemispheres. The laser beam effect depends on many factors: specific light properties, duration of the exposure, repetition of exposures, initial functional state of the CNS, etc.

  1. Using laser irradiation for the surgical treatment of periodontal disease

    Science.gov (United States)

    Vieru, Rozana D.; Lefter, Agafita; Herman, Sonia

    2002-10-01

    In the marginal pr ogressive profound periodontities, we associated low level laser therapy (LLLT) to the classical surgical treatment with implant of biovitroceramics. From a total of 50 patients, 37 where irradiated with the laser. We used a diode laser, =830 nm, energy density up to 2 J cm2, in Nogier pulsed mode. The laser treatment is used in a complex of therapeutic procedures: odontal, local anti-inflammatory -- as well as in the cabinet and at home --, prosthetic, and for the morphologic and functional rebalancing. The immediate effects where: an evolution without bleeding and without post-surgical complications, as can appear at the patients who didn't benefit of laser irradiation (hematom, pain, functional alteration in the first post-surgical week). Operated tissue is recovering faster. The percentage of recurrences decreases and the success depends less on the biological potential and the immunity of each individual.

  2. Thermal transport measurements of uv laser irradiated spherical targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Delettrez, J.; Henke, B.L.; Richardson, M.C.

    1985-01-01

    New measurements are presented of thermal transport in spherical geometry using time-resolved x-ray spectroscopy. We determine the time dependence of the mass ablation rate m(dot) by following the progress of the ablation surface through thin layers of material embedded at various depths below the surface of the target. These measurements made with 6 and 12 uv (351 nm) beams from OMEGA are compared to previous thermal transport data and are in qualitative agreement with detailed LILAC hydrodynamic code simulations which predict a sharp decrease in m(dot) after the peak of the laser pulse. Non-uniform laser irradiation of the target results in the anomalously high values of m(dot) measured in these experiments

  3. Femtosecond laser irradiation of the fluorescent molecules-loaded poly(lactic-co-glycolic acid)

    Science.gov (United States)

    Umemoto, Taiga; Shibata, Akimichi; Terakawa, Mitsuhiro

    2017-09-01

    Molecular release from scaffolds is desired for tailoring cell-compatible tissue engineering. Several methods have been proposed to control molecular release, such as annealing, plasma treatment, and laser processing. In this study, we describe the alteration of Rhodamine B (RhB)-loaded poly(lactic-co-glycolic acid) (PLGA) after femtosecond laser irradiation, which was evaluated on the basis of the water absorption and mass remaining. Fluorescence measurement of released RhB molecules revealed the acceleration of the molecular release upon 400-nm laser irradiation, whereas 800-nm laser irradiation did not induce a comparable degree of change compared with non-irradiated samples. The result of the water absorption measurement indicates that the large amount of water absorption of 400-nm laser-irradiated PLGA sample may accelerate the diffusion of the loaded molecules through absorbing water, which resulted in the faster molecular release.

  4. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  5. Investigation of field emission properties of laser irradiated tungsten

    International Nuclear Information System (INIS)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Jalil, Sohail Abdul; Rafique, Muhammad Shahid

    2018-01-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm 2 . Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I-V characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/μm, 1300 to 3490 and 107 to 350 μA/cm 2 , respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences. (orig.)

  6. Morphological changes in skin tumors caused by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moskalik, K G; Lipova, V A; Neyshtadt, E L

    1979-01-01

    Morphological changes induced by treating melanomas, basaloma and flatcell skin cancers with a pulsed neodymium laser at 1060 nm, pulse length 1 msec and energy 250 to 500 J/cm/sup 2/, were studied using impressions and scrapings from the affected area. Nuclear pyknosis, nuclear and cellular elongation, vacuolization, frequent complete loss of cytoplasm, particulaly in the zone of direct irradiation, and loss of cellular structure were seen. These dystrophic changes increased with closeness to the zone of direct irradiation, culminating in necrosis. Formed and decomposed blood elements and melanin accumulated in the intracellular spaces, due to disruption of capillaries and small arteries and veins. Fewer and more aggregated melanoblasts were found after melanoma irradiation. Nuclear chromatin fusion, cytoplasmic changes and altered cell shape were observed. Basaloma cells were clustered and elongated after irradiation, with many fibrous structures and loss of cellular elements. Cytoplasmic vacuolization and lysis, bare nuclei, karyolysis, karyorrhexis and karyopyknosis were seen in corneous flat-cell cancer. In the few cases in which malignant cells were found under the scab from the first treatment the procedure was repeated. The morphological changes induced by pulsed laser irradiation are very similar to electrocoagulation necrosis, but are more localized. The ability of low and middle energy lasers to induce thrombosis and coagulation in vascular walls reduced the probability of hematogenic tumor cell dissemination. Cytological examination is highly effective in determining the degree of radical skin cancer healing due to laser treatment. 12 references, 2 figures.

  7. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    Science.gov (United States)

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  8. Fabrication and structural characterization of highly ordered titania nanotube arrays

    Science.gov (United States)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  9. Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Dawood, Asadullah [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Rafique, Muhammad Shahid [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Bashir, M.F. [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan)

    2015-06-15

    The variation in surface morphology and plasma parameters of laser irradiated tungsten has been investigated as a function of irradiance. For this purpose, Nd:YAG laser (1064 nm, 10 ns, 10 Hz) is employed. Tungsten targets were exposed to various laser irradiances ranging from 6 to 50 GW/cm{sup 2} under ambient environment of argon at a pressure of 20 Torr. Scanning electron microscope analysis has been performed to analyze the surface modification of irradiated tungsten. It revealed the formation of micro- and nanoscale surface structures. In central ablated area, distinct grains and crack formation are observed, whereas peripheral ablated areas are dominated by cones and pinhole formation. It was observed that at irradiances exceeding a value of 13 GW/cm{sup 2}, the morphological trend of the observed structures has been changed from erosion to melting and re-deposition dominant phase. Ablation efficiency as a function of laser irradiance has also been investigated by measuring the crater depth using surface profilometry analysis. It is found to be maximum at an irradiance of 13 GW/cm{sup 2} and decreases at high laser irradiances. In order to correlate the accumulated effects of plasma parameters with the surface modification, laser-induced breakdown spectroscopy analysis has been performed. The electron temperature and number density of tungsten plasma have been evaluated at various laser irradiances. Initially with the increase of the laser irradiance up to 13 GW/cm{sup 2}, an increasing trend is observed for both plasma parameters due to enhanced energy deposition. Afterward, a decreasing trend is achieved which is attributed to the shielding effect. With further increase in irradiance, a saturation stage comes and insignificant changes are observed in plasma parameters. This saturation is explainable on the basis of the formation of a self-regulating regime near the target surface. Surface modifications of laser irradiated tungsten have been correlated with

  10. Characterization of sodium phenytoin co-gelled with titania for a controlled drug-release system

    International Nuclear Information System (INIS)

    Lopez, T.; Quintana, P.; Ortiz-Islas, E.; Vinogradova, E.; Manjarrez, J.; Aguilar, D.H.; Castillo-Ocampo, P.; Magana, C.; Azamar, J.A.

    2007-01-01

    Sodium phenytoin, C 15 H 11 N 2 NaO 2 , in several concentrations was co-gelled with titania (TiO 2 ), by a sol-gel process. This technique is a promising method to encapsulate several drugs, in this case, phenytoin is an anticonvulsant used to control epileptic seizures. Samples were prepared by adding different concentrations (X = 50, 100, 200 and 250 mg per 20 g of titania matrix) of sodium phenytoin (Ph) to a solution of titanium n-butoxide. The resulting titania-Ph-X materials were characterized by transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) surface areas. The porous nanomaterials showed a wide range of particle size, from 10 to 210 nm, with a mean pore diameter of 5 nm. X-ray diffraction showed an amorphous structure of the prepared samples

  11. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    Energy Technology Data Exchange (ETDEWEB)

    Jirák, Zdeněk; Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase, possessing high magnetization, M{sub 10} {sub kOe}(4.5 K) = 63.5 emu g{sup −1}, and Curie temperature, T{sub C} = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO{sub 2} shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles. - Highlights: • Magnetic nanoparticles of perovskite La{sub 0.65}Sr{sub 0.35}MnO{sub 3} phase are coated with TiO{sub 2}. • The titania forms a continuous and amorphous shell and provides colloidal stability. • Morphology and surface properties are compared to a silica-coated product. • MRI properties of both the titania- and silica-coated particles are studied at 0.5 T. • The temperature dependence of r{sub 2} is strongly affected by the type of coating.

  12. EFFECTS OF SYNTHESIS PARAMETERS ON THE STRUCTURE OF TITANIA NANOTUBES

    Directory of Open Access Journals (Sweden)

    M. NORANI MUTI

    2008-08-01

    Full Text Available Detection of hydrogen is crucial for industrial process control and medical applications where presence of hydrogen in breath indicates different type of health problems particularly in infants. A better performed sensor with high sensitivity, selectivity, reliability and faster response time would be critical and sought after especially for medical applications. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to investigate the effect of the anodizing conditions on the structure of titania nanotubes produced by anodizing method. The anodizing parameters namely the ambient temperature and separation of electrodes are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes for enhanced properties based on their uniformity, coverage, pore size and crystallinity. Samples of nanotubes produced were subjected to annealing process at varying time and temperature in order to improve the crystallinity of the nanotubes. The highly ordered porous titania nanotubes produced by this method are of tabular shape and have good uniformity and alignment over large areas. The pore size of the titania nanotubes ranges from 47 to 94 nm, while the wall thickness is in the range of 17 to 26 nm. The length of the nanotubes was found to be about 280 nm. The structure of nanotubes changes from amorphous to crystalline after undergoing annealing treatment. Nanotubes have also shown to have better crystallinity if they were subjected to annealing treatment at higher temperature. The characteristics of nanotubes obtained are found to be agreeable to those that have been reported to show improved hydrogen gas sensing properties.

  13. Thermal Changes of Maize Seed by Laser Irradiation

    Science.gov (United States)

    Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.

    2015-09-01

    In this research, the thermal evolution in maize seeds ( Zea mays L.) was studied when low-intensity laser irradiation was applied during 60 s. The seeds were irradiated in three different conditions: suspended in air, placed on an aluminum surface, and finally placed on a cardboard; the evolution of the seed temperature was measured by an infrared camera. Photoacoustic spectroscopy and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient (β ) of the seeds. The results indicate that using 650 nm laser light and 27.4 mW, it is possible to produce temperature changes (up to 9.06°C after 1 min) on the seeds. Comparing the mean temperature of the seeds, during and after the incidence of light from a laser, it was found that there were statistically significant differences (P≤ 0.05) from time t1 to time t_{16} (t1 to t_{16}) and t3 to t_{16}, for the laser turned on and off, respectively. The seed condition that had the highest temperature variation, relative to the initial temperature (during the irradiation laser exposure), involved the seeds suspended in air. With regard to the stage of decay of the temperature, it was found that the seed condition that decays more slowly was the seed placed on the cardboard. It was also found that black-dyed maize seeds are optically opaque in the 300 nm to 700 nm range Also, the thermal diffusion length is smaller than the optical penetration length. In the present investigation, it was shown that there is a thermal component associated with the mechanisms of laser biostimulation, which is also a function of the container materials of the seed. In this way, the effects of laser treatment on maize seeds involve at least a temperature effect. It is important to know the temperature changes in the seeds that have been irradiated with a laser beam since they could have substantial practical and theoretical importance.

  14. Apraclonidine effects on ocular responses to YAG laser irradiation to the rabbit iris

    International Nuclear Information System (INIS)

    Sugiyama, K.; Kitazawa, Y.; Kawai, K.

    1990-01-01

    Apraclonidine (p-aminoclonidine) ophthalmic solution effectively reduces the rise in intraocular pressure (IOP) following anterior segment laser surgery. We tested the effect of topical 0.5% apraclonidine on intraocular pressure and on protein and prostaglandin (PG) E2 concentrations in aqueous humor following Q-switched Nd:YAG laser irradiation to the iris of albino rabbits, at an energy level of 2 to 200 mJ. IOP was measured prior to and for 24 hr after irradiation. Aqueous humor was withdrawn before and 1 hr after laser irradiation for determining protein (Lowry method) and PGE2 (radioimmunoassay). Four to seven rabbits were used for each experiment. The increase in IOP and protein concentration following laser irradiation was demonstrated to be dependent on the amount of laser energy. Apraclonidine completely abolished the IOP rise, and significantly reduced the elevation of protein content. Apraclonidine failed to affect the increase in PGE2

  15. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  16. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang [Keio University, Department of Mechanical Engineering, Faculty of Science and Technology, Yokohama (Japan)

    2016-10-15

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN. (orig.)

  17. The osmotic fragility of human erythrocytes is inhibited by laser irradiation

    International Nuclear Information System (INIS)

    Habodaszova, D.; Sikurova, L.; Waczulikova, I.

    2004-01-01

    In this study we investigated the influence of green laser irradiation (532 nm, 30 mW, 31,7 J/cm 2 ) on the membrane integrity of human erythrocytes and compared the results with the effect of infrared laser irradiation (810 nm, 50 mW, 31,3 J/cm 2 ). To evaluate the membrane integrity of erythrocytes, one clinical parameter, the osmotic fragility, was investigated. We observed a decrease in osmotic fragility of the erythrocytes after irradiation by the green laser light as well as by the infrared laser compared to non-irradiated controls (Authors)

  18. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  19. Mn-Zn ferrite nanoparticles with silica and titania coatings: synthesis, transverse relaxivity and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Herynek, V.; Havelek, R.; Královec, K.; Kubániová, D.; Kohout, J.; Dvořák, P.; Jirák, Zdeněk

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-8, č. článku 5300908. ISSN 0018-9464 R&D Projects: GA ČR GA16-04340S Institutional support: RVO:68378271 Keywords : amorphous titania * silica * magnetic nanoparticles * Mn-Zn ferrite * transverse relaxivity * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  20. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  1. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  2. Data formats design of laser irradiation experiments in view of data analysis

    International Nuclear Information System (INIS)

    Su Chunxiao; Yu Xiaoqi; Yang Cunbang; Guo Su; Chen Hongsu

    2002-01-01

    The designing rules of new data file formats of laser irradiation experiments are introduced. Object-oriented programs are designed in studying experimental data of the laser facilities. The new format data files are combinations of the experiment data and diagnostic configuration data, which are applied in data processing and analysis. The edit of diagnostic configuration data in data acquisition program is also described

  3. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  4. Nano-pulsed laser irradiation scanning system for phase-change materials

    International Nuclear Information System (INIS)

    Kim, Sookyung; Li Xuezhe; Lee, Sangbin; Kim, Kyung-Ho; Lee, Seung-Yop

    2008-01-01

    Recently, the demand of a laser irradiation tester is increasing for phase change random access memory (PRAM) as well as conventional optical storage media. In this study, a nano-pulsed laser irradiation system is developed to characterize the optical property and writing performance of phase-change materials, based on a commercially available digital versatile disk (DVD) optical pick-up. The precisely controlled focusing and scanning on the material's surface are implemented using the auto-focusing mechanism and a voice coil motor (VCM) of the commercial DVD pick-up. The laser irradiation system provides various writing and reading functions such as adjustable laser power, pulse duration, recording pattern (spot, line and area), and writing/reading repetition, phase transition, and in situ reflectivity measurement before/after irradiation. Measurements of power time effect (PTE) diagram and reflectivity map of Ge 2 Sb 2 Te 5 samples show that the proposed laser irradiation system provides the powerful scanning tool to quantify the optical characteristics of phase-change materials

  5. Low damage electrical modification of 4H-SiC via ultrafast laser irradiation

    Science.gov (United States)

    Ahn, Minhyung; Cahyadi, Rico; Wendorf, Joseph; Bowen, Willie; Torralva, Ben; Yalisove, Steven; Phillips, Jamie

    2018-04-01

    The electrical properties of 4H-SiC under ultrafast laser irradiation in the low fluence regime (engineering spatially localized structural and electronic modification of wide bandgap materials such as 4H-SiC with relatively low surface damage via low temperature processing.

  6. Modeling and simulation of heat distribution in human skin caused by laser irradiation

    NARCIS (Netherlands)

    Luan, Y.; Dams, S.D.

    2009-01-01

    Study of light-based skin rejuvenation needs prospective insights of mechanism of laser tissue interaction. A well-built model plays a key role in predicting temperature distribution in human skin exposed to laser irradiation. Therefore, it not only provides guidance for in vitro experiment, but

  7. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Ruffino, F.; Pugliara, A.; Carria, E.; Romano, L.; Bongiorno, C.; Fisicaro, G.; La Magna, A.; Spinella, C.; Grimaldi, M.G.

    2012-01-01

    Highlights: ► Au nanoclusters are produced by nanosecond laser irradiations of thin Au film on Si. ► The shape, size, and surface density of the Au nanoclusters are tunable by laser fluence. ► The formation dynamic of the Au nanoclusters under nanosecond laser irradiation is analyzed. - Abstract: In this work, we study the nanostructuring effects of nanosecond laser irradiations on 5 nm thick Au film sputter-deposited on Si. After deposition of Au on Si substrate, nanosecond laser irradiations were performed increasing the laser fluence from 750 to 1500 mJ/cm 2 . Several analyses techniques, such as Rutherford backscattering spectrometry, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy were crossed to study the morphological evolution of the Au film as a function of laser fluence. In particular, the formation of Au nanoparticles was observed. The analyses allowed a quantitative evaluation of the evolution of the nanoparticles size, surface density, and shape as a function of the laser fluence. Therefore, a control the structural properties of the Au nanoparticles is reached, for example, for applications in Si nanowires growth or plasmonics.

  8. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    Science.gov (United States)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  9. The Effect of Laser Irradiation on Shear Bond Strength of GI to Dentin After CPP-ACP Treatment

    Directory of Open Access Journals (Sweden)

    Moezizadeh

    2016-02-01

    Full Text Available Background Dentin sensitivity is one of the most important problems in dentistry. Enamel loss due to root exposure is serious issue and common exposure is one of the reasons for dentin hypersensitivity. There are different methods for solving this problem. One of the most conservative and least expensive methods is use of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP paste. Objectives The aim of this study was to evaluate shear bond strength of GIC to dentin, with or without laser, CPP-ACP paste and polyacrylic acid treatments. Materials and Methods Fifty sound human third molars were bisected in a mesiodistal direction using a diamond disk. Using 400, 600 and 800 grit silicon carbide paper, dentin surfaces were exposed. The teeth were divided into five groups. In groups A, B, D and H, CPP-ACP (GC tooth mousse Itabashi-Ku, Tokyo, Japan was applied for one hour the first day and repeated at the same time of day for a total of five days. In groups B, C, D and E, the specimens were subjected to laser for 10 seconds using Er, Cr: YSGG laser. In groups B, C, H and G, specimens were treated with 10% polyacrylic acid for 20 seconds. A plastic tube containing GI was positioned over the tooth. Samples were loaded in shear bond using a Universal Testing Machine (Zwick/Roell, Germany, at a 0.5 mm/minute crosshead speed. Results Despite the failing of groups A and D, group analysis showed that there were no significant differences between the groups. The predominant type of fracture in all groups was adhesive. Conclusions Application of CPP-ACP, without preconditioning with polyacrylic acid, can decrease shear bond strength. Laser irradiation has no effect on shear bond strength of GIC to dentin in this condition.

  10. Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

    Directory of Open Access Journals (Sweden)

    Massimo Zimbone

    2017-01-01

    Full Text Available Since 1970, TiO2 photocatalysis has been considered a possible alternative for sustainable water treatment. This is due to its material stability, abundance, nontoxicity and high activity. Unfortunately, its wide band gap (≈3.2 eV in the UV portion of the spectrum makes it inefficient under solar illumination. Recently, so-called “black TiO2” has been proposed as a candidate to overcome this issue. However, typical synthesis routes require high hydrogen pressure and long annealing treatments. In this work, we present an industrially scalable synthesis of TiO2-based material based on laser irradiation. The resulting black TiOx shows a high activity and adsorbs visible radiation, overcoming the main concerns related to the use of TiO2 under solar irradiation. We employed a commercial high repetition rate green laser in order to synthesize a black TiOx layer and we demonstrate the scalability of the present methodology. The photocatalyst is composed of a nanostructured titanate film (TiOx synthetized on a titanium foil, directly back-contacted to a layer of Pt nanoparticles (PtNps deposited on the rear side of the same foil. The result is a monolithic photochemical diode with a stacked, layered structure (TiOx/Ti/PtNps. The resulting high photo-efficiency is ascribed to both the scavenging of electrons by Pt nanoparticles and the presence of trap surface states for holes in an amorphous hydrogenated TiOx layer.

  11. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  12. The effect of laser irradiation on electrical and structural properties of ZnO thin films

    Directory of Open Access Journals (Sweden)

    P Kameli

    2013-03-01

    Full Text Available  In this paper, ZnO thin film was prepared by sol-gel process on glass substrates. The deposited films were dried at 100 and 240 ˚C and then annealed at 300, 400 and 500 ˚C. The two-probe measurement showed that resistance of as-prepared films is very high. The KrF excimer (λ=248 nm laser irradiation with 1000 pulses, frequency of 1 Hz and 90 mJ/cm2 energy on surface of film resulted in the reduction of the films electrical resistance. X-ray diffraction (XRD patterns confirmed the improved hexagonal wurtzite structure of film, and AFM and FE-SEM analyses showed regular and spherical grain was formed on the surface. The particle size was increased from ~10 to ~30 nm after leaser irradiation. Generally, it was showed that electrical, structural and morphological properties of films improve considerably by laser irradiation.

  13. In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood

    Science.gov (United States)

    Fuad, Siti Sakinah Mohd; Suardi, N.; Mustafa, I. S.

    2018-04-01

    This experimental study was performed to investigate the effect of low level yellow laser of 589nm wavelength with various laser irradiation time. Human blood samples with random diseases are irradiated with yellow laser of power density of 450mW/cm2 from 10 minutes to 60 minutes at 10 minutes intervals. The morphology of the red blood cell were also observed for different irradiation time. The result shows that there is a significant different in the absorption of light with varying laser irradiation time (p<0.01). The maximum absorption recorded at 40 minutes of irradiation at 340nm peak. Blood smear of the samples reveals that there are observable changes in the morphology of the red blood cell at 40 minutes and 60 minutes of irradiation.

  14. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Low-intensity laser irradiation use for oral and lip precancer treatment

    Science.gov (United States)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  16. Improvement of laser irradiation uniformity in GEKKO XII glass laser system

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Matsuoka, Shinichi; Ando, Akinobu; Amano, Shinji; Nakatsuka, Masahiro; Kanabe, Tadashi; Jitsuno, Takahisa; Nakai, Sadao

    1995-01-01

    The uniform laser irradiation is one of key issues in the direct drive laser fusion research. The several key technologies for the uniform laser irradiation are reported. This paper includes the uniformity performance as a result of the introduction of the random phase plate, the partially coherent light and the beam smoothing by spectral dispersion into the New Gekko XI glass laser system. Finally the authors summarize the overall irradiation uniformity on the spherical target surface by considering the power imbalance effect. The technologies developed for the beam smoothing and the power balance control enable them to achieve the irradiation nonuniformities of around 1% level for a foot pulse and of a few % for a main drive pulse, respectively

  17. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    OpenAIRE

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-01-01

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the ...

  18. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored ...

  19. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  20. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  1. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  2. Low Level (Sub Threshold), Large Spot Laser Irradiations of the Foveas of Macaca Mulatta.

    Science.gov (United States)

    1981-11-01

    spherules. In a portion of the block containing the macula a degenerating patch is seen, displaying considerable edema, with pyknotic and missing nuclei...6 Peripheral areas 11 Macula 11 Eye # 3 M31 2KD 15 (enucleated 7 days after focal irradiation jby gallium arsenide laser). Control areas 15 Neodymium...laser irradiations peripheral areas 23 Macula 28 TABLE OF CONTENTS continued Page Eye # 5 M443 2JD Patched Eye 32 Most areas 32 area nasal to optic disc

  3. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    Directory of Open Access Journals (Sweden)

    Yao CP

    2017-08-01

    Full Text Available Cuiping Yao,1,2,* Florian Rudnitzki,2,* Gereon Hüttmann,2,3 Zhenxi Zhang,1 Ramtin Rahmanzadeh2 1Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China; 2Institute of Biomedical Optics, University of Lübeck, Lübeck, 3Airway Research Center North (ARCN, Member of the German Center for Lung Research (DZL, Kiel, Germany *These authors contributed equally to this work Purpose: Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods: AuNPs (30 nm were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results: Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion: Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium

  4. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  5. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  6. Properties of ZnO whiskers under CO2-laser irradiation

    International Nuclear Information System (INIS)

    Shkumbatyuk, P. S.

    2010-01-01

    Needlelike ZnO single crystals (whiskers) 0.3-0.8 mm long and 1-10 μm in diameter with a resistivity from 3 x 10 2 to 1 Ω cm have been grown under cw CO 2 -laser irradiation. The whiskers exhibit weak electroluminescence caused by injection from contacts with participation of intrinsic defects, which affect the electric field distribution.

  7. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  8. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Barboza, Carlos Augusto Galvão; Ginani, Fernanda; Soares, Diego Moura; Henriques, Águida Cristina Gomes; Freitas, Roseana de Almeida

    2014-01-01

    To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm"2). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm"2, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm"2, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering

  9. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    Science.gov (United States)

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (pirrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  10. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    Science.gov (United States)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  11. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  12. Effect of semiconductor GaAs laser irradiation on pain perception in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zarkovic, N.; Manev, H.; Pericic, D.; Skala, K.; Jurin, M.; Persin, A.; Kubovic, M.

    1989-01-01

    The influence of subacute exposure (11 exposures within 16 days) of mice to the low power (GaAs) semiconductive laser-stimulated irradiation on pain perception was investigated. The pain perception was determined by the latency of foot-licking or jumping from the surface of a 53 degrees C hot plate. Repeated hot-plate testing resulted in shortening of latencies in both sham- and laser-irradiated mice. Laser treatment (wavelength, 905 nm; frequency, 256 Hz; irradiation time, 50 sec; pulse duration, 100 nsec; distance, 3 cm; peak irradiance, 50 W/cm2 in irradiated area; and total exposure, 0.41 mJ/cm2) induced further shortening of latencies, suggesting its stimulatory influence on pain perception. Administration of morphine (20 mg/kg) prolonged the latency of response to the hot plate in both sham- and laser-irradiated mice. This prolongation tended to be lesser in laser-irradiated animals. Further investigations are required to elucidate the mechanism of the observed effect of laser.

  13. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Carlos Augusto Galvão; Ginani, Fernanda [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Soares, Diego Moura [Universidade Federal de Pernambuco, Recife, PE (Brazil); Henriques, Águida Cristina Gomes; Freitas, Roseana de Almeida [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)

    2014-07-01

    To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm{sup 2}). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm{sup 2}, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm{sup 2}, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering.

  14. In Vitro Evaluation of Dentin Hydraulic Conductance After 980 nm Diode Laser Irradiation.

    Science.gov (United States)

    Rizzante, Fabio A P; Maenosono, Rafael M; Duarte, Marco A H; Furuse, Adilson Y; Palma-Dibb, Regina G; Ishikiriama, Sérgio K

    2016-03-01

    Dentin hypersensitivity treatments are based on the physical obliteration of the dentinal tubules to reduce hydraulic conductance. The aim of the present study is to evaluate the hydraulic conductance of bovine root dentin after irradiation with a 980-nm diode laser, with or without associated fluoride varnish. Sixty bovine root dentin specimens were divided into six groups (n = 10 in each group): G1, G3, and G5 (0.5 W, 0.7 W, and 1 W diode laser, respectively); G2, G4, and G6 (fluoride varnish application + 0.5 W, 0.7 W, and 1 W diode laser, respectively). The dentin hydraulic conductance was evaluated at four time periods with a fluxmeter: 1) with smear layer, 2) after 37% phosphoric acid etching, 3) after the treatments, and 4) after 6% citric acid challenge. After the dentinal fluid flow measurements, specimens were also evaluated for mineral composition using energy dispersive X-ray spectroscopy (EDS). Analysis demonstrated a better result with increased irradiation power (P diode laser irradiation was associated with the application of fluoride varnish (P laser irradiation, the 1 W group was superior when compared with the 0.5 W and 0.7 W irradiated groups immediately after treatment (P laser treatments. Laser irradiation of exposed dentin promoted significant reduction in the dentin hydraulic conductance, mainly with higher energy densities and association with fluoride varnish.

  15. Residual stress improvement mechanism on metal material by underwater laser irradiation

    International Nuclear Information System (INIS)

    Sano, Yuji; Yoda, Masaki; Mukai, Naruhiko; Obata, Minoru; Kanno, Masanori

    2000-01-01

    Residual stress improvement technology for component surface by underwater pulsed laser irradiation has been developed as a method of preventing stress corrosion cracking (SCC) of core components in nuclear reactors. In order to optimize the laser irradiation conditions based on a complete understanding of the mechanism, the propagation of a shock wave induced by the impulse of laser irradiation and the dynamic response of the irradiated material were analyzed through time-dependent elasto-plastic calculations with a finite element program. The calculated results are compared with the measured results obtained by experiments in which laser pulses with an energy of 200 mJ are focused to a diameter of 0.8 mm on a water-immersed test piece of 20% cold-worked Type 304 austenitic stainless steel to simulate neutron irradiation hardening. A residual compressive stress, which is nearly equivalent to the yield stress of the processed material, remains on the material surface after passage of the shock wave with enough amplitude to induce a permanent strain. Multiple irradiation of laser pulses extends the stress-improved depth to about 1 mm, which would be the limit corresponding to the three-dimensional dispersion effect of the shock wave. (author)

  16. Laser irradiation effects and its possible mechanisms of action on spermatozoa functions in domestic animals

    Directory of Open Access Journals (Sweden)

    S A Lone

    2017-01-01

    Full Text Available This article presents a review pertains the laser irradiation effects and its possible mechanisms of action on spermatozoa functions in domestic animals. To improve artificial insemination, laser is sensitive and cost effective technique, when compared to other conventional methods. Laser may have both positive and negative effects on spermatozoa functions. Since the effects of light are mediated by reactive oxygen species, and the levels of these reactive oxygen species following irradiating spermatozoa with laser may be responsible for determining the effects of laser on sperm. Dose of laser may be regarded as of great significance and this dosage of laser may be responsible for determining its effects on spermatozoa. Optimum dosage of laser for improving seminal attributes may vary among various species and this need to be standardized in each of them. The beneficial effects include improving sperm livability, acrosomal integrity, hypo-osmotic swelling response, mitochondrial function and computer-aided sperm analysis parameters. The increase in cytochrome c oxidase activity, ATP levels and mitochondrial membrane potential, in laser irradiated cells may be responsible for enhanced sperm quality parameters. Improving fertility with laser irradiated spermatozoa has been reported in few species like boar and need to be elaborated in other species. In conclusion laser may be regarded as an easy, cheap and time saving technology for improving artificial insemination; in addition, laser may have various potential applications in the field of reproductive biotechnology as well as in livestock farms and veterinary polyclinics.

  17. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tessy, E-mail: tessy3@prodigy.net.mx [Universidad Autonoma Metropolitana-Xochimilco. Departamento de Microbiologia. Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico D.F. Mexico (Mexico); Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118 (United States); Ortiz, Emma [Instituto Nacional de Neurologia y Neurocirugia ' MVS' . Laboratorio de Nanotecnologia. Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, 14269, Mexico, D.F. Mexico (Mexico); Meza, Doraliz [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco 186, A.P. 55-534, Mexico D.F., C.P. 09340 (Mexico); Basaldella, Elena [CIC-CINDECA - Universidad Nacional de La Plata - Calle 47 No 257 - La Plata (Argentina); Bokhimi, Xim; Magana, Carlos [Instituto de fisica, UNAM. Circuito de la Investigacion s/n. C.U. Mexico D.F. 01000 (Mexico); Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier [Departamento de Quimica Inorganica, Universidad de Alicante. Apartado 99, E-03080 Alicante, Espana Spain (Spain)

    2011-04-15

    Research highlights: {yields} Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. {yields} Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. {yields} Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. {yields} The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. {yields} There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO{sub 2}). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N{sub 2} adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO{sub 2} tubes than in mesoporous silica

  18. Controlled release of phenytoin for epilepsy treatment from titania and silica based materials

    International Nuclear Information System (INIS)

    Lopez, Tessy; Ortiz, Emma; Meza, Doraliz; Basaldella, Elena; Bokhimi, Xim; Magana, Carlos; Sepulveda, Antonio; Rodriguez, Francisco; Ruiz, Javier

    2011-01-01

    Research highlights: → Template technique was used to obtain well ordered nanostructured materials: SBA-15 and titania tubes. → Phenytoin (PH), a drug used in epilepsy treatment, was loaded in these materials to used como PH release. → Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. → The load-release PH are faster in nanostructured TiO2 tubes than in mesoporous silica matrix. → There is an inverse effect of the surface area of the structured materials on the amount of released PH. - Abstract: Template technique was used to obtain well ordered nanostructured materials: mesoporous silica and nanostructured titania tubes. This technique permits the synthesis of solids with controlled mesoporosity, where a large variety of molecules that have therapeutic activity can be hosted and further released to specific sites. In this work phenytoin (PH), a drug used in epilepsy treatment, was loaded in ordered mesoporous silica (SBA 15) and nanostructured titania tubes (TiO 2 ). The pure materials and those containing PH were characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and N 2 adsorption-desorption at 77 K. In order to determine the loading capacity of the antiepileptic drug on these silica- and titania-based materials, the loading and release of PH was investigated using UV-vis spectroscopy. Tubular structures were found for the titania samples, for which the X-ray diffractograms showed to be formed by anatase and rutile phases. On the other hand, an amorphous phase was found in the silica sample. A highly ordered hexagonal structure of 1D cylindrical channels was also observed for this material. Loaded PH showed a good stability inside the used materials as observed by spectroscopy analysis. The adsorption and desorption of PH are faster in nanostructured TiO 2 tubes than in mesoporous silica matrix.

  19. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    Science.gov (United States)

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  20. Development of highly porous crystalline titania photocatalysts

    Science.gov (United States)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal

  1. Research on interaction of laser light and non-metals. Evaluation of laser irradiation behavior to concrete

    International Nuclear Information System (INIS)

    Yamada, Tomonori; Muramatsu, Toshiharu

    2015-02-01

    In this study the response of hardened cement pastes, which are a major component of concrete, to laser irradiation was investigated under various experimental conditions aiming at the future application to “laser-processing” of concrete. (1) 75 tests were performed with combinations of following experimental conditions: (a) a water/cement ratio of the hardened cement pastes was either of 0.25, 0.30, or 0.35; (b) a laser power density was either of 100, 200, 300, 400, or 500 W/cm 2 ; and (c) laser irradiation duration was ranging from 1 to 40 seconds. It was found that hardened cement paste subjected to laser irradiation explodes very easily to be hollowed in all the experimental conditions; this response is applicable to “laser-drilling” of a hardened cement paste. The “laser-drilling” speeds up following to laser power increment or to irradiation time extension. It was also found that samples tend to melt rather than explode under the irradiation with a smaller laser power density (100 W/cm 2 ) at a high water/cement ratio (0.35). (2) Totally 75 laser irradiation tests for fixed mortar blocks were performed with combinations of following experimental conditions: (a) fine aggregate in the mortar blocks was either of quartz, limestone, or Nachiguro-ishi; (b) a laser power density was either of 100, 200, 300, 400, or 500 W/cm 2 ; and (c) laser irradiation duration was ranging from 0.2 to 40 seconds. Although it was found that all kinds of the mortar fuse under laser irradiation after all, difference in the response to laser irradiation among the mortars was also found; energy density required to fuse the mortar including limestone was larger than that required to fuse the mortar including quartz or Nachiguro-ishi. (author)

  2. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  3. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  4. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  5. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    Science.gov (United States)

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  6. Effect of Suyuping combined with semiconductor laser irradiation on wound healing after anal fistula surgery

    Institute of Scientific and Technical Information of China (English)

    Min Zhao; Chang-Ye Sang; Zhen-Jun Wang; Yan-Chun Xu

    2016-01-01

    Objective:To explore the effect of Suyuping combined with semiconductor laser irradiation on the wound healing after anal fistula surgery.Methods:A total of 180 patients with anal fistula who were admitted in our hospital from October, 2013 to May, 2015 for surgery were included in the study and randomized into the treatment group and the control group with 90 cases in each group. The patients in the control group were given the conventional surgical debridement dressing, a time a day. On this basis, the patients in the treatment group were given Suyuping smearing on the wound sinus tract combined with semiconductor laser irradiation, a time a day for 10 min, continuous irradiation until wound healing. The postoperative wound swelling fading, wound surface secretion amount, and the clinical efficacy in the two groups were recorded.Results:The wound surface swelling degree and wound pain degree at each timing point after operation in the treatment group were significantly lower than those in the control group (P<0.05). The wound surface area at each timing point after operation in the treatment group was significantly lower than that in the control group (P<0.05). The wound surface secretion amount 6, 9, and 12 days after operation in the treatment group was significantly lower than that in the control group (P<0.05). The total effective rate in the treatment group was significantly higher than that in the control group (P<0.05). The average healing time in the treatment group was significantly faster than that in the control group (P<0.05). Conclusions: Suyuping combined with semiconductor laser irradiation in the treatment of patients after anal fistula can effectively improve the local blood and lymphatic circulation of wound surface, promote the growth of granulation tissues, and contribute the wound healing.

  7. Effect of Suyuping combined with semiconductor laser irradiation on wound healing after anal fistula surgery

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2016-06-01

    Full Text Available Objective: To explore the effect of Suyuping combined with semiconductor laser irradiation on the wound healing after anal fistula surgery. Methods: A total of 180 patients with anal fistula who were admitted in our hospital from October, 2013 to May, 2015 for surgery were included in the study and randomized into the treatment group and the control group with 90 cases in each group. The patients in the control group were given the conventional surgical debridement dressing, a time a day. On this basis, the patients in the treatment group were given Suyuping smearing on the wound sinus tract combined with semiconductor laser irradiation, a time a day for 10 min, continuous irradiation until wound healing. The postoperative wound swelling fading, wound surface secretion amount, and the clinical efficacy in the two groups were recorded. Results: The wound surface swelling degree and wound pain degree at each timing point after operation in the treatment group were significantly lower than those in the control group (P<0.05. The wound surface area at each timing point after operation in the treatment group was significantly lower than that in the control group (P<0.05. The wound surface secretion amount 6, 9, and 12 days after operation in the treatment group was significantly lower than that in the control group (P<0.05. The total effective rate in the treatment group was significantly higher than that in the control group (P<0.05. The average healing time in the treatment group was significantly faster than that in the control group (P<0.05. Conclusions: Suyuping combined with semiconductor laser irradiation in the treatment of patients after anal fistula can effectively improve the local blood and lymphatic circulation of wound surface, promote the growth of granulation tissues, and contribute the wound healing.

  8. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  9. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  10. Stimulation of DNA synthesis by 340nm/ 351nm UV laser irradiation

    International Nuclear Information System (INIS)

    Meldrum, R.A.; Wharton, C.W.

    1991-01-01

    During preliminary experiments designed to test the feasibility of using a 'caged' DNA break trapping agent, the authors observed a stimulation of incorporation of 3 H-thymidine into DNA when cells were irradiated with low doses (100-1000J/m 2 ) of 351nm UV laser irradiation. This wavelength is used to photolyse 'caged' dideoxynucleotides in our fast time course measurements of DNA repair in mammalian cells. The dose at which this stimulation was observed is well below that at which measurable damage is detected. (author)

  11. Dentinal temperature transients caused by exposure to CO2 laser irradiation and possible pulpal damage.

    Science.gov (United States)

    Jeffrey, I W; Lawrenson, B; Saunders, E M; Longbottom, C

    1990-02-01

    An investigation is described that attempts to establish, in vitro, the characteristics of heat transference following laser irradiation of bovine dentinal tissue and the relationship with the periodicity of radiation. The results of this study appear to indicate that at depths of overlying dentine of up to 3 mm, laser-induced thermal injury to the pulp is a definite possibility. Fail-safe facilities to prevent build up of heat must be incorporated into the design of dental lasers to allow their beneficial effects to be utilized without the risk of iatrogenic damage.

  12. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  13. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. X., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Zu, X. T., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu; Xiang, X. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, W. G.; Yuan, X. D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, K., E-mail: hxdeng@uestc.edu.cn, E-mail: xtzu@uestc.edu.cn, E-mail: kaisun@umich.edu [Department of Materials Engineering and Sciences, University of Michigan, 413B Space Research Building, Ann Arbor, Michigan 48109-2143 (United States); Gao, F. [Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352 (United States)

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  14. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  15. Results of presowing helium-neon-laser irradiation of sunflower seeds

    International Nuclear Information System (INIS)

    Tsvetanova, K.

    1989-01-01

    In the period of 1983-1985 under non-irrigation, on calcareous chernozem a trial was carried out with the Start hybrid through single-, double-and triple irradiation of the seeds being stored for 1.8 and 16 days prior to sowing. It is found that the presowing helium-neon-laser irradiation of the sunflower seeds of the Start hybrid exerts a negative effect on the seed yield. Laser use does not stimulate the following: emerged seeds and percentage of the plants being in blossom in the beginning of the phase and after 7 days, seed moisture in harvesting and oil content in them

  16. Monitoring of the morphologic reconstruction of deposited ablation products in laser irradiation of silicon

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2008-01-01

    Full Text Available Using electron microscopy, atomic force microscopy, X-ray microanalysis, and IR spectroscopy, it was established that, in the regime of continuous laser irradiation of silicon at P = 170 W in different gaseous atmospheres with an oxygen impurity, SiOx composite films with a complex morphology form. The main components of ablation products are clusters that form during flight of ablation products and as a result of separation of SiOx-clusters from the zone of the irradiation channel. The roughness and density of the films depend on the heating temperature of the target surface and the type of deposited clusters.

  17. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    Science.gov (United States)

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  18. Excimer-laser-irradiation-induced effects in C60 films for photovoltaic applications

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Azuma, H.

    2002-01-01

    Thin films of fullerene C 60 deposited by the molecular-beam epitaxy method have been subjected to a 248 nm excimer laser for various timings. Reduction in the electrical resistance of the films and the spectral evolution of the D and G bands in the Raman spectra, due to the sharp tendency towards graphitization accompanied by an increasing level of structural disorder, are observed during laser irradiation. Based on the above results, an attempt has been carried out on these irradiated C 60 films to make a device sandwiched with n-type Si, and the photovoltaic parameters are reported as a function of the laser exposure times

  19. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  20. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  1. Monooxignase ensymic system of a liver of rats exposed to intravascular laser irradiation of blood

    International Nuclear Information System (INIS)

    Ibadova, G.A.

    1997-01-01

    Experimental study of the dynamic monooxidation of liver enzymic system was carried out on rats with experimental salmonellosis and the influence of the blood intravascular laser irradiation of blood on these enzymes was revealed. It was determined that by experimental salmonellosis oppression of the MOES activity of hepatocytes occurred. The blood intravascular irradiation by He-Ne laser promotes MOES oppression in rats suffered from salmonellosis. IVLIB as well as UV-laser show pronounced effect on the enzymes detoxication protection, mobilize their resistance to endogenic intoxication under the conditions of experimental salmonellosis. (author)

  2. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    International Nuclear Information System (INIS)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-01-01

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains

  3. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  4. X-ray diffraction in laser-irradiated epsomite crystals grown in presence of borax

    International Nuclear Information System (INIS)

    Zaitseva, E.V.; Portnov, V.N.; Faddeev, M.A.; Chuprunov, E.V.

    1997-01-01

    Relative changes in the intensities ΔI/I of the (220) and (440) X-ray diffraction reflection during laser irradiation of epsomite (MgSO 2 ·7H 2 O) crystals grown from an aqueous solution in the presence of borax (Na 2 B 4 O 7 ·10H 2 O) were measured using the CoK α , CuK α , MoK α radiations. The intensities measured depend on the real crystal structure dependent on the borax content in the solution. The dependence of ΔI/I is studied as a function of borax in the solution and X-ray-radiation wavelength

  5. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  6. Effects of He-Ne laser irradiation on the storage of turkey semen

    Directory of Open Access Journals (Sweden)

    S. Passarella

    2011-03-01

    Full Text Available Maintenance or improvement of sperm quality during storage could prevent the loss of fertilizing capacity associated with stored turkey semen. Therefore the optimization of stored turkey semen could be useful to breeder industry since the commercial production of this bird relies almost entirely on artificial insemination. Previous research have shown that He-Ne laser irradiation in mammalian sperm increased the motility (Stato, 1986, decreased the mortality, promoted the acrosome reaction, which have a pivotal role in assisted fecundating programmes as therapy for resolving infertility in domestic animals..........

  7. Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Wang, Shutong; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    Micro/nano patterning of ZnSe wafer is demonstrated by femtosecond laser irradiation through a diffracting pinhole. The irradiation results obtained at fluences above the ablation threshold are characterized by scanning electron microscopy. The microsized structure with low spatial frequency has a good agreement with Fresnel diffraction theory. Laser induced periodic surface structures and laser-induced periodic curvelet surface structures with high spatial frequency have been found on the surfaces of microsized structures, such as spikes and valleys. We interpret its formation in terms of the interference between the reflected laser field on the surface of the valley and the incident laser pulse

  8. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  9. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  10. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    International Nuclear Information System (INIS)

    Xie, Yibing; Zhao, Ye

    2013-01-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO 2 ) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity

  11. Preparation and characterization of titania based nanowires

    International Nuclear Information System (INIS)

    Stengl, Vaclav; Bakardjieva, Snejana; Murafa, Natalie; Vecernikova, Eva; Subrt, Jan; Balek, Vladimir

    2007-01-01

    A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2-3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198 deg. C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350-1000 deg. C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength

  12. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tien-Li, E-mail: tlchang@ntnu.edu.tw; Chen, Zhao-Chi

    2015-12-30

    Graphical abstract: - Highlights: • Direct UV laser irradiation on multilayer graphene was discussed. • Multilayer graphene with screen-printed process was presented. • Surface patterning of multilayer graphene at fluence threshold was investigated. • Electrical response of glucose in sensing devices can be studied. - Abstract: The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm{sup 2}. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  13. The effect of fractional CO2 laser irradiation on remineralization of enamel white spot lesions.

    Science.gov (United States)

    Poosti, Maryam; Ahrari, Farzaneh; Moosavi, Horieh; Najjaran, Hoda

    2014-07-01

    This study investigated the combined effect of fractional CO(2) laser irradiation and fluoride on treatment of enamel caries. Sixty intact premolars were randomly assigned into four groups and then stored in a demineralizing solution to induce white spot lesions. Tooth color was determined at baseline (T1) and after demineralization (T2). Afterwards, the teeth in group 1 remained untreated (control), while group 2 was exposed to an acidulated phosphate fluoride (APF) gel for 4 min. In groups 3 and 4, a fractional CO(2) laser was applied (10 mJ, 200 Hz, 10 s) either before (group 3) or through (group 4) the APF gel. The teeth were then immersed in artificial saliva for 90 days while subjected to daily fluoride mouthrinse and weekly brushing. Color examinations were repeated after topical fluoride application (T3) and 90 days later (T4). Finally, the teeth were sectioned, and microhardness was measured at the enamel surface and at 30 and 60 μ from the surface. In both lased groups, the color change between T1 and T4 stages (∆E(T1-T4)) was significantly lower than those of the other groups (p Laser irradiation followed by fluoride application (group 3) caused a significant increase in surface microhardness compared to APF alone and control groups (p laser before fluoride therapy is suggested for recovering the color and rehardening of demineralized enamel.

  14. Laser irradiation-induced laminated graphene/MoS2 composites with synergistically improved tribological properties

    Science.gov (United States)

    Luo, Ting; Chen, Xinchun; Li, Peisheng; Wang, Ping; Li, Cuncheng; Cao, Bingqiang; Luo, Jianbin; Yang, Shikuan

    2018-06-01

    Engineering lubricant additives that have extraordinary friction reduction and anti-wear performance is critical to almost any modern mechanical machines. Here, we demonstrate the fabrication of laminated lubricant additives that can combine the advantages of zero-dimensional nanospheres and two-dimensional nanosheets. A simple in situ laser irradiation method is developed to prepare the laminated composite structure composed of ideally ultrasmooth MoS2 sub-microspheres embedded within multiple layers of graphene. These ultrasmooth MoS2 spheres within the laminated structure can change sliding friction into rolling friction under strong shear force created by moving contact surfaces to significantly reduce the friction. Meantime, the graphene layers can behave as ‘protection pads’ to efficiently avoid the formation of scars on the metal-to-metal contact surfaces. Overall, the laminated composites as lubricant additives synergistically improve the friction reduction and anti-wear properties. Additionally, due to the unique loosely packed laminated structure, the composites can stably disperse in the lubricant for more than 15 d and work under high temperatures without being oxidized. Such constructed laminated composites with outstanding tribological properties by an in situ laser irradiation method supply a new concept in designing lubricant additives that can combine the advantages of 0D and 2D structures.

  15. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  16. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    International Nuclear Information System (INIS)

    Kikuchi, T.; Takahashi, H.; Maruko, T.

    2007-01-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZθ stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 μm line width were obtained successfully

  17. Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan); Maruko, T. [Furuya Metal Co. Ltd., R and D Group, Shimodate Daiichi Kogyodanchi 1915, Morisoejima, Chikusei, Ibaraki (Japan)

    2007-02-01

    Three-dimensional (3D) platinum microstructures were fabricated by successive procedures: aluminum anodizing, laser irradiation, nickel/platinum electroplating, and removal of the aluminum substrate, the oxide films, and the nickel metal layer. Aluminum plates and rods were anodized in an oxalic acid solution to form porous type oxide films. The anodized specimens were immersed in a nickel electroplating solution, and then irradiated with a pulsed Nd-yttrium aluminum garnet (YAG) laser beam to remove the anodic oxide film with a three-dimensional XYZ{theta} stage. The specimens were cathodically polarized in the nickel and a platinum electroplating solution to form the metal micropattern at the laser-irradiated area. The electroplated specimens were immersed in NaOH solution to dissolve the aluminum substrate and the oxide films, and then immersed in HCl solution to dissolve the nickel deposits. A platinum grid-shaped microstructure, a microspring, and a cylindrical network microstructure with 50-100 {mu}m line width were obtained successfully.

  18. Low- and high-dose laser irradiation effects on cell migration and destruction

    Science.gov (United States)

    Layton, Elivia; Gallagher, Kyra A.; Zukerman, Sara; Stevens, Brianna; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2018-02-01

    Metastases are the cause of more than 90 percent of cancer-related deaths. Current treatment methods, including chemotherapy, radiation, and surgery, fail to target the metastases effectively. One potential treatment for metastatic cancer is laser immunotherapy (LIT). LIT combines the use of a photothermal laser with an immunoadjuvant, Glycated Chitosan (GC). GC combined with single-walled carbon nanotubes (SWNTs) has proven to be a viable alternative to traditional cancer treatment methods, when under irradiation of laser with appropriate wavelength. In this study, the effects of low dose and high dose laser irradiation on metastatic pancreatic cancer cell migration were observed. It was found that low dose irradiation increased the migration rate, but the high dose irradiation significantly decreased the migration rate of the cancer cells. When using LIT, the goal is to kill tumor cells and to prompt the correct immune response. If the tumor were irradiated with a low dose, it would promote metastasis. If the dose of irradiation were too high, it would destroy the entire tumor and the immune response would not recognize the tumor. Therefore, the laser dose plays an important role in LIT, particularly when using SWNT as light absorbing agent. Our results from this study will delineate the optimal laser irradiation dose for destroying tumor cells and at the same time preserve and release tumor antigens as a precursor of antitumor immune response.

  19. Trigger effect of infrared femtosecond laser irradiation on neoplasm in experimental cervical cancer

    Science.gov (United States)

    Gening, Tatyana; Voronova, Olga; Zolotovskii, Igor; Sysoliatin, Alexey; Dolgova, Dinara; Abakumova, Tatyana

    2013-02-01

    The present work discusses effect of infrared (IR) femtosecond laser irradiation on neoplasm of white mice with experimental cervical cancer- 5 (CC-5 on the 20th and 30th days after tumor transplantation). Tumor tissue was irradiated by femtosecond erbium doped fiber laser: the wavelength is 1.55 μm, average and peak powers are1,25 mW and 6kW, respectively, irradiation trials n=10. The average energy density (energy dose) on a tissue for two groups of animals was 0,24 J/cm2 and 0,36 J/cm2 for a single trial. Irradiation was followed by biochemical determination of LPO AOS parameters ("Lipid peroxidation-antioxidants" system): malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase and glutathione-reductase (GR), glutathione-S-transferase (GST). A subsequent morphological study of tumor tissue was performed. Mathematical analysis of data demonstrates a weak dependence of the studied parameters on energy dose. The latter implies the trigger effect of IR femtosecond laser irradiation on redox-dependent processes in neoplasm at experimental cervical cancer.

  20. 3D Monte Carlo model of optical transport in laser-irradiated cutaneous vascular malformations

    Science.gov (United States)

    Majaron, Boris; Milanič, Matija; Jia, Wangcun; Nelson, J. S.

    2010-11-01

    We have developed a three-dimensional Monte Carlo (MC) model of optical transport in skin and applied it to analysis of port wine stain treatment with sequential laser irradiation and intermittent cryogen spray cooling. Our MC model extends the approaches of the popular multi-layer model by Wang et al.1 to three dimensions, thus allowing treatment of skin inclusions with more complex geometries and arbitrary irradiation patterns. To overcome the obvious drawbacks of either "escape" or "mirror" boundary conditions at the lateral boundaries of the finely discretized volume of interest (VOI), photons exiting the VOI are propagated in laterally infinite tissue layers with appropriate optical properties, until they loose all their energy, escape into the air, or return to the VOI, but the energy deposition outside of the VOI is not computed and recorded. After discussing the selection of tissue parameters, we apply the model to analysis of blood photocoagulation and collateral thermal damage in treatment of port wine stain (PWS) lesions with sequential laser irradiation and intermittent cryogen spray cooling.

  1. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    Science.gov (United States)

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  2. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    Science.gov (United States)

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects. © 2014 Wiley Periodicals, Inc.

  3. Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue

    Science.gov (United States)

    Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas

    2015-08-01

    Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin.

  4. A thermodynamic model of plasma generation by pulsed laser irradiation in vacuum

    CERN Document Server

    Tosto, S

    2003-01-01

    This paper introduces a thermodynamic model to determine composition, temperature and pressure of the plasma cloud induced by pulsed laser irradiation in the case where a relevant thermal sputtering mechanism is operating at the surface of a molten layer. The model concerns in particular pulse lengths of the order of several nanoseconds and completes the results of a previous paper concerning the physics of the evaporation and boiling driven thermal sputtering (Tosto S 2002 J. Phys. D: Appl. Phys. 35); the recession rate and temperature at the molten surface are linked to the pulse fluence and plasma properties in the frame of a unique physical model. This paper shows that the plasma properties depend critically on the non-equilibrium character of the surface evaporation and boiling mechanisms. The extension of the model to the case of continuous laser irradiation is also discussed. Some examples of computer simulation aim to show the results available in the particular case of a metal target; the comparison ...

  5. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Lu, Chieh-Han; Hsu, Yung-Yuan; Lin, Kung-Hsuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-01-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation. (paper)

  6. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  7. Band gap tuning in As40Se53Sb07 thin films by 532 nm laser irradiation: An optical investigation by spectroscopic techniques

    Science.gov (United States)

    Pradhan, Prabhudutta; Naik, R.; Das, N.; Panda, A. K.

    2018-01-01

    The chalcogenide thin films belongs to a special category of important materials due to the unique IR transparency and light induced linear and non linear optical properties change. The optical band gap tuning in thermally evaporated As40Se53Sb07 chalcogenide thin film is being probed under the influence of 532 nm laser illumination. The gradual decrease in transmission and red shift of optical absorption edge with illumination at different time scale is recorded by Fourier transmission infrared spectroscopy. The simultaneous increase in refractive index and absorption coefficient of the illuminated film makes the material as useful candidate for optical switching. The dispersion of refractive index is being analyzed by using Wemple-DiDomenico (WDD) single oscillator model and static refractive index (n0) has also been reported. The exponential decrease of optical band gap with time is attributed to the increase in density of localized states and vacancies. The entire mechanism is explained by the microscopic model in which heteropolar bonds are converted to homopolar ones by the absorption of high energy photons investigated by X-ray photoelectron spectra. The amorphous nature of the studied films was revealed from X-ray diffraction and composition of the film was determined from energy dispersive X-ray analysis. The surface morphology was determined from the scanning electron microscopy. The optical change in absorption coefficient, refractive index, band gap by influence in laser irradiation in such materials may be suitable for optical disc(memory) application for optical time division switch.

  8. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    International Nuclear Information System (INIS)

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  9. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  10. Structure and composition of enamel and dentin after thermal treatment or infrared laser irradiation

    International Nuclear Information System (INIS)

    Bachmann, Luciano

    2004-01-01

    The main purpose of this work is to identify the crystallographic structure, optical properties, chemical composition and electron paramagnetic signals that laser irradiation or oven heating produces on the tissue. The thermal treatment was conducted in oven with temperature range below 1000 deg C and the laser irradiation with holmium (Ho:YLF - 2,065 μm) and erbium (Er:YAG - 2,94 μm) laser. The tissue characterization was carried out with X-ray diffraction, scanning electron microscopy, ultraviolet and visible transmission spectroscopy, light microscopy, infrared transmission/reflection spectroscopy and electron paramagnetic resonance. The holmium irradiated enamel (600-800 J/cm 2 ) shows the presence of tetracalcium phosphate that coexists with the natural phase (hydroxyapatite). The irradiated dentin shows only the sharper diffraction peaks of the natural phase. The narrows peaks, observed after irradiation, could be assigned to the dentin crystal growth and impurities elimination. Tissue discoloration is observed after thermal treatment with temperatures above 100 deg C. Heated enamel become white-opaque and the origin is assigned to the water elimination, which promotes higher light scattering by the prismatic structure. On the other hand, heated dentin, with similar temperatures becomes brown. The dentin browning changes with the temperature and shown two peaks, at 375 deg C and 700 deg C. The peak at 375 deg C is assigned to the collagen structure degradation and at 700 deg C to the cyanate formation. The dentin discoloration produced with temperatures below 200 deg C is reversible after the tissue hydration. Both enamel and dentin discoloration are also observed in erbium irradiated tissues. Thermal treatments, heating in oven or laser irradiation, change mainly the organic matrix composition and water present in the tissues. The inorganic matrix is more stable and its radicals are changed, with more predominance, only at temperatures higher than 500 deg

  11. Effects of Low-Level Laser Irradiation on the Pathogenicity of Candida albicans: In Vitro and in Vivo Study

    NARCIS (Netherlands)

    Seyedmousavi Tasieh, S.; Hashemi, S.J.; Rezaie, S.; Fateh, M.; Djavid, G.E.; Zibafar, E.; Morsali, F.; Zand, N.; Alinaghizadeh, M.; Ataie-Fashtami, L.

    2014-01-01

    Abstract Objective: The purpose of this study was to evaluate the effects of low-level laser irradiation (LLLI) on the in vitro growth characteristics and in vivo pathogenicity of Candida albicans in a murine model in the absence of a photosensitizer. Background data: C. albicans is an opportunistic

  12. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  13. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts.

    Science.gov (United States)

    Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-01-04

    Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.

  14. Erosion of CFC, pyrolytic and boronated graphite under short pulsed laser irradiation

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Bakker, J.; Stad, R.C.L. van der

    1992-07-01

    The effect of short pulsed laser irradiation of '0/3' ms and up to 10 MJ/m 2 on different types of carbon base materials is described. These materials are investigated as candidate protection materials for the Plasma Facing Components of NET/ITER. These materials are: carbon fibre composite graphite, pyrolytic graphite and boronated graphite. The volume of the laser induced craters was measured with an optical topographic scanner, and these data are evaluated with a simple model for the erosion. As a results, the enthalpy of ablation is estimated as 30±3 MJ/kg. A comparison is made with finite element numerical calculations, and the effect of lateral heat transfer is estimated using an analytical model. (author). 8 refs., 23 figs., 4 tabs

  15. Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles

    Directory of Open Access Journals (Sweden)

    Scolaro Cristina

    2018-01-01

    Full Text Available The Thermal Laser Welding (TLW process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE, both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles, were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.

  16. Effect of He-Ne laser irradiation on hydrogen production by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenyu; Wen, Jianping; Jia, Xiaoqiang; Sun, Bing; Chen, Yu.; Liu, Minhui [Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-01-15

    Enterobacter aerogenes W-23 bacteria exhibiting hydrogen production (HP) ability were exposed to He-Ne laser irradiation (632.8 nm) to improve the HP ability. Upon the optimum irradiation dosage (18 mW for 22.2 min), a stable positive mutant strain E. aerogenes HB-5M was obtained. The maximum specific rate of HP of the mutant strain was 0.042h{sup -1}, which was about twice that of the wild strain. It was suggested that the higher HP ability of the mutant strain might be presumably attributed to the enhancement of hydrogenase activity. In addition, the kinetic parameters of cell growth, substrate consumption and HP of the wild strain and its mutant strain were regressed to simulate the fermentation process of E. aerogenes. The simulated results agreed well with the experimental data. (author)

  17. Evaluation of thermal shock strengths for graphite materials using a laser irradiation method

    International Nuclear Information System (INIS)

    Kim, Jae Hoon; Lee, Young Shin; Kim, Duck Hoi; Park, No Seok; Suh, Jeong; Kim, Jeng O.; Il Moon, Soon

    2004-01-01

    Thermal shock is a physical phenomenon that occurs during the exposure to rapidly high temperature and pressure changes or during quenching of a material. The rocket nozzle throat is exposed to combustion gas of high temperature. Therefore, it is important to select suitable materials having the appropriate thermal shock resistance and to evaluate these materials for rocket nozzle design. The material of this study is ATJ graphite, which is the candidate material for rocket nozzle throat. This study presents an experimental method to evaluate the thermal shock resistance and thermal shock fracture toughness of ATJ graphite using laser irradiation. In particular, thermal shock resistance tests are conducted with changes of specimen thickness, with laser source irradiated at the center of the specimen. Temperature distributions on the specimen surface are detected using type K and C thermocouples. Scanning electron microscope (SEM) is used to observe the thermal cracks on specimen surface

  18. New metal-organic nanomaterials synthesized by laser irradiation of organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Stanislav L.; Wesolowski, Michal J.; Duley, Walter W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2014-03-31

    A new type of metal-organic composition consisting of clusters of nanoparticles has been synthesised by laser irradiation of metallocene/benzene solutions. The metallocene molecules in this reaction become the source of the metal. Exposure to high-energy femtosecond laser pulses dehydrogenate benzene molecules and initiate the high-temperature high-pressure conditions that results in the synthesis of new materials. Irradiation experiments have been carried out on ferrocene/benzene and on other solutions. With ferrocene the synthesis of a new compound has been confirmed by X-ray powder diffraction as the peaks detected do not correspond to any known substance in the Crystallography Open Database. Theoretical simulation of the periodic structure of this new carbide predicts that it has hexagonal symmetry and a unit cell with a = 3.2A and c =2.8A. The exact structure is still uncertain but may be determined from scanning tunneling microscope (STM) studies.

  19. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo

    2016-11-17

    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared with microcrystalline, thin-film, or bulk metal halides. Here we present a novel one-step synthesis of organolead bromide perovskite nanocrystals based on pulsed-laser irradiation in a liquid environment (PLIL). Starting from a bulk CHNHPbBr crystal, our PLIL procedure does not involve the use of high-boiling-point polar solvents or templating agents, and runs at room temperature. The resulting nanoparticles are characterized by high crystallinity and are completely free of any microscopic product or organic coating layer. We also demonstrate the straightforward inclusion of laser-generated perovskite nanocrystals in a polymeric matrix to form a nanocomposite with single- and two-photon luminescence properties.

  20. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    International Nuclear Information System (INIS)

    Feng, ShiQuan; Cheng, XinLu; Zhao, JianLing; Zhang, Hong

    2013-01-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T e = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect

  1. Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation

    Science.gov (United States)

    Feng, ShiQuan; Zhao, JianLing; Cheng, XinLu; Zhang, Hong

    2013-07-01

    In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from Te = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.

  2. Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dolgaev, S.I. [University of Barcelona, Department of Applied Physics and Optics, Barcelona (Spain); A.M. Prokhorov General Physics Institute, Wave Research Centre, Moscow (Russian Federation); Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P. [University of Barcelona, Department of Applied Physics and Optics, Barcelona (Spain); Shafeev, G.A. [A.M. Prokhorov General Physics Institute, Wave Research Centre, Moscow (Russian Federation)

    2006-06-15

    We report the growth of conical microstructure arrays on a stainless steel substrate under multi-pulsed Nd:YAG laser irradiation (wavelength of 1.064 {mu}m, pulse duration of 300 ns, repetition rate of 5 kHz) at atmospheric air pressure. The average period of microcones is 70 {mu}m, and they protrude 50-60 {mu}m above the substrate. At an air pressure of 1 Pa, the well-defined conical shape is lost and the resulting microstructure shows a smaller period and height. At 10{sup -3} Pa, only small protrusions separated by about 5 {mu}m are observed. The different mechanisms involved in the growth of conical microstructures are discussed. (orig.)

  3. Carbon/hydrogen clusters [CnHx+] formation from laser irradiation of coronene

    International Nuclear Information System (INIS)

    Betancourt, F; Alvarez, I; Guerrero, A; Cisneros, C; Poveda, J C

    2015-01-01

    This article presents the photo induced dehydrogenation of a cooled molecular jet of coronene, exposed to 266 nm laser radiation. Using unfocused laser radiation of 1064 nm, synchronously coupled with the ionization laser pulses, a system recently developed. Molecular beams were produced by laser desorption of coronene. Analysis of the photoproducts made by time-of flight mass spectrometer showed that a wide variety of ionic species were formed; more than 300 different species were observed. The results showed carbon clusters C + n with n up to 24 as well as carbon/hydrogen clusters C + n H + x with masses higher than 300 m/z. The effect on the laser irradiance on the formation of different ions, in the rage from 10 9 W/cm2 to 10 10 W/cm2, is discussed as it is reflected on the evolution from the big ions to the smaller ones. (paper)

  4. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Aguilar, C.; Michtchenko, A. [Instituto Politecnico Nacional (Mexico); Carballo, A. [Colegio de Postgraduados, Programa de Semillas (IREGEP) (Mexico); Cruz-Orea, A. [Centro de Investigacion y de Estudios Avanzados-IPN (Mexico); Ivanov, R. [Universidad Autonoma de Zacatecas, Unidad Academia de Fisica (Mexico); San Martin Martinez, E. [Centro de Investigacion en ciencia Aplicada y Tecnologia Avanzada-IPN (Mexico)

    2005-06-01

    In the present study we were interested in the effects of low intensity laser irradiation on hybrid corn seeds CL{sub 1} x CL{sub 4} when these seeds were exposed to different laser intensities and irradiation times. In order to observe qualitative differences in chlorophyll a and b optical absorption spectra of seedling's leaves, whose seeds were irradiated and non irradiated, were obtained by using photoacoustic spectroscopy (PAS). A randomized complete blocks experimental design with three replications was used. The experimental unit included 10 seeds, from which we randomly choose three seedlings. The variance analysis (ANOVA) for both chlorophylls revealed significant (P < 0.05) differences among treatments. (authors)

  5. Laser irradiation of disk targets at 0.53 μm wavelength

    International Nuclear Information System (INIS)

    Mead, W.C.; Campbell, E.M.; Estabrook, K.G.

    1981-01-01

    We present results and analysis for laser-irradiations of Be, CH, Ti, and Au disk targets with 0.53 μm light in 3 to 35 J, 600 ps pulses, at nominal intensities from 3 x 10 13 to approx. 4 x 10 15 W/cm 2 . The measured absorptions are higher than observed in similar 1.06 μm irradiations, and are largely consistent with modeling which shows the importance of inverse bremsstrahlung and Brillouin scattering. Observed red-shifted back-reflected light shows that Brillouin is operating at low to moderate levels. The measured fluxes of multi-keV x-rays indicate low hot-electron fractions, with temperatures which are consistent with resonance absorption. Measurements show efficient conversion of absorbed light into sub-keV x-rays, with time-, angular-, and spatial-emission distributions which are generally consistent with non-LTE modeling using inhibited thermal electron transport

  6. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  7. Wavelength influence on nitrogen insertion into titanium by nanosecond pulsed laser irradiation in air

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, F.; Lavisse, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Berger, P. [CEA/DSM/IRAMIS/SIS2M, CEA-Saclay, F-91191 Gif sur Yvette (France); SIS2M, UMR CEA-CNRS 3299, CEA-Saclay, F-91191 Gif sur Yvette (France); Jouvard, J.-M.; Andrzejewski, H.; Pillon, G.; Bourgeois, S.; Marco de Lucas, M.C. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2013-08-01

    We studied in this work the influence of the wavelength (532 vs. 1064 nm) on the insertion of nitrogen in titanium targets by surface laser treatments in air. The laser pulses were of 5 ns and the irradiance was lower than 25 × 10{sup 12} W/m{sup 2}. Results obtained using a frequency-doubled Nd:YAG laser at 532 nm were compared with those previously reported for laser treatments at 1064 nm. Nuclear reaction analysis and micro-Raman spectroscopy were used for determining the composition and the structure of the surface layers, respectively. Results showed the lower efficiency of irradiation at 532 nm for nitrogen insertion, which is possible only above threshold conditions depending on both the laser irradiance and the number of cumulated impacts per point. This was explained as being due to a higher ablative effect in the visible range. The insertion of oxygen giving rise to the growth of titanium oxynitrides was also discussed.

  8. Thermal stress in dentin and enamel under CO2 laser irradiation

    Science.gov (United States)

    Meyer, Dirk H.; Foth, Hans-Jochen

    1996-01-01

    Ablation of dentin and tartar was studied under carbon dioxide-laser irradiation in cw and pulse mode with pulse length down to 150 microseconds. The specimens had been cut by a diamant blade to slices of thicknesses between 0.8 and 2.8 mm. The laser induced temperature rise was measured by an infrared camera monitoring the backside of the samples. The specimens shape and structure at the laser spot was analyzed by electron microscopy. Of special interest was the testing of the SwiftLaseTM to reducing the heat. The experimental results show the necessity of a water cooling in all application modes. The origin of the cracks which had been observed in many of the samples, is currently under investigation.

  9. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    Science.gov (United States)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  10. Diode laser irradiation of rat blood and its effect on hemoglobin and plasma

    International Nuclear Information System (INIS)

    Saad-El-Din, A.A.; El-Ahdaal, M.A.; Omran, M.F.

    2002-01-01

    Blood was exposed to diode laser irradiation of wavelength 830 nm and maximum powe of 31.4 MW, with exposure times 15, 30, 45 and 60 minutes. Hemoglobin IR spectra and X-ray crystallography, plasma Na + , K + , Ca + +. cholesterol concentrations and viscosity were measured. There were changes in hemoglobin amide groups as well as changes in the X-ray in hemoglobin structure. Decreases in both Na concentration and plasma viscosity occurred at 15 and 30 minutes of laser exposure. On increasing time to 45 and 60 minutes, the Na concentration and viscosity were increased. K, Ca and cholesterol concentration were decreased linearly with time. Na / K ratio was increased also with time of exposure. The results have been indicated that the diode laser affect the secondary structure of hemoglobin, membranes structures and plasma

  11. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    Science.gov (United States)

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  12. Sb2S3:C/CdS p-n junction by laser irradiation

    International Nuclear Information System (INIS)

    Arato, A.; Cardenas, E.; Shaji, S.; O'Brien, J.J.; Liu, J.; Castillo, G. Alan; Das Roy, T.K.; Krishnan, B.

    2009-01-01

    In this paper, we report laser irradiated carbon doping of Sb 2 S 3 thin films and formation of a p-n junction photovoltaic structure using these films. A very thin carbon layer was evaporated on to chemical bath deposited Sb 2 S 3 thin films of approximately 0.5 μm in thickness. Sb 2 S 3 thin films were prepared from a solution containing SbCl 3 and Na 2 S 2 O 3 at 27 deg. C for 5 h and the films obtained were highly resistive. These C/Sb 2 S 3 thin films were irradiated by an expanded laser beam of diameter approximately 0.5 cm (5 W power, 532 nm Verdi laser), for 2 min at ambient atmosphere. Morphology and composition of these films were analyzed. These films showed p-type conductivity due to carbon diffusion (Sb 2 S 3 :C) by the thermal energy generated by the absorption of laser radiation. In addition, these thin films were incorporated in a photovoltaic structure Ag/Sb 2 S 3 :C/CdS/ITO/Glass. For this, CdS thin film of 50 nm in thickness was deposited on a commercially available ITO coated glass substrate from a chemical bath containing CdCl 2 , sodium citrate, NH 4 OH and thiourea at 70 deg. C . On the CdS film, Sb 2 S 3 /C layers were deposited. This multilayer structure was subjected to the laser irradiation, C/Sb 2 S 3 side facing the beam. The p-n junction formed by p-Sb 2 S 3 :C and n-type CdS showed V oc = 500 mV and J sc = 0.5 mA/cm 2 under illumination by a tungsten halogen lamp. This work opens up a new method to produce solar cell structures by laser assisted material processing

  13. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  14. Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation

    Science.gov (United States)

    Dreyer, T. R.; Siqueira, A. F. P.; Magrini, T. D.; Fiorito, P. A.; Assumpção, M. E. O. A.; Nichi, M.; Martinho, H. S.; Milazzotto, M. P.

    2011-07-01

    Low-level laser irradiation (LLLI) increases ATP production and energy supply to the cell which could increase sperm motility, acrossomal reaction and consequently the fertilizing potential. The aim of this study was to characterize the biochemical and topological changes induced by low power laser irradiation on bull sperm cells. Post-thawing sperm were irradiated with a 633nm laser with fluence rates of 30, 150 and 300mJ.cm-2 (power of 5mW for 1, 5 and 10minutes, respectively); 45, 230, and 450mJ.cm-2 (7.5mW for 1, 5 and 10 minutes); and 60, 300 and 600mJ.cm-2 (10mW for 1, 5 and 10 minutes). Biochemical and metabolical changes were analyzed by FTIR and flow cytometry; oxygen reactive species production was assessed by TBARS and the morphological changes were evaluated by AFM. Motility had no difference among times or powers of irradiation. Increasing in ROS generation was observed with power of 5mW compared to 7.5 and 10mW, and with 10min of irradiation in comparison with 5 and 1min of irradiation. This higher ROS generation was related to an increase in acrossomal and plasma membrane damage. FTIR results showed that the amount of lipids was inversely proportional to the quantity of ROS generated. AFM images showed morphological differences in plasma/acrossomal membrane, mainly on the equatorial region. We conclude that LLLI is an effective method to induce changes on sperm cell metabolism but more studies are necessary to establish an optimal dose to increase the fertility potential of these cells.

  15. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  16. Experimental and theoretical basis of agricultural plant immunostimulation with regard to pathogenic fungi by magnetic field and He-Ne laser irradiation

    Science.gov (United States)

    Belski, Alexey I.; Chivanov, Vadym D.

    1996-09-01

    Spring barley, winter wheat and maize seeds were subjected to the action of He-Ne laser irradiation having a low intensity in the visible region of the spectrum (628-640 nm) in conjunction with magnetic fields. The following results were obtained: laser irradiation with magnetic fields induced activation of the natural plant defence/immune systems gave the harvest crop level increased to about 50- 300 percent; a correlation was established between the rate of the fungal pathogens growth and the stimulation of plant immunity after the seeds had been treated with laser irradiation and magnetic field.

  17. Fabrication of homogeneous titania/MWNT composite materials

    International Nuclear Information System (INIS)

    Korbely, Barbara; Nemeth, Zoltan; Reti, Balazs; Seo, Jin Won; Magrez, Arnaud; Forro, Laszlo; Hernadi, Klara

    2011-01-01

    Highlights: → Homogenous titania coverage on MWNT surface in a controllable way. → Various titanium alkoxy precursors are suitable for layer formation. → Acetone and ethanol are the best to promote interaction between MWNT and titania. -- Abstract: MWNT/titania nanocomposites were prepared by an impregnation method and subsequent heat treatment at 400 o C. Precursor compounds such as titanium (IV) propoxide and titanium (IV) ethoxide were used to cover the surface of CNTs under solution conditions. Electron microscopy and X-ray diffraction techniques were carried out to characterize the as-prepared titania layers.

  18. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  19. Diode Laser Irradiation in Endodontic Therapy through Cycles - in vitro Study

    Directory of Open Access Journals (Sweden)

    Trišić Dijana

    2017-07-01

    Full Text Available Background/Aim: The aim of this in vitro study was to investigate the influence of irradiation cycles and resting periods, on thermal effects on the external root surface during root canal irradiation of two diode laser systems (940 nm and 975 nm, at output powers of 1 W and 2 W in continuous mode. In previous studies the rising of temperature above 7°C has been reported as biologically accepted to avoid periodontal damage on the external root surface. Material and Methods: Twenty human inferior incisors were randomly distributed into four groups, the 940 nm, and the 975 nm diode laser irradiation, both with an output power of 1 W and 2 W, in continuous mode. The thermographic camera was used to detect temperature variations on the external root surface. Digital radiography of the samples was made. Results: After three cycles of irradiation, at apical third of the root, mean temperature variation by 940 nm diode laser irradiation was 2.88°C for output power of 1 W, and 6.52°C for output power of 2 W. The 975 nm laser caused a higher temperature increase in the apical region, with temperature variation of 13.56°C by an output power of 1 W, and 30.60°C at 2 W, with a statistical significance of p ≤ 0.0001 between two laser systems compared for the same power. The resting periods of 20 s between cycles were enough to lower temperature under 7°C in the case of 1 W and 2 W for 940 nm diode laser, while for 975 nm laser, after three irradiation cycles overheating occurred at both output power rates. Conclusion: Three cycles irradiation of 940 nm diode laser, with resting periods of 20 seconds, allowed safe usage of 1 W and 2 W in CW for endodontic treatment. For 975 nm at a power rate of 1 W, the last resting period drop the temperature near the safe limit and it came under 7°C in a period less than a minute, while at the power of 2 W the resting periods were not long enough for the safe temperature decrease.

  20. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    Science.gov (United States)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and

  1. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    Science.gov (United States)

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  2. Bonding performance of universal adhesives to er,cr:YSGG laser-irradiated enamel.

    Science.gov (United States)

    Ayar, Muhammet Kerim; Erdemir, Fatih

    2017-04-01

    Universal adhesives have been recently introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser-irradiated enamel is still not well-known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo-B Plus) applied to Er,Cr:YSGG laser-irradiated enamel with SBS of the same adhesives applied in self-etch and acid-etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid-etching mode; Nova Compo-B Plus/acid-etching mode; Single Bond Universal/self-etching mode; Nova Compo-B Plus/self-etching mode; and Single Bond Universal/Er,Cr:YSGG Laser-etching mode; Nova Compo-B Plus/Er,Cr:YSGG Laser-etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min -1 . Failure modes were evaluated using a stereomicroscope. Data was analyzed using two-way of analyses of variances (ANOVA) (p = 0.05). Two-way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid-etching significantly increased SBS, whereas there are no significant differences between self-etch mode and laser-etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self-etch mode. © 2016 Wiley Periodicals, Inc.

  3. The potential health risk of titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruinan, E-mail: ruinanzhang87@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Bai, Yuhong, E-mail: yuhong.bai1983@gmail.com [School of Pharmaceutical Sciences, Shandong University, Jinan 250100 (China); Zhang, Bin, E-mail: binzhang1968@hotmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Chen, Lingxin, E-mail: lxchen@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003 (China); Yan, Bing, E-mail: dr.bingyan@gmail.com [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Nanotechnology has been widely used in environmental treatments. Black-Right-Pointing-Pointer The safety of nanomaterials to human is under-studied. Black-Right-Pointing-Pointer Taking titania nanoparticle as an example to address nanotoxicity and remedy. Black-Right-Pointing-Pointer The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs' toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  4. The potential health risk of titania nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Ruinan; Bai, Yuhong; Zhang, Bin; Chen, Lingxin; Yan, Bing

    2012-01-01

    Highlights: ► Nanotechnology has been widely used in environmental treatments. ► The safety of nanomaterials to human is under-studied. ► Taking titania nanoparticle as an example to address nanotoxicity and remedy. ► The much needed future investigations are suggested. - Abstract: Widespread use of titania nanoparticles (TNPs) has caused a significant release of TNPs into the environment, increasing human exposure to TNPs. The potential toxicity of TNPs has become an urgent concern. Various models have been used to evaluate the toxic effects of TNPs, but the relationship between TNPs’ toxicity and physicochemical properties is largely unknown. This review summarizes relevant reports to support the development of better predictive toxicological models and the safe future application of TNPs.

  5. Investigation of the Impact of Transient Heat Loads Applied by Laser Irradiation on ITER-Grade Tungsten

    OpenAIRE

    Huber, Alexander; Arakcheev, A.; Philipps, V.; Pintsuk, Gerald; Reinhart, Michael; Samm, Ulrich; Shoshin, A.; Schweer, Bernd; Unterberg, Bernhard; Zlobinski, M.; Sergienko, Gennady; Steudel, Isabel; Wirtz, Marius; Burdakov, A. V.; Coenen, Jan Willem

    2014-01-01

    Cracking thresholds and crack patterns in tungsten targets after repetitive ITER-like edge localized mode (ELM) pulses have been studied in recent simulation experiments by laser irradiation. The tungsten specimens were tested under selected conditions to quantify the thermal shock response. A Nd:YAG laser capable of delivering up to 32 J of energy per pulse with a duration of 1 ms at the fundamental wavelength λ = 1064 nm has been used to irradiate ITER-grade tungsten samples with repetitive...

  6. Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Gurevich, Evgeny L., E-mail: gurevich@lat.rub.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany); Kumari, Renu, E-mail: renumetalbit@gmail.com [Dept. of Metal. & Maters. Eng., I. I. T., Kharagpur, WB 721302 (India); Ostendorf, Andreas, E-mail: andreas.ostendorf@ruhr-uni-bochum.de [Ruhr-Universität Bochum, Ls. Laseranwendungstechnik, Universitätsstr. 150, 44801 Bochum (Germany)

    2016-02-28

    Graphical abstract: - Highlights: • Peening effect of 0.4% C steel by femtosecond laser irradiation. • Microstructural investigation of the irradiated surface. • Residual stress decreased from 152 MPa to 140 MPa to −330 MPa by laser processing. • Decreased wear depth to a maximum of four times as compared to as-received substrate. • Mechanism of wear for both as-received and laser processed surface were established. - Abstract: In the present study, the effect of femtosecond laser irradiation on the peening behavior of 0.4% C steel has been evaluated. Laser irradiation has been conducted with a 100 μJ and 300 fs laser with multiple pulses under varied energy. Followed by laser irradiation, a detailed characterization of the processed zone was undertaken by scanning electron microscopy, and X-ray diffraction technique. Finally, the residual stress distribution, microhardness and wear resistance properties of the processed zone were also evaluated. Laser processing leads to shock peening associated with plasma formation and its expansion, formation of martensite and ferrito–pearlitic phase in the microstructure. Due to laser processing, there is introduction of residual stress on the surface which varies from high tensile (140 MPa) to compressive (−335 MPa) as compared to 152 MPa of the substrate. There is a significant increase in microhardness to 350–500 VHN as compared to 250 VHN of substrate. The fretting wear behavior against hardened steel ball shows a significant reduction in wear depth due to laser processing. Finally, a conclusion of the mechanism of wear has been established.

  7. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Peikang [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hu, Shengliang, E-mail: hsliang@yeah.net [Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory Science and Technology on Electronic Test and Measurement, Taiyuan 030051 (China); School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhang, Taiping; Sun, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cao, Shirui [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)

    2010-07-15

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  8. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Bai, Peikang; Hu, Shengliang; Zhang, Taiping; Sun, Jing; Cao, Shirui

    2010-01-01

    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  9. In vivo PIXE-PIGE study of enhanced retention of fluorine in tooth enamel after laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Demortier, Guy [Department of Physics, University of Namur, 61, rue de Bruxelles, B5000 Namur (Belgium)], E-mail: guy.demortier@tvcablenet.be; Nammour, Samir [Faculty of Medicine, University of Liege, 8, rue Paul Spaak, B-1000 Bruxelles (Belgium)

    2008-05-15

    The presence of fluoride in tooth enamel reduces the solubility of hydroxylapatite by acid attack. Fluoride presence (even at low concentration) in the oral cavity is efficient against caries process. We propose a new approach of the explanation of the increase of fluoride retention in the tooth enamel when low power laser irradiation is applied after the treatment with fluoride gel (fluoridation). External beam PIGE measurements of fluorine on extracted teeth have been made in order to determine the best sequence of the operations. The laser irradiation after fluoride application is more efficient than the reverse procedure. This observation is in agreement with previous observations that the fluorine penetration in the enamel takes place first in the soft organic material present between the polycrystalline (prismatic) structure before being integrated in the crystalline composition of hydroxylapatite in order to produce fluoro-apatite. As those in vitro measurements do not reflect the whole process in the saliva, in vivo PIGE measurements have been also performed. We have demonstrated, by repeating the PIGE measurements (at least five times at various time intervals) that a significant increase of the fluoride retention took place even 18 months after the unique laser treatment. The complete experimental procedure is described: fluoride application, laser irradiation, PIGE measurements with 2.7 MeV protons (repeated measurements at the same place on the same tooth in order to follow the evolution) and safety tests before in vivo analyses.

  10. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner

    International Nuclear Information System (INIS)

    Breugel, H.H.F.I. van; Bar, P.R.

    1993-01-01

    Schwann cell proliferation is considered an essential part of Wallerian degeneration after nerve damage. Laminin, an important component of the extracellular matrix and produced by Schwann cells, provides a preferred substrate for outgrowing axons. To study whether low energy (He-Ne) laser irradiation may exert a positive effect on nerve regeneration through an effect on Schwann cells, its effect was evaluated in vitro. Schwann cells were isolated from sciatic nerves of 4-5-day old Wistar rats and cultures on 96-multiwell plates. The cells were irradiated by a He-Ne laser beam. At three consecutive days, starting either at day 5 or day 8, cells were irradiated each day for 0.5, 1, 2, 5 or 10 min. Both cell number and laminin production were determined for each irradiation condition within one experiment. Schwann cells that were irradiated from day 8 on were hardly affected by laser irradiation. However, the proliferation of cells that were irradiated starting on day 5 was significantly increased after 1, 2 and 5 min of daily irradiation, compared to non-irradiated control cultures. The lamin production per cell of these Schwann cells was not significantly altered. From these results we conclude that He-Ne laser irradiation can modulate proliferation of rat Schwann cells in vitro in a dose-dependent manner. (Author)

  11. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  12. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    International Nuclear Information System (INIS)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P.; Girard, S.; Van Uffelen, M.; Berghmans, F.; Regnier, E.; Berghmans, F.; Thienpont, H.

    2009-01-01

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  13. Investigation of room temperature UV emission of ZnO films with different defect densities induced by laser irradiation.

    Science.gov (United States)

    Zhao, Yan; Jiang, Yijian

    2010-08-01

    We studied the room temperature UV emission of ZnO films with different defect densities which is fabricated by KrF laser irradiation process. It is shown room temperature UV photoluminescence of ZnO film is composed of contribution from free-exciton (FX) recombination and its longitudinal-optical phonon replica (FX-LO) (1LO, 2LO). With increase of the defect density, the FX emission decreased and FX-LO emission increased dramatically; and the relative strengths of FX to FX-LO emission intensities determine the peak position and intensity of UV emission. What is more, laser irradiation with moderate energy density could induce the crystalline ZnO film with very flat and smooth surface. This investigation indicates that KrF laser irradiation could effectively modulate the exciton emission and surface morphology, which is important for the application of high performance of UV emitting optoelectronic devices. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Effect of low-level laser irradiation on osteoblast-like cells cultured on porous hydroxyapatite scaffolds

    Directory of Open Access Journals (Sweden)

    Serena Incerti Parenti

    2013-09-01

    Full Text Available OBJECTIVE: To determine the effect of laser irradiation at a low dose on human osteoblastlike cells. Materials and methods: 32 porous hydroxyapatite scaffolds currently used for bone tissue engineering were seeded with MG63 cells and irradiated or not with a GaAlAs diode laser (wavelength 915 nm, dose 2 J/cm² using different power density and exposure duration. RESULTS: After 72-h incubation, cells showed well spread morphology and good adhesion on both laser-treated and untreated scaffolds. Laser irradiation did not interfere in cell viability and proliferation as compared with the non-irradiated controls. CONCLUSION: This study suggests that there is no effect of 915 nm laser irradiation at a dose of 2 J/cm² on the proliferation rate of MG63 cells. Future investigations are needed to compare different dose and wavelength regimens in order to determine the optimal set of laser parameters for maximum cell yield and safe clinical application.

  15. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  16. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    Science.gov (United States)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  17. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility

    Energy Technology Data Exchange (ETDEWEB)

    Koonce, M.P.; Cloney, R.A.; Berns, M.W.

    1984-06-01

    Newt eosinophils are motile granulated leukocytes that uniquely display a highly visible centrosomal area. Electron microscope and tubulin antibody fluorescence confirms the presence of centrioles, pericentriolar material, and radiating microtubules within this visible area. Actin antibodies intensely stain the advancing cell edges and tail but only weakly stain pseudopods being withdrawn into the cell. Randomly activated eosinophils follow a roughly consistent direction with an average rate of 22.5 ..mu..m/min. The position of the centrosome is always located between the trailing cell nucleus and advancing cell edge. If the cell extends more than one pseudopod, the one closest to or containing the centrosome is always the one in which motility continues. Laser irradiation of the visible centrosomal area resulted in rapid cell rounding. After several minutes following irradiation, most cells flattened and movement continued. However, postirradiation motility was uncoordinated and directionless, and the rate decreased to an average of 14.5 ..mu..m/min. Electron microscopy and tubulin immunofluorescence indicated that an initial disorganization of microtubules resulted from the laser microirradiations. After several minutes, organized microtubules reappeared, but the centrioles appeared increasingly damaged. The irregularities in motility due to irradiation are probably related to the damaged centrioles. The results presented in this paper suggest that the centrosome is an important structure in controlling the rate and direction of newt eosinophil motility.

  18. He-Ne Laser Irradiation Encourages reparative Processes After cartilage loss in New Zealand rabbits

    International Nuclear Information System (INIS)

    Ali, I.K.

    2008-01-01

    Many therapeutic methods used to encourage reparative processes of cartilage and accelerate their healing such as drugs, magneto-laser and so on.Twenty four adult New Zealand rabbits used in this study.They were divided in to two groups; control and treaded with He-Ne laser.A square skin flap done on the medial aspect of both auricles followed by pealing a square piece of cartilage from the auricle then the flaps sutured.The site of the operation in the rabbits of the treatedgroup were irradiated with He-Ne laser 5mw power for seven days began after the operation directly.3 rabbits from each group used for collection of specimens for histopathological examination at the 1, 2, 4 & 6 weeks post the operation.Significantly well developed cartilage growth, chondroblasts and chondrocytes invade the area of the operation.High increase in the thickness of connective tissue in the same area contain mainly collagen fibers and lesser amount of elastic fibers.He-Ne laser irradiation raised the mitotic activity of the cartilage cells, activated the reproduction processes in addition to the intra and extra regenerative repair

  19. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  20. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  1. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  2. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  3. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  4. Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies

    International Nuclear Information System (INIS)

    Choi, B.; Pearce, J.A.; Welch, A.J.

    2000-01-01

    The use of thermographic techniques has increased as infrared detector technology has evolved and improved. For laser-tissue interactions, thermal cameras have been used to monitor the thermal response of tissue to pulsed and continuous wave irradiation. It is important to note that the temperature indicated by the thermal camera may not be equal to the actual surface temperature. It is crucial to understand the limitations of using thermal cameras to measure temperature during laser irradiation of tissue. The goal of this study was to demonstrate the potential difference between measured and actual surface temperatures in a quantitative fashion using a 1D finite difference model. Three ablation models and one cryogen spray cooling simulation were adapted from the literature, and predictions of radiometric temperature measurements were calculated. In general, (a) steep superficial temperature gradients, with a surface peak, resulted in an underestimation of the actual surface temperature, (b) steep superficial temperature gradients, with a subsurface peak, resulted in an overestimation, and (c) small gradients led to a relatively accurate temperature estimate. (author)

  5. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  6. In vitro analysis of low-level laser irradiation on human osteoblast-like cells proliferation

    Science.gov (United States)

    Bloise, Nora; Saino, Enrica; Bragheri, Francesca; Minzioni, Paolo; Cristiani, Ilaria; Imbriani, Marcello; Visai, Livia

    2011-07-01

    The objective of this study was to examine the in vitro effect of a single or a multiple doses of low-level laser irradiation (LLLI) on proliferation of the human osteosarcoma cell line, SAOS-2. SAOS-2 cells were divided in five groups and exposed to LLLI (659 nm diode laser; 11 mW power output): group I as a control (dark), group II exposed to a single laser dose of 1 J/cm2, group III irradiated with a single dose of 3 J/cm2, and group IV and V exposed for three consecutive days to 1 or 3 J/cm², respectively. Cellular proliferation was assessed daily up to 7 days of culturing. The obtained results showed an increase in proliferative capacity of SAOS-2 cells during the first 96 h of culturing time in once-irradiated cells, as compared to control cells. Furthermore, a significantly higher proliferation in the group IV and V was detected if compared to a single dose or to control group after 96 h and 7 days. In conclusion, the effect of the single dose on cell proliferation was transitory and repeated irradiations were necessary to observe a strong enhancement of SAOS-2 growth. As a future perspective, we would like to determine the potential of LLLI as a new approach for promoting bone regeneration onto biomaterials.

  7. The effects of low level laser irradiation on proliferation of human dental pulp: a narrative review.

    Science.gov (United States)

    Staffoli, S; Romeo, U; Amorim, R N S; Migliau, G; Palaia, G; Resende, L; Polimeni, A

    2017-01-01

    Mesenchymal stem cells (MSCs) have the capability for self-renewal, proliferation, and differentiation in various types of specialized cells, so they are very important in cellular therapies. MSC from dental pulp are simply obtainable and have high proliferative capability. Among the therapies that can stimulate the proliferation of certain cell types, low-level laser therapy (LLLT) stands out. The target of this study is to perform a literature review to investigate these effects of low-level laser irradiation on proliferation of human dental pulp.The electronic search of scientific papers was conducted in the Lilacs, Scielo, Medline and PubMed databases through scientific articles published in national and international journals in the past 20 years.The results of this review suggest that LLLT may be a useful and important tool for future advances in cell therapy and tissue engineering associated to stem cells. Studies on cell therapy for regenerating dental tissues has already been done, and shows promising results.

  8. Improving the bulk laser-damage resistance of KDP by baking and pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Rainer, F.

    1981-01-01

    Isolated bulk damage centers are produced when KDP crystals are irradiated by 1-ns 1064-nm pulses. We have tested about 100 samples and find the median threshold to be 7 J/cm 2 when the samples are irradiated only once at each test volume (1-on-1 tests). The median threshold increased to 11 J/cm 2 when the test volumes were first subjected to subthreshold laser irradiation (n-on-1 tests). We baked several crystals at temperatures from 110 to 165 0 C and remeasured their thresholds. Baking increased thresholds in some crystals, but did not change thresholds of others. The median threshold of baked crystals ranged from 8 to 10 J/cm 2 depending on the baking temperature. In crystals that had been baked, subthreshold irradiation produced a large change in the bulk damage threshold, and reduced the volume density of damage centers relative to the density observed in unbaked crystals. The data are summarized in the table

  9. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  10. Transporting Capacity of Albumin in Patients with Severe Mechanical Injury During Intravascular Laser Irradiation

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2005-01-01

    Full Text Available The changes in the parameters of the transporting capacity of albumin, in some biochemical plasma parameters, and in the impact of low-energy laser irradiation on the studied parameters were examined in patients with severe mechanical injury in the early posttraumatic period. Thirty patients aged 17 to 70 years who had a health status of 78 to 98 scores by the APACHE-III scale were examined. The results indicated that as a consequence of prior hypoxia of mixed genesis and subsequent reperfusion and later on due to the development of endogenous intoxication, there were changes in the transporting capacity of albumin and in the de Ritis coefficient, a reduction in cholesterol concentrations, and increases in the levels of triglycerides and in the activity of gamma-glutamyl transpeptidase. Early quantum hemotherapy as a part of complex treatment makes it possible to prevent the progressive deterioration of the transporting capacity of plasma albumin, the critical reduction in the effective concentration of albumin, contributes to a more rapid recovery of the lowered levels of cholesterol and to a further increase in the activity of gamma-glutamyl transpeptidase, which is indicative of the recovered biosynthetic activity of the liver and its enhanced detoxifying activity.

  11. Lateral propagation of MeV electrons generated by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Seely, J. F.; Szabo, C. I.; Audebert, P.; Brambrink, E.; Tabakhoff, E.; Hudson, L. T.

    2010-01-01

    The propagation of MeV electrons generated by intense (≅10 20 W/cm 2 ) femtosecond laser irradiation, in the lateral direction perpendicular to the incident laser beam, was studied using targets consisting of irradiated metal wires and neighboring spectator wires embedded in electrically conductive (aluminum) or resistive (Teflon) substrates. The K shell spectra in the energy range 40-60 keV from wires of Gd, Dy, Hf, and W were recorded by a transmission crystal spectrometer. The spectra were produced by 1s electron ionization in the irradiated wire and by energetic electron propagation through the substrate material to the spectator wire of a different metal. The electron range and energy were determined from the relative K shell emissions from the irradiated and spectator wires separated by varying substrate lateral distances of up to 1 mm. It was found that electron propagation through Teflon was inhibited, compared to aluminum, implying a relatively weak return current and incomplete space-charge neutralization. The energetic electron propagation in the direction parallel to the electric field of the laser beam was larger than perpendicular to the electric field. Energetic electron production was lower when directly irradiating aluminum or Teflon compared to irradiating the heavy metal wires. These experiments are important for the determination of the energetic electron production mechanism and for understanding lateral electron propagation that can be detrimental to fast-ignition fusion and hard x-ray backlighter radiography.

  12. Effects of He-Ne laser irradiation on red blood cells in vitro

    Science.gov (United States)

    Ghadage, Vijay H.; Kulkarni, Gauri R.

    2011-03-01

    Laser radiation has many applications in biomedical field, such as wound healing, tissue repairing, heating and ablation processes. Intravenous low power laser radiation is used clinically for skin and vascular disorders. Laser radiation improves microcirculation and modulates the rheological properties of blood. FTIR (Fourier Transform Infra Red Spectra) is used to see the structural changes in erythrocyte membrane. In the present work He Ne laser (λ= 632nm, power=2mW) is used to irradiate human Red blood cells. Red blood cells are separated from human whole blood using centrifugation method (time=10 min., temperature=15°C and RPM=3000) and then exposed to HeNe laser radiation. Laser exposure time is varied from 10 min. to 40min for Red blood cells. Absorption spectrum, FTIR and fluorescence spectra of RBC are compared before and after HeNe laser irradiation. The absorption spectrum of RBC after exposure to HeNe laser shows a significant decrease in absorbance. The FTIR spectrum of non irradiated RBC clearly show the peaks due to O-H (free group), C=O (amide I group), N=O (nitro group), C-O (anhydride group) and C-H (aromatic group). Laser radiation changes in transmittance in FTIR spectra related to C=O group and percentage of transmittance increases for O-H, C=C, N=O, C-O and C-H group.

  13. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    Science.gov (United States)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  14. Realization of double-pulse laser irradiating scheme for laser ion sources

    International Nuclear Information System (INIS)

    Li Zhangmin; Jin Qianyu; Liu Wei; Zhang Junjie; Sha Shan; Zhao Huanyu; Sun Liangting; Zhang Xuezhen; Zhao Hongwei

    2015-01-01

    A double-pulse laser irradiating scheme has been designed and established for the production of highly charged ion beams at Institute of Modern Physics (IMP), Chinese Academy of Sciences. The laser beam output by a Nd : YAG laser is split and combined by a double of beam splitters, between which the split laser beams are transmitted along different optical paths to get certain time delay between each other. With the help of a quarter-wave plate before the first splitter, the energy ratio between the two laser pulses can be adjusted between 3 : 8 to 8 : 3. To testify its feasibility, a preliminary experiment was carried out with the new-developed double-pulse irradiating scheme to produce highly charged carbon ions. Comparing the results with those got from the previous single-pulse irradiating scheme, the differences in the time structure and Charge State Distribution (CSD) of the ion pulse were observed, but its mechanisms and optimization require further studies. (authors)

  15. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Chen, Zhuying; Wang, Chao

    2016-01-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm"2 and 12 J/cm"2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  16. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  17. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    Science.gov (United States)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  18. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  19. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute NSRT, Tehran (Iran, Islamic Republic of); Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Lamehi-Rachti, M. [Nuclear Science and Technology Research Institute NSRT, Tehran (Iran, Islamic Republic of); Ghergherehchi, M. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-03-07

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39 ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.

  20. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com; Liu, Weichao; Chen, Zhuying [Key Laboratory of Laser Medicine of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192 (China); Wang, Chao [Biomedical Engineering and Technology College, Tianjin Medical University, Tianjin, 300070 (China)

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  1. Effect of laser irradiation for healing of the skin-muscle wounds of animals

    Science.gov (United States)

    Lapina, Victoria A.; Veremei, Eduard I.; Pancovets, Evgeniy A.

    2000-05-01

    The purpose of our investigation was to study the medical effect of low-intensity laser influence on healing of skin- muscle wounds of agricultural animals. We used the laser radiation of low intensity for cub's therapy: to sucking-pigs after herniotomy and castration, to cattle cubs after skin- muscle wounds. The animals were kept under clinical observation up to their recovery. The recuperation dynamic was observed by changing of blood quotients, leukograms, sizes of inflammatory edema, general behavior of animals. The positive dynamic of blood quotients of the experimental animal groups was really higher than that in control. The analysis of wound healing after laser influence shows that wound surface of experimental group was to a great extent smaller in comparison with control group of animals. So, these facts testify about anti-inflammatory action of laser radiation, which hastens regenerative and rehabilitative processes. Analysis of the obtained experimental data has revealed the positive influence of laser irradiation on the dynamics of wound adhesion of agricultural animals.

  2. PHOTODYNAMIC THERAPY FOR HEAD AND NECK BASAL CELL SKIN CANCER WITH ADDITIONAL INTERSTITIAL LASER IRRADIATION

    Directory of Open Access Journals (Sweden)

    V. N. Kapinus

    2017-01-01

    Full Text Available The article is devoted to the development and evaluation of the effi ciency of photodynamic therapy (PDT with photosensitizer photolon with additional interstitial laser irradiation in patients with head and  neck basal cell skin cancer (BCSC. Treatment was performed in 55  patients. On the fi rst stage, all patients underwent photodynamic  therapy with interstitial irradiation using fl exible optical fi bers with  cylindrical diffuser, on the second stage PDT with distant delivery of  laser at a dose of 50-300 J/cm2 was carried out. During the follow- up period of 6 months to 4 years in 13 (23.6% of the 55 patients a  recurrence of the disease was diagnosed. A higher rate of recurrence was in the group of patients who underwent PDT for recurrent  neoplasms compared with patients with primary disease (37.5% and 4.3%, respectively, in patients with endophytic growth of the tumor compared to patients with exophytic component (30.0% and 16.0%,respectively and in patients with large tumors (up to 2.0 cm – 14.3%, from 2.0 to 5.0 cm – 16.7% and more than 5.0 cm – 54.4%.

  3. Development of a Skin Burn Predictive Model adapted to Laser Irradiation

    Science.gov (United States)

    Sonneck-Museux, N.; Scheer, E.; Perez, L.; Agay, D.; Autrique, L.

    2016-12-01

    Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser-skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig's skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient's value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.

  4. Micro-bubble generated by laser irradiation on an individual carbon nanocoil

    International Nuclear Information System (INIS)

    Sun, Yanming; Pan, Lujun; Liu, Yuli; Sun, Tao

    2015-01-01

    Highlights: • We have investigated laser irradiated microbubbles which can be generated at fixed point on surface of an individual carbon nanocoil (CNC) immerged in deionized water. • The microbubble can be operated easily and flexibly. • Based on classical heat and mass transfer theories, the bubble growth data is in good agreement with the simplified model. - Abstract: We have investigated the micro-bubbles generated by laser induction on an individual carbon nanocoil (CNC) immerged in deionized water. The photon energy of the incident focused laser beam is absorbed by CNC and converted to thermal energy, which efficiently vaporizes the surrounding water, and subsequently a micro-bubble is generated at the laser location. The dynamics behavior of bubble generation, including its nucleation, expansion and steady-state, has been studied experimentally and theoretically. We have derived equations to analyze the expansion process of a bubble based on classical heat and mass transfer theories. The conclusion is in good agreement with the experiment. CNC, which acts as a realistic micro-bubble generator, can be operated easily and flexibly

  5. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  6. Synergistic effect of fluoride and laser irradiation for the inhibition of the demineralization of dental enamel

    Science.gov (United States)

    Lee, Raymond; Chan, Kenneth H.; Jew, Jamison; Simon, Jacob C.; Fried, Daniel

    2017-02-01

    Both laser irradiation and fluoride treatment alone are known to provide increased resistance to acid dissolution. CO2 lasers tuned to a wavelength of 9.3 μm can be used to efficiently convert the carbonated hydroxyapatite of enamel to a much more acid resistant purer phase hydroxyapatite (HAP). Further studies have shown that fluoride application to HAP yields fluoroapatite (FAP) which is even more resistant against acid dissolution. Previous studies show that CO2 lasers and fluoride treatments interact synergistically to provide significantly higher protection than either method alone, but the mechanism of interaction has not been elucidated. We recently observed the formation of microcracks or a "crazed" zone in the irradiated region that is resistant to demineralization using high-resolution microscopy. The microcracks are formed due to the slight contraction of enamel due to transformation of carbonated hydroxyapatite to the more acid resistant pure phase hydroxyapatite (HAP) that has a smaller lattice. In this study, we test the hypothesis that these small cracks will provide greater adhesion for topical fluoride for greater protection against acid demineralization.

  7. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  8. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  9. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    Science.gov (United States)

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p alopecia. (c) 2009 S. Karger AG, Basel.

  10. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  11. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  12. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  13. Preparation and properties of titania based ionogels synthesized using ionic liquid 1-ethyl-3-methyl imidazolium thiocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Y.L.; Tripathi, A.K.; Shalu; Singh, V.K.; Balo, L.; Gupta, H.; Singh, S.K.; Singh, R.K., E-mail: rajendrasingh.bhu@gmail.com

    2017-06-15

    Highlights: • Synthesis of titania based ionogels using non-aqueous sol-gel process. • Ionogels are found to be mesoporous structure with uniform pore size distribution. • Ionic liquid extracted TiO{sub 2} matrix reveals the anatase phase of TiO{sub 2}. • Properties of ionic liquid are found to change in TiO{sub 2} matrix. - Abstract: Present study reports the synthesis of titania (TiO{sub 2}) based ionogels using ionic liquid (IL) 1-ethyl-3-methyl imidazolium thiocyanate ([EMIM][SCN]) by non-aqueous sol-gel process. Ionogels are characterized using N{sub 2} adsorption-desorption, TGA, DSC, SEM, TEM, XRD, and FTIR. N{sub 2}-sorption results show that TiO{sub 2} matrices have meso-pores with uniform pore size distribution. Thermal studies reveal that thermal stability of confined IL decreases while the glass transition temperature (T{sub g}) is found to increase. XRD patterns show that IL containing TiO{sub 2} matrices exhibit amorphous (weak crystalline peaks) nature however after extraction of IL from ionogel, it shows the crystalline (anatase) phase of TiO{sub 2} which has also been found from SAED pattern. SEM micrographs reveal that as the amount of IL is increased, TiO{sub 2} particles are found to agglomerate. FTIR results indicate that the vibrational frequencies of confined IL are found to shift due to interaction of IL molecules with titania pore wall surface.

  14. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  15. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  16. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  17. Sol-gel formed spherical nanostructured titania based liquefied petroleum gas sensor

    Science.gov (United States)

    Sabhajeet, S. R.; Yadav, B. C.; Sonker, Rakesh K.

    2018-05-01

    The present work reports the preparation of Titania(TiO2) thin film by sol-gel technique and its Liquefied Petroleum Gas (LPG) sensing. TiO2 exists in numerous phases possessing different structural properties like amorphous, anatase or anatase/rutile mixed phases. The structural analysis confirmed the formation of TiO2 having an average crystallite size 21 nm. SEM showed the regular and porous surface morphology. The band gap of the material was found as 3.65 eV. This film was employed for LPG sensing and variations in resistance with exposure of LPG were observed. Sensor response (S) as a function of time was calculated and its maximum value was found as 2.8 for 4% vol. of LPG with a response and recovery times of 240 sec and 248 sec respectively.

  18. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  19. Study etching characteristics of a track detector CR-39 with ultraviolet laser irradiation

    International Nuclear Information System (INIS)

    Dwaikat, Nidal; Iida, Toshiyuki; Sato, Fuminobu; Kato, Yushi; Ishikawa, Ippei; Kada, Wataru; Kishi, Atsuya; Sakai, Makoto; Ihara, Yohei

    2007-01-01

    The effect of pulsed ultraviolet Indium-doped Yttrium Aluminum Garnet (UV-In:YAG) laser of λ=266 nm, pulse energy 42 mJ/pulse at repetition rate10 Hz on the etching characteristics of Japanese CR-39 was studied at various energy intensities. Fifteen detectors were divided into two sets, each of seven samples and one sample was kept as a reference.The first set (post-exposed) was first exposed to alpha radiation with close contact to 241 Am and then treated in air with laser in the energy intensity range from 40 to160 J/cm 2 , 20 J/cm 2 in step. The second set (pre-exposed) was irradiated in reverse process (laser+alpha) with the same sources as the first set and under the same condition. The laser energy intensities ranged between 20 and 140 J/cm 2 , 20 J/cm 2 in step. For post-exposed samples (alpha+laser) bulk etch rate decreases up to 60 J/cm 2 and increases thereafter, while for pre-exposed samples (laser+alpha) the bulk etch rate oscillates without showing any precise periodicity. The bulk etch rate for both sets was found to be the same at 60≤energy intensity≤80 J/cm 2 and this may indicate that the same structural changes have happened. The track etch rate was found to be equal to the bulk etch rate for both sets, so the sensitivity is constant. In both sets several changes on the detector surfaces: tracks of different sizes and shapes and high density within the laser spot were observed. Out of the laser spot, the tracks become larger and lower density, indicating cross-linking and scission have happened, simultaneously, on the same surface as a result of UV-laser irradiation

  20. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lorazo, Patrick; Lewis, Laurent J.; Meunier, Michel

    2006-01-01

    The thermodynamic pathways involved in laser irradiation of absorbing solids are investigated in silicon for pulse durations of 500 fs and 100 ps. This is achieved by accounting for carrier and atom dynamics within a combined Monte Carlo and molecular-dynamics scheme and simultaneously tracking the time evolution of the irradiated material in ρ-T-P space. Our simulations reveal thermal changes in long-range order and state of aggregation driven, in most cases, by nonequilibrium states of rapidly heated or promptly cooled matter. Under femtosecond irradiation near the ablation threshold, the system is originally pulled to a near-critical state following rapid ( -12 s) disordering of the mechanically unstable crystal and isochoric heating of the resulting metallic liquid. The latter is then adiabatically cooled to the liquid-vapor regime where phase explosion of the subcritical, superheated melt is initiated by a direct conversion of translational, mechanical energy into surface energy on a ∼10 -12 -10 -11 s time scale. At higher fluences, matter removal involves, instead, the fragmentation of an initially homogeneous fluid subjected to large strain rates upon rapid, supercritical expansion in vacuum. Under picosecond irradiation, homogeneous and, at later times, heterogeneous melting of the superheated solid are followed by nonisochoric heating of the molten metal. In this case, the subcritical liquid material is subsequently cooled onto the binodal by thermal conduction and explosive boiling does not take place; as a result, ablation is associated with a ''trivial'' fragmentation process, i.e., the relatively slow expansion and dissociation into liquid droplets of supercritical matter near thermodynamic equilibrium. This implies a liquid-vapor equilibration time of ∼10 -11 -10 -10 s and heating along the binodal under nanosecond irradiation. Solidification of the nonablated, supercooled molten material is eventually observed on a ∼10 -11 -10 -9 s time scale

  1. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells.

    Science.gov (United States)

    Houreld, Nicolette N; Masha, Roland T; Abrahamse, Heidi

    2012-07-01

    Low-intensity laser irradiation (LILI) has been used to modulate a variety of biological processes, including diabetic wound healing. The mechanism of action is thought to exist primarily with the mitochondria. This study aimed to determine the effect of irradiation on normal, diabetic, and ischemic mitochondrial electron transport chain (ETC) complexes. Normal, diabetic and ischemic human skin fibroblast mitochondria were irradiated in vitro at a wavelength of 660 nm and a fluence of either 5 or 15 J/cm(2). Non-irradiated mitochondria served as controls. Enzyme activities of mitochondrial complexes I, II, III, and IV were determined immediately post-irradiation. Normal, diabetic, and ischemic cells were irradiated and adenosine triphosphate (ATP) and active mitochondria were determined by luminescence and fluorescent microscopy, respectively. Irradiated diabetic mitochondria at a fluence of 15 J/cm(2) showed a significant decrease in complex III activity (P < 0.05). Normal (P < 0.01) and diabetic (P < 0.05) mitochondria irradiated at either 5 or 15 J/cm(2) showed a significant increase in complex IV activity. ATP results showed a significant increase in irradiated normal cells (5 J/cm(2); P < 0.05) and diabetic cells (15 J/cm(2); P < 0.01). There was a higher accumulation of active mitochondria in irradiated cells than non-irradiated cells. Irradiation at 660 nm has the ability to influence mitochondrial enzyme activity, in particular cytochrome c oxidase. This leads to increased mitochondrial activity and ATP synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  2. Effects of increased low-level diode laser irradiation time on extraction socket healing in rats.

    Science.gov (United States)

    Park, Joon Bong; Ahn, Su-Jin; Kang, Yoon-Goo; Kim, Eun-Cheol; Heo, Jung Sun; Kang, Kyung Lhi

    2015-02-01

    In our previous studies, we confirmed that low-level laser therapy (LLLT) with a 980-nm gallium-aluminum-arsenide diode laser was beneficial for the healing of the alveolar bone in rats with systemic disease. However, many factors can affect the biostimulatory effects of LLLT. Thus, we attempted to investigate the effects of irradiation time on the healing of extraction sockets by evaluating the expressions of genes and proteins related to bone healing. The left and right first maxillary molars of 24 rats were extracted. Rats were randomly divided into four groups in which extraction sockets were irradiated for 0, 1, 2, or 5 min each day for 3 or 7 days. Specimens containing the sockets were examined using quantitative real-time reverse transcription polymerase chain reaction and western blotting. LLLT increased the expressions of all tested genes, Runx2, collagen type 1, osteocalcin, platelet-derived growth factor-B, and vascular endothelial growth factor, in a time-dependent manner. The highest levels of gene expressions were in the 5-min group after 7 days. Five minutes of irradiation caused prominent increases of the expression of all tested proteins after both 3 and 7 days. The expression level of each protein in group 4 was higher by almost twofold compared with group 1 after 7 days. Laser irradiation for 5 min caused the highest expressions of genes and proteins related to bone healing. In conclusion, LLLT had positive effects on the early stages of bone healing of extraction sockets in rats, which were irradiation time-dependent.

  3. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  4. Aquaporin-1-Mediated Effects of Low Level He-Ne Laser Irradiation on Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Gang-Yue Luo

    2012-01-01

    Full Text Available The role of membrane aquaporin-1 (APQ-1 in the photobiomodulation (PBM on erythrocyte deformability will be studied in this paper with human dehydrated erythrocytes as echinocytic shape alterations lead to decreased cellular deformability. Human dehydrated erythrocytes were irradiated with low intensity He-Ne laser irradiation (LHNL at 0.9, 1.8, 2.7, and 4.4 mW/cm2 for 5, 15, and 30 min, respectively, and APQ-1 inhibitor, 0.2 μmol/L HgCl2, was used to study the role of APQ-1 in mediating PBM with LHNL at 4.4 mW/cm2 for 5 min. Comprehensive morphological parameters of an intact cell such as contact area, perimeter, roundness and erythrocyte elongation index (EEI were measured to characterize erythrocyte deformability with fast micro multi-channel spectrophotometer. It was observed that the dosage of LHNL improvement of the morphological parameters of dehydrated erythrocytes was morphological-parameter-dependent, but the Bunsen-Roscoe rule did not hold for roundness. The LHNL at 4.4 mW/cm2 for 5 min significantly improved the contact area (P<0.05 and EEI (P<0.05 of the dehydrated erythrocytes, but the improvement was significantly inhibited by 0.2 μmol/L HgCl2 (P<0.05. It was concluded that AQP-1 might mediate the effects of LHNL on erythrocyte deformability, which supports the membranotropic mechanism of PBM.

  5. Low-level laser irradiation protects the chick embryo chorioallantoic membrane from UV cytotoxicity

    Directory of Open Access Journals (Sweden)

    Hammami Amira

    2018-01-01

    Full Text Available Low-level laser therapy or photobiomodulation is the medical use of a very low intensity light in the red to near infrared (wavelengths in the range of 630-940 nm. The present work was conducted to explore the effects of both UV and low-level laser irradiation (LLLI on microcirculation using the in vivo model of the chick embryo chorioallantoic membrane (CAM. The effects were assessed by measuring lipid peroxidation and antioxidant enzyme activity. Cell cytotoxicity, survival and intracellular reactive oxygen species (ROS of the CAM were also evaluated. We found that UV irradiation induced alterations of the vessels, leading to bleeding and extravasation. This effect was intensified after 60 min of exposure to UV irradiation, leading to marked edema. UVA irradiation increased cell cytotoxicity as assessed by lactate dehydrogenase (LDH release (56.23% of control and reduced cell viability as assessed by decreased fluorescein diacetate (FDA fluorescence (56.23% of control. Pretreatment with LLLI prior to UV exposure protected the CAM tissue from UV-mediated cell death. This protective effect was supported by the observation of significantly inhibited lipid peroxidation (from 0.3±0.004 for UV, to 0.177±0.012 after LLLI pretreatment, ROS and O2 -production, as indicated by respective dihydrorhodamine (DHR and dihydroethidium (DHE intensities (from 132.78% of control for UVA, to 95.90% of control for L-UV (DHR, and from 127.34% of control for UVA, to 82.03% of control for L-UV (DHE, and by preventing the increase in oxidative activities. LLLI efficiently protected CAM cells from UV-induced oxidative stress and appeared as a safe protective pretreatment against UV irradiation.

  6. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    Science.gov (United States)

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Stability of iodinated contrast media in UV-laser irradiation and toxicity of photoproducts

    International Nuclear Information System (INIS)

    Groenewaeller, E.F.; Kehlbach, R.; Claussen, C.D.; Duda, S.H.; Wahl, H.G.; Rodemann, H.P.

    1998-01-01

    Purpose: In XeCl-Excimer laser angioplasty, unintended and possibly harmful interaction of the UV-laser light and the contrast media may occur due to the high concentration of contrast medium proximal to the occlusion or subtotal stenosis. Methods: One ml of three nonionic monomeric contrast agents (iopromide, iomeprol, iopamidol), one nonionic dimetric (jotrolane), and one ionic monomeric (amidotrizoate) X-ray contrast agent were irradiated with a XeCl excimer laser (λ=308 nm, pulse duration 120 ns, 50 Hz) using a 9 French multifiber catheter (12 sectors). Up to 20 000 pulses (106 J) were applied. Using high performance liquid chromatography the amount of liberated iodide as well as the fraction of unchanged contrast media were measured. Cytotoxicity of the photoproducts was tested in a colony formation assay of human skin fibroblasts. The contrast agents were irradiated with 2000 pulses/ml (5.3 mJ/pulse; 10.6 J) and then added to the cell cultures for a period of three hours in a concentration of 10%. Results: Excimer laser irradiation induced iodide liberation of up to 3.3 mg iodide/ml. Up to 19% of the contrast agents changed their original molecular structure. Incubation of irradiated contrast agents resulted in a significantly decreased potential for colony formation (p values ranging from 0.0044 to 0.0102) with significantly higher toxicity of amidotrizoate and iomeprol in comparison to iopromide, iotrolan, and iopamidol. Discussion: Due to the cytotoxic photoproducts and the high level of liberated iodide, it is recommended to flush the artery with physiological saline solution before applying a pulsed excimer laser in human arterial obstructions in order to reduce the contrast agent concentration at the site of irradiation. (orig.) [de

  8. Hydrogen peroxide route to Sn-doped titania photocatalysts

    Directory of Open Access Journals (Sweden)

    Štengl Václav

    2012-10-01

    Full Text Available Abstract Background The work aims at improving photocatalytic activity of titania under Vis light irradiation using modification by Sn ions and an original, simple synthesis method. Tin-doped titania catalysts were prepared by thermal hydrolysis of aqueous solutions of titanium peroxo-complexes in the presence of SnCl4 or SnCl2 using an original, proprietary "one pot" synthesis not employing organic solvents, metallo-organic precursors, autoclave aging nor post-synthesis calcination. The products were characterized in details by powder diffraction, XPS, UV–vis, IR, and Raman spectroscopies, electron microscopy and surface area and porosity measurements Results The presence of tin in synthesis mixtures favors the formation of rutile and brookite at the expense of anatase, decreases the particle size of all formed titania polymorphs, and extends light absorption of titania to visible light region >400 nm by both red shift of the absorption edge and introduction of new chromophores. The photocatalytic activity of titania under UV irradiation and >400 nm light was tested by decomposition kinetics of Orange II dye in aqueous solution Conclusions Doping by Sn improves titania photoactivity under UV light and affords considerable photoactivity under >400 nm light due to increased specific surface area and a phase heterogeneity of the Sn-doped titania powders.

  9. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    Science.gov (United States)

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  10. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Kim, Hyungchul; Graham, Samuel, E-mail: sgraham@gatech.edu [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2016-03-14

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use local SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.

  11. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    International Nuclear Information System (INIS)

    Moerman, David; Colbert, Adam E.; Ginger, David S.; Kim, Hyungchul; Graham, Samuel

    2016-01-01

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO_2) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO_2 thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO_2 thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO_2 form. Finally, we use local SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO_2 thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO_2 is amorphous, in agreement with the device measurements.

  12. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    Science.gov (United States)

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  13. Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching

    International Nuclear Information System (INIS)

    Chen, Tao; Pan, An; Li, Cunxia; Si, Jinhai; Hou, Xun

    2015-01-01

    Highlights: • We studied morphologies of silicon grooves fabricated by laser irradiation and wet etching. • We found nano-ripple structures formed on the groove sidewall. • Formations of nano-ripples were due to the formation of standing wave and nanoplanes. • Remaining debris on the groove bottom was removed by KOH etching. - Abstract: Morphologies of high-aspect-ratio silicon grooves fabricated by using femtosecond laser irradiation and selective chemical etching of hydrofluoric acid (HF) were studied. Oxygen was deeply doped into silicon under femtosecond laser irradiation in air, and then the oxygen-doped regions were removed by HF etching to form high-aspect-ratio grooves. After HF etching, periodic nano-ripples which were induced in silicon by femtosecond laser were observed on the groove sidewalls. The ripple orientation was perpendicular or parallel to the laser propagation direction (z direction), which depended on the relative direction between the laser polarization direction and the scanning direction. The formation of nano-ripples with orientations perpendicular to z direction could be attributed to the standing wave generated by the interference of the incident light and the reflected light in z direction. The formation of nano-ripples with orientations parallel to z direction could be attributed to the formation of self-organized periodic nanoplanes (bulk nanogratings) induced by femtosecond laser inside silicon. Materials in the tail portion of laser-induced oxygen doping (LIOD) regions were difficult to be etched by HF solution due to low oxygen concentration. The specimen was etched further in KOH solution to remove remaining materials in LIOD regions and all-silicon grooves were fabricated

  14. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  15. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    Science.gov (United States)

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P enamel and dentin substrates (P enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  16. Surface characterization of Ag/Titania adsorbents

    International Nuclear Information System (INIS)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-01-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (∼0.1% of total Ag) present as Ag 2+ . The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ∼30-60 A depending on Ag content, with an Ag specific surface area of ∼7-14 m 2 /g, vs. the total surface area of ∼114-58 m 2 /g.

  17. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    Science.gov (United States)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  18. Characteristics of laser irradiated Hg sub 0 ,835 Cd sub 0 ,165 Te analysed by resonant Raman spectroscopy

    International Nuclear Information System (INIS)

    Scepanovic, M.; Jevtic, M.

    1998-01-01

    The characteristics of Hg sub 0 ,835 Cd sub 0 ,165 Te sample irradiated by a nanosecond Nd: YAG laser pulse are investigated using a resonant Raman spectroscopy. The pulse energy density of 100 mJ/cm sup 2 is close to the energy threshold of material melting under the irradiated conditions. The presented Raman spectra of the unirradiated and irradiated sample parts point out that the laser irradiation induced a little concentration change in the surface sample layers without the essential structural changes (author)

  19. In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Kuznetsov, D. K.; Mingaliev, E. A.; Yakunina, E. M.; Lobov, A. I.; Ievlev, A. V. [Ferroelectric Laboratory, Institute of Physics and Applied Mathematics, Ural State University, Lenin Ave. 51, Ekaterinburg 620083 (Russian Federation)

    2011-08-22

    The evolution of the self-assembled quasi-regular micro- and nanodomain structures after pulse infrared laser irradiation was studied by in situ optical observation. The average periods of the structures are much less than the sizes of the laser spots. The polarization reversal occurs through covering of the whole irradiated area by the nets of the spatially separated nanodomain chains and microdomain rays--''hatching effect.'' The main stages of the anisotropic nanodomain kinetics: nucleation, growth, and branching, have been singled out. The observed abnormal domain kinetics was attributed to the action of the pyroelectric field arising during cooling after laser heating.

  20. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    Science.gov (United States)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  1. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  2. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    Science.gov (United States)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  3. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    International Nuclear Information System (INIS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-01-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm 2 and 4 J/cm 2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm 2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm 2 , laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the

  4. Investigation of the cellular effects of Low Intensity Laser Irradiation (LILI)

    International Nuclear Information System (INIS)

    Esfandiary, H.

    1998-07-01

    Low Intensity Laser Irradiation (LILI) has become a therapeutic modality for the treatment of various conditions including acceleration of wound healing. Despite extensive experimental cellular research, the biological mechanisms underlying the success of this phenomenon remain unknown. This, in combination with the conflicting reported clinical results of LILI have prevented universal acceptance of this modality by health care professions. The aim of this thesis was to investigate further, in a systematic and well-controlled manner, the biological effects of LILI on two human leukaemic cell lines HL-60 and U937 in vitro. The laser diode used was a Gallium Aluminium Arsenide (GaAlAs) laser with a wavelength of 660nm, output power of 12mW and a chosen therapeutic energy density of 11.5J/cm 2 . Initially, intracellular thermal effects were examined following LILI by monitoring levels of several heat shock protein (hsp) family members over a 24h period. Levels of hsp70, 60, 90 and 27 were unaffected at the chosen LILI energy density of 11.5J/cm 2 . The effect of LILI on the cell cycle was also investigated at the molecular level by probing for protein and mRNA of a number of cell cycle regulatory factors. Levels of p53, c-fos, c-myc hsp70, bcl-2, TNF-α and several others was unaffected by LILI. Finally, the differential display method was used to detect any LILI-induced transcriptional changes in mRNA i.e. altered gene expression and again results were negative with LILI having no effect on gene expression. In conclusion, these results suggest that the biological effects of GaAlAs lasers at an E.D. of 11.5/cm 2 on two human leukaemic cell lines in vitro do not involve a stress response as measured by hsps, do not modulate levels of prominent cell cycle factors and do not induce changes in gene expression at the transcriptional level. These results seriously question the effectiveness of low energy lasers as 'real' therapeutic devices due to lack of any LILI

  5. Fabrication of Titania Nanotubes for Gas Sensing Applications

    Science.gov (United States)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  6. Novel structuring routines of titania films for application in photovoltaics

    OpenAIRE

    Niedermeier, Martin A.

    2014-01-01

    Novel routines to structure titania thin films on various length scales are investigated regarding photovoltaic applications. The main focus of the investigations lies on the custom-tailoring of the morphologies of the titania films using sol-gel chemistry in combination with block copolymer templating. Additionally, a low-temperature routine for functional hybrid films as well as the growth of gold as electrode material on top of an organic hole-conductor are investigated. Im Hinblick auf...

  7. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol.

    Science.gov (United States)

    Zhang, Jinying; Wang, Rui; Zhu, Xi; Pan, Aifei; Han, Chenxiao; Li, Xin; Dan Zhao; Ma, Chuansheng; Wang, Wenjun; Su, Haibin; Niu, Chunming

    2017-09-25

    Pseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.80 Å. The change in entropy from carbon nanotubes to T-carbon reveals the phase transformation to be first order in nature. The computed electronic band structures and projected density of states are in good agreement with the optical absorption and photoluminescence spectra of the T-carbon nanowires.T-carbon is a previously predicted but so far unobserved allotrope of carbon, with a crystal structure similar to diamond, but with each atomic lattice position replaced by a carbon tetrahedron. Here, the authors produce T-carbon nanowires via laser-irradiating a suspension of carbon nanotubes in methanol.

  8. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.

    Science.gov (United States)

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-03-03

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  9. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    Directory of Open Access Journals (Sweden)

    Jiangmin Xu

    2017-03-01

    Full Text Available Based on PVDF (piezoelectric sensing techniques, this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  10. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  11. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss.

    Science.gov (United States)

    Esteves-Oliveira, Marcella; El-Sayed, Karim Fawzy; Dörfer, Christof; Schwendicke, Falk

    2017-05-01

    The caries-protective effects of CO 2 laser irradiation on dental enamel have been demonstrated using chemical demineralization models. We compared the effect of CO 2 laser irradiation, sodium fluoride, or both on biofilm-induced mineral loss (∆Z) and Streptococcus mutans adhesion to enamel and dentin in vitro. Ground, polished bovine enamel, and dentin samples were allocated to four groups (n = 12/group): no treatment (C); single 22,600-ppm fluoride (F) varnish (5 % NaF) application; single CO 2 laser treatment (L) with short pulses (5 μs/λ = 10.6 μm); and laser and subsequent fluoride treatment (LF). Samples were sterilized and submitted to an automated mono-species S. mutans biofilm model. Brain heart infusion plus 5 % sucrose medium was provided eight times daily, followed by rinses with artificial saliva. After 10 days, bacterial numbers in biofilms were enumerated as colony-forming units/ml (CFU/ml) (n = 7/group). ∆Z was assessed using transversal microradiography (n = 12/group). Univariate ANOVA with post hoc Tukey honestly-significant-difference test was used for statistical analysis. Bacterial numbers were significantly higher on dentin than enamel (p  0.05). In dentin, only LF (163/227) significantly reduced ∆Z (p fluoride application was required to protect dentin.

  12. Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM

    International Nuclear Information System (INIS)

    Yip, Joanne; Chan, Kwong; Sin, Kwan Moon; Lau, Kai Shui

    2002-01-01

    Polyamide (nylon 6) was irradiated by a pulsed ultraviolet (UV) excimer laser with a fluence below its ablation threshold. Chemical modifications on laser treated nylon were studied by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (Tof-SIMS) and chemical force microscopy (CFM). XPS study provides information about changes in chemical composition and the chemical-state of atom types on the fiber surface. The high sensitivity of ToF-SIMS to the topmost layers was used to detect crosslinking after the laser treatment. Gold-coated AFM tips modified with -COOH terminated self-assembled alkanethiol monolayers (SAMs) were used to measure adhesion forces on the untreated and laser treated samples. XPS results revealed that the irradiated samples have higher oxygen content than prior to laser irradiation. Tof-SIMS analysis illustrated that carbonyl groups in nylon 6 decrease significantly but hydroxyl groups increase after low-fluence laser irradiation. The adhesion force measurements by CFM showed spatial distribution of hydroxyl groups on nylon 6 after the laser treatment

  13. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  14. Efficacy of Proliferation of HeLa Cells under Three Different Low-Intensity Red Lasers Irradiation

    Directory of Open Access Journals (Sweden)

    H. Q. Yang

    2012-01-01

    Full Text Available This study was intended to compare the efficacy of proliferation of HeLa cells under three different low-intensity laser irradiation (LIL, that is, 633 nm, 658 nm, and 785 nm. The time-dependent responses of proliferation of HeLa cells after the red laser irradiation and the influence of fetal bovine serum (FBS at 1%, 2%, 5%, or 10% on the proliferation of cells were also investigated. The results indicated that the proliferation of HeLa cells in 10% FBS was in proliferation-specific homeostasis (PSH so that it was not modulated with LIL; the proliferation in FBS at 1%, 2%, or 5% was far from PSH so that it may be wavelength dependently modulated with LIL, and the maximum proliferation promotion was conducted with LIL at 633 nm amongst the three different LIL. It was concluded the wavelength-dependent photobiomodulation of LIL on proliferation of HeLa cells may be homeostatic.

  15. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  16. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  17. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  18. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  19. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    Science.gov (United States)

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  20. Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode

    International Nuclear Information System (INIS)

    Zhao, Junchang; Wu, Jihuai; Zheng, Ming; Huo, Jinghao; Tu, Yongguang

    2015-01-01

    Highlights: • A colloid of graphene/titania is prepared, and thus a graphene/titania film is made. • The film shows high porosity, large surface area and small transfer resistance. • The cell with graphene/titania photoanode obtains a conversion efficiency of 7.52%. • Which is increased by 18% compared to the cell with pristine titania electrode. - Abstract: A mixed colloid of graphene and titania is synthesized by a one-step hydrothermal reaction, thus a graphene/titania film photoanode is prepared. The graphene/titania film shows high porosity and large specific surface area, which favors a full adsorption of sensitized dye. On the other hand, the graphene/titania electrode has smaller charge transfer resistance than the pristine titania electrode, which replies that the graphene/titania electrode accelerates electronic transportation and suppresses the charge recombination. Under an optimal condition, the dye-sensitized solar cell based on graphene/titania photoanode achieve a power conversion efficiency of 7.52%, which is increased by 17.7% compared to the cell based on the pristine titania electrode under a simulated solar light irradiation of 100 mW·cm −2

  1. Evaluation in vitro of effects of Er:YAG and Nd:YAG lasers irradiation on root canal wall, by stereoscopy, scanning electron micrography and thermographic camera

    International Nuclear Information System (INIS)

    Goya, Claudia

    2001-01-01

    This study was carried out to evaluate in vitro the effects of Nd:YAG laser and Er:YAG laser irradiation in the root canal wall by SEM, evaluating the apical leakage and the temperature changes during the laser irradiation. Seventy four extracted human teeth were used, they were instrumented and divided into seven groups of 10 teeth each. The teeth were evaluated through stereoscopy, by SEM, and with the thermographic camera. The Nd:YAG laser irradiation parameters were 100 mJ/p, 15 Hz, and Er:YAG laser were 160 mJ/p and 10 Hz, the irradiation was 4 times at 2 mm/sec speed, with 20 sec interval. The apical leakage was not observed in the teeth irradiated by Nd:YAG laser alone or in association with Er:YAG laser. However in the teeth irradiated only by the Er:YAG laser we observed a little leakage. By SEM observation the Nd:YAG laser irradiation showed melting and recrystallization in the dentin surface closing dentinal tubules, and in the samples irradiated by Er:Y AG laser a clean surface, opened dentinal tubules, and the combination by two lasers, showed melting covering some dentinal tubules The thermographic study found the temperature increase was not more than 6 deg C. This study showed the safety parameters applications of Er:YAG laser in association with Nd:YAG laser in root canal treatment, in order to not cause thermal damages to the periodontal tissues. (author)

  2. Basic study of charring detection at the laser catheter-tip using back scattering light measurement during therapeutic laser irradiation in blood.

    Science.gov (United States)

    Takahashi, Mei; Ito, Arisa; Kajihara, Takuro; Matsuo, Hiroki; Arai, Tsunenori

    2010-01-01

    The purpose of this study is to investigate transient process of the charring at the laser catheter-tip in blood during therapeutic laser irradiation by the back scattering light measurement to detect precursor state of the charring. We took account of using photodynamic therapy for arrhythmia in blood through the laser catheter. We observed the influence of the red laser irradiation (λ=663 nm) upon the shape of red blood cells (RBCs). The RBCs aggregation, round formation, and hemolysis were took place sequentially before charring. With a model blood sandwiched between glass plates simulated as a catheter-tip boundary, we measured diffuse-reflected-light power and transmitted-light power simultaneously and continuously by a microscopic optics during the laser irradiation. We found that measured light power changes were originated with RBCs shape change induced by temperature rise due to the laser irradiation. A gentle peak following a slow descending was observed in the diffuse-reflected-light power history. This history might indicate the precursor state of the charring, in which the hemolysis might be considered to advance rapidly. We think that the measurement of diffuse-reflected-light power history might be able to detect precursor state of charring at the catheter-tip in blood.

  3. The effect of ArF laser irradiation (193 nm) on the photodegradation and etching properties of alpha-irradiated CR-39 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Jooybari, B. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Ghergherehchi, M. [College of Information and Technology/ school of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Lamehi-Rachti, M. [Nuclear Science and Technology Research Institute (NSRT), Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-01-01

    The effects of ArF laser irradiation (λ=193nm) at various fluences (energy dose or energy density) on the etching properties of pre-exposed (laser + alpha) CR-39 detectors were studied. First, UV–Vis and Fourier transform infrared (FTIR) spectra were acquired for non-laser-irradiated and laser-irradiated samples to detect the influence of the ArF laser on the chemical modification of the CR-39. Changes observed in the spectra indicated that the predominant process that occurred upon ArF laser irradiation was a bond-scission process. Thereafter, the mean track and bulk etching parameters were experimentally measured in ArF-laser-irradiated CR-39 detectors exposed to an alpha source ({sup 241}Am, E = 5.49 MeV). Inhomogeneous regions in the laser-irradiated side of the CR-39 demonstrated a variable etching rate on only the front side of the CR-39 detector. New equations are also presented for the average bulk etching rate for these inhomogeneous regions (front side). The mean bulk and track etching rates and the mean track dimensions increased in a fluence range of 0–37.03 mJ/cm{sup 2} because of photodegradation and the scission of chemical bonds, which are the predominant processes in this range. When the fluence was increased from 37.03 to 123.45 mJ/cm{sup 2}, the bulk and track etching rates and the track dimensions slowly decreased because of the formation of cross-linked structures on the CR-39 surface. The behavior of the bulk and track etching rates and the track dimensions appears to be proportional to the dose absorbed on the detector surface. It was observed that as the etching time was increased, the bulk and track etching rates and the track dimensions of the laser-irradiated samples decreased because of the shallow penetration depth of the 193 nm laser and the reduction in the oxygen penetration depth.

  4. Preparation and characterization of porous carbon–titania nanocomposite films as solar selective absorbers

    International Nuclear Information System (INIS)

    Cheng, B.; Wang, K.K.; Wang, K.P.; Li, M.; Jiang, W.; Cong, B.J.; Song, C.L.; Jia, S.H.; Han, G.R.; Liu, Y.

    2015-01-01

    Highlights: • The nanocomposites porous C/TiO 2 film were fabricated via PIPS method. • The HRTEM reveals the size of carbon nanoparticles is about 1.1 nm. • The PVP advantages residual carbon content but suppresses its crystallization. • The film exhibits high α (0.928–0.959) with low ε (0.074–0.105) for single layer. - Abstract: Newly proposed selective solar absorbers of porous carbon–titania nanocomposite films with a well-defined interconnected macropores structure were prepared via a polymer-assisted photopolymerization-induced phase-separation method. The microstructure and optical properties of as-deposited nanocomposite films were characterized and discussed in detail. The results show that non-ionic water-soluble polymer polyvinylpyrrolidone works as a sol modifier advantaging the mean size of the interconnected macropores, residual carbon content, and films thickness, but suppresses the order degree of the carbon remained in the films. The high-resolution transmission electron microscopy demonstrated that a small amount of graphite particles with size of around 1.1 nm embedded in the cavity of the porous while the wall of the porous consists of amorphous carbon and titania composites. The single layer of as-prepared porous C/TiO 2 nanocomposite films exhibits high solar absorptance (α = 0.928–0.959) with low thermal emittance (ε = 0.074–0.105), yielding an optimized photothermal conversion efficiency η = α − ε of 0.864 corresponding to a film thickness of around 338 nm, indication of such film is fair enough to serve as an excellent solar absorber

  5. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  6. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Qi, Dongfeng; Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P.; Chen, Songyan

    2016-01-01

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  7. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  8. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m respectively, according to four point probe. Keywords: TiO2, Diode laser, XRD, SEM

  9. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    Science.gov (United States)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  10. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  11. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    Science.gov (United States)

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long.

  12. Effect of He-Ne laser irradiation of Bombyx mori L. breed in egg stage on thereproductive characters

    International Nuclear Information System (INIS)

    Ovesenska, L.; Vasileva, J.

    1984-01-01

    Two eggs of B. mori breeds were treated with laser rays at various rates. The effects of irradiation on the quantitative characters with alterating phenotypic performance characterizing the reproductive capability of the progeny was investigated. The characters were compared between parents and progeny as well as with control groups in the progeny. Data were processed by mono-factional analysis of variance of polugenic quantative characters with alternating phenotypic performance. Characterization of the characters was made by mean arithmetic value' analysis of the phenotype variance with the coeficient of genetic diversity in the investigated groups. A simulating effect of He-Ne laser irradiation on the reproductive characters of B. mori was found both in the parents and in their progeny. The effect was higher in breeds of lower reproductive capacity after treatment at lower rates (5, 10 and 15 mW), and the eggs treated were in a more advanced embrional stage

  13. Photobiostimulation on chondrocytes proliferation in different concentration of fetal bovine serum under low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Wang, Yuhua; Qiu, Caimin; Chen, Jianlin; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2015-03-01

    The aim of this in vitro study was to evaluate the influence of low-level laser irradiation (LLLI) on the chondrocytes proliferation cultured in different concentration of fetal bovine serum (FBS) using 658 nm, 785 nm and 830 nm diode lasers. The role of energy density (10-70 mJ·cm-2) on chondrocytes proliferation following irradiation with 658 nm laser for 2 days was firstly investigated to find out the best laser energy density. Then the effect of LLLI on the proliferation of chondrocytes cultured with fetal bovine serum at 0%, 2%, 5% and 10% was also evaluated. The results showed that there was no or little photobiostimulation on the proliferation of chondrocytes cultured with 0% FBS and 10% FBS; the cell proliferation at 2% and 5% FBS was significantly modulated by LLLI.

  14. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  15. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  16. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-01-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  17. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani

    International Nuclear Information System (INIS)

    Ouf, S.A.; Abdel-Hady, N.F.

    1999-01-01

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani

  18. Different reaction of the core histones H2A and H2B to red laser irradiation

    Science.gov (United States)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Ushakova, O. V.

    2017-03-01

    Analysis of the influence of red laser irradiation on the processes of self-assembly of the core histones H2A and H2B was performed using a wedge dehydration method. Image-analysis of facies included their qualitative characteristics and calculation of quantitative parameters with subsequent statistical processing. It was established that linearly polarized red laser light (λ - 660 nm, 1 J/cm2) significantly modified the process of self-assembly of core histone H2B, whereas the structure of the facies of H2A histone changed to a lesser extent. Histones were used in the form of aqueous salt solutions. The effect of red light seems to result from the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  19. X-ray spectroscopy study of electronic structure of laser-irradiated Au nanoparticles in a silica film

    International Nuclear Information System (INIS)

    Jonnard, P.; Bercegol, H.; Lamaignere, L.; Morreeuw, J.-P.; Rullier, J.-L.; Cottancin, E.; Pellarin, M.

    2005-01-01

    The electronic structure of gold nanoparticles embedded in a silica film is studied, both before and after irradiation at 355 nm by a laser. The Au 5d occupied valence states are observed by x-ray emission spectroscopy. They show that before irradiation the gold atoms are in metallic states within the nanoparticles. After irradiation with a fluence of 0.5 J/cm 2 , it is found that gold valence states are close to those of a metal-poor gold silicide; thanks to a comparison of the experimental Au 5d states with the calculated ones for gold silicides using the density-functional theory. The formation of such a compound is driven by the diffusion of the gold atoms into the silica film upon the laser irradiation. At higher fluence, 1 J/cm 2 , we find a higher percentage of metallic gold that could be attributed to annealing in the silica matrix

  20. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    International Nuclear Information System (INIS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-01-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO 4 ) solution (Process 1), and ethylene glycol (EG) mixture with HClO 4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m 2 g −1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube

  1. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    2017-05-15

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract

  2. Effect of KrF excimer laser irradiation on the surface changes and photoelectric properties of ZnO single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yong [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China); Zhao, Yan [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Jiang, Yijian, E-mail: yjjiang@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China)

    2016-06-25

    In this paper, the effect of KrF pulsed excimer laser irradiation on the structural, surface morphology, photoluminescence and electrical properties of ZnO single crystal was investigated. Compared to the as-grown sample, at an irradiation energy density of 257 mJ/cm{sup 2}, the ZnO single crystal exhibits a series of phenomenon: XRD and Raman results show that the crystallization of ZnO quality change slightly, resistivity is decreased by two orders of magnitude, carrier concentration is increased by one order of magnitude. After laser irradiation, the surface shows some strip lines and no cracks. Formula calculation and simulation results show that the stripes are not caused by surface melting. We speculate that these stripes are caused by the precipitation of ZnO material inside to the surface. Due to the reduction of oxygen vacancies, UV emission has been enhanced and visible emission has been declined after irradiation. After the laser irradiation, the visible light of ZnO surface can be regulated. The experimental results show that KrF laser irradiation could effectively improve the optical and electrical properties of ZnO single crystal, which is important for the application of high performance of emitting optoelectronic devices. - Highlights: • After laser irradiation, the surface shows some strip lines and no cracks. • The visible light of as-irradiated ZnO surface can be regulated to four colors. • The electrical properties of as-irradiated ZnO has been improved greatly.

  3. Na,K-ATPase biostimulation by low-energy laser irradiation: comparative effects in membrane, solubilized and proteoliposomes enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Rigos, C.F.; Tedesco, A.C.; Ciancaglini, P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Quimica; Santos, H.L. [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil)

    2008-07-01

    Full text: The mechanism of laser irradiation action on living cells is not yet understood. The role of membrane ATPases as possible targets has been analyzed. In our group we have been working with Na,K-ATPase. This enzyme is a member of the P-type family of active cation transport proteins. Thus, the aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of different forms of the Na,K-ATPase. Membrane-bound and solubilized (ab)2 form of Na,K-ATPase was obtained from the rabbit kidney and DPPC:DPPE-proteoliposomes were prepared by the co-solubilization method. Irradiations were carried out at 685 nm. The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/c m2. With irradiation doses ranging from 32 to 40 J/c m2, a 28% increase on the ATPase activity was observed while when using up to 50 J/c m2 no additional enhancement was observed. When bio stimulation was done using the purified or the reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/c m2. With irradiation above these values (24 J/c m2) no additional increase in the activity appeared. These studies revealed that the bio stimulation of ATPase activity from different forms of the Na,K -ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes.

  4. Na,K-ATPase biostimulation by low-energy laser irradiation: comparative effects in membrane, solubilized and proteoliposomes enzyme

    International Nuclear Information System (INIS)

    Rigos, C.F.; Tedesco, A.C.; Ciancaglini, P.

    2008-01-01

    Full text: The mechanism of laser irradiation action on living cells is not yet understood. The role of membrane ATPases as possible targets has been analyzed. In our group we have been working with Na,K-ATPase. This enzyme is a member of the P-type family of active cation transport proteins. Thus, the aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of different forms of the Na,K-ATPase. Membrane-bound and solubilized (ab)2 form of Na,K-ATPase was obtained from the rabbit kidney and DPPC:DPPE-proteoliposomes were prepared by the co-solubilization method. Irradiations were carried out at 685 nm. The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/c m2. With irradiation doses ranging from 32 to 40 J/c m2, a 28% increase on the ATPase activity was observed while when using up to 50 J/c m2 no additional enhancement was observed. When bio stimulation was done using the purified or the reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/c m2. With irradiation above these values (24 J/c m2) no additional increase in the activity appeared. These studies revealed that the bio stimulation of ATPase activity from different forms of the Na,K -ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes

  5. One-Pot Hybrid SnO2 /Poly(methyl methacrylate) Nanocomposite Formation through Pulsed Laser Irradiation.

    Science.gov (United States)

    Caputo, Gianvito; Scarpellini, Alice; Palazon, Francisco; Athanassiou, Athanassia; Fragouli, Despina

    2017-06-20

    The localized in situ formation of tin dioxide (SnO 2 ) nanoparticles embedded in poly(methyl methacrylate) (PMMA) films is presented. This is achieved by the photoinduced conversion of the tin acetate precursor included in polymeric films, through controlled UV or visible pulsed laser irradiation at λ=355 and 532 nm, respectively. The evolution of the formation of nanoparticles is followed by UV/Vis spectroscopy and shows that their growth is affected in different ways by the laser pulses at the two applied wavelengths. This, in combination with electron microscopy analysis, reveals that, depending on the irradiation wavelength, the size of the nanoparticles in the final nanocomposites differs. This difference is attributed to distinct mechanistic pathways that lead to the synthesis of small nanoparticles (from 1.5 to 4.5 nm) at λ=355 nm, whereas bigger ones (from 5 to 16 nm) are formed at λ=532 nm. At the same time, structural studies with both X-ray and electron diffraction measurements demonstrate the crystallinity of SnO 2 nanoparticles in both cases, whereas XPS analysis confirms the light-induced oxidation of tin acetate into SnO 2 . Taken all together, it is demonstrated that the pulsed laser irradiation at λ=355 and 532 nm leads to the formation of SnO 2 nanoparticles with defined features highly dispersed in PMMA solid matrices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Determining and optimizing effective factors in laser irradiation on skin tensional strength using a hybrid DOE and DEA approach

    International Nuclear Information System (INIS)

    Bashiri, M.; Dehghan, E.; Mottaghian, F.; Amjadi, A.

    2010-01-01

    We investigated the characteristic of a suitable irradiation on skin's tensional strength using design of experiments. The experiments in this research are designed in two phases and data envelopment analysis is used for performance measurement of each phase. Material and Methods: Samples were provided from pleura as surface tissue made of collagen and elastin fibers. In each experiment, the sample was stretched before and after irradiation. Variation of the sample length was measured. Then force-length data were plotted and the slope of the fitted line was calculated. Variation in these slopes was used as a criterion to determine tissue strength variation after laser irradiation. Furthermore, the output oriented data envelopment analysis model by variable return to scale was used to examine performance of the designed experiments for each phase. Results: Results of the first phase experiments showed that the main effect of time duration was significant; but this was not the case for beam radius. Regarding polarization, only its interaction effect with time duration was significant. Results of the second phase indicated that laser irradiation with parallel polarization for 10 seconds caused a greater increase in tensional strength. Resultant efficiencies of applying data envelopment analysis showed that the first phase experiments were more efficient. Discussion and Conclusions: This research has combined data envelopment analysis and design of experiments to investigate the effects of laser on skin elasticity. Comparing the results of the two phases indicates that it is more efficient to use the experimental design of phase 1 in our experiment. So for similar future studies, we suggest using more levels for experiments of phase 1 instead of doing the experimental design in two phases.

  7. FT-Raman spectroscopic analysis of Nd:YAG and Er,Cr:YSGG laser irradiated enamel for preventive purposes

    Science.gov (United States)

    Ana, P. A.; Kauffmann, C. M. F.; Bachmann, L.; Soares, L. E. S.; Martin, A. A.; Gomes, A. S. L.; Zezell, D. M.

    2014-03-01

    This study evaluated the effect of combining laser irradiation with fluoride on an enamel microstructure and demineralization by FT-Raman spectroscopy (FTRS). Eighty human enamel slabs were divided into eight groups: (G1) untreated; (G2) acidulated phosphate fluoride application (APF—1.23% F- for 4 min) (G3) Nd:YAG irradiation (84.9 J cm-2, 60 mJ/pulse) (G4) Nd:YAG + APF; (G5) APF + Nd:YAG; (G6) Er,Cr:YSGG irradiation (2.8 J cm-2, 12.5 mJ/pulse) (G7) Er,Cr:YSGG + APF; and (G8) APF + Er,Cr:YSGG. After treatment, the samples were submitted to a ten-day pH-cycling model. Chemical changes were determined on the slabs before and after treatment, and also after pH-cycling, by FTRS in the range 400-4000 cm-1. The inorganic bands at 440, 590, 870, 960, 1100 cm-1, and the organic bands at 1270, 1450, 1670, 2945 cm-1 were considered. Demineralization promoted reduction in organic contents; Nd:YAG laser irradiation promoted loss of carbonate and organic content, while Er,Cr:YSGG did not produce significant changes in the relative band intensities of organic and inorganic contents of the enamel. In lased samples, no effects caused by pH-cycling on enamel were observed. In conclusion, laser treatment and its association with fluoride can somehow interfere with the demineralization dynamics, reducing its effects over the enamel.

  8. FT-Raman spectroscopic analysis of Nd:YAG and Er,Cr:YSGG laser irradiated enamel for preventive purposes

    International Nuclear Information System (INIS)

    Ana, P A; Kauffmann, C M F; Gomes, A S L; Bachmann, L; Soares, L E S; Martin, A A; Zezell, D M

    2014-01-01

    This study evaluated the effect of combining laser irradiation with fluoride on an enamel microstructure and demineralization by FT-Raman spectroscopy (FTRS). Eighty human enamel slabs were divided into eight groups: (G1) untreated; (G2) acidulated phosphate fluoride application (APF—1.23% F − for 4 min); (G3) Nd:YAG irradiation (84.9 J cm −2 , 60 mJ/pulse); (G4) Nd:YAG + APF; (G5) APF + Nd:YAG; (G6) Er,Cr:YSGG irradiation (2.8 J cm −2 , 12.5 mJ/pulse); (G7) Er,Cr:YSGG + APF; and (G8) APF + Er,Cr:YSGG. After treatment, the samples were submitted to a ten-day pH-cycling model. Chemical changes were determined on the slabs before and after treatment, and also after pH-cycling, by FTRS in the range 400−4000 cm −1 . The inorganic bands at 440, 590, 870, 960, 1100 cm −1 , and the organic bands at 1270, 1450, 1670, 2945 cm −1 were considered. Demineralization promoted reduction in organic contents; Nd:YAG laser irradiation promoted loss of carbonate and organic content, while Er,Cr:YSGG did not produce significant changes in the relative band intensities of organic and inorganic contents of the enamel. In lased samples, no effects caused by pH-cycling on enamel were observed. In conclusion, laser treatment and its association with fluoride can somehow interfere with the demineralization dynamics, reducing its effects over the enamel. (paper)

  9. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Tianhong [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Pikkula, Brian M [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Wang, Lihong V [Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Anvari, Bahman [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2004-11-07

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  10. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  11. Determining and Optimizing Effective Factors in Laser Irradiation on Skin Tensional Strength using a Hybrid DOE and DEA Approach

    Directory of Open Access Journals (Sweden)

    Mehdi Bashiri

    2010-03-01

    Full Text Available Introduction: We investigated the characteristic of a suitable irradiation on skin's tensional strength using design of experiments (DOE. The experiments in this research are designed in two phases and data envelopment analysis (DEA is used for performance measurement of each phase. Material and Methods: Samples were provided from pleura as surface tissue made of collagen and elastin fibers. In each experiment, the sample was stretched before and after irradiation. Variation of the sample length was measured. Then force-length data were plotted and the slope of the fitted line was calculated. Variation in these slopes was used as a criterion to determine tissue strength variation after laser irradiation. Furthermore, the output oriented DEA model by variable return to scale was used to examine performance of the designed experiments for each phase. Results: Results of the first phase experiments showed that the main effect of time duration was significant; but this was not the case for beam radius. Regarding polarization, only its interaction effect with time duration was significant. Results of the second phase indicated that laser irradiation with parallel polarization for 10 seconds caused a greater increase in tensional strength. Resultant efficiencies of applying DEA showed that the first phase experiments were more efficient. Discussion and Conclusions: This research has combined DEA and DOE to investigate the effects of laser on skin elasticity. Comparing the results of the two phases indicates that it is more efficient to use the experimental design of phase 1 in our experiment. So for similar future studies, we suggest using more levels for experiments of phase 1 instead of doing the experimental design in two phases.

  12. Titania based nanocomposites as a photocatalyst: A review

    Directory of Open Access Journals (Sweden)

    Farha Modi

    2016-08-01

    Full Text Available Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

  13. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  14. Adsorption of vitamin E on mesoporous titania nanocrystals

    International Nuclear Information System (INIS)

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-01-01

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 o C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 o C to 500 o C. The N 2 adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  15. Adsorption of vitamin E on mesoporous titania nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, C.T.; Wu, S.M. [School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  16. The improved stability of enzyme encapsulated in biomimetic titania particles

    International Nuclear Information System (INIS)

    Jiang Yanjun; Sun Qianyun; Jiang Zhongyi; Zhang Lei; Li Jian; Li Lin; Sun Xiaohui

    2009-01-01

    This study demonstrates a novel biomimetic approach for the entrapment of yeast alcohol dehydrogenase (YADH) within titania nanoparticles to improve its stability. Protamine was as the template and catalyst for the condensation of titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles in which YADH was trapped. The as-prepared titania/protamine/YADH composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of YADH encapsulation was tentatively proposed from a series of experimental results. The preliminary investigation showed that encapsulated YADH could retain most of its initial activity. Compared to free YADH, encapsulated YADH exhibited significantly improved thermal, pH and recycling stability. After 5 weeks storage, no substantial loss of catalytic activity for encapsulated YADH was observed

  17. M-Polynomials and Topological Indices of Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Mobeen Munir

    2016-10-01

    Full Text Available Titania is one of the most comprehensively studied nanostructures due to their widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials. M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based topological indices, which are numerical parameters capturing structural and chemical properties. These indices are used in the development of quantitative structure-activity relationships (QSARs in which the biological activity and other properties of molecules, such as boiling point, stability, strain energy, etc., are correlated with their structure. In this report, we provide M-polynomials of single-walled titania (SW TiO2 nanotubes and recover important topological degree-based indices to theoretically judge these nanotubes. We also plot surfaces associated to single-walled titania (SW TiO2 nanotubes.

  18. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  19. Tin-Platinum catalysts interactions on titania and silica

    International Nuclear Information System (INIS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-01-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3 Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated

  20. Photocatalytic composites based on titania nanoparticles and carbon nanomaterials

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu; Vu, Dinh Lam

    2015-01-01

    In this article we present a review on recent experimental works toward the formation of visible light responsive composite photocatalysts on the basis of titania nanoparticles and carbon nanomaterials of different types. The research results achieved in last years has shown that the nanocomposite photocatalysts comprising titania nanoparticles and graphene or graphene oxide sheets, and also nanoparticles of noble metals and metallic oxides, exhibited the evident priority compared to the others. Therefore our review emphasizes the research on these promising visible light responsive nanophotocatalysts. (review)

  1. Synthesis and characterization of natural hydroxyapatite (recycled) composites with titania

    International Nuclear Information System (INIS)

    Mendes Filho, Antonio Alves; Gouveia, Vitor Jose Pinto; Pereira, Renato Alves; Araujo, Fernando Gabriel da Silva; Sousa, Camila Mateus de

    2010-01-01

    Natural hydroxyapatite biphasic ceramics (recycled) with titania (TiO_2-Hap) were studied in this work. For the formation of such ceramic the powders were mixed natural hydroxyapatite obtained from veal bone by the hydrothermal method with titania (TiO_2), forming the composites H9T1. The powders, manually homogenized, were conformed in pellet and sintered at temperatures between 1200 and 1400 deg C The ceramic bodies were characterized by XRD and SEM/EDS. The initial results were not satisfactory and require new studies. (author)

  2. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Science.gov (United States)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  3. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  4. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  5. TECHNIQUE FOR DETERMINATION OF SURFACE FRACTAL DIMENSION AND MORPHOLOGY OF MESOPOROUS TITANIA USING DYNAMIC FLOW ADSORPTION AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Silvester Tursiloadi

    2010-06-01

    Full Text Available A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60 °C and the solvent was extracted.  Mesoporous TiO­2 consists of anatase nano-particles, about 5nm in diameter, have been obtained. After calcination at 600 °C, the average pore size of the extracted gel, about 20nm in diameter, and the pore volume, about 0.35cm3g-1, and the specific surface area, about 58 m2g-1. Using the N2 adsorption isotherm, the surface fractal dimension, DS, has been estimated according to the Frenkel-Halsey-Hill (FHH theory. The N2 adsorption isotherm for the as-extracted aerogel indicates the mesoporous structure. Two linear regions are found for the FHH plot of the as-extracted aerogel. The estimated surface fractal dimensions are about 2.49 and 2.68. Both of the DS  values indicate rather complex surface morphology. The TEM observation shows that there are amorphous and crystalline particles. Two values of DS may be attributed to these two kinds of particles. The two regions are in near length scales, and the smaller DS, DS =2.49, for the smaller region. This result indicates that there are two kinds of particles, probably amorphous and anatase particles as shown by the TEM observation.     Keywords: surface fractal dimensions, CO2 supercritically extraction, sol-gel, aerogel, titania

  6. Synthesis and polymorphic control for visible light active titania nanoparticles

    Science.gov (United States)

    Kaewgun, Sujaree

    Titania (TiO2) is useful for many applications in photocatalysis, antimicrobials, pigment, deodorization, and decomposition of harmful organics and undesirable compounds in the air and waste water under UV irradiation. Among the three phases of TiO2, Rutile, Anatase, and Brookite, studies have been more focused on the anatase and rutile phases. Pure brookite is the most difficult phase to prepare, even under hydrothermal conditions. Predominantly brookite phase TiO2 nanoparticles were prepared by the Water-based Ambient Condition Sol (WACS) process in our laboratory. The objectives of this research were to enhance visible light active (VLA) photocatalytic properties of polymorphic brookite TiO2 by minimizing the lattice defects and narrowing band gap of titania by nitrogen and/or carbon chromophone, and to investigate the deactivation, reusability, and regeneration of the VLA titania in order to design better titania catalysts for organic compound degradation applications. In order to study the influence of hydroxyl content on photocatalytic activities (PCAs) of polymorphic titania nanoparticles, the WACS samples were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol (sec-BuOH). All samples were characterized for phase composition, surface area, hydroxyl contamination, and particle morphology by x-ray diffraction, N2 physisorption, FT-IR, solid state 1H NMR and scanning electron microscopy, and then compared to a commercial titania, Degussa P25. Evaluation of methyl orange (MO) degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania enhanced the PCA. As-prepared titania and SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior PCA came from the reduction in the lattice hydroxyl content. To enhance PCA and VLA properties of WACS, an alternative high boiling point polar solvent, N-methylpyrrolidone (NMP), was utilized in the

  7. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  8. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  9. Sb{sub 2}S{sub 3}:C/CdS p-n junction by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arato, A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Cardenas, E. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); O' Brien, J.J.; Liu, J. [Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri-63121 (United States); Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri-63121 (United States); Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)], E-mail: bkrishnan@fime.uanl.mx

    2009-02-02

    In this paper, we report laser irradiated carbon doping of Sb{sub 2}S{sub 3} thin films and formation of a p-n junction photovoltaic structure using these films. A very thin carbon layer was evaporated on to chemical bath deposited Sb{sub 2}S{sub 3} thin films of approximately 0.5 {mu}m in thickness. Sb{sub 2}S{sub 3} thin films were prepared from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 deg. C for 5 h and the films obtained were highly resistive. These C/Sb{sub 2}S{sub 3} thin films were irradiated by an expanded laser beam of diameter approximately 0.5 cm (5 W power, 532 nm Verdi laser), for 2 min at ambient atmosphere. Morphology and composition of these films were analyzed. These films showed p-type conductivity due to carbon diffusion (Sb{sub 2} S{sub 3}:C) by the thermal energy generated by the absorption of laser radiation. In addition, these thin films were incorporated in a photovoltaic structure Ag/Sb{sub 2}S{sub 3}:C/CdS/ITO/Glass. For this, CdS thin film of 50 nm in thickness was deposited on a commercially available ITO coated glass substrate from a chemical bath containing CdCl{sub 2}, sodium citrate, NH{sub 4}OH and thiourea at 70 deg. C . On the CdS film, Sb{sub 2}S{sub 3}/C layers were deposited. This multilayer structure was subjected to the laser irradiation, C/Sb{sub 2}S{sub 3} side facing the beam. The p-n junction formed by p-Sb{sub 2}S{sub 3}:C and n-type CdS showed V{sub oc} = 500 mV and J{sub sc} = 0.5 mA/cm{sup 2} under illumination by a tungsten halogen lamp. This work opens up a new method to produce solar cell structures by laser assisted material processing.

  10. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Takahiro Ando

    Full Text Available Transcranial low-level laser therapy (LLLT using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI. In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI.TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm(2 for 12-minutes giving a fluence of 36-J/cm(2. Neurological severity score (NSS and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test.The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests.The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.

  11. Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats.

    Science.gov (United States)

    Garavello-Freitas, I; Baranauskas, V; Joazeiro, P P; Padovani, C R; Dal Pai-Silva, M; da Cruz-Höfling, Maria Alice

    2003-01-01

    The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were

  12. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature.

  13. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  14. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  15. Size and morphology effects of titania on dye-sensitized solar cells performance

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Lin, Chien-Chih; Jang, Shiue-Ming; Kao, Tien-Hsieh

    2013-01-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m 2 /g for P25, 48.3 m 2 /g for SP25, 42.6 m 2 /g for NWs, and 40.3 m 2 /g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm 2 (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced

  16. Size and morphology effects of titania on dye-sensitized solar cells performance

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Wen-Chen, E-mail: wcchien@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Lin, Chien-Chih [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Jang, Shiue-Ming [Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kao, Tien-Hsieh [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China)

    2013-10-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m{sup 2}/g for P25, 48.3 m{sup 2}/g for SP25, 42.6 m{sup 2}/g for NWs, and 40.3 m{sup 2}/g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm{sup 2} (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced.

  17. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  18. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  19. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    International Nuclear Information System (INIS)

    Castro, F L A; Carvalho, J G; Andrade, M F; Saad, J R C; Hebling, J; Lizarelli, R F Z

    2014-01-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm 2 ) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin. (paper)

  20. Effect of CO{sub 2}-laser irradiation on properties and performance of thin-film composite polyamide reverse osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jahangiri, Foad; Mousavi, Seyyed Abbas; Farhadi, Fathollah; Sabzi, Behnam; Chenari, Zeinab [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vatanpour, Vahid [Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of)

    2016-03-15

    CO{sub 2}-laser irradiation was used to modify the surface properties of thin-film composite (TFC) polyamide reverse osmosis (RO) membranes. These membranes were first synthesized via interfacial polymerization of m-phenylenediamine (MPD) monomers and trimesoyl chloride (TMC) over porous polysulfone ultrafiltration support, followed by a CO{sub 2}-irradiation. AFM, ATR-FTIR, SEM and contact angle measurements were used to characterize the surface properties of these membranes. The ATR-FTIR results indicated that CO{sub 2}-laser irradiation did not induce any functional groups on the membrane surface. However, it was found that the laser irradiation enhanced the NaCl salt rejection and slightly reduced the permeate flux. Moreover, the maintenance of the flux in modified membranes was much higher than untreated ones. Specially, after 180 min of filtration, the reduction in initial flux for the unmodified membranes was 22%. However, the reduction in initial flux for the modified membranes was less than 5%. Bovine serum albumin (BSA) filtration revealed an improvement in the antifouling properties of the modified membranes. The changes in the membrane surface morphology showed that the roughness of membrane surface is reduced significantly.

  1. Preconditioning With Low-Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose-derived Stem Cells in a Mouse Model of Photoaged Skin.

    Science.gov (United States)

    Liao, Xuan; Li, Sheng-Hong; Xie, Guang-Hui; Xie, Shan; Xiao, Li-Ling; Song, Jian-Xing; Liu, Hong-Wei

    2018-02-19

    This study was conducted to explore the therapeutic potential of human adipose-derived stem cells (ADSCs) irradiated with a low-level laser (LLL). Cultured ADSCs were treated with 650-nm GaAlAs laser irradiation at 2, 4 and 8 J cm -2 . Cell proliferation was quantified by MTT assays, cytokine secretion was determined by enzyme-linked immunosorbent assays, and adipogenic differentiation was examined by oil red O staining. Additionally, the expression profiles of putative ADSC surface markers were analyzed by quantitative real-time PCR. In addition, a mouse photoaged skin model was established by UVB irradiation. Effects of GaAlAs laser-treated ADSCs on the thicknesses of the epidermis and dermis were analyzed by hematoxylin and eosin staining. The results showed that GaAlAs laser treatment of cells at a radiant exposure of 4 J cm -2 enhanced ADSC proliferation and adipogenic differentiation and increased secretion of growth factors. Furthermore, GaAlAs laser irradiation upregulated the expression of putative ADSC surface markers. In the mouse model of photoaged skin, ADSCs treated with GaAlAs laser irradiation had markedly decreased the epidermal thickness and increased the dermal thickness of photoaged mouse skin. Our data indicate that LLL irradiation is an effective biostimulator of ADSCs and might enhance the therapeutic potential of ADSCs for clinical use. © 2018 The American Society of Photobiology.

  2. Nd:YAG laser irradiation on temporary teeth carious tissue using 12% diamine silver fluoride as a photo-absorber - a morphological study

    International Nuclear Information System (INIS)

    Calmon, Andrea de Avillez

    2001-01-01

    Since Nd:YAG laser radiation was first introduced in Dentistry various photo-absorbers were employed with the intent of improving its efficacy when used on dental carious tissue. The purpose of the present study was to analyze the influence of this radiation using Scanning and Optical microscopy over carious tissue of primary teeth using two photo-absorbers. 15 primary human teeth were used and, in each one, 3 cavity preparations were performed. Specimens were then submitted to an in vitro demineralizing environment during 18 days. Two of the cavities of each specimen were laser irradiated using the Nd:YAG laser with 60 mJ of energy per pulse, 10 Hz and average power of 0,6 W. The 12% diamine silver fluoride or the mineral coal were used as photo-absorbers. The third cavity of the specimens was used as a control and received no laser irradiation. Samples were transversally cut and the section analyzed by SEM and OM. Results showed that the 12% diamine silver fluoride is an efficient photo-absorber and, when used it the Nd:YAG laser, leading to melting and resolidification of the carious tissue. It can be concluded that the 12% diammine silver fluoride presents advantages over the mineral coal as a photo absorber when used in primary teeth as it promotes and improves the efficacy of laser irradiation. This substance also works as a barrier on the carie progression in deeper areas such as the infected and necrotic zones. (author)

  3. A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress.

    Science.gov (United States)

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-12-01

    The elevated ultraviolet-B (UV-B) stress induces the accumulation of a variety of intracellular reactive oxygen species (ROS), which seems to cause oxidative stress for plants. To date, very little work has been done to evaluate the biological effects of a combined treatment with He-Ne laser irradiation and exogenous nitric oxide (NO) application on oxidative stress resulting from UV-B radiation. Thus, our study investigated the effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative damages in wheat seedlings under elevated UV-B stress. Our data showed that the reductions in ROS levels, membrane damage parameters, while the increments in antioxidant contents and antioxidant enzyme activity caused by a combination with He-Ne laser and exogenous NO treatment were greater than those of each individual treatment. Furthermore, these treatments had a similar effect on transcriptional activities of plant antioxidant enzymes. This implied that the protective effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative stress resulting from UV-B radiation was more efficient than each individual treatment with He-Ne laser or NO molecule. Our findings might provide beneficial theoretical references for identifying some effective new pathways for plant UV-B protection.

  4. Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Houšková, Vendula; Murafa, Nataliya; Bakardjieva, Snejana

    2010-01-01

    Roč. 54, č. 4 (2010), s. 368-378 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : surfactant * titania * mesoporous * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 0.297, year: 2010

  5. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  6. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  7. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies

    International Nuclear Information System (INIS)

    Khattak, G.D.; Mekki, A.; Gondal, M.A.

    2010-01-01

    The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P 2 O 5 ), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu 2+ and Cu + . Hence, the Cu 2p 3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu 2+ /Cu total , determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu 2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu + state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and P=O environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.

  8. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  9. Gingival healing after gingivectomy procedure and low intensity laser irradiation. A clinical and biometrical study in anima nobile

    International Nuclear Information System (INIS)

    Amorim, Jose Claudio Faria

    2001-01-01

    For the present study seven patients presenting periodontal disease were selected in a way that they required the performance of gingivectomy procedure in the region of premolars in both sides, being this in the upper or lower region. After the surgical procedure one side was submitted to low intensity laser radiation, wavelength 685 nm, power 50 mW and fluency of 4J/cm 2 , contact mode. The other side was used as a control, not receiving any laser irradiation. Healing process for both sides, was clinically and biometrically evaluated and compared using photographs for the periods: pre-operative, immediate post-operative, 3, 7,14,21, 28 and 35 days. The analysis was performed by 3 specialists in Periodontology considering aspects of healing. Results were submitted to statistical analysis. Biometrical evaluation showed improvement of healing for the period of 21 and 28 days in the lased group. Clinical evaluation showed better reparation mainly after the third day for the active group. Laser group was considered to present an improved healing when compared to the control group. (author)

  10. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain.

    Science.gov (United States)

    Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi

    2013-02-01

    Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.

  11. Wettability modification of electrospun poly(ε-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    International Nuclear Information System (INIS)

    He Lingna; Chen Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-01-01

    The effect of femtosecond laser irradiation in air and in O 2 and CF 4 gas flows on the wettability of electrospun poly(ε-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O 2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF 4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  12. Chemical composition of dome-shaped structures grown on titanium by multi-pulse Nd:YAG laser irradiation

    International Nuclear Information System (INIS)

    Gyoergy, E.; Perez del Pino, A.; Serra, P.; Morenza, J.L.

    2004-01-01

    The specific dome-shaped structures were grown by multi-pulse Nd:YAG (λ=1.064 μm, τ=∼300 ns, and ν=30 kHz) laser irradiation of titanium targets in air at atmospheric pressure. The laser intensity values were chosen below the single-laser-pulse melting threshold of titanium. The chemical composition of the structures was studied as a function of laser pulse number as well as laser intensity, both at the outer surface layer and in depth. Micro-Raman spectroscopy, Auger electron spectroscopy (AES), and wavelength dispersive X-ray spectroscopy (WDX) were used as diagnostic techniques. Morphological investigations were performed by scanning electron microscopy. The obtained results revealed a lower oxygen concentration in the centre of the structures as compared to the borders and a lower concentration on the surface than in the depth. Moreover, it was found that the stoichiometry of the formed TiO 2-x oxides increases from the structures centre towards the border and from the surface towards the depth

  13. Analysis of peripheral thermal damage after laser irradiation of dentin using polarized light microscopy and synchrotron radiation infrared spectromicroscopy

    Science.gov (United States)

    Dela Rosa, Alfredo; Sarma, Anupama V.; Le, Charles Q.; Jones, Robert S.; Fried, Daniel

    2004-05-01

    It is necessary to minimize peripheral thermal damage during laser irradiation, since thermal damage to collagen and mineral compromises the bond strength to restorative materials in dentin and inhibits healing and osteointegration in bone. The overall objective of this study was to test the hypothesis that lasers resonant to the specific absorption of water, collagen, and hydroxyapatite with pulse durations less than the thermal relaxation times at each respective laser wavelength will efficiently remove dentin with minimal peripheral thermal damage. Precise incisions were produced in 3 x 3 mm2 blocks of human dentin using CO2 (9.6 μm), Er:YSGG (2.79 μm), and Nd:YAG (355 nm) lasers with and without a computer controlled water spray. Polarization-sensitive optical coherence tomography was used to obtain optical cross-sections of each incision to determine the rate and efficiency of ablation. The peripheral thermal damage zone around each incision was analyzed using polarized light microscopy (PLM) and Synchrotron-Radiation Fourier Transform Infrared Spectro-microscopy (SR-FTIR). Thermally induced chemical changes to both mineral and the collagen matrix was observed with SR-FTIR with a 10-μm spatial resolution and those changes were correlated with optical changes observed with PLM. Minimal (alveolar bone.

  14. Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation

    International Nuclear Information System (INIS)

    Bayati, M. R.; Molaei, R.; Narayan, J.; Joshi, S.; Narayan, R. J.

    2013-01-01

    We have demonstrated dark hydrophilicity of single crystalline rutile TiO 2 (100) thin films, in which rapid switching from a hydrophobic to a hydrophilic surface was achieved using nanosecond excimer laser irradiation. The TiO 2 /YSZ/Si(001) single crystalline heterostructures were grown by pulsed laser deposition and were subsequently irradiated by a single pulse of a KrF excimer laser at several energies. The wettability of water on the surfaces of the samples was evaluated. The samples were hydrophobic prior to laser annealing and turned hydrophilic after laser annealing. Superhydrophilic surfaces were obtained at higher laser energy densities (e.g., 0.32 J.cm −2 ). The stoichiometries of the surface regions of the samples before and after laser annealing were examined using XPS. The results revealed the formation of oxygen vacancies on the surface, which are surmised to be responsible for the observed superhydrophilic behavior. According to the AFM images, surface smoothening was greater in films that were annealed at higher laser energy densities. The samples exhibited hydrophobic behavior after being placed in ambient atmosphere. The origin of laser induced wetting behavior was qualitatively understood to stem from an increase of point defects near the surface, which lowered the film/water interfacial energy. This type of rapid hydrophobic/hydrophilic switching may be used to facilitate fabrication of electronic and photonic devices with novel properties.

  15. Target-plasma production by laser irradiation of a pellet in the Baseball II-T experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    One way to generate a plasma target that can be used in conjunction with an injected neutral beam to initiate a high-energy plasma in a steady-state, magnetic-mirror field is by the laser irradiation of a solid pellet located within the confinement region. In the Lawrence Livermore Laboratory Baseball II-T experiment, a CO 2 laser was used to provide a two-sided irradiation of an ammonia pellet; the maximum laser intensity on the pellet was approximately 4 x 10 12 W/cm 2 . The 150-μm-dia pellets were guided to the laser focal spot in the Baseball II-T magnetic field using steering voltages controlled by a microcomputer-based system. Diagnostics showed complete ionization of the pellet, average ion energies in the keV range, synchronized triggering of the laser and the neutral beam, and rapid expansion of the plasma to a diameter that was a good match to the diameter of the neutral beam. Predictions obtained from the LASNEX code compared well with measured results. Although the laser-pellet approach was proven usable as a target-plasma startup system, it would be much more complicated and expensive than the method in which streaming plasma is used to trap the neutal beams

  16. Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3-Sb2S3 glassy films

    Science.gov (United States)

    Avila, L. F.; Pradel, A.; Ribeiro, S. J. L.; Messaddeq, Y.; Nalin, M.

    2015-02-01

    The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb2O3-Sb2S3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458 nm solid state laser. It is shown, for the first time, the use of holographic technique to measure "in situ", simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed "in situ" using a laser coupled to a micro-Raman equipment. Results showed that Sb2S3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb2O3 phase. Photo and thermal induced effects on films were studied using UV-Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

  17. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  18. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cucci, Costanza [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy); Fornacelli, Cristina [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Gomoiu, Ioana [National University of Art, Bucharest (Romania); Lognoli, David [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Mohanu, Dan [National University of Art, Bucharest (Romania); Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’Applied Physics Institute-National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage-National Research Council (CNR-ICVBC), Firenze (Italy)

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm{sup 2} to 1 mJ/cm{sup 2} and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  19. Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer

    Science.gov (United States)

    Meshcheryakov, Yuri P.; Shugaev, Maxim V.; Mattle, Thomas; Lippert, Thomas; Bulgakova, Nadezhda M.

    2013-11-01

    This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.

  20. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  1. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Science.gov (United States)

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  2. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    Science.gov (United States)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-11-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm2 to 1 mJ/cm2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  3. Study of the effects of low-fluence laser irradiation on wall paintings: Test measurements on fresco model samples

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Cucci, Costanza; Cuzman, Oana; Fornacelli, Cristina; Galeotti, Monica; Gomoiu, Ioana; Lognoli, David; Mohanu, Dan; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2013-01-01

    Laser-induced fluorescence is widely applied in several fields as a diagnostic tool to characterise organic and inorganic materials and could be also exploited for non-invasive remote investigation of wall paintings using the fluorescence lidar technique. The latter relies on the use of a low-fluence pulsed UV laser and a telescope to carry out remote spectroscopy on a given target. A first step to investigate the applicability of this technique is to assess the effects of low-fluence laser radiation on wall paintings. This paper presents a study devoted to investigate the effects of pulsed UV laser radiation on a set of fresco model samples prepared using different pigments. To irradiate the samples we used a tripled-frequency Q-switched Nd:YAG laser (emission wavelength: 355 nm; pulse width: 5 ns). We varied the laser fluence from 0.1 mJ/cm 2 to 1 mJ/cm 2 and the number of laser pulses from 1 to 500 shots. We characterised the investigated materials using several diagnostic and analytical techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy and ATR-FT-IR microscopy) to compare the surface texture and their composition before and after laser irradiation. Results open good prospects for a non-invasive investigation of wall paintings using the fluorescence lidar technique.

  4. Effects of Er, Cr:YSGG laser irradiation on external adaptation of restorations in caries-affected cavities

    International Nuclear Information System (INIS)

    Tonetto, Mateus Rodrigues; Saad, José Roberto Cury; Campos, Edson Alves de; Neto, Sizenando de Toledo Porto; De Andrade, Marcelo Ferrarezi; Bandéca, Matheus Coelho; Borges, Alvaro Henrique; Pinto, Shelon Cristina Souza

    2013-01-01

    This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values. (letter)

  5. Performance engineering of dye sensitized solar cells (DSSC) using Ag modified titania as photoanode

    Science.gov (United States)

    Nair, Ranjith G.; Mathan Kumar, P.; Samdarshi, S. K.

    2018-01-01

    Present work reports the fabrication of silver (Ag) modified titania photoanode as an efficient photoanode for Dye Sensitized Solar Cell (DSSC). Pristine and Ag modified Titania nanomaterials were prepared using sol gel method. The structural analyses confirm the high crystallinity of the samples with crystallite size distribution in nanorange. TEM micrograph confirms that the synthesized nanomaterials are in uniform size. A red shift is observed in the UV DRS spectra compared to pristine Titania and which confirm the incorporation of Ag inside titania. A prototype DSSC was fabricated using the pristine and modified Titania as photoanode, Ruthenium dye as sensitizer, I-/I-3 as redox electrolyte and platinum counter electrode. The cell with Ag modified titania photoanode showed 15 times enhanced photoconversion efficiency (PCE) than the pristine one. This improved performance of the Ag modified DSSC can be ascribed to reduced recombination and improved charge carrier transport of electrons/holes at the interfaces.

  6. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  7. Development of a dielectric ceramic based on diatomite-titania part two: dielectric properties characterization

    Directory of Open Access Journals (Sweden)

    Medeiros Jamilson Pinto

    1998-01-01

    Full Text Available Dielectric properties of sintered diatomite-titania ceramics are presented. Specific capacitance, dissipation factor, quality factor and dielectric constant were determined as a function of sintering temperature, titania content and frequency; the temperature coefficient of capacitance was measured as a function of frequency. Besides leakage current, the dependence of the insulation resistance and the dielectric strength on the applied dc voltage were studied. The results show that diatomite-titania compositions can be used as an alternative dielectric.

  8. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    Science.gov (United States)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  9. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  10. Iron and Nitrogen doped Titania an Overview of Function and Application

    International Nuclear Information System (INIS)

    Kasap, M.

    2008-01-01

    Titanium dioxide is an exceptional material, featuring high transparency in the visible-IR range, high photo activity and superhidrophilicity, physical and chemical stability, low cost, non-toxicity. It is mostly applied in selective oxidation and reduction of an organic and organic materials, photovoltaics, photocatalytic sterilization, and sensors. Upon illumination of the TiO 2 surface with UV photons having energies in excess of 3.0 - 3.2 eV, electron-hole pairs are generated by interband transitions. The charge carriers migrate to the surface and react with the adsorbed water and oxygen, the -OH radicals thus formed being responsible for the highly enhanced chemical reactions with other adsorbates. To extend the amount of usable solar energy involved in TiO 2 surface catalyse, shifting the absorption edge towards the blue range of the visible spectrum (λ≥390-450 nm), several means have been proposed (attaching various organic dyes to the surface, reduction by hydrogenation, doping with various anions/cations etc.), each means with specific advantages and drawbacks. The most important restriction in all cases is the need to keep the lower limit of the conduction band non altered by band gap narrowing. Adequate doping of the titania materials may result in high-efficiency stable photocatalytic materials, sensitive enough to be photo-activated by low-level indoor light sources. We report here some of our latest results in preparing and characterizing Fe:TiO 2 and N:TiO-2 thin films using the RF magnetron sputtering and distinct growth conditions (pellet and discharge gas mixing, respectively). The as-deposited Fe:TiO 2 films, 300 nm thick, had a Fe/Ti concentration ratio ranging between 0.0% and 0.9%. While the low Fe-content samples were amorphous, an anatase Fe-rich nanophase dispersed in the amorphous phase was present in the high-content Fe films. Crystalline anatase and rutile nanodomains have been found in the nitrogen-containing titania films, with the

  11. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  12. Effects of low-level laser irradiation on the pathogenicity of Candida albicans: in vitro and in vivo study.

    Science.gov (United States)

    Seyedmousavi, Seyedmojtaba; Hashemi, Seyed Jamal; Rezaie, Sasan; Fateh, Mohsen; Djavid, Gholamreza Esmaeeli; Zibafar, Ensieh; Morsali, Farhad; Zand, Nasrin; Alinaghizadeh, Mohammadreza; Ataie-Fashtami, Leila

    2014-06-01

    The purpose of this study was to evaluate the effects of low-level laser irradiation (LLLI) on the in vitro growth characteristics and in vivo pathogenicity of Candida albicans in a murine model in the absence of a photosensitizer. C. albicans is an opportunistic commensal organism that causes a wide variety of diseases in human beings, ranging from superficial infections to life-threatening invasive candidiasis. The incidence of C. albicans infection is increasing, because of the greater frequency of acquired immunodeficiency conditions. A high recurrence rate has been reported for vulvovaginal and oral candidiasis, despite the best available treatments. Therefore, the search for new treatment modalities seems quite rational. Candida culture plates were exposed to common clinical energies of LLLI: 3, 5, 10, and 20 J at 685 nm (BTL Laser 5000, Medicinos Projektai, Czech Republic, Prague, max power output 50 mW) and 3, 5, 10, 30, and 50 J at 830 nm (BTL Laser 5000, Medicinos Projektai, Czech Republic, Prague, max power output 400 mW). Following LLLI with energies >10 J at both 685 and 830 nm wavelengths, statistically significant effects were observed in vitro on the turbidimetric growth kinetics of C. albicans and in vivo on the survival rate of infected mice (p value ≤ 0.05). Therefore, this energy could be considered a threshold for clinical investigation. Translating our data into the clinical setting, it can be proposed that a direct laser-based approach without using a photosensitizing dye can significantly reduce the pathogenicity of Candida albicans. It can also be concluded that laser light at specific wavelengths could be a possible promising novel treatment for superficial and mucocutaneous C. albicans infections.

  13. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    Science.gov (United States)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  14. Non-Fourier thermal transport induced structural hierarchy and damage to collagen ultrastructure subjected to laser irradiation.

    Science.gov (United States)

    Sahoo, Nilamani; Narasimhan, Arunn; Dhar, Purbarun; Das, Sarit K

    2018-05-01

    Comprehending the mechanism of thermal transport through biological tissues is an important factor for optimal ablation of cancerous tissues and minimising collateral tissue damage. The present study reports detailed mapping of the rise in internal temperature within the tissue mimics due to NIR (1064 nm) laser irradiation, both for bare mimics and with gold nanostructures infused. Gold nanostructures such as mesoflowers and nanospheres have been synthesised and used as photothermal converters to enhance the temperature rise, resulting in achieving the desired degradation of malignant tissue in targeted region. Thermal history was observed experimentally and simulated considering non-Fourier dual phase lag (DPL) model incorporated Pennes bio-heat transfer equation using COMSOL Multiphysics software. The gross deviation in temperature i.e. rise from the classical Fourier model for bio-heat conduction suggests additional effects of temperature rise on the secondary structures and morphological and physico-chemical changes to the collagen ultrastructures building the tissue mass. The observed thermal denaturation in the collagen fibril morphologies have been explained based on the physico-chemical structure of collagen and its response to thermal radiation. The large shift in frequency of amides A and B is pronounced at a depth of maximum temperature rise compared with other positions in tissue phantom. Observations for change in band of amide I, amide II, and amide III are found to be responsible for damage to collagen ultra-structure. Variation in the concentration of gold nanostructures shows the potentiality of localised hyperthermia treatment subjected to NIR radiation through a proposed free radical mechanism.

  15. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  16. Photoelectrochemical reactivity of polyoxophosphotungstates embedded in titania tubules

    International Nuclear Information System (INIS)

    Xie Yibing

    2006-01-01

    A highly ordered and crystallized titania (TiO 2 ) nanotube array is fabricated by a low-voltage anodization plus a post-embedding calcination process. Polyoxophosphotungstate-titania (POPTA-TiO 2 ) composite catalyst is synthesized by embedding POPTA in TiO 2 tubule channels to improve the photoelectrochemical properties. The morphological characteristics and crystal behaviour of POPTA-TiO 2 are examined by field-emission scanning electron microscopy and x-ray diffraction. The stability of the chemical structure has been analysed by Fourier transformed infrared spectroscopy measurements. The photoelectrochemical properties are investigated by means of the polarization current response. Photocatalytic and photoelectrocatalytic reactivities for the degradation of an endocrine disrupting chemical have also been investigated to examine the photoelectrochemical reaction efficiency of POPTA-TiO 2 composite catalyst

  17. Lithium ion batteries with titania/graphene anodes

    Science.gov (United States)

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  18. Adherence and scratching resistance of nanometric titania films

    International Nuclear Information System (INIS)

    Pascoali, S.; Dominguini, L.; Borges, J.B.

    2012-01-01

    TiO 2 films has been used to extend the wear resistance in bearing, seals for pumps and bone prostheses. In this study was analyzed the conventional hardness and scratch toughness. The scratching test equipment used was developed at the Laboratory of materials Labmat / UFSC. The tests were performed on Titania films deposited on glass plates and ceramics via reactive DC magnetron sputtering. The films were deposited by 10, 15 and 60 min. One of the samples has a titanium metal film of a few nanometers thick between the substrate and the Titania film, the oxide has been deposited for 30 min. At this rang of tests loads the deposited films show good adhesion to substrate, there was no cracking or spalling of the film. (author)

  19. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  20. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  1. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties

    International Nuclear Information System (INIS)

    Pasqui, Daniela; Atrei, Andrea; Barbucci, Rolando

    2009-01-01

    We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

  2. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  3. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  4. Stress-assisted crystallisation in anodic titania

    International Nuclear Information System (INIS)

    Vanhumbeeck, Jean-Francois; Tian He; Schryvers, Dominique; Proost, Joris

    2011-01-01

    Research highlights: → Correlations between microstructure and internal stress during Ti anodising are established. → Large internal compressive stresses are accumulated in the film during anodising upto 12 V. →A transition from compressive to tensile stress is observed when the cell voltage exceeds 12 V. → At 40 V, the oxide films consist of two regions with different compositions and microstructures. Crystallisation of amorphous to anatase TiO 2 contributes to the compressive stress relaxation. - Abstract: The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.

  5. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  6. Effects of 960 nm diode laser irradiation on dental enamel in vitro: temperature and morphological analysis and evaluation of enamel demineralization

    International Nuclear Information System (INIS)

    Kato, Ilka Tiemy

    2004-01-01

    The aim of this study is to determine the effects of diode laser irradiation on enamel demineralization. To achieve this goal appropriate photon absorbing substances for the laser radiation, safe laser parameters and adequate temperature measuring apparatus had to be determined. Next, the effects of diode laser and acidulated phosphate fluoride on enamel demineralization by calcium content analysis were evaluated with inductively coupled plasma atomic emission spectrometry (ICP-AES). In the first part of the study, five dyes consisting of vegetable coal diluted in five different liquids were analyzed and vegetable coal diluted in physiological solution was chosen for use as absorber. Methodologies to measure pulp chamber temperature were evaluated and modeling clay was chosen as fixture for the enamel samples held at body temperature. In the second part of the study, different energy density parameters (1.8 J/cm 2 , 3.7 J/cm 2 , 5.6 J/cm 2 , 7.4 J/cm 2 and 9.3 J/cm 2 ) exposure times (10, 15, 20, 25 e 30 seconds) and time intervals between dye application and laser irradiation (5, 30, 60, 90 e 120 seconds) were evaluated with respect to temperature changes in the pulp chamber. The enamel morphology was analyzed by scanning electron microscopy. Acid resistance was measured using seventy five enamel specimens, divided in five groups (control, fluoride, laser, laser + fluoride and fluoride + laser). The amount of calcium lost during demineralization in lactic acid was measured by ICP-AES. The results obtained in this experiment permit the conclusion that diode laser irradiation did not increase acid resistance. When associated with fluoride, the acid resistance did not differ from the results obtained with fluoride alone. (author)

  7. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures.

    Science.gov (United States)

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2015-03-01

    In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Studies on the mechanism of printing film-coated tablets containing titanium dioxide in the film by using UV laser irradiation.

    Science.gov (United States)

    Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi

    2010-04-01

    The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.

  9. Surface Properties of Photocatalytic Nano-Crystalline Titania Films and Reactor for Photocatalytic Degradation of Chloroform

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob; Jensen, Henrik

    2006-01-01

    In this work two immobilizations techniques of TiO2 onto glass were investigated; deposition of previously made titania powder (PMTP) and a sol-gel method. The titania powder used in this work was Degussa P25, Hombikat UV100 and a powder prepared in our laboratory SC134. The prepared TiO2 films w...

  10. Synthesis of eccentric titania-silica core-shell and composite particles

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control

  11. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Potemkin, F V; Mareev, E I [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Khodakovskii, N G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  12. GaN thin films growth and their application in photocatalytic removal of sulforhodamine B from aqueous solution under UV pulsed laser irradiation.

    Science.gov (United States)

    Gondal, Mohammed A; Chang, Xiao F; Yamani, Zain H; Yang, Guo F; Ji, Guang B

    2011-01-01

    Single-crystalline Gallium Nitride (GaN) thin films were fabricated and grown by metal organic chemical vapor deposition (MOCVD) method on c-plane sapphire substrates and then characterized by high resolution-X-ray diffraction (HR-XRD) and photoluminescence (PL) measurements. The photocatalytic decomposition of Sulforhodamine B (SRB) molecules on GaN thin films was investigated under 355 nm pulsed UV laser irradiation. The results demonstrate that as-grown GaN thin films exhibited efficient degradation of SRB molecules and exhibited an excellent photocatalytic-activity-stability under UV pulsed laser exposure.

  13. Influence of red laser irradiation and photosensitizers Photoditazine and Dimegin on the growth of methicillin-resistant strain of Staphylococcus aureus

    Science.gov (United States)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Tuchina, E. S.; Morozov, O. A.; Ponomaryov, G. V.; Ushakova, O. V.

    2017-03-01

    The influence of red laser irradiation on the growth of colonies of methicillin-resistant strain of Staphylococcus aureus and photodynamic effects of the photosensitizers Photoditazine and Dimegin were performed. It was established that the red semiconductor laser (λ - 660 nm, 100 mW/cm2) at 10-, 15- and 30-mins exposure, has a direct bacteriostatic action on the growth of S. aureus. Pre-treatment of bacterial cells by Photoditazine significantly enhances the inhibitory effect. The photosensitizing action of Dimegin does not appear at influence on methicillin-resistant S. aureus.

  14. Evaluation of the Morphology and Osteogenic Potential of Titania-Based Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2012-01-01

    Full Text Available Submicron-scale titania-based ceramic fibers with various compositions have been prepared by electrospinning. The as-prepared nanofibers were heat-treated at 700°C for 3 h to obtain pure inorganic fiber meshes. The results show that the diameter and morphology of the nanofibers are affected by starting polymer concentration and sol-gel composition. The titania and titania-silica nanofibers had the average diameter about 100–300 nm. The crystal phase varied from high-crystallized rutile-anatase mixed crystal to low-crystallized anatase with adding the silica addition. The morphology and crystal phase were evaluated by SEM and XRD. Bone-marrow-derived mesenchymal stem cells were seeded on titania-silica 50/50 fiber meshes. Cell number and early differentiation marker expressions were analyzed, and the results indicated osteogenic potential of the titania-silica 50/50 fiber meshes.

  15. X-ray photoelectron microscope with a compact x-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Okamoto, Y.; Hara, T.; Takahashi, Z.; Nishimura, Y.; Sakata, A.; Watanabe, K.; Azuma, H.

    2004-01-01

    Full text: A laboratory-sized microscopic system of x-ray photoelectrons has been developing using a compact x-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where x-ray beam is micro-focused via a Schwartzschild optics. A compact laser-plasma x-ray source has been developed with a YAG laser system, a line-focus lens system, a tape-target driving system and a debris prevention system, that was operated at repetition rate of 10 Hz or 50 Hz. X-rays were delivered along line plasma whose length was 0.6 to 11 mm with higher intensity than that from a point-focused source. Because the transition line of Al V (13.1 nm) was prominent in the soft x-ray spectrum when the Al tape target irradiated at the lower power density of 10 11 W/cm 2 , the 13.1 nm x-ray was used as an excitation source. The Schwartzschild optics was set on the beamline at a distance about 1 m from the source, which was coated with Mo/Si multilayers for 13.1 nm x-ray. The designed demagnification is 224 that was confirmed in the previous experiment. Therefore, an x-ray micro spot of sub-micron size can be formed on a sample surface when the source size is less than about 0.2 mm. Samples were set on a two-axis high-precision piezo stage mounted to a four-axis manipulator. The electron energy analyzer was a spherical capacitor analyzer with mean diameter of 279.4 mm. The electron detector was a microchannel plate (MCP) with a phosphor screen and the optical image of electrons on the exit plane of the analyzer was taken and recorded by using an ultra low dark noise CCD camera, that was suited for detection of vast photoelectrons excited by x-ray pulse of ns-order duration. We performed spatial resolution test measurements by using a GaAs wafer coated with photo-resist that formed a stripe pattern. The spatial resolution less than 3 micron has been obtained from the variation of As 3d electron intensity along the position of the GaAs sample

  16. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin Theodore [The Ohio State Univ., Columbus, OH (United States)

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  17. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  18. One-step in-diffusion as a result of multipulse laser irradiation of LiNbO3 single-crystalline substrates covered with thin Ti deposits on the effect of the radiation wavelength

    International Nuclear Information System (INIS)

    Ferrari, A.; Schirone, L.; Maiello, G.

    1994-05-01

    We studied Ti in-diffusion as an effect of multiple laser irradiation, in either visible of ultraviolet (u.v.) spectral ranges, of LiNbO 3 single-crystalline structures with Ti coatings of two different thickness. It is shown that while u.v. (excimer, λ approx. 308 nm) laser irradiation causes a complete expulsion of the Ti deposit, the visible (ruby, λ approx. 694.3 nm) laser irradiation at intermediate incident laser fluence (up to approx. 0.7J cm -2 ) promotes efficient Ti in-diffusion from the thin (400 A width) Ti deposit down to a micrometre range implantation depth. (author). 7 refs, 6 figs

  19. Nd:YAG laser irradiation effects on electrical properties of polycrystalline Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mane, Maheshkumar L., E-mail: mane.maheshkumar@hotmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Dhage, V.N.; Shirsath, Sagar E. [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India); Sundar, R.; Ranganathan, K.; Oak, S.M. [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (M.P.) (India); Jadhav, K.M. [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) 431 004 (India)

    2012-01-15

    Highlights: > Standard double sintering ceramic method. > Infrared and electrical properties of spinel ferrite. > Laser irradiation study. > Conduction mechanism. > Temperature dependence dielectric properties. - Abstract: The polycrystalline spinel structured Li{sub 0.5}Fe{sub 2.5}O{sub 4} ferrite have been prepared by conventional double sintering ceramic method. The samples were palletized and irradiated by Nd:YAG laser with different laser fluencies and characterized by infrared spectroscopy and DC electrical resistivity in order to obtain phase, crystal structure and conduction mechanism in pristine and irradiated samples. The infrared spectroscopy is employed to study the local symmetry and conduction mechanism in crystalline solids before and after irradiation. The DC electrical resistivity measured by two-probe technique from room temperature to beyond Curie temperature with steps of 10 K increases after laser irradiation. Variation of dielectric properties like dielectric constant and dielectric loss tangent is also measured as a function of temperature. A significant reduction in the values of dielectric constant and dielectric loss tangent has been observed with the increase of laser dose.

  20. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation

    Science.gov (United States)

    Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman

    2017-10-01

    In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.

  1. Non-equilibrium surface conditions and microstructural changes following pulsed laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC

    International Nuclear Information System (INIS)

    More, K.L.; Davis, R.F.

    1986-01-01

    Pulsed laser irradiation and ion beam mixing of thin Ni overlayers on sintered alpha-SiC have been investigated as potential surface modification techniques for the enhancement of the mechanical properties of the SiC. Each of these surface processing methods are nonequilibrium techniques; materials interactions can be induced at the specimen surface which are not possible with conventional thermal techniques. As a result of the surface modification, the physical properties of the ceramic can be altered under the correct processing conditions. Following laser irradiation using a pulsed ruby or krypton fluoride (KrF) excimer laser, the fracture strength of the SiC was increased by approximately 50 percent and 20 percent, respectively. However, ion-beam mixing of Ni on SiC resulted in no change in fracture strength. Cross-sectional transmission electron microscopy, scanning electron microscopy, secondary ion mass spectroscopy, and Rutherford backscattering techniques, have been used to characterize the extent of mixing between the Ni and SiC as a result of the surface modification and to determine the reason(s) for the observed changes in fracture strength. 19 references

  2. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  3. Nd: YAG laser irradiation effects on structural and magnetic properties of Ni1+xZrxFe2-2xO4 nanoparticles

    Science.gov (United States)

    Saraf, Tukaram S.; Kounsalye, Jitendra S.; Birajdar, Shankar D.; Shamkuwar, N. R.

    2018-05-01

    The effect of 112 mJ Nd: YAG laser irradiation on structural, morphological, infrared and magnetic properties of Ni1+xZrxFe2-2xO4 spinel ferrite nanoparticles has been systematically investigated in the present work. The sol-gel auto combustion synthesis method was successfully executed for the synthesis of the present system. All the samples were characterized by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR) technique. The magnetic properties of the present samples were measured by pulse field hysteresis loop technique. All the properties were measured for laser irradiated samples as well, to understand the effect of irradiation on the properties. The single-phase cubic spinel structure was confirmed by X-ray diffraction patterns of all samples and the disordered structure was observed for irradiated samples. The two principle absorption bands in IR spectra also confirm the formation of the spinel structure. Spherical and agglomerated morphology was observed for Zr4+ substituted nickel ferrite, whereas scratched morphology was observed for the irradiated samples. The grain size confirms the nanocrystalline nature, the crystallite size also evident the same. The magnetic parameters decreased after Zr4+ ion doping and strongly influenced by the irradiation.

  4. Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te induced by ultrafast intense laser irradiation

    Directory of Open Access Journals (Sweden)

    Dahua Ren

    2017-09-01

    Full Text Available Ab initio calculations of lattice constants, lattice stabilities of ZnX (X=O, S, Se, Te at different electronic temperatures (Te have been performed using generalized gradient approximation (GGA pseudopotential method within the density functional theory (DFT. The calculated phonon frequencies of ZnX at Te = 0 eV accord well with the experimental and other theoretical values. Firstly, it is indicated that the lattice constants of ZnX increase and all the phonon frequencies reduce as Te increases. Additionally, the transverse-acoustic phonon frequencies of ZnX are imaginary with the elevation of Te, namely the lattices of ZnX become unstable under ultrafast intense laser irradiation. Moreover, the transverse optical mode-longitudinal optical mode (LO-TO splitting degree of ZnX (X=S, Se, Te gradually decreases as the electronic temperature increases, mainly due to the reason that the electronic excitation weakens the strength ionicity of ionic crystal ZnX under intense laser irradiation. However, the LO-TO splitting degree of ZnO firstly increases and then decreases with the increase of electronic temperature. After that, it can be helpful for understanding the mechanism of ultrafast intense laser induced semiconductors damage.

  5. Continuous laser irradiation under ambient conditions: A simple way for the space-selective growth of gold nanoparticles inside a silica monolith

    International Nuclear Information System (INIS)

    El Hamzaoui, Hicham; Bernard, Remy; Chahadih, Abdallah; Chassagneux, Fernand; Bois, Laurence; Capoen, Bruno; Bouazaoui, Mohamed

    2011-01-01

    Highlights: → Visible continuous laser direct-write gold nanoparticles inside a silica monolith. → The presence of the additive (Na 2 CO 3 ) is not necessary to the growth of gold nanoparticles. → A simple heat treatment leads to precipitation of gold nanoparticles inside the silica matrices with, or without, the additive. → The local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism. -- Abstract: Thanks to the potential and various applications of metal-dielectric nanocomposites, their syntheses constitute an interesting subject in material research. In this work, we demonstrate the achievement of gold nanocrystals growth through a visible and continuous laser irradiation. The in situ and direct space-selective generation of metallic nanoparticles is localized under the surface within transparent silica monoliths. For that purpose, the porous silica monoliths are prepared using a sol-gel route and post-doped with gold precursors before the irradiation. The presence of Au nanoparticles inside the irradiated areas was evidenced using absorption spectroscopy, X-ray diffraction analysis and transmission electron microscopy. The comparison between the results obtained after a laser irradiation and by a simple heat-treatment reveals that the local precipitation of gold nanoparticles by continuous photo-irradiation occurs following a photo-thermal activated mechanism.

  6. Space Weathering of Silicates Simulated by Successive Laser Irradiation: In Situ Reflectance Measurements of Fo90, Fo99+, and Sio2

    Science.gov (United States)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of nanophase metallic Fe (npFe0) grains, 2050 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laserpulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  7. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM

    International Nuclear Information System (INIS)

    Verlangieri, Eleonora Jaeger

    2001-01-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm 2 for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  8. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  9. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  10. Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Němec, P.; Nazabal, V.; Dussauze, M.; Ma, H.-L.; Bouyrie, Y.; Zhang, X.-H.

    2013-01-01

    UV pulsed laser deposition was employed for the fabrication of amorphous Ga–Ge–Te thin films. The local structure of the bulk glasses as well as corresponding thin films was studied using Raman scattering spectroscopy; the main structural motifs were found to be [GeTe 4 ], eventually [GaTe 4 ] corner-sharing tetrahedra and disordered Te chains. Optical functions of the films (refractive index, extinction coefficient) were characterized by variable angle spectroscopic ellipsometry. Photostability experiments showed all Ga–Ge–Te laser deposited films to be stable against 1550 nm laser irradiation in an as-deposited state. In an annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75 . This particular composition was further studied from the point of view of thermal stability and stability against ageing in as-deposited state. - Highlights: ► Pulsed laser deposition was used for fabrication of amorphous Ga–Ge–Te thin films. ► GeTe 4 , eventually GaTe 4 tetrahedra and disordered Te chains form the film structure. ► Optical functions of Ge–Ga–Te films were characterized by spectroscopic ellipsometry. ► All as-deposited Ga–Ge–Te thin films are stable against 1550 nm irradiation. ► In annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75

  11. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  13. Recent progress in mesoporous titania materials: adjusting morphology for innovative applications

    Directory of Open Access Journals (Sweden)

    Juan L Vivero-Escoto, Ya-Dong Chiang, Kevin C-W Wu and Yusuke Yamauchi

    2012-01-01

    Full Text Available This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.

  14. Hybrids of ethylene vinyl acetate with Na-montmorillonite and titania: preparation and characterization

    International Nuclear Information System (INIS)

    Ashfaq, M.

    2010-01-01

    Hybrids of Ethylene vinyl acetate (EVA) with Na-montmorillonite and titania were formed. Montmorillonite was organically modified by two different modifiers: Pyridinium ions and 4. 4-oxydianilinium ions. X-ray diffraction results revealed that Pyridinium ions increased the .interlayer spacing by 0.33 nm and 4, 4-oxydianilinium by 0.55 nm approximately. These modified organo-clays were successfully exfoliated in EVA using melt blending. These hybrids showed improvement in mechanical and thermal properties. 4, 4-oxydianilinium ions were degraded at higher temperature due to which thermal degradation was enhanced in EVA. In addition to this, EVA/titania hybrids were also prepared using sot-gel technique and modified by triethoxy vinyl silane and (3-aminopropyI)- triethoxy silane to increase their compatibility with EVA. Some portion of unmodified titania was heat treated to 600 degree C to obtain particulate titania. The hybrid of particulate titania and modified titania improved the mechanical properties and thermal properties. Especially in case of modified titania toughness was almost doubled. (author)

  15. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  16. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  17. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  18. Fabrication of modified lithium orthosilicate pebbles by addition of titania

    Energy Technology Data Exchange (ETDEWEB)

    Knitter, R., E-mail: regina.knitter@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Kolb, M.H.H.; Kaufmann, U. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Karlsruhe, 76021 (Germany); Goraieb, A.A. [Goraieb Versuchstechnik (GVT), Karlsruhe, 76227 (Germany)

    2013-11-15

    Highlights: ► Lithium orthosilicate pebbles with additions of titania were fabricated by a modified melt-based process. ► The fabricated pebbles exhibit a very fine-grained microstructure with lithium metatitanate as a secondary phase. ► Due to the addition of titanate, the crush load of the pebbles was significantly increased. ► The closed porosity was found to be slightly increased with increasing titanate content. -- Abstract: Lithium orthosilicate pebbles are one of the ceramic tritium breeder materials destined for the European solid breeder test blanket modules of ITER, the large-scale scientific experiment intended to prove the viability of fusion as an energy source, presently under construction in Cadarache, France. While the current reference material is fabricated by melt-spraying with 2.5 wt.% excess of silica, resulting in a two-phase material of lithium orthosilicate and metasilicate, a modified melt-based process was used to fabricate breeder pebbles with additions of titania in order to obtain pebbles with lithium metatitanate as a secondary phase. The fabricated two-phase pebbles exhibit a fine-grained microstructure and increased crush loads. The optimum titanate content has yet to be evaluated, nonetheless the pebbles may have the potential to combine the advantages of both lithium orthosilicate and metatitanate breeder ceramics.

  19. Characterization of nanocrystalline anatase titania: an in situ HTXRD study

    International Nuclear Information System (INIS)

    Jagtap, Neelam; Bhagwat, Mahesh; Awati, Preeti; Ramaswamy, Veda

    2005-01-01

    Nanocrystalline titania was synthesized by the hydrolysis of titanium iso-propoxide using ultrasonication. The powder XRD patterns of the sample were recorded in static air and vacuum using a Philips X-pert Pro diffractometer equipped with a high-temperature attachment (HTK16) from room temperature (298 K) to 1173 K and were analyzed by the Rietveld refinement technique. The anatase to rutile phase transformation was observed at 1173 K for the data collected in static air. Only 3% of anatase titania transformed to rutile when the experiments were carried out at 1173 K in vacuum. The phase transformation from anatase to rutile is accompanied by a continuous increase in the crystallite size of the anatase phase from 9 nm at room temperature to 28 nm at 873 K and then to 50 nm at 1173 K in air while the process of crystallite growth was suppressed in vacuum. A linear increase in the unit cell parameters 'a' and 'c', and thus, an overall linear increase in the unit cell volume was observed as a function of temperature in static air as well as vacuum. The lattice and volume thermal expansion coefficients (TEC), α a , α c and α V at 873 K are 8.57 x 10 -6 , 8.71 x 10 -6 and 25.91 x 10 -6 K -1 in air and 18.01 x 10 -6 , 14.95 x 10 -6 and 51.13 x 10 -6 K -1 in vacuum, respectively

  20. Hydroxyapatite nucleated and grown on nano titania particles enhances recruitment of Escherichia coli for subsequent photocatalytic elimination

    International Nuclear Information System (INIS)

    Huang, Jing; Liu, Yi; Liu, Yuxin; Li, Hua

    2015-01-01

    Titania-hydroxyapatite (HA) nanocomposites were fabricated by wet chemical synthesis approach. HA exhibited crystallographic orientation of nucleation on nano titania particle, forming the composite particles with titania being partially enwrapped with HA. Microstructural characterization by high resolution transmission electron microscopy revealed coherent interfacial bond of (110) and (222) planes of HA crystal with (101) plane of anatase. The HA layer promoted significantly recruitment of Escherichia coli bacteria onto the titania-based particles for subsequent photocatalytic killing. Less extent of enwrapping of HA on titania particle, as accomplished by increasing the aging time of HA suspension, gave rise to better capability of photocatalytic degradation of methylene blue and sterilization of the bacteria. The novel HA-enwrapped titania powder shows great potential for environmental applications. - Highlights: • Titania-hydroxyapatite nanocomposite powder was fabricated with cladding structure. • Hydroxyapatite nucleated and grew on titania particle with preferred orientation. • Hydroxyapatite layer promotes recruitment of Escherichia coli onto titania-based particles. • The titania-hydroxyapatite particles show excellent antibacterial performances. • The nanocomposite powder exhibits excellent photocatalytic performances

  1. Hydroxyapatite nucleated and grown on nano titania particles enhances recruitment of Escherichia coli for subsequent photocatalytic elimination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Liu, Yi; Liu, Yuxin; Li, Hua, E-mail: lihua@nimte.ac.cn

    2015-02-01

    Titania-hydroxyapatite (HA) nanocomposites were fabricated by wet chemical synthesis approach. HA exhibited crystallographic orientation of nucleation on nano titania particle, forming the composite particles with titania being partially enwrapped with HA. Microstructural characterization by high resolution transmission electron microscopy revealed coherent interfacial bond of (110) and (222) planes of HA crystal with (101) plane of anatase. The HA layer promoted significantly recruitment of Escherichia coli bacteria onto the titania-based particles for subsequent photocatalytic killing. Less extent of enwrapping of HA on titania particle, as accomplished by increasing the aging time of HA suspension, gave rise to better capability of photocatalytic degradation of methylene blue and sterilization of the bacteria. The novel HA-enwrapped titania powder shows great potential for environmental applications. - Highlights: • Titania-hydroxyapatite nanocomposite powder was fabricated with cladding structure. • Hydroxyapatite nucleated and grew on titania particle with preferred orientation. • Hydroxyapatite layer promotes recruitment of Escherichia coli onto titania-based particles. • The titania-hydroxyapatite particles show excellent antibacterial performances. • The nanocomposite powder exhibits excellent photocatalytic performances.

  2. Penile anesthesia in Post SSRI Sexual Dysfunction (PSSD) responds to low-power laser irradiation : A case study and hypothesis about the role of transient receptor potential (TRP) ion channels

    NARCIS (Netherlands)

    Waldinger, Marcel D.; van Coevorden, Ruben S.; Schweitzer, Dave H.; Georgiadis, Janniko

    2015-01-01

    Treatment of paroxetine-induced penile anesthesia in Post SSRI Sexual Dysfunction (PSSD) by Low-power Laser Irradiation (PLO is unknown in medical literature. The aim of the current article is to report partial efficacy of LPLI for paroxetine-induced persistent penile anesthesia. We report on a male

  3. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  4. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  5. Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Peilin; Liu Bin; Yin Shu; Wang Yuhua; Petrykin, Valery; Kakihana, Masato; Sato, Tsugio

    2009-01-01

    A microwave-assisted hydrothermal method was employed to synthesize nitrogen doped titania nanoparticles. Due to the high heating efficiency of microwave, rapid synthesis could be achieved in comparison with the conventional oven. Mixed crystal lattice was found existing in the obtained product, and the phase transformation behaviour under calcination was studied by XRD measurement together with Raman spectroscopy in details. The obtained nitrogen doped titania showed high specific surface area, about 300 m 2 g -1 . Photocatalytic activity in destructing NO x gas by the prepared sample exceeded that of commercial titania (P 25) or nitrogen doped titania synthesized by conventional hydrothermal method, under both visible-light and ultraviolet-light irradiation.

  6. Synthesis and characterization of silica–titania core–shell particles

    Indian Academy of Sciences (India)

    reactants (titanium butoxide and water) and the amount of added silica particles. Differ- ... of titania onto silica can enhance its stability and catalytic activity. It is also an .... This work has been supported by DST India under the Nanomaterials,.

  7. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.

    Science.gov (United States)

    Albetran, Hani; Vega, Victor; Prida, Victor M; Low, It-Meng

    2018-02-23

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase abundance, but an increase in the abundance of rutile because of an anatase-to-rutile transformation. The Avrami equation was used to model the titania crystallization mechanism and the Arrhenius equation was used to estimate the activation energies of the titania phase transformation. Activation energies of 22 (10) kJ/mol for the titanium-to-anatase transformation, and 207 (17) kJ/mol for the anatase-to-rutile transformation were estimated.

  8. Photocatalytic polymerization induced by a transparent anatase titania aqueous sol and fabrication of polymer composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The surface modification of the anatase titania nanoparticles prepared via a controlled nonhydrolytic sol-gel process is achieved by the formation of the bidentate coordination between titania and methacrylic acid (MAA molecules. The in situ photocatalytic polymerization of methyl methacrylate (MMA monomer is initiated by surface modified anatase titania nanoparticles under Xe lamp irradiation. A variety of techniques including differential scanning calorimetry (DSC, thermo-gravimetric analysis (TGA and scanning electron microscopy (SEM are employed to characterize the resulting materials. The glass transition temperatures and the thermal stabilities of polymethyl methacrylate (PMMA composite materials prepared via photocatalytic polymerization are enhanced compared with pure polymer. The partial aggregation of titania nanoparticles in PMMA composite films is derived from the surface polymerization of MMA, which makes the inorganic particles hydrophobic and drives them to the water/oil interfaces.

  9. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T., E-mail: t-kimura@aist.go.jp [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2014-11-01

    Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene) (PS-b-PEO) diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical) macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  10. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Directory of Open Access Journals (Sweden)

    T. Kimura

    2014-11-01

    Full Text Available Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene (PS-b-PEO diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  11. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  12. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    International Nuclear Information System (INIS)

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-01-01

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals

  13. Intravenous injection of artificial red cells and subsequent dye laser irradiation causes deep vessel impairment in an animal model of port-wine stain.

    Science.gov (United States)

    Rikihisa, Naoaki; Tominaga, Mai; Watanabe, Shoji; Mitsukawa, Nobuyuki; Saito, Yoshiaki; Sakai, Hiromi

    2018-03-15

    Our previous study proposed using artificial blood cells (hemoglobin vesicles, Hb-Vs) as photosensitizers in dye laser treatment for port-wine stains (PWSs). Dye laser photons are absorbed by red blood cells (RBCs) and hemoglobin (Hb) mixture, which potentially produce more heat and photocoagulation and effectively destroy endothelial cells. Hb-Vs combination therapy will improve clinical outcomes of dye laser treatment for PWSs because very small vessels do not contain sufficient RBCs and they are poor absorbers/heaters of lasers. In the present study, we analyzed the relationship between vessel depth from the skin surface and vessel distraction through dye laser irradiation following intravenous Hb-Vs injection using a chicken wattle model. Hb-Vs were administered and chicken wattles underwent high-energy irradiation at energy higher than in the previous experiments. Hb-Vs location in the vessel lumen was identified to explain its photosensitizer effect using human Hb immunostaining of the irradiated wattles. Laser irradiation with Hb-Vs can effectively destroy deep vessels in animal models. Hb-Vs tend to flow in the marginal zone of both small and large vessels. Increasing laser power combined with Hb-Vs injection contributed for deep vessel impairment because of the synergetic effect of both methods. Newly added Hb tended to flow near the target endothelial cells of the laser treatment. In Hb-Vs and RBC mixture, heat transfer to endothelial cells from absorbers/heater may increase. Hb-Vs function as photosensitizers to destroy deep vessels within a restricted distance that the photon can reach.

  14. The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    International Nuclear Information System (INIS)

    Frigo, Lúcio; Luppi, Juliana SS; Favero, Giovani M; Maria, Durnavei A; Penna, Sócrates C; Bjordal, Jan M; Bensadoun, Rene J; Lopes-Martins, Rodrigo AB

    2009-01-01

    It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm 2 , irradiance 2.5 W/cm 2 and irradiation times of 60s (dose 150 J/cm 2 ) and 420s (dose 1050 J/cm 2 ) respectively. There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm 2 dose group were not significantly different from controls. For the 1050 J/cm 2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm 2 ) and high dose (1050 J/cm 2 ) significantly increases melanoma tumor growth in vivo

  15. Muonic molecular formation under laser irradiation and in the clustered ion molecule (The effect of protonium additive on the muon catalyzed fusion cycle)

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1988-01-01

    The formation rate of the dtμ molecule is very sensitive to the differences in the vibrational rotational level between D 2 and [(dtμ)-d-2e/] molecules. The density effect of the normalized reaction rate has been studied by the resonance broadening due to collisional quenching. The surrounding molecules of the molecule forming dt/mu/ act as the third body which takes out the excess energy forming dt/mu/ from t/mu/, and the formation reaction occurs with the excitation of the vibrational state just below the threshold energy. By using the laser as the third body, the rate of resonance formation can be increased. In my last paper, the formation rate was calculated under high-intensity laser irradiation, using Vinitsky's model assuming that the laser interacts directly with the deuteron and modulates the interaction between t/mu/ and d/sub 2/ nuclei. However, the laser interacts more strongly with the electrons, because the interaction energy of the laser and the charged particle is proportional to the velocity of the particle's motion, and the velocity of the electron is a few thousand times greater than the velocity of the nuclei. This interaction with electrons was neglected in my last paper. In the present paper, the enhancement of the dt/mu/ formation rates by the strong laser irradiation is studied, taking into account the laser electron interaction; It was shown that the enhancement can be achieved by an intensity lower than the one described previously. 29 refs., 5 figs., 3 tabs

  16. The regeneration of thermal wound on mice skin (Mus Musculus) after Q-Switch Nd: YAG laser irradiation for cancer therapy candidate

    Science.gov (United States)

    Apsari, R.; Nahdliyatun, E.; Winarni, D.

    2017-09-01

    The aims of this study are to investigate the regeneration of mice skin tissue (Mus Musculus) irradiated by Q-Switch Nd: YAG laser and morphological change due to Q-Switch Nd: YAG laser irradiation compared to conventional heating (hairdryer). The 2-3 month of twenty-seven mice were used for experimental animals. Mice were incised in the dorsum by the damage effect of laser energy dose (therapeutic dose) of 29.5 J/cm2 with 10 seconds of exposure time, 10 Hz of repetition rate, and 100 pulses of the given single pulse energy. The mice skin tissue was injuried by hairdryer to get burned effect. Mice were divided into three groups, Group I (control) were not treated by anything, Group II were treated by Q-Switch Nd: YAG laser irradiation and sacrificed on (0, 1, 3, 5) days, and Group III were treated by hairdryer then sacrificed on (0, 1, 3, 5) days. Pathology examination showed that the energy of 29,5 J/cm2 dose produced the hole effect (ablation) through the hypodermic layer caused by optical breakdown and collagen coagulation. Thus, the 60 °C temperature of burn showed coagulation necrosis because piknosis discovered in the injured area. The regeneration process showed that the mice skin tissue's ability to regenerate was irradiated by fast laser because of the focus of Q-Switch Nd: YAG laser. It was showed by the scab releases on third day and completely reepithelialization formation on the fifth day. The collagen fibers distribution was same as normal skin tissue on day 5 and so did angiogenesis. Therefore, Q-Switch Nd: YAG laser can be applied for problems of dermatology medical therapies, especially melasma, nevus of ota and tatto therapy. For skin cancer therapy application, energy dose of unregenerated skin tissue is chosen because the death expected effect is permanent.

  17. Sintering and mechanical properties of the alumina–tricalcium phosphate–titania composites

    Energy Technology Data Exchange (ETDEWEB)

    Sakka, Siwar, E-mail: sakka.siwar@yahoo.fr; Bouaziz, Jamel; Ben Ayed, Foued

    2014-07-01

    The objective of this study was to determine the effect of the content of titania and the sintering process on the transformation phase, the densification, the rupture strength and the microstructures of the alumina–10 wt.% tricalcium phosphate composites. After the sintering process, the samples were examined by using {sup 31}P and {sup 27}Al magic angle scanning nuclear magnetic resonance, X-ray powder diffraction and scanning electron microscopy analysis. The Brazilian test was used to measure the rupture strength of the samples. The present results provide new information about solid-state reactivity in the ternary system α-alumina-β-tricalcium phosphate–anatase–titania. The differential thermal analysis of the α-alumina-β-tricalcium phosphate–titania composites shows two endothermic peaks, at 1360 °C and at 1405 °C, which are caused by the reactions between titania/alumina and titania/tricalcium phosphate, respectively. Thus, the presence of titania in the alumina–10 wt.% tricalcium phosphate leads to the formation of β-Al{sub 2}TiO{sub 5} at 1360 °C. At 1600 °C, the alumina–10 wt.% tricalcium phosphate–5 wt.% titania composites displayed the highest rupture strength (74 MPa), compared to the alumina–10 wt.% tricalcium phosphate composites (13.5 MPa). Accordingly, the increase of the rupture strength is due to the formation of the new β-Al{sub 2}TiO{sub 5} phase. - Highlights: • We examine the mechanical properties of bioceramics. • We measure the rupture strength by the Brazilian test. • We characterize the alumina–10 wt.% tricalcium phosphate–titania composites.

  18. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  19. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Knowles, Jonathan Campbell

    2014-01-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds

  20. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    Science.gov (United States)

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.

  1. Solventless acid-free synthesis of mesostructured titania: Nanovessels for metal complexes and metal nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Dag, Oe.; Celik, Oe.; Ozin, G.A. [Department of Chemistry, Bilkent University, 06533 Ankara (Turkey); Soten, I.; Polarz, S.; Coombs, N. [Materials Chemistry Research Group, Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2003-01-01

    A new and highly reproducible method to obtain mesostructured titania materials is introduced in this contribution. The mesostructured titania is obtained by employing self-assembled structures of non-ionic alkyl-poly(ethylene oxide) surfactants as templates. The materials are produced without additional solvents such as alcohols, or even water. Only the titanium(IV) ethoxide and the surfactant (C{sub 12}EO{sub 10}) are needed. Water, in the form of that attached to the surfactant and from the atmosphere, induces growth of titania nanoclusters in the synthesis sol. It is indicated that these nanoclusters interact with the surfactant EO-head groups to form a new titanotropic amphiphile. The new amphiphiles self-assemble into titanium nanocluster-surfactant hybrid lyotropic phases, which are transformed to the final mesostructured materials by further condensation of the titania network. The titania materials can be obtained also with noble-metal particles immobilized in the mesostructured framework. It is seen that when different metal salts are used as the metal precursors, different interactions with the titania walls are found. The materials are characterized by X-ray diffraction (XRD), polarization optical microscopy (POM), transmission electron microscopy (TEM), UV-vis spectroscopy, and micro-Raman analysis. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  2. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites

    International Nuclear Information System (INIS)

    Mohamed, Khaled R.; Mostafa, Amani A.

    2008-01-01

    Biocomposites consisting of hydroxyapatite (HA) and natural polymers such as collagen, chitosan, chitin,and gelatin have been extensively investigated. However, studies on the combination of HA and titania with chitosan and gelatin have not been conducted yet. Novel biodegradable hydroxyapatite-titania/chitosan-gelatin polymeric composites were fabricated. In this work, our results are concerning with the preparation and characterization of HA powder and HA filler containing titania powder (10 and 30%) with a chitosan and gelatin copolymer matrix. The present research focuses on characterizing the structure of this novel class of biocomposites. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning electron microscopy (SEM-EDAX) were employed to assess the produced composites. The mechanical properties in terms of compressive strength and hardness test were also investigated. The in vitro study in simulated body fluid (SBF) was performed to assess the bioactivity of composites. The results proved that apatite resembling natural bone are formed faster and greater in the case the composite of HA containing 10% titania into chitosan-gelatin polymeric matrix when they are soaked in a simulated body fluid (SBF) than the composite containing 30% titania. The biocomposites containing HA with 10% titania are expected to be attractive for bioapplications as bone substitutes and scaffolds for tissue engineering in future

  3. Molecularly imprinted titania nanoparticles for selective recognition and assay of uric acid

    Science.gov (United States)

    Mujahid, Adnan; Khan, Aimen Idrees; Afzal, Adeel; Hussain, Tajamal; Raza, Muhammad Hamid; Shah, Asma Tufail; uz Zaman, Waheed

    2015-06-01

    Molecularly imprinted titania nanoparticles are su ccessfully synthesized by sol-gel method for the selective recognition of uric acid. Atomic force microscopy is used to study the morphology of uric acid imprinted titania nanoparticles with diameter in the range of 100-150 nm. Scanning electron microscopy images of thick titania layer indicate the formation of fine network of titania nanoparticles with uniform distribution. Molecular imprinting of uric acid as well as its subsequent washing is confirmed by Fourier transformation infrared spectroscopy measurements. Uric acid rebinding studies reveal the recognition capability of imprinted particles in the range of 0.01-0.095 mmol, which is applicable in monitoring normal to elevated levels of uric acid in human blood. The optical shift (signal) of imprinted particles is six times higher in comparison with non-imprinted particles for the same concentration of uric acid. Imprinted titania particles have shown substantially reduced binding affinity toward interfering and structurally related substances, e.g. ascorbic acid and guanine. These results suggest the possible application of titania nanoparticles in uric acid recognition and quantification in blood serum.

  4. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  5. Thermally modified titania photocatalysts for phenol removal from water

    Directory of Open Access Journals (Sweden)

    Joanna Grzechulska-Damszel

    2006-01-01

    Full Text Available Two kinds of titanium dioxide were used as starting materials for thermal modification: Tytanpol A11 supplied by Chemical Factory “Police” S.A. (Poland and Degussa P25 supplied by Degussa AG (Germany. The photocatalytic activity of titania materials modified by thermal treatment was tested in the reaction of photocatalytic oxidation of phenol. It was found that the highest activity in the reaction of photocatalytic decomposition of phenol, in case of Tytanpol A11, shows the samples of material modified at temperatures of 700 and 750°C. These catalysts were more active than untreated A11, whereas materials modified at higher temperatures show lower activity. In the case of P25, all thermally treated materials were less active than the unmodified material. The photocatalyst samples were characterized by UV-Vis/DR, FTIR/DRS, and XRD methods.

  6. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets.

    Science.gov (United States)

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2018-02-16

    The superoxide dismutase (SOD) enzyme was successfully immobilized on titania nanosheets (TNS) functionalized with the poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte. The TNS-PDADMAC solid support was prepared by hydrothermal synthesis followed by self-assembled polyelectrolyte layer formation. It was found that SOD strongly adsorbed onto oppositely charged TNS-PDADMAC through electrostatic and hydrophobic interactions. The TNS-PDADMAC-SOD material was characterized by light scattering and microscopy techniques. Colloidal stability studies revealed that the obtained nanocomposites possessed good resistance against salt-induced aggregation in aqueous suspensions. The enzyme kept its functional integrity upon immobilization; therefore, TNS-PDADMAC-SOD showed excellent superoxide radical anion scavenging activity. The developed system is a promising candidate for applications in which suspensions of antioxidant activity are required in the manufacturing processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  8. Sensitization of Xanthophylls-Chlorophyllin Mixtures on Titania Solar Cells

    Directory of Open Access Journals (Sweden)

    Indriana Kartini

    2015-03-01

    Full Text Available Co-sensitization of natural dyes on TiO2 for dye-sensitized solar cell (DSSC was proposed between chlorophyllin (C and xanthophylls (X at various volume ratios of C/X. Chlorophyllin is chlorophyll derivative providing -COOH groups essential for binding to TiO2. The chlorophyll was extracted from dried spinach (amaranthus viridis leaves in a mixture of methanol-acetone (70%:30%. Chlorophyll extract dye was obtained after partition of the crude extracts in diethyl ether solution. Then, it was hydrolyzed under alkaline condition to get chlorophyllin. Xanthophyll was extracted from fresh petal of chrysanthemum (chrysanthemum indicum flowers. Blending of chlorophyllin and xanthophyll was carried out at various volume ratios of C to X (1:0, 5:1, 1:1, 1:5, 0:1. Titania solar cells were constructed in sandwich system of conducting glass-titania/dyes as the photoanode and conducting glass-platinum as the photocathode. Electrolyte solution containing I-/I3- was inserted between the electrodes by capillary action. All dye extracts and blending solutions were analyzed by UV-Vis spectrophotometer. It is shown that the absorption spectra of blending dyes are complimentary in the visible region resulted in a panchromatic response of the dyes. From the cyclic voltammogram of the dyes and blended-dyes, it is found that the energy level of xanthophyll is the lowest. The I-V test at 100 mw/cm2 irradiation confirmed that the energy conversion efficiency (h of the blended dyes of xanthophyll and chlorophyllin-sensitized solar cell resulted in significant improvement than those of the single dye. Beneficially, the mixed dyes can be adsorbed from solution blend using single dipping step.

  9. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  10. Preparation of nitrogen-doped titania using sol-gel technique and its photocatalytic activity

    International Nuclear Information System (INIS)

    Qin Haoli; Gu Guobang; Liu Song

    2008-01-01

    Yellowish nitrogen-doped titania was produced through sol-gel method at room temperature, with the elemental nitrogen derived from aqua ammonia. The titania catalysts were characterized using TG-DSC, XRD, BET, TEM, and UV-vis diffuse reflectance spectrophotometer. Methyl orange (MO) and 2-mercaptobenzothiazole (MBT) were used in this study as model chemicals and both the adsorption isotherm and photocatalytic activity of the nitrogen-doped titania catalysts were evaluated based on the MO and MBT photodegradation in aqueous solution under UV and visible light, respectively. The results showed that all titania catalysts were anatase. The crystallite size of nitrogen-doped ones increased with the increase of N/Ti proportion, both the adsorption capacity and adsorption equilibrium constants of the nitrogen-doped titania catalysts were improved by the doping of nitrogen. The doping of nitrogen could extend the absorption shoulder into the visible-light region, thus nitrogen-doped titania possessed visible-light activity illustrated by that higher capability of degradation of MO and MBT under the irradiation of visible light, whereas the pure ones showed little such kind of visible-light activity. The kinetics of the MO and MBT photodegradation using different nitrogen-doped titania were also studied, the experiments demonstrated that there was an optimum N/Ti proportion of 4 mol% to exhibit the highest visible-light activity. The UV activity of nitrogen-doped titania catalysts were worse than that of the pure one and Degussa P-25. In addition, nitrogen-doped titania had weakened appreciably activity in the visible-light region as the N/Ti proportion increased, while a reverse relationship exists for the UV light. It was concluded that the enhancement of MO and MBT photodegradation using the nitrogen-doped titania catalysts mainly involved in both the improvement of the organic substrate adsorption in catalysts suspension and the enhancement of the separation of electron

  11. Optical evidence for a self-propagating molten buried layer in germanium films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Vega, F.; Chaoui, N.; Solis, J.; Armengol, J.; Afonso, C.N.

    2005-01-01

    This work describes the phase transitions occurring at the film-substrate interface of amorphous germanium films upon nanosecond laser-pulse-induced melting of the surface. Films with thickness ranging from 50 to 130 nm deposited on glass substrates were studied. Real-time reflectivity measurements with subnanosecond time resolution performed both at the air-film and film-substrate interfaces were used to obtain both surface and in-depth information of the process. In the thicker films (≥80 nm), the enthalpy released upon solidification of a shallow molten surface layer induces a thin buried liquid layer that self-propagates in-depth towards the film-substrate interface. This buried liquid layer propagates with a threshold velocity of 16±1 m/s and causes, eventually, melting at the film-substrate interface. In the thinnest film (50 nm) there is no evidence of the formation of the buried layer. The presence of the self-propagating buried layer for films thicker than 80 nm at low and intermediate laser fluences is discussed in terms of the thermal gradient in the primary melt front and the heat released upon solidification

  12. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  13. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  14. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    International Nuclear Information System (INIS)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-01-01

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO 2 ) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 °C) do not show significant activity under our conditions, while the one annealed at 450 °C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: ► Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. ► Titania crystal is formed by annealing hydrogen titanate at different temperatures. ► Best visible-light activity is achieved by Ag-loaded titania annealed at 450 °C. ► The visible light activity is attributed to the surface plasmonic resonance effect.

  15. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  16. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Palneedi, Haribabu [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Maurya, Deepam; Priya, Shashank [Bio-inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Kim, Gi-Yeop; Choi, Si-Young, E-mail: youngchoi@kims.re.kr [Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of); Kang, Suk-Joong L. [Materials Interface Laboratory, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Kwang-Ho [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ryu, Jungho, E-mail: jhryu@kims.re.kr [Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 641-831 (Korea, Republic of)

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  17. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets.

    Science.gov (United States)

    Qamruddin, Irfan; Alam, Mohammad Khursheed; Mahroof, Verda; Fida, Mubassar; Khamis, Mohd Fadhli; Husein, Adam

    2017-11-01

    The aim of this study was to evaluate the effect of low-level laser irradiation applied at 3-week intervals on orthodontic tooth movement and pain associated with orthodontic tooth movement using self-ligating brackets. Twenty-two patients (11 male, 11 female; mean age, 19.8 ± 3.1 years) with Angle Class II Division 1 malocclusion were recruited for this split-mouth clinical trial; they required extraction of maxillary first premolars bilaterally. After leveling and alignment with self-ligating brackets (SmartClip SL3; 3M Unitek, St Paul, Minn), a 150-g force was applied to retract the canines bilaterally using 6-mm nickel-titanium closed-coil springs on 0.019 x 0.025-in stainless steel archwires. A gallium-aluminum-arsenic diode laser (iLas; Biolase, Irvine, Calif) with a wavelength of 940 nm in a continuous mode (energy density, 7.5 J/cm 2 /point; diameter of optical fiber tip, 0.04 cm 2 ) was applied at 5 points buccally and palatally around the canine roots on the experimental side; the other side was designated as the placebo. Laser irradiation was applied at baseline and then repeated after 3 weeks for 2 more consecutive follow-up visits. Questionnaires based on the numeric rating scale were given to the patients to record their pain intensity for 1 week. Impressions were made at each visit before the application of irradiation at baseline and the 3 visits. Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland). Canine retraction was significantly greater (1.60 ± 0.38 mm) on the experimental side compared with the placebo side (0.79 ± 0.35 mm) (P orthodontic tooth movement and reduce the pain associated with it. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1.

    Science.gov (United States)

    Mikami, Risako; Mizutani, Koji; Aoki, Akira; Tamura, Yukihiko; Aoki, Kazuhiro; Izumi, Yuichi

    2018-04-01

    Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm 2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm 2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm 2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell

  19. Sub-ablative Er,Cr:YSGG laser irradiation under all-ceramic restorations: effects on demineralization and shear bond strength.

    Science.gov (United States)

    Bağlar, Serdar

    2018-01-01

    This study evaluated the caries resistant effects of sub-ablative Er,Cr:YSGG laser irradiation alone and combined with fluoride in comparison with fluoride application alone on enamel prepared for veneer restorations. And also, evaluated these treatments' effects on the shear bond strength of all-ceramic veneer restorations. One hundred and thirty-five human maxillary central teeth were assigned to groups of 1a-control, 1b-laser treated, 1c-fluoride treated, 1d-laser + fluoride treated for shear bond testing and to groups of 2a-positive control(non-demineralised), 2b-laser treated, 2c-fluoride treated, 2d-laser + fluoride treated, 2e-negative control (demineralised) for microhardness testing (n = 15, N = 135). Demineralisation solutions of microhardness measurements were used for the ICP-OES elemental analysis. The parameters for laser irradiation were as follows: power output, 0.25 W; total energy density, 62.5 J/cm 2 and energy density per pulse, 4.48 J/cm 2 with an irradiation time of 20 s and with no water cooling. Five percent NaF varnish was used as fluoride preparate. ANOVA and Tukey HSD tests were performed (α = 5%). Surface treatments showed no significant effects on shear bond strength values (p = 0.579). However, significant differences were found in microhardness measurements and in elemental analysis of Ca and P amounts (p < 0.01). Surface-treated groups showed significantly high VNH values and significantly low ICP-OES values when compared with non-treated (-control) group while there were no significance among surface-treated groups regarding VHN and ICP-OES values. Sub-ablative Er,Cr:YSGG treatment alone or combined with fluoride is as an effective method as at least fluoride alone for preventing the prepared enamel to demineralization with no negative effect on shear bond strength.

  20. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    International Nuclear Information System (INIS)

    Wu, Jeffrey C.S.; Tseng, I.-Hsiang; Chang, W.-C.

    2001-01-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO 2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500 deg. C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO 2 was further hydrogen-reduced at 300 deg. C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO 2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO 2 and reduced Cu/TiO 2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p 3/2 is 933.4 eV indicating primary Cu 2 O form on the TiO 2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO 2 support

  1. Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process

    Science.gov (United States)

    Wu, Jeffrey C. S.; Tseng, I.-Hsiang; Chang, Wan-Chen

    2001-06-01

    Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500°C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO2 was further hydrogen-reduced at 300°C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO2 particles are near uniform. The average crystallite sizes are 17-20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO2 and reduced Cu/TiO2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p3/2 is 933.4 eV indicating primary Cu2O form on the TiO2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO2 support.

  2. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    Science.gov (United States)

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  3. Reduced Titania Films with Ordered Nanopores and Their Application to Visible Light Water Splitting

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Choi, Seoyeong; Liu, Jingling; Kwon, Younguk

    2013-01-01

    We report on the photoelectrochemical properties of partially reduced mesoporous titania thin films. The fabrication is achieved by synthesizing mesoporous titania thin films through the self-assembly of a titania precursor and a block copolymer, followed by aging and calcination, and heat-treatment under a H 2 (1 torr) environment. Depending on the temperature used for the reaction with H2, the degree of the reduction (generation of oxygen vacancies) of the titania is controlled. The oxygen vacancies induce visible light absorption, and decrease of resistance while the mesoporosity is practically unaltered. The photoelectrochemical activity data on these films, by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5G 100 mW cm -2 illumination, show that the three effects of the oxygen vacancies contribute to the enhancement of the photoelectrochemical properties of the mesoporous titania thin films. The results show that these oxygen deficient TiO 2 mesoporous thin films hold great promise for a solar hydrogen generation. Suggestions for the materials design for improved photoelectrochemical properties are made

  4. Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

    Directory of Open Access Journals (Sweden)

    Bartosz Bartosewicz

    2017-10-01

    Full Text Available Core–shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM. Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV–vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal–metal oxide core–shell nanostructures.

  5. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  6. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jinjin [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Chengjian [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Zhou, Jingfang [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA, 5095 (Australia); Li, Chunxia [National Key Laboratory of Human Factors Engineering, Department of ECLSS, China Astronaut Researching and Training Center, Beijing, 100094 (China); Shao, Yiran; Shi, Chao [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2}/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO{sub 2}/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO{sub 2}/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO{sub 2}) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO{sub 2} coatings. In the study, titania-nanosilver (TiO{sub 2}/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO{sub 2} powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO{sub 2}/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO{sub 2}/Ag coatings and no crystalline changed happened in the TiO{sub 2} structure. The reduction ratios on the TiO{sub 2}/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO{sub 2}/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO{sub 2}/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the

  7. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    International Nuclear Information System (INIS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-01-01

    Graphical abstract: - Highlights: • TiO_2/Ag feedstock powders containing 1–10,000 ppm silver nanoparticles were double sintered and deposited by plasma spray. • TiO_2/Ag coatings were composed of pure rutile phase and homogeneously-distributed metallic silver. • TiO_2/Ag coatings with more than 10 ppm silver nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus. - Abstract: Rutile titania (TiO_2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO_2 coatings. In the study, titania-nanosilver (TiO_2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO_2 powders containing 1–10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO_2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO_2/Ag coatings and no crystalline changed happened in the TiO_2 structure. The reduction ratios on the TiO_2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO_2/Ag coatings with 100–1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO_2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO_2/Ag coatings were discussed with

  8. Part II. Large scale applications of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.1 {<=} x {<=} 0.35 using laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science. Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Bishay, Samiha T. [Department of Physics, Faculty of Girls for Art, Science and Education, Ain Shams University, Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science. Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2011-07-28

    Highlights: >X-ray diffractograms of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4} samples before and after laser irradiation are characteristic of cubic spinel structure with better crystallinity after irradiation. > The crystal size of the ferrite increases after laser irradiation. > The main conduction mechanism in the investigated system is the correlated barrier hopping and it is the same before and laser irradiation. > The conductivity decreases after laser irradiation. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.1 {<=} x {<=} 0.35 was prepared by standard ceramic technique at sintering temperature 1200 deg. C using heating / cooling rate 4 deg. C/min. The samples were irradiated by Nd YAG pulsed laser with energy of the pulse 250 mJ. X-ray diffractograms reveal cubic spinel structure for all the samples before and after laser irradiation. After laser irradiation, better crystallinity was obtained in a form of an increase in the calculated crystal size. This increase was discussed as due to the change in the valence of some ions like Fe{sup 3+}, Ni{sup 2+} and Mn{sup 2+}. The conductivity of all the investigated samples decreases after laser irradiation and becomes temperature independent for a wider range than that before irradiation. This was ascribed to electron rearrangement after laser irradiation. Accordingly, these ferrites are recommended to be useful in electronic devices.

  9. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  10. A method to obtain the thermal parameters and the photothermal transduction efficiency in an optical hyperthermia device based on laser irradiation of gold nanoparticles.

    Science.gov (United States)

    Sánchez López de Pablo, Cristina; Olmedo, José Javier Serrano; Rosales, Alejandra Mina; Ramírez Hernández, Norma; Del Pozo Guerrero, Francisco

    2014-01-01

    Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

  11. The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths.

    Science.gov (United States)

    Karadas, Muhammet; Çağlar, İpek

    2017-07-01

    The aim of this study was to evaluate the effect of Er:YAG laser irradiation on the micro-shear bond strength of self-etch adhesives to the superficial dentin and the deep dentin before and after thermocycling. Superficial dentin and deep dentin surfaces were prepared by flattening of the occlusal surfaces of extracted human third molars. The deep or superficial dentin specimens were randomized into three groups according to the following surface treatments: group I (control group), group II (Er:YAG laser; 1.2 W), and group III (Er:YAG laser; 0.5 W). Clearfil SE Bond or Clearfil S 3 Bond was applied to each group's dentin surfaces. After construction of the composite blocks on the dentin surface, the micro-shear bond testing of each adhesive was performed at 24 h or after 15,000 thermal cycles. The data were analyzed using a univariate analysis of variance and Tukey's test (p  0.05). However, deep-dentin specimens irradiated with laser showed significantly higher bond strengths than did control specimens after thermocycling (p adhesives may be altered by the dentin depth. Regardless of the applied surface treatment, deep dentin showed significant bond degradation.

  12. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  13. Modeling of complex melting and solidification behavior in laser-irradiated materials [a description and users guide to the LASER8 computer program

    International Nuclear Information System (INIS)

    Geist, G.A.; Wood, R.F.

    1985-11-01

    The conceptual foundation of a computational model and a computer program based on it have been developed for treating various aspects of the complex melting and solidification behavior observed in pulsed laser-irradiated materials. A particularly important feature of the modeling is the capability of allowing melting and solidification to occur at temperatures other than the thermodynamic phase change temperatures. As a result, interfacial undercooling and overheating can be introduced and various types of nucleation events can be simulated. Calculations on silicon with the model have shown a wide variety of behavior, including the formation and propagation of multiple phase fronts. Although originally developed as a tool for studying certain problems arising in the field of laser annealing of semiconductors, the program should be useful in treating many types of systems in which phase changes and nucleation phenomena play important roles. This report describes the underlying physical and mathematical ideas and the basic relations used in LASER8. It also provides enough specific and detailed information on the program to serve as a guide for its use; a listing of one version of the program is given

  14. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: Comparison of atomistic and continual approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, Vladimir B.; Povarnitsyn, Mikhail E., E-mail: povar@ihed.ras; Levashov, Pavel R.

    2017-02-28

    Highlights: • We model double-pulse laser ablation of aluminum using microscopic and macroscopic approaches. • Both methods show decrease in depth of crater with increasing delay between pulses. • Both methods reveal the plume temperature growth with the increasing delay. • Good agreement between results is a step towards the development of combined model. - Abstract: We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.

  15. Local deposition of polypyrrole on aluminum by anodizing, laser irradiation, and electrolytic polymerization and its application to the fabrication of micro-actuators

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Kikuchi, T. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)]. E-mail: kiku@elechem1-mc.eng.hokudai.ac.jp; Ueda, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Iida, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo (Japan)

    2006-06-15

    Polypyrrole was deposited at selected areas on aluminum by anodizing, laser irradiation, and electrolytic polymerization, and the application of the technique for fabricating micro-actuators was attempted. Aluminum specimens covered with porous type anodic oxide films were irradiated with a pulsed Nd-YAG laser to remove the oxide films locally, and then thin Ni layers were deposited at areas where film had been removed. Polypyrrole could be successfully deposited only on the Ni layer by anodic polarization of the specimens in pyrrole monomer solution, and a polypyrrole/Ni bilayer structure could be obtained by dissolution of the aluminum substrate and anodic oxide film in NaOH solutions. The bilayer structure was found to be inactive to doping and dedoping of ions during anodic and cathodic polarization. A three-layer structure, nitrocellulose/Ni/polypyrrole, fabricated by electrolytic polymerization after nitrocellulose coating on a Ni layer detached from the aluminum substrate, showed ion-doping and -dedoping activity, suggesting the possibility of fabricating micro-actuators in this manner.

  16. Fabrication of a three-dimensional micro-manipulator by laser irradiation and electrochemical techniques and the effect of electrolytes on its performance

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Akiyama, Y.; Ueda, M.; Sakairi, M.; Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-Ku, Sapporo (Japan)

    2007-03-20

    Ribbon type and three-dimensional micro-actuators, consisting of three-layer structure of acrylic acid resin/Au/polypyrrole, were fabricated by aluminum anodizing, laser irradiation, and electrochemical techniques, and their performance was examined. Anodized aluminum specimens were irradiated with a pulsed Nd-YAG laser to remove anodic oxide films locally, and then an Au layer was deposited at the area where film had been removed. The subsequent electrophoretic deposition of acrylic acid resin on the Au layer, dissolution of anodic oxide film and the metal substrate, and deposition of polypyrrole on backside of Au layer by electro-polymerization enabled the fabrication of a three-layer actuator. Cyclic voltammetry of the ribbon type actuator in different electrolyte solutions showed that redox reactions of polypyrrole is accompanied with doping and dedoping of hydrated cations, and that the redox reaction strongly depends on the valency of cations in the solutions. The three-dimensional micro-actuator showed good performance as a manipulator, gripping and moving objects of several milligram in solutions. (author)

  17. Development of X-ray photoelectron microscope with a compact X-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Takahashi, Z.; Nishimura, Y.; Watanabe, K.; Okamoto, Y.; Sakata, A.; Azuma, H.; Hara, T.

    2005-01-01

    A laboratory-sized X-ray photoelectron microscope was constructed using a compact X-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where X-ray beam is micro-focused via Schwarzschild optics. A compact laser-plasma X-ray source has been developed with a YAG laser, a line-focus lens assembly, an Al tape-target driver and a debris prevention system. The 13.1 nm X-ray was delivered along line plasma whose length was 0.6 or 11 mm with higher intensity than that from a point-focused source. The Schwarzschild optics having the designed demagnification of 224, which was coated with Mo/Si multilayers for 13.1 nm X-ray, was set on the beamline 1 m distant from the source. The electron energy analyser was a spherical capacitor analyser with the photoelectron image detection system that was suited for detection of vast photoelectrons excited by an X-ray pulse of ns-order duration. The spatial resolution less than 5 μm has been confirmed from the variation of As 3d electron intensity along the position of the GaAs sample coated with a photo-resist test pattern

  18. Effects of excimer laser irradiation on the expression of Th17, Treg, TGF-beta1, and IL-6 in patients with psoriasis vulgaris

    Science.gov (United States)

    Xiong, Guo-Xin; Li, Xin-Zhong

    2017-11-01

    The effects of laser irradiation on the expression of T helper 17 (Th17) and regulatory T (Treg) cells and their related cytokines, transforming growth factor beta 1 (TGF-β1) and interleukin-6 (IL-6), respectively, in the peripheral blood of patients with psoriasis vulgaris were investigated. 38 patients with psoriasis vulgaris in the stable state were selected as the treatment group that was treated twice a week for eight weeks. Another 38 healthy persons were chosen as the control group. Before and after treatment, the percentages of Th17 cells and Treg cells in the patients’ peripheral blood were detected using flow cytometry, the content of TGF-β1 and IL-6 in the patients’ sera were detected using enzyme-linked immunosorbent assay, and the extent and severity of lesions were determined by weighing the psoriasis area and severity index (PASI). After laser treatment, the percentage of Th17 cells, the Th17/Treg cell ratio and the level of IL-6 in the peripheral blood of patients with psoriasis in the treatment group were significantly lower than those of the same patients before the treatment (P  psoriasis vulgaris was 84.21%, and the PASI score was significantly lower (P  psoriasis vulgaris.

  19. Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation.

    Science.gov (United States)

    Zhu, Rui; Gao, Feng; Piao, Ji-Gang; Yang, Lihua

    2017-07-25

    How to ablate tumor without damaging skin is a challenge for photothermal therapy. We, herein, report skin-safe photothermal cancer therapy provided by the responsive release of acid-activated hemolytic polymer (aHLP) from the photothermal polydopamine (PDA) nanoparticle upon irradiation at very low dosage. Upon skin-permissible irradiation (via an 850 nm laser irradiation at the power density of 0.4 W cm -2 ), the nanoparticle aHLP-PDA generates sufficient localized-heat to bring about mild hyperthermia treatment and consequently, responsively sheds off the aHLP polymer from its PDA nanocore; this leads to selective cytotoxicity to cancer cells under the acidic conditions of the extracellular microenvironment of tumor. As a result, our aHLP-PDA nanoparticle upon irradiation at a low dosage effectively inhibits tumor growth without damaging skin, as demonstrated using animal models. Effective in mitigating the otherwise inevitable skin damage in tumor photothermal therapy, the nanosystem reported herein offers an efficient pathway towards skin-safe photothermal therapy.

  20. Inhibitory Effects of 658 nm Laser Irradiation on Skin Temperature in Anesthetized Rats: Preliminary Results from a Controlled Study

    Directory of Open Access Journals (Sweden)

    Daniela Litscher

    2014-01-01

    Full Text Available Red laser light stimulation can have many physiological effects. The goal of this animal experimental study was to investigate how red laser stimulation influences the temperature of anesthetized rats at different acupuncture points and nonacupoints. For that reason 12 adult male Wistar Han rats (300–380 g were investigated. Six anesthetized rats underwent red laser stimulation (wavelength 658 nm, output power 40 mW, diameter 500 µm, and duration 10 min at the Baihui (GV20 acupoint, the Zusanli acupoint (ST36, bilateral, and a control point on the forelimb. The other six rats underwent the same procedure; however, the laser remained switched off. Significant decreases in temperature were found at the acupoints Baihui, Zusanli left, and Zusanli right. In addition there was no significant temperature effect at a control point. During placebo laser irradiation (deactivated laser there were also significant temperature changes. The mechanism underlying the results is currently unknown, but brain stimulation (via laser or mechanical pressure and mainly direct central mechanisms may be responsible for the local and peripheral temperature decrease.

  1. Effects of microcurrent application and 670 nm InGaP low-level laser irradiation on experimental wound healing in healthy and diabetic Wistar rats

    International Nuclear Information System (INIS)

    Neves, L M G; Matheus, R L; Santos, G M T; Esquisatto, M A M; Amaral, M E C; Mendonça, F A S

    2013-01-01

    This study evaluated the effects of microcurrent application and 670 nm InGaP laser irradiation on wound healing in healthy and alloxan diabetic rats. The animals were divided into eight groups: healthy control (HC); diabetic control (DC); healthy treated with microcurrent (HMC); diabetic treated with microcurrent (DMC); healthy irradiated with laser (HL); diabetic irradiated with laser (DL); healthy receiving laser and microcurrent application (HLMC) and diabetic receiving laser and microcurrent application (DLMC). Wound samples were collected on days 2, 6, 10 and 14 of treatment for structural analysis, morphometry, and Western blotting to quantify the expression of TGF-β1 and VEGF. Comparison of animals receiving laser and microcurrent therapy showed a reduction in the number of inflammatory cells in diabetic animals, as well as an increase of fibroblasts in healthy animals and of newly formed vessels in healthy and diabetic animals. Expression of TGF-β1 was increased on day 6 in all groups, especially diabetic animals. A reduction in the expression of this protein was observed on day 10 in all groups. VEGF expression was higher on day 6 in treated and control diabetic animals when compared to healthy animals. Analysis of VEGF expression in the laser- and microcurrent-treated groups on day 10 showed a decrease in diabetic animals and an increase in healthy animals. In conclusion, laser therapy and microcurrent stimulation exert beneficial effects on wound healing in both healthy and diabetic animals. (paper)

  2. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  3. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    Science.gov (United States)

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  4. Band gap evaluations of metal-inserted titania nanomaterials

    International Nuclear Information System (INIS)

    Bashir, Sajid; Liu, Jingbo; Zhang Hui; Sun Xuhui; Guo Jinghua

    2013-01-01

    The electronic and crystalline properties of iron-inserted titania (Fe x Ti 1−x O 2 ) nanoparticles were measured using synchrotron-based soft X-ray spectroscopy and high-temperature X-ray powder diffraction (HT-XRD). The data from X-ray absorption and emission spectroscopy were used to examine occupied and unoccupied densities of states for O 2p and Ti/Fe 3d hybrid orbital characteristics. It was found that Fe 3+ insertion resulted in an up-shift of the band gap from 3.20 to 3.46 eV. This observation reflected site occupancy in the TiO 2 lattice by Fe dopant ions. From HT-XRD Rietveld analysis, Ti occupancy was found to be 0.92 and oxygen 1.00. In addition, the crystal structure remained anatase within a temperature range of 25–800 °C, while the lattice distortion increased due to thermal expansion.

  5. Hydrothermal growth of titania nanowires for SAW device sensing area

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd Rosydi

    2017-01-01

    Full Text Available Synthesis of titania or titanium dioxide (TiO2 is attracted to energy and environmental applications. Here, the growth of nanostructure TiO2 nanowires on Si (100 substrates by using the two-step method. Different seed layers of TiO2 were deposited by spin coating and annealing, followed by the growth of TiO2 nanowires by using the hydrothermal method. The sol-gel technique was used in preparing the TiO2 solution for the thin film deposition purpose. Acetic acid, hydrochloric acid and tris (2-aminoethyl amine were used as a stabilizer to synthesize three different TiO2 seed layers. The aim of this study was to understand the role of polycrystalline size on thin film towards the diameter of nanowires grown as a sensing area in Surface Acoustic Wave (SAW Biosensor. The morphology and structure of the thin film and TiO2 nanowires were characterized using X-Ray diffraction (XRD, scanning electron microscope (SEM, field emission scanning electron microscope (FESEM and atomic force microscopy (AFM.

  6. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  7. Synthesis, characterizations and photocatalytic studies of mesoporous titania prepared by using four plant skins as templates

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yingchun [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Faculty of Chemical and Life Sciences, Qujing Normal University, Qujing 655000 (China); Zhai Zhongbiao [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Kunming Metallurgy Research Institute, Kunming 650031 (China); He Jiao; Li Bin; Li Junjie [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China); Wang Jiaqiang, E-mail: jqwang@ynu.edu.cn [Department of Applied Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091 (China)

    2010-07-20

    Anatase mesoporous titania with novel morphologies were synthesized by using the skins of tomatoes, bulb onions, grapes, and garlic bulbs, respectively, as templates and used for the photodegradation of Gentian violet, methyl violet, xylenol orange, and Rhodamine B under UV light. The samples were characterized by a combination of various physicochemical techniques, such as X-ray diffraction, SEM, HRTEM, N{sub 2} adsorption/desorption, diffuse reflectance UV-Vis, and FT-IR. It was found that all of the synthesized mesoporous titania samples exhibited similar morphologies to those of the original templates. The photoactivity of P25 TiO{sub 2} for the four dyes is nearly the same while the mesoporous titania samples synthesized by using the four skins as templates exhibited varied photoactivities for the four dyes.

  8. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  9. Amorphous titanium-oxide supercapacitors

    OpenAIRE

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7?mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large r...

  10. Synthesis, characterization and photocatalytic activity of porous manganese oxide doped titania for toluene decomposition

    International Nuclear Information System (INIS)

    Jothiramalingam, R.; Wang, M.K.

    2007-01-01

    The present study describes the photocatalytic degradation of toluene in gas phase on different porous manganese oxide doped titanium dioxide. As synthesized birnessite and cryptomelane type porous manganese oxide were doped with titania and tested for photocatalytic decomposition of toluene in gas phase. The effects of the inlet concentration of toluene, flow rate (retention time) were examined and the relative humidity was maintained constantly. Thermal and textural characterization of manganese oxide doped titania materials were characterized by X-ray diffraction (XRD), thermogravemetry (TG), BET and TEM-EDAX studies. The aim of the present study is to synthesize the porous manganese oxide doped titania and to study its photocatalytic activity for toluene degradation in gas phase. Cryptomelane doped titania catalyst prepared in water medium [K-OMS-2 (W)] is shown the good toluene degradation with lower catalysts loading compared to commercial bulk titania in annular type photo reactor. The higher photocatalytic activity due to various factors such as catalyst preparation method, experimental conditions, catalyst loading, surface area, etc. In the present study manganese oxide OMS doped titania materials prepared by both aqueous and non-aqueous medium, aqueous medium prepared catalyst shows the good efficiency due to the presence of OH bonded groups on the surface of catalyst. The linear forms of different kinetic equations were applied to the adsorption data and their goodness of fit was evaluated based on the R 2 and standard error. The goodness to the linear fit was observed for Elovich model with high R 2 (≥0.9477) value

  11. Design of titania nanotube structures by focused laser beam direct writing

    International Nuclear Information System (INIS)

    Enachi, Mihai; Stevens-Kalceff, Marion A.; Sarua, Andrei; Ursaki, Veaceslav; Tiginyanu, Ion

    2013-01-01

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO 2 NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes

  12. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes

    OpenAIRE

    Hani Albetran; Victor Vega; Victor M. Prida; It-Meng Low

    2018-01-01

    The influence of calcination time on the phase transformation and crystallization kinetics of anodized titania nanotube arrays was studied using in-situ isothermal and non-isothermal synchrotron radiation diffraction from room temperature to 900 °C. Anatase first crystallized at 400 °C, while rutile crystallized at 550 °C. Isothermal heating of the anodized titania nanotubes by an increase in the calcination time at 400, 450, 500, 550, 600, and 650 °C resulted in a slight reduction in anatase...

  13. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  14. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  15. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed