WorldWideScience

Sample records for laser-driven electron acceleration

  1. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  2. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  3. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  4. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  5. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  6. Laser-driven wakefield electron acceleration and associated radiation sources

    International Nuclear Information System (INIS)

    Davoine, X.

    2009-10-01

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme

  7. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P., E-mail: patrick.lee@u-psud.fr [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Audet, T.L. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Lehe, R.; Vay, J.-L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Maynard, G.; Cros, B. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  8. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  9. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  10. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    International Nuclear Information System (INIS)

    Schmid, Karl

    2009-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10 19 W/cm 2 propagates through the plasma with an electron density of 2 x 10 19 cm -3 and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 μm to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The electron accelerator

  11. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  12. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  13. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  14. First Observation of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    CERN Document Server

    Plettner, Tomas; Colby, Eric R; Cowan, Benjamin; Sears, Chris M S; Siemann, Robert; Smith, Todd I; Spencer, James

    2005-01-01

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process.

  15. Photonic laser-driven accelerator for GALAXIE

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  16. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  17. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  18. Direct longitudinal laser acceleration of electrons in free space

    Directory of Open Access Journals (Sweden)

    Sergio Carbajo

    2016-02-01

    Full Text Available Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London 431, 535 (2004; T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006; S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: “Making the molecular movie,”, Phil. Trans. R. Soc. A 364, 741 (2006]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010; F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010; Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006; C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006; A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and

  19. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  20. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  1. Laser wakefield electron acceleration. A novel approach employing supersonic microjets and few-cycle laser pulses

    International Nuclear Information System (INIS)

    Schmid, Karl

    2011-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams. (orig.)

  2. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  3. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  4. Control of electron injection and acceleration in laser-wakefield accelerators

    International Nuclear Information System (INIS)

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  5. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  6. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  7. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  8. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  9. Staged electron laser accelerator (STELLA) experiment at brookhaven ATF

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I V; Steenbergen, A van; Gallardo, J C [Brookhaven National Lab., Upton, NY (United States); and others

    1998-03-01

    The STELLA experiment is being prepared at the BNL Accelerator Test Facility (STF). The goal of the experiment is to demonstrate quasi-monochromatic inverse Cherenkov acceleration (ICA) of electrons bunched to the laser wavelength period. Microbunches on the order of 2 {mu}m in length separated by 10.6 {mu}m will be produced using an inverse free electron laser (IFEL) accelerator driven by a CO{sub 2} laser. The design and simulations for two phases of this experiment including demonstration of 10 MeV and 100 MeV acceleration are presented. (author)

  10. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  11. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  12. High quality electron beams from a plasma channel guided laser wakefield accelerator

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2004-01-01

    Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10 9 electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources

  13. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  14. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    Science.gov (United States)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  15. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes

    Directory of Open Access Journals (Sweden)

    T. Seggebrock

    2013-07-01

    Full Text Available X-ray free-electron lasers (FELs require a very high electron beam quality in terms of emittance and energy spread. Since 2004 high quality electrons produced by laser-wakefield accelerators have been demonstrated, but the electron quality up to now did not allow the operation of a compact x-ray FEL using these electrons. Maier et al. [Phys. Rev. X 2, 031019 (2012PRXHAE2160-330810.1103/PhysRevX.2.031019] suggested a concept for a proof-of-principle experiment allowing FEL operation in the vacuum ultraviolet range based on an optimized undulator and bunch decompression using electron bunches from a laser-plasma accelerator as currently available. In this paper we discuss in more detail how a chicane can be used as a bunch stretcher instead of a bunch compressor to allow the operation of a laser-wakefield accelerator driven FEL using currently available electrons. A scaling characterizing the impact of bunch decompression on the gain length is derived and the feasibility of the concept is tested numerically in a demanding scenario.

  16. Acceleration of polyethelene foils by laser driven ablation

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Burginyon, G.A.; Haas, R.A.

    1974-01-01

    The production of thermonuclear energy, by laser driven implosion of spherical DT shells, with achievable laser technology, requires the development of an efficient and stable implosion. Certain aspects of the acceleration of the spherical shells can be studied experimentally by irradiating thin, 5 to 25 μm, polyethelene foils. The results of foil acceleration experiments performed using a Nd:YAG-Glass laser capable of producing 150 J, 1 nsec pulses will be discussed. The dynamics of the accelerated foil, the ion blow off, high energy electron spectrum (6 to 180 keV), x-ray spectrum (1 to 150 keV) the spatial distribution of the x-ray emission, the laser beam focal spot energy distribution, the laser temporal pulse shape and spectrum for reflected and transmitted radiation have all been measured simultaneously. The results of these measurements are compared with detailed numerical simulations. (U.S.)

  17. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  18. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  19. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  20. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  1. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  2. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  3. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  4. On the way to stabilized laser-driven GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shao-wei; Weineisen, Tobias; Fuchs, Matthias; Popp, Antonia; Major, Zsuzsanna; Weingartner, Raphael; Ahmad, Izhar; Schmid, Karl; Marx, Benjamin; Krausz, Ferenc; Gruener, Florian; Karsch, Stefan [Max-Planck Institute of Quantum Optics, Munich (Germany); Ludwig-Maximilians University, Munich (Germany); Osterhoff, Jens [LOASIS Program, Lawrence Livermore National Laboratory, Livermore (United States); Schroeder, Hartmut; Haas, Harald [Max-Planck Institute of Quantum Optics, Munich (Germany); Rowlands-Rees, Tom; Hooker, Simon [University of Oxford, Oxford (United Kingdom)

    2010-07-01

    Laser-driven-wakefield electron accelerators have shown electron beams with energies of up to 1 GeV from a centimeter-scale plasma accelerator. In order to achieve higher electron energies, these acceleration distances need to be increased. This can be realized with a discharge capillary. However, a discharge typically introduces instabilities on both pointing and energy of the generated electrons. In order to improve the stability, we demonstrate a preliminary test of a modified discharge which includes a pre-pulse circuit before the firing of the main pulse. We also show gas density shaping by a laser- machined nozzle which should be able to make a more precise injection in the capillary accelerator thus reducing the energy instability.

  5. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  6. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  7. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  8. Novel target design for enhanced laser driven proton acceleration

    Directory of Open Access Journals (Sweden)

    Malay Dalui

    2017-09-01

    Full Text Available We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  9. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  10. High-brightness electron source driven by laser

    International Nuclear Information System (INIS)

    Zhao Kui; Geng Rongli; Wang Lifang

    1996-01-01

    A DC high-brightness laser driven by photo emissive electron gun is being developed at Beijing University, in order to produce 50∼100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathode, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. 100 kV DC high voltage is fed to the anode through a careful designed ceramic insulator. The laser system is a mode locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelength (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is discussed

  11. Laser-driven injector of electrons for IOTA

    Science.gov (United States)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  12. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  13. A “slingshot” laser-driven acceleration mechanism of plasma electrons

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, Gaetano, E-mail: gaetano.fiore@na.infn.it [Dip. di Matematica e Applicazioni, Università “Federico II”, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); De Nicola, Sergio [SPIN-CNR, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named “slingshot effect”: under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  14. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    International Nuclear Information System (INIS)

    Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.

    2005-01-01

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired

  15. First observations of acceleration of injected electrons in a laser plasma beatwave experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Martin, F.; Bordeur, P.; Heighway, E.A.; Matte, J.P.; Pepin, H.; Lavigne, P.

    1986-01-01

    The first experimental observations of acceleration of injected electrons in a laser driven plasma beatwave are presented. The plasma waves were excited in an ionized gas jet, using a short pulse high intensity CO 2 laser with two collinearly propagating beams (at λ = 9.6 μm and 10.6 μm) to excite a fast wave (v/sub p/ = c). The source of electrons was a laser plasma produced on an aluminum slab target by a third, synchronized CO 2 laser beam. A double-focusing dipole magnet was used to energy select and inject electrons into the beatwave, and a second magnetic spectrograph was used to analyze the accelerated electrons. Electron acceleration was only observed when the appropriate resonant plasma density was produced (∼ 10 17 cm -3 ), the two laser lines were incident on the plasma, and electrons were injected into this plasma from an external source

  16. Electron injection and acceleration in the plasma bubble regime driven by an ultraintense laser pulse combined with using dense-plasma wall and block

    Science.gov (United States)

    Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding

    2012-03-01

    An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.

  17. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  18. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    Science.gov (United States)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  19. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    Seggebrock, Thorben

    2015-07-08

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  20. Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment

    International Nuclear Information System (INIS)

    Seggebrock, Thorben

    2015-01-01

    Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source - a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the

  1. Modified two beam accelerator driven by a D.C. pelletron free electron laser

    International Nuclear Information System (INIS)

    Larson, D.

    1985-01-01

    Assembling the next generation of linear particle accelerators requires progress in three areas. (1) Sources must be developed to provide the coherent electromagnetic radiation used to power the device. (2) Physical structures must be designed which efficiently transfer the power to the high energy beam. (3) Cooling techniques must be developed in order to enhance beam transport and to provide sufficient luminosity. This paper will describe a method of obtaining a highly efficient coherent radiation source by using a continuous wave Free Electron Laser (FEL). Several possibilities exist for an accelerating structure which could use this radiation as a power source. These include scaling down the size of traditional RF cavities, inverse free electron lasers, and surface grating schemes. Inverse free electron lasers have the possibility of intrinsic cooling of the high energy beam

  2. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    Science.gov (United States)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  3. An inverse free electron laser accelerator: Experiment and theoretical interpretation

    International Nuclear Information System (INIS)

    Fang, Jyan-Min.

    1997-01-01

    Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 μm CO 2 laser have been carried out at Brookhaven's Accelerator Test Facility. An energy gain of 2.5 % (ΔE/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator

  4. Studies on a laser driven photoemissive high-brightness electron source and novel photocathodes

    International Nuclear Information System (INIS)

    Geng Rongli; Song Jinhu; Yu Jin

    1997-01-01

    A laser driven photoemissive high-brightness electron source at Beijing University is reported. Through a DC accelerating gap of 100 kV voltage, the device is capable of delivering high-brightness electron beam of 35-100 ps pulse duration when irradiated with a mode-locked YAG laser. The geometry of the gun is optimized with the aid of simulation codes EGUN and POISSON. The results of experimental studies on ion implanted photocathode and cesium telluride photocathode are given. The proposed laser driven superconducting RF gun is also discussed

  5. Role of resistivity gradient in laser-driven ion acceleration

    Directory of Open Access Journals (Sweden)

    L. A. Gizzi

    2011-01-01

    Full Text Available It was predicted that, when a fast electron beam with some angular spread is normally incident on a resistivity gradient, magnetic field generation can occur that can inhibit beam propagation [A. R. Bell et al., Phys. Rev. E 58, 2471 (1998PLEEE81063-651X10.1103/PhysRevE.58.2471]. This effect can have consequences on the laser-driven ion acceleration. In the experiment reported here, we compare ion emission from laser irradiated coated and uncoated metal foils and we show that the ion beam from the coated target has a much smaller angular spread. Detailed hybrid numerical simulations confirm that the inhibition of fast electron transport through the resistivity gradient may explain the observed effect.

  6. 0.56 GeV laser electron acceleration in ablative-capillary-discharge plasma channel

    International Nuclear Information System (INIS)

    Kameshima, Takashi; Kurokawa, Shin-ichi; Nakajima, Kazuhisa; Hong Wei; Wen Xianlun; Wu Yuchi; Tang Chuanming; Zhu Qihua; Gu Yuqiu; Zhang Baohan; Peng Hansheng; Sugiyama, Kiyohiro; Chen, Liming; Tajima, Toshiki; Kumita, Tetsuro

    2008-01-01

    A high-quality electron beam with a central energy of 0.56 GeV, an energy spread of 1.2% rms, and a divergence of 0.59 mrad rms was produced by means of a 4 cm ablative-capillary-discharge plasma channel driven by a 3.8 J27 fs laser pulse. This is the first demonstration of electron acceleration with an ablative capillary discharge wherein the capillary is stably operated in vacuum with a simple system triggered by a laser pulse. This result of the generation of a high-quality beam provides the prospects to realize a practical accelerator based on laser-plasma acceleration. (author)

  7. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  8. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  9. Laser-driven particle acceleration towards radiobiology and medicine

    CERN Document Server

    2016-01-01

    This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their applicatio to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

  10. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  11. Laser vacuum acceleration of a relativistic electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  12. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    Science.gov (United States)

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.

  13. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  14. Selection of high-brightness, laser-driven cathodes for electron accelerators and FELS

    International Nuclear Information System (INIS)

    Oettinger, P.E.

    1987-01-01

    Very intense, low emittance pulsed beams of electrons can be generated from laser-driven cathodes either by thermionic- or photo-emission. Several hundreds of amperes of electrons per square centimeter were observed for pulse lengths up to 50 ns. A normalized beam brightness of 10 7 A/cm 2 /rad 2 has been measured. These beams can be emission-gated at the cathode surface by modulating the laser-beam. Such beam bunching will generate picosecond-to-microsecond-long pulses at the source. A variety of cathodes are described, and a method of selection for specific applications is presented

  15. En Route: next-generation laser-plasma-based electron accelerators

    International Nuclear Information System (INIS)

    Hidding, Bernhard

    2008-05-01

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10 19 W=cm 2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the

  16. Study of laser driven plasma based electron acceleration and Bremsstrahlung radiation emission using ultra-high intensity laser pulses

    International Nuclear Information System (INIS)

    Rao, B.S.

    2013-01-01

    High energy particle accelerators are one of the most important inventions of the twentieth century which have led to enormous advances in basic scientific understanding of world around us. Despite their grand success, the present day high energy accelerators are hitting practical limits due to their large size and cost. This is because the accelerating gradients in conventional radio-frequency (RF) accelerators are typically limited to < 50 MV/m by the field breakdown of the accelerating structure. To address this major issue, many advanced accelerator techniques have been proposed and some of them are being actively pursued. Laser wakefield acceleration (LWFA) in plasma medium is one of the techniques being most actively pursued world over due to extremely large acceleration gradients of the order of 100 GV/m possible in this scheme which promises significant reduction of the size and cost of the future high energy accelerators. The present thesis work mainly deals with laser wakefield acceleration (LWFA) of self-injected electrons to 10s of MeV energy in plasma medium of length of the order of 500 μm using the table-top 10 TW laser at Laser Plasma Division, Raja Ramanna Centre for Advanced Technology

  17. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  18. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Titberidze, Mikheil

    2017-10-01

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm -1 . Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations are

  19. Pilot study of synchronization on a femtosecond scale between the electronic gun REGAE and a laser-plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Titberidze, Mikheil

    2017-10-15

    Laser wakefield acceleration (LWFA) is a novel technique to accelerate charged particles. Acceleration is achieved by a high-power laser pulse transmitting a gas target where electrons and ions form a strong wakefield with gradients up to 100 GVm{sup -1}. Hence, the size of the laser-plasma accelerator (LPA) is significantly smaller compared to conventional radio frequency (RF) accelerators, because its accelerating gradients are 3 orders of magnitude higher. At present, electron beams generated by LWFA do not satisfy all requirements to make them directly usable for applications such as LPA driven free-electron laser (FEL). Pointing stability and relatively high energy spread are the major limiting factors. Typically, plasma electrons are self-injected in the plasma wake which is created by a high-power laser. There is a lack of control for the injection process and there is no direct access for diagnostics. In order to overcome these challenges and better understand the overall LWFA process, external injection experiments are planned at Deutsches Elektronen-Synchrotron (DESY) in the framework of the Laboratory for Laser and beam-driven plasma Acceleration (LAOLA) collaboration. Thus, well characterized and ultrashort (< 10 fs) electron bunches from the conventional RF accelerator Relativistic Electron Gun for Atomic Exploration (REGAE) will be injected into the laser driven plasma wake. This approach allows to reconstruct and map the plasma wakefield by post diagnosing the injected electron bunches by measuring the energy spectra of it for different injection times. To conduct such a pump-probe type of experiment, synchronization with fs accuracy is required between the electron bunches from REGAE and the high-power driver laser. Two main aspects of the laser synchronization are presented in this thesis. First, a detailed experimental investigation of the conventional, fast photodiode based direct conversion laser-to-RF synchronization setup and its limitations

  20. Towards external injection in laser wakefield acceleration

    NARCIS (Netherlands)

    Stragier, X.F.D.

    2011-01-01

    In laser wakefield acceleration (LWA) a plasma wave is driven by a high intensity ultra short laser pulse and the longitudinal electric fields in the plasma wave are used to accelerate electron bunches. Electrons with an appropriate kinetic energy, injected on the right phase of the plasma wave, get

  1. Recent progress on laser acceleration research

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Dewa, Hideki; Hosokai, Tomonao; Kanazawa, Shuhei; Kando, Masaki; Kondoh, Shuji; Kotaki, Hideyuki

    2000-01-01

    Recently there has been a tremendous experimental progress in ultrahigh field particle acceleration driven by ultraintense laser pulses in plasmas. A design of the laser wakefield accelerators aiming at GeV energy gains is discussed by presenting our recent progress on the laser wakefield acceleration experiments, the developments of high quality electron beam injectors and the capillary plasma waveguide for optical guiding of ultrashort intense laser pulses. (author)

  2. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  3. Lasers and new methods of particle acceleration

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements

  4. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  5. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  6. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  7. Design and construction of a DC high-brightness laser driven electron gun

    Science.gov (United States)

    Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.

    1996-02-01

    A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.

  8. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  9. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  10. Engineering design of the interaction waveguide for high-power accelerator-driven microwave free-electron lasers

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Clay, H.W.; Stallard, B.W.; Throop, A.L.; Listvinsky, G.; Makowski, M.A.

    1989-01-01

    Linear induction accelerators (LIAs) operating at beam energies of a few million electron volts and currents of a few thousand amperes are suitable drivers for free-electron lasers (FELs). Such lasers are capable of producing gigawatts of peak power and megawatts of average power at microwave frequencies. Such devices are being studied as possible power sources for future high-gradient accelerators and are being constructed for plasma heating applications. At high power levels, the engineering design of the interaction waveguide presents a challenge. This paper discusses several concerns, including electrical breakdown and metal fatigue limits, choice of material, and choice of operating propagation mode. 13 refs., 3 figs

  11. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  12. Laser-driven acceleration of protons from hydrogenated annealed silicon targets

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Margarone, Daniele; Krása, Josef; Velyhan, Andriy; Serra, E.; Bellutti, P.; Scarduelli, G.; Calliari, L.; Krouský, Eduard; Rus, Bedřich; Dapor, M.

    2010-01-01

    Roč. 92, č. 3 (2010), 34008/1-34008/5 ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * laser ablation * plasma-material interactions * boundary layer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.753, year: 2010

  13. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    Science.gov (United States)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  14. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  15. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  16. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  17. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  18. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  19. High-energy inverse free-electron laser accelerator

    International Nuclear Information System (INIS)

    Courant, E.D.; Pellegrini, C.; Zakowicz, W.

    1985-01-01

    We study the inverse free electron laser (IFEL) accelerator and show that it can accelerate electrons to the few hundred GeV region with average acceleration rates of the order of 200 meV/m. Several possible accelerating structures are analyzed, and the effect of synchrotron radiation losses is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian description, which takes into account the dissipative features of the IFEL accelerator, is introduced to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to estimate the change of the electron phase space density during the acceleration process

  20. Acceleration of electrons using an inverse free electron laser auto- accelerator

    International Nuclear Information System (INIS)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at ∼1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL

  1. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'

    International Nuclear Information System (INIS)

    Conde, M. E.; Katsouleas, T.

    2000-01-01

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner

  2. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  3. Few femtosecond, few kilo-ampere electron bunch produced by a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Lundh, O.; Lim, J.; Rechatin, C.; Ammoura, L.; Goddet, J.P.; Malka, V.; Faure, J.; Ben-Ismail, A.; Davoine, X.; Lefebvre, E.; Gallot, G.

    2011-01-01

    Particle accelerators driven by the interaction of ultra-intense and ultrashort laser pulses with a plasma can generate accelerating electric fields of several hundred giga-volts per meter and deliver high-quality electron beams with low energy spread, low emittance and up to 1 GeV peak energy. Moreover, it is expected they may soon be able to produce bursts of electrons shorter than those produced by conventional particle accelerators, down to femtosecond durations and less. Here we present wide-band spectral measurements of coherent transition radiation which we use for temporal characterization. Our analysis shows that the electron beam, produced using controlled optical injection, contains a temporal feature that can be identified as a 15 pC, 1.4-1.8 fs electron bunch (root mean square) leading to a peak current of 3-4 kA depending on the bunch shape. We anticipate that these results will have a strong impact on emerging applications such as short-pulse and short-wavelength radiation sources, and will benefit the realization of laboratory-scale free-electron lasers. (authors)

  4. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  5. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  6. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    International Nuclear Information System (INIS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-01-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I_0 = 3 × 10"2"0" W/cm"2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  7. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.; Shen, X. F.; You, W. Y. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  8. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  9. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  10. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  11. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  12. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  13. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  14. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Qu, J. F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2016-01-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  15. The effect of laser pulse parameters and initial phase on the acceleration of electrons in a vacuum

    International Nuclear Information System (INIS)

    Singh, Kunwar Pal; Gupta, Devki Nandan; Malik, Hitendra K

    2008-01-01

    Laser driven acceleration of electrons lying along the axis of the laser has been studied. We have considered a linearly polarized laser pulse. The quiver amplitude causes electrons to escape from the pulse. The energy gained by the electrons peaks for a suitable value of laser spot size. The value of a suitable laser spot size increases with laser intensity and initial electron energy. The energy gained by the electron depends upon its initial position with respect to the laser pulse. The electrons close to the pulse peak with initial phase π/2 are scattered least and gain higher energy. The electrons close to the leading edge of the pulse gain sufficient energy for a short laser pulse and the effect of initial phase is not important. A suitable value of laser spot size can be estimated from this study

  16. Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asymmetric Pulse

    International Nuclear Information System (INIS)

    Maimaitiaili, Bake; Sayipjamal, Dulat; Aimierding, Aimidula; Xie Baisong

    2011-01-01

    Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse are investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime. By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability. In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths. Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude. Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes. (physics of gases, plasmas, and electric discharges)

  17. Experimental results of laser wakefield acceleration using a femtosecond terawatt laser pulse

    International Nuclear Information System (INIS)

    Kando, Masaki; Ahn, Hyeyoung; Dewa, Hideki

    1999-01-01

    Laser wakefield acceleration (LWA) experiments have been carried out in an underdense plasma driven by a 2 TW, 90 fs laser pulse synchronized with a 17 MeV RF linac electron injector at 10 Hz. Around optimum plasma densities for LWA, we have observed electrons accelerated to 35 MeV. Wakefield excitation has been confirmed by measuring the electron density oscillation with a frequency domain interferometer. At plasma densities higher than the optimum density, we have also observed high energy electrons over 100 MeV up to 200 MeV. (author)

  18. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  19. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  20. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  1. Accelerator for medical applications and electron acceleration by laser plasma

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Uesaka, Mitsuru

    2006-01-01

    In this article, the current status of radiation therapies in Japan and updated medical accelerators are reviewed. For medical use, there is a strong demand of a compact and flexible accelerator. At present, however, we have only two choices of the S-band linac with one or two rotation axis combined with the multi leaf collimator, or the X-band linac with a rather flexible robotic arm. In addition, the laser plasma cathode that is the second generation of the laser wake-field accelerator (LWFA) is studied as a high-quality electron source for medical use though it is still at the stage of the basic research. The potential of LWFA as medical accelerator near future is discussed based on updated results of laser plasma cathode experiment in Univ. of Tokyo. (author)

  2. Scaling electron acceleration in the bubble regime for upcoming lasers

    International Nuclear Information System (INIS)

    Jansen, O.; Tueckmantel, T.; Pukhov, A.

    2014-01-01

    Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory. Our simulations and the theory match almost perfectly for spot sizes above R = 2λ and laser amplitudes above a 0 = 4. We also studied the emission of synchrotron radiation by the accelerated electrons. Both classical and a QED model were applied. We found borders, at which theory and simulations stopped matching. With small spot radii (R < 2λ) we almost never observed the formation of a bubble structure or any form of mono-energetic acceleration. Low laser amplitudes lead to higher energies than predicted by the theory

  3. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  4. Linac-driven XUV free-electron laser

    International Nuclear Information System (INIS)

    Newnam, B.E.; Goldstein, J.C.; Fraser, J.S.; Cooper, R.K.

    1983-01-01

    Use of an rf linear accelerator as the electron source for a free-electron laser operating in the extreme ultraviolet wavelength range from 100 nm to at least as low as 50 nm appears feasible. Peak and average power outputs of greater than 100 kW and 50W, respectively, are predicted

  5. An Inverse Free-Electron-Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min

    1993-01-01

    Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL's Accelerator Test Facility using its 50-MeV linac and 100-GW CO 2 laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with ΔE = 39 MeV, a four-module design giving ΔE = 100 MeV in a total length of 2 m, and an eight-module IFEL with ΔE = 210 MeV

  6. CO2 laser technology for advanced particle accelerators. Revision

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage distance, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  7. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  8. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  9. Towards a novel laser-driven method of exotic nuclei extraction−acceleration for fundamental physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M., E-mail: sergei@jaea.go.jp; Sakaki, H.; Esirkepov, T. Zh. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Nishio, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pikuz, T. A.; Faenov, A. Ya. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Skobelev, I. Yu. [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Orlandi, R. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Koura, H. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Kando, M. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Yamauchi, T. [Graduate School of Maritime Sciences (Japan); Watanabe, Y. [Kyushu University, Interdisciplinary Graduate School of Engineering Sciences (Japan); Bulanov, S. V., E-mail: svbulanov@gmail.com; Kondo, K. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); and others

    2016-04-15

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction–acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  10. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  11. Laser-driven relativistic electron dynamics in a cylindrical plasma channel

    Science.gov (United States)

    Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui

    2018-03-01

    The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

  12. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    Science.gov (United States)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  13. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  14. High energy electron acceleration with PW-class laser system

    International Nuclear Information System (INIS)

    Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.

    2008-01-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ∼10 19 cm -3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment

  15. An inverse free electron laser accelerator experiment

    International Nuclear Information System (INIS)

    Wernick, I.; Marshall, T.C.

    1992-01-01

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation (λ = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1 w1 = 1.43cm) and then absorbed (∼ 40%) in a second undulator, having a tapered period (1 w2 = 1.8 - 2.25cm), which results in the acceleration of a subgroup (∼ 9%) of electrons to ∼ 1MeV

  16. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  17. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  18. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  19. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  20. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  1. Novel aspects of direct laser acceleration of relativistic electrons

    Science.gov (United States)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02

  2. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  3. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  4. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  5. Electron acceleration by a self-diverging intense laser pulse

    International Nuclear Information System (INIS)

    Singh, K.P.; Gupta, D.N.; Tripathi, V.K.; Gupta, V.L.

    2004-01-01

    Electron acceleration by a laser pulse having a Gaussian radial and temporal profile of intensity has been studied. The interaction region is vacuum followed by a gas. The starting point of the gas region has been chosen around the point at which the peak of the pulse interacts with the electron. The tunnel ionization of the gas causes a defocusing of the laser pulse and the electron experiences the action of a ponderomotive deceleration at the trailing part of the pulse with a lower intensity rather than an acceleration at the rising part of the laser pulse with a high intensity, and thus gains net energy. The initial density of the neutral gas atoms should be high enough to properly defocus the pulse; otherwise the electron experiences some deceleration during the trailing part of the pulse and the net energy gain is reduced. The rate of tunnel ionization increases with the increase in the laser intensity and the initial density of neutral gas atoms, and with the decreases in the laser spot size, which causes more defocusing of the laser pulse. The required initial density of neutral gas atoms decreases with the increase in the laser intensity and also with the decrease in the laser spot size

  6. Improving beam spectral and spatial quality by double-foil target in laser ion acceleration for ion-driven fast ignition

    International Nuclear Information System (INIS)

    Huang, Chenkun; Albright, Brian J.

    2010-01-01

    Mid-Z ion driven fast ignition inertial fusion requires ion beams of 100s of MeV energy and < 10% energy spread. An overdense run-scale foil target driven by a high intensity laser pulse can produce an ion beam that has attractive properties for this application. The Break Out Afterburner (BOA) is one laser-ion acceleration mechanism proposed to generate such beams, however the late stages of the BOA tend to produce too large of an energy spread. The spectral and spatial qualities of the beam quickly evolve as the ion beam and co-moving electrons continue to interact with the laser. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the co-moving electrons and improve the ion beam energy spread. Particle-In-Cell simulations reveal the dynamics of the ion beam under control. Optimal conditions for improving the spectral and spatial spread of the ion beam is explored for current laser and target parameters, leading to generation of ion beams of energy 100s of MeV and 6% energy spread, a vital step for realizing ion-driven fast ignition.

  7. New method for laser driven ion acceleration with isolated, mass-limited targets

    International Nuclear Information System (INIS)

    Paasch-Colberg, T.; Sokollik, T.; Gorling, K.; Eichmann, U.; Steinke, S.; Schnuerer, M.; Nickles, P.V.; Andreev, A.; Sandner, W.

    2011-01-01

    A new technique to investigate laser driven ion acceleration with fully isolated, mass-limited glass spheres with a diameter down to 8μm is presented. A Paul trap was used to prepare a levitating glass sphere for the interaction with a laser pulse of relativistic intensity. Narrow-bandwidth energy spectra of protons and oxygen ions have been observed and were attributed to specific acceleration field dynamics in case of the spherical target geometry. A general limiting mechanism has been found that explains the experimentally observed ion energies for the mass-limited target.

  8. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  9. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table

  10. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  11. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    Science.gov (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  12. Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel

    International Nuclear Information System (INIS)

    Tochitsky, S.Ya.; Narang, R.; Filip, C.V.; Clayton, C.E.; Marsh, K.A.; Joshi, C.; Musumeci, P.; Yoder, R.B.; Rosenzweig, J.B.; Pellegrini, C.

    2004-01-01

    A 10 ps long beam of 12 MeV electrons is externally injected into a ∼3-cm long plasma beatwave excited in a laser ionized hydrogen gas. The electrons have been accelerated to 50 MeV with a gradient of ∼1.3 GeV/m. It is shown that when the effective plasma wave amplitude-length product is limited by ionization-induced defocusing (IID), acceleration of electrons is significantly enhanced by using a laser pulse with a duration longer than the time required for ions to move across the laser spot size. Both experiments and two-dimensional simulations reveal that, in this case, self-guiding of the laser pulse in a ponderomotively formed plasma channel occurs. This compensates for IID and drives the beatwave over the longer length compared to when such a channel is not present

  13. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  14. Electron acceleration by longitudinal electric field of a gaussian laser beam

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi; Sugihara, Ryo; Shimoda, Koichi.

    1991-11-01

    It is shown that the longitudinal electric field of a transverse magnetic mode of a Gaussian laser beam accelerates an electron to an ultra-relativistic energy. The electron is captured and accelerated in a length of the order of the Rayleigh range. The ultimate energy increment of the electron with a single laser beam is given by the product of transverse field intensity and the beam waist, and can be of the order of 100MeV. This fact implies that a multi-stage acceleration enables TeV-order-acceleration in a length of a few kilometers with the present state of the art. (author)

  15. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  16. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  17. Micron-size hydrogen cluster target for laser-driven proton acceleration

    Science.gov (United States)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  18. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  19. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  20. Laser wakefield accelerator experiments at LBNL

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Fubiani, G.; Geddes, C.G.R.; Esarey, E.; Shadwick, B.A.; Brussaard, G.J.H.; Tilborg, J. van; Chattopadhyay, S.; Wurtele, J.S.; Archambault, L.; Dickinson, M.R.; DiMaggio, S.; Short, R.; Barat, K.L.; Donahue, R.; Floyd, J.; Smith, A.; Wong, E.

    2001-01-01

    The status is presented of the laser wakefield acceleration research at the l'OASIS laboratory of the Center for Beam Physics at LBNL. Experiments have been performed on laser driven production of relativistic electron beams from plasmas using a high repetition rate (10 Hz), high power (10 TW) Ti:sapphire (0.8 μm) laser system. Large amplitude plasma waves have been excited in the self-modulated laser wakefield regime by tightly focusing (spot diameter 8 μm) a single high power (≤10 TW), ultra-short (≥50 fs) laser pulse onto a high density (>10 19 cm -3 ) pulsed gasjet (length 1.2 mm). Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Progress on implementing the colliding pulse laser injection method is also presented. This method is expected to produce low emittance ( 7 electrons/bunch

  1. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  2. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  3. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  4. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  5. Electron acceleration in laser-plasma interaction: development and characterization of an optical injector

    International Nuclear Information System (INIS)

    Rechatin, C.

    2009-09-01

    In any particle accelerator, the injector plays a crucial role since it determines most of the characteristics of the accelerated beam. This is also true for laser-plasma accelerators, that are based on the interaction of an ultra short, ultra intense laser with an underdense plasma. However, due to the compactness of these accelerators, injection is a real challenge: to obtain a good beam quality, injected electron beams have to be ultra short and precisely synchronized with the laser. In this manuscript, the relevance of an optical injector, that relies on a second laser pulse, is experimentally demonstrated. With this injector, mono energetic electron beams have been produced in a stable manner. Moreover, this injector gives control over the electron beam parameters. Using the parameters of the second laser pulse, it has been proven that the energy, the charge and the energy spread of the accelerated beam can be simply tuned. Those additional controls make it possible to study in great details the physical phenomena at play during the acceleration. Beam loading effects, due to the interaction of the accelerated bunch with the plasma, have been identified and studied. With optimized injector parameters, the narrowest electron beams measured to date in the laser plasma interaction have been obtained, with a relative energy spread of 1%. (author)

  6. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  7. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  8. Electron acceleration by CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Fujita, H.; Kitagawa, Y.; Daido, H.

    1986-01-01

    Experiments on electron acceleration have been performed by LEKKO VIII CO/sub 2/ laser system. The laser light was focused by an off-axis parabolic mirror with the F-number of 1.5 and irradiated to thin foil and pipe targets in order to obtain uniform underdense plasmas. Energy spectrum of electrons was measured by an electron spectrometer in the range of 0.3-1.1 MeV. In the single frequency case, electrons up to 1 MeV were observed in the direction of the laser axis for the laser intensity above 1.6 x 10/sup 14/ W/cm/sup 2/ which was equal to the estimated threshold for forward Raman scattering. Amount of high energy electrons depended on the interaction length and the background hot electron temperature. More electrons could resonate with the plasma wave for the higher hot electron temperature. This was confirmed by particle simulation. In most experiments, the plasma density was estimated of about 0.1 n/sub c/. When the plasma density was reduced to 0.01 n/sub c/ using pre-pulse, high energy electrons were not observed because of the low background hot electron temperature and the higher instability threshold. In the two frequency case, energetic electron beam injection is planned for efficient coupling with fast plasma wave. Pipe target seems to be hopeful because 1) the laser light is confined by the plasma fiber and 2) the phase velocity of the plasma wave is controlled by the transverse mode

  9. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  10. XUV/VUV free-electron laser oscillator

    International Nuclear Information System (INIS)

    Goldstein, J.C.; Newnam, B.E.; Cooper, R.K.; Comly, J.C. Jr.

    1984-04-01

    It is shown, from computations based on a detailed theoretical model, that modest improvements in electron beam and optical mirror technologies will enable a free-electron laser, driven by an rf linear accelerator, to operate in the 50 to 200-nm range of optical wavelengths. 10 references

  11. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg, J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; Bruhwiler, D.

    2006-01-01

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  12. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  13. Collective acceleration of protons by the plasma waves in a counterstreaming electron beam

    International Nuclear Information System (INIS)

    Yan, Y.T.

    1987-03-01

    A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration

  14. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  15. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  16. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  17. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  18. Production and applications of quasi-monoenergetic electron bunches in laser-plasma based accelerators

    International Nuclear Information System (INIS)

    Glinec, Y.; Faure, J.; Ewald, F.; Lifschitz, A.; Malka, V.

    2006-01-01

    Plasmas are attractive media for the next generation of compact particle accelerators because they can sustain electric fields larger than those in conventional accelerators by three orders of magnitude. However, until now, plasma-based accelerators have produced relatively poor quality electron beams even though for most practical applications, high quality beams are required. In particular, beams from laser plasma-based accelerators tend to have a large divergence and very large energy spreads, meaning that different particles travel at different speeds. The combination of these two problems makes it difficult to utilize these beams. Here, we demonstrate the production of high quality and high energy electron beams from laser-plasma interaction: in a distance of 3 mm, a very collimated and quasi-monoenergetic electron beam is emitted with a 0.5 nanocoulomb charge at 170 ± 20 MeV. In this regime, we have observed very nonlinear phenomena, such as self-focusing and temporal self-shortenning down to 10 fs durations. Both phenomena increase the excitation of the wakefield. The laser pulse drives a highly nonlinear wakefield, able to trap and accelerate plasma background electrons to a single energy. We will review the different regimes of electron acceleration and we will show how enhanced performances can be reached with state-of-the-art ultrashort laser systems. Applications such as gamma radiography of such electron beams will also be discussed

  19. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    Science.gov (United States)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  20. Simulations and experiments on external electron injection for laser wakefield acceleration

    NARCIS (Netherlands)

    Dijk, van W.

    2010-01-01

    Laser wake field acceleration is a technique that can be used to accelerate electrons using electric fields that are several orders of magnitude higher than those available in conventional accelerators. With these higher fields, it is possible to drastically reduce the length of accelerator needed

  1. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  2. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  3. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  4. Electron acceleration in a plane laser beam

    Czech Academy of Sciences Publication Activity Database

    Petržílka, Václav; Krlín, Ladislav; Tataronis, J. A.

    2002-01-01

    Roč. 52, supplement D (2002), s. 279-282 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : electron acceleration, laser beam Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  5. Electron self-injection and acceleration in the bubble regime of laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. The intense laser-plasma and beam-plasma interactions are highly nonlinear-phenomena, which besides being of fundamental interest, attract a great attention due to a number of important applications. One of the key applications is particle acceleration based on excitation of the strong plasma wakefield by laser pulse. In the linear regime of interaction when the laser intensity is low the plasma wake is the linear plasma wave. Moreover, the ponderomotive force of the laser pulse pushes out the plasma electrons from high intensity region leaving behind the laser pulse the plasma cavity - bubble, which is almost free from the plasma electrons. This is the bubble the laser-plasma interaction. Although the bubble propagates with velocity, which is close to speed of light, the huge charge of unshielded ions inside the plasma cavity can trap the cold plasma electrons. Moreover, the electrons are trapped in the accelerated phase of the bubble plasma field thereby leading to efficient electron acceleration. The electron self-injection is an important advantage of the plasma-based acceleration, which allows to exclude the beam loading system requiring accurate synchronization and additional space. The recent experiments have demonstrated high efficiency of the electron self-injection. The beam quality is often of crucial importance in many applications ranging from inertial confinement fusion to the x-ray free electron lasers. Despite a great interest there is still a little theory for relativistic electron dynamics in the plasma wake in multidimensional geometry including electron self-injection. The dynamics of the self-injected electrons can be roughly divided into three stage: (i) electron scattering by the laser pulse, (ii) electron trapping by the bubble, (iii) electron acceleration in the bubble. We developed two analytical models for electron dynamics in the bubble field and verify them by direct measurements of model parameters

  6. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    Science.gov (United States)

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  7. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  8. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  9. Relativistic electron acceleration in focused laser fields after above-threshold ionization

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2003-01-01

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently by Hu and Starace [Phys. Rev. Lett. 88, 245003 (2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization event. Analytical expressions for electron energy gain are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by numerical computations

  10. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    International Nuclear Information System (INIS)

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-01-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ∼1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  11. Development of a high repetition rate laser-plasma accelerator for ultra-fast electron diffraction experiments

    International Nuclear Information System (INIS)

    Beaurepaire, B.

    2009-01-01

    Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femto-seconds (fs). Laser accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Such accelerators used to work at a low repetition rate, so that it was necessary to develop a new one operating at a high repetition rate in order to accumulate a large amount of data. In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generates electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated. (author)

  12. The electron accelerator for FELIX [Free Electron Laser for Infrared eXperiments

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van; Geer, C.A.J. van der; Meer, A.F.G. van der; Bruinsma, P.J.T.; Hoekstra, R.; Kroes, F.B.; Luyckx, G.; Noomen, J.G.; Poole, M.W.; Saxon, G.

    1989-01-01

    The authors discuss the design of the electron accelerator for the Free Electron Laser for Infrared eXperiments (FELIX), which is meant to provide the Dutch science community with a rapidly tunable source of infrared radiation. The first stage of the project will (at least) cover the wavelength range between 8 and 80 μm. The accelerator consists of a triode with a grid modulated at 1 GHz, a 3.8-MeV buncher, and two travelling-wave S-band linac structures, with which 70-A, 3-ps bunches are accelerated to an energy between 15 and 4-5 MeV. The system has been designed to minimize the energy spread in the electron beam. 8 refs., 2 figs., 1 tab

  13. Experimental signatures of direct-laser-acceleration-assisted laser wakefield acceleration

    Science.gov (United States)

    Shaw, J. L.; Lemos, N.; Marsh, K. A.; Froula, D. H.; Joshi, C.

    2018-04-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) operating in the forced or quasi-blowout regimes has been investigated through experiment and simulation. When there is a significant overlap between the trapped electrons and the drive laser in a LWFA cavity, the resulting electrons can gain energy from both the LWFA and the DLA mechanisms. Experimental work investigates the properties of the electron beams produced in a LWFA with ionization injection by dispersing those beams in the direction perpendicular to the laser polarization. These electron beams show certain spectral features that are characteristic of DLA. These characteristic features are reproduced using particle-in-cell simulations, where particle tracking was used to elucidate the roles of LWFA and DLA to the energy gain of the electrons in this experimental regime and to demonstrate that such spectral features are definitive signatures of the presence of DLA in LWFA.

  14. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-01-01

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  15. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    Science.gov (United States)

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  16. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    Science.gov (United States)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  17. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  18. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  19. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  20. Emittance growth in laser-driven RF electron guns

    International Nuclear Information System (INIS)

    Kim, K.J.

    1989-01-01

    A simple analysis for the evolution of the electron-beam phase space distribution in laser-driven rf guns is presented. In particular, formulas are derived for the transverse and longitudinal emittances at the exit of the gun. The results are compared and found to agree well with those from simulation. (Author). 9 refs.; 4 figs

  1. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Science.gov (United States)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  2. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  3. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  4. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  5. Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents

    Science.gov (United States)

    Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.

    2018-03-01

    The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.

  6. The electron accelerator for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Pepitone, K., E-mail: kevin.pepitone@cern.ch [CERN, Geneva (Switzerland); Doebert, S., E-mail: steffen.doebert@cern.ch [CERN, Geneva (Switzerland); Burt, G. [The University of Lancaster, Lancaster (United Kingdom); Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G. [CERN, Geneva (Switzerland); Mete, O. [The University of Manchester, Manchester (United Kingdom); Verzilov, V. [Triumf, Vancouver (Canada); Apsimon, R. [The University of Lancaster, Lancaster (United Kingdom)

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  7. Role of laser contrast and foil thickness in target normal sheath acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gizzi, L.A. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Altana, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania (Italy); Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Brandi, F. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, P. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Cristoforetti, G. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan, Milan (Italy); INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Giove, D. [INFN-LASA, Via Fratelli Cervi 201, 20090 Segrate (Italy); Koester, P. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); Labate, L. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Lanzalone, G. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Università degli Studi di Enna Kore, Via delle Olimpiadi, 94100 Enna (Italy); Londrillo, P. [INAF–Osservatorio astronomico Bologna (Italy); Mascali, D.; Muoio, A. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Palla, D. [ILIL, Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, Pisa (Italy); INFN Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Schillaci, F. [Laboratori Nazionali del Sud, INFN, Via S. Sofia, Catania (Italy); Sinigardi, S. [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN, Sez. di Bologna, Via Irnerio 46, 40126 Bologna (Italy); and others

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×10{sup 19} W/cm{sup 2}. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser–target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  8. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  9. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  10. First experimental results of the BNL inverse free electron laser accelerator

    International Nuclear Information System (INIS)

    Steenbergen, A. van; Gallardo, J.; Babzien, M.; Skaritka, J.; Wang, X.J.; Sandweiss, J.; Fang, J.M.; Qiu, X.

    1996-10-01

    A 40 MeV electron beam, using the inverse3e free-electron laser interaction, has been accelerated by ΔE/E = 2.5% over a distance of 0.47 m. The electrons interact with a 1--2 GW CO 2 laser beam bounded by a 2.8 mm ID sapphire circular waveguide in the presence of a tapered wiggler with Bmax ∼ 1 T and a period 2.89 cm ≤ λ w ≤ 3.14 cm. The experimental results of ΔE/E as a function of electron energy E, peak magnetic field Bw and laser power W 1 compare well with analytical and 1-D numerical simulations and permit scaling to higher laser power and electron energy

  11. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  12. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  13. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  14. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  15. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  16. Laser-plasma accelerator-based single-cycle attosecond undulator source

    Science.gov (United States)

    Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.

    2018-06-01

    Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.

  17. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  18. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  19. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  20. Organization of lasers with particle accelerators to create new tools for frontier sciences

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Kando, Masaki; Kotaki, Hideyuki; Kondo, Shuji; Kanazawa, Shuhei; Masuda, Shinichi; Honma, Takayuki

    2003-01-01

    Recently great advances of ultraintense ultrashort pulse lasers have brought about tremendous experimental and theoretical progress in maturity of laser-driven particle accelerator concepts. In near future creation of new tools for frontier sciences is forseen, which will be combined and organized from ultraintense lasers and particle accelerators. Here we report research activities on the laser acceleration at JAERI - APR as well as the outlook for developments of laser-driven particle injectors, accelerators and radiation sources. Recent world-wide experiments have successfully demonstrated that the self-modulated LWFA mechanism is capable of generating ultrahigh accelerating gradient of the order of 100 GeV/m, while the maximum energy gain is limited at most to 200 MeV with energy spread of 100% because of dephasing and wavebreaking effects in plasmas. The first high energy gain acceleration 300 MeV has been opened with the injection of an electron beam at an energy matched to a wakefield phase velocity in a fairly underdense plasma by our group. Our activities on laser acceleration research have focused on the laser wakefield accelerator developments for high energy electron acceleration achieving more than 1 GeV with channel-guided scheme, and on high quality beam generation with both conventional and advanced technologies. The main task has been devoted to completion of the Laser Acceleration Test Facility (LATF) consisting of the photocathode RF gun, the 150 MeV microtron accelerator and the test beam line as well as the estimation of radiation doses produced by LATF for the radiation safety clearance. With the use of LATF, we plan to demonstrate the channel-guided LWFA in which both the driving laser pulses and particle beams can be guided through the capillary discharge plasmas with a cm-scale length. The development of the plasma waveguide is underway after the first demonstration of propagating a 2 TW, 90 fs laser pulse through a stable 2 cm plasma

  1. Stochastic acceleration of electrons from multiple uncorrelated plasma waves

    Science.gov (United States)

    Gee, David; Michel, Pierre; Wurtele, Jonathan

    2017-10-01

    One-dimensional theory puts a strict limit on the maximum energy attainable by an electron trapped and accelerated by an electron plasma wave (EPW). However, experimental measurements of hot electron distributions accelerated by stimulated Raman scattering (SRS) in ICF experiments typically show a thermal distribution with temperatures of the order of the kinetic energy of the resonant EPW's (Thot mvp2 , where vp is the phase velocity of the EPW's driven by SRS) and no clear cutoff at high energies. In this project, we are investigating conditions under which electrons can be stochastically accelerated by multiple uncorrelated EPW's, such as those generated by incoherent laser speckles in large laser spots like the ones used on NIF ( mm-size), and reproduce distributions similar to those observed in experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Czech Academy of Sciences Publication Activity Database

    Labate, L.; Andreassi, M.G.; Baffigi, F.; Bizzarri, B.M.; Borghini, A.; Bussolino, G.C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, Tadzio; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L.A.

    2016-01-01

    Roč. 49, č. 27 (2016), s. 1-9, č. článku 275401. ISSN 0022-3727 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser-driven electron accelerators * sub-MeV electron sources * ultrahigh dose rate * radiobiology * cell radiation damage Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics ) Impact factor: 2.588, year: 2016

  3. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  4. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  5. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  6. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  7. Transverse emittance growth in staged laser-wakefield acceleration

    Directory of Open Access Journals (Sweden)

    T. Mehrling

    2012-11-01

    Full Text Available We present a study on the emittance evolution of electron bunches, externally injected into laser-driven plasma waves using the three-dimensional particle-in-cell (PIC code OSIRIS. Results show order-of-magnitude transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This behavior is supported by analytic theory reproducing the simulation data to a percent level. The length over which the full emittance growth develops is found to be less than or comparable to the typical dimension of a single plasma module in current multistage designs. In addition, the analytic theory enables the quantitative prediction of emittance degradation in two consecutive accelerators coupled by free-drift sections, excluding this as a scheme for effective emittance-growth suppression, and thus suggests the necessity of beam-matching sections between acceleration stages with fundamental implications on the overall design of staged laser-wakefield accelerators.

  8. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  9. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  10. submitter Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    CERN Document Server

    Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P

    2016-01-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...

  11. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  12. Laser power sources and laser technology for accelerators

    International Nuclear Information System (INIS)

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  13. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Heigoldt, Matthias

    2017-01-01

    This thesis deals with the temporal characterisation of electron bunches produced by a laser plasma accelerator. In the so-called laser wakefield acceleration (LWFA) scheme, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m, thus exceeding the fields attainable by current state-of-the-art radio frequency (RF) accelerators by four orders of magnitude, offering the prospect of downsizing both the size and cost of such machines. Furthermore, by intrinsically confining the accelerated electron beam to the μm-scale size of the plasma wave, LWFAs provide ultra-short and highly brilliant beams, sparking great scientific interest for their application as a driver for compact sources of ultra-short X-ray pulses, e.g. Thomson-scattering, betatron sources or table-top free-electron lasers (FELs). The bunch profile is an important quantity for the application of these sources. With particular regard to the envisioned table-top FELs, it also determines the available peak current, an import input parameter for an appropriate undulator design that is optimized to support the self-amplified spontaneous emission (SASE) process. The experiments presented in this thesis comprise the measurement of the temporal profile of electron bunches produced by LWFA and further investigation of the evolution of the temporal profile in dependence of the acceleration distance and the plasma density. By measuring the intensity spectrum of coherent transition radiation (CTR) emitted by LWFA-driven electron bunches in the frequency domain, the experiments allow a reconstruction of the longitudinal bunch profiles with unprecedented resolution. Compared to earlier work, a key improvement is the single-shot coverage of a broadband spectral range of more than four octaves, which yields a time resolution of the reconstructed bunch profile in the sub-femtosecond region. This work further inspired the development of a new

  14. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Heigoldt, Matthias

    2017-05-19

    This thesis deals with the temporal characterisation of electron bunches produced by a laser plasma accelerator. In the so-called laser wakefield acceleration (LWFA) scheme, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m, thus exceeding the fields attainable by current state-of-the-art radio frequency (RF) accelerators by four orders of magnitude, offering the prospect of downsizing both the size and cost of such machines. Furthermore, by intrinsically confining the accelerated electron beam to the μm-scale size of the plasma wave, LWFAs provide ultra-short and highly brilliant beams, sparking great scientific interest for their application as a driver for compact sources of ultra-short X-ray pulses, e.g. Thomson-scattering, betatron sources or table-top free-electron lasers (FELs). The bunch profile is an important quantity for the application of these sources. With particular regard to the envisioned table-top FELs, it also determines the available peak current, an import input parameter for an appropriate undulator design that is optimized to support the self-amplified spontaneous emission (SASE) process. The experiments presented in this thesis comprise the measurement of the temporal profile of electron bunches produced by LWFA and further investigation of the evolution of the temporal profile in dependence of the acceleration distance and the plasma density. By measuring the intensity spectrum of coherent transition radiation (CTR) emitted by LWFA-driven electron bunches in the frequency domain, the experiments allow a reconstruction of the longitudinal bunch profiles with unprecedented resolution. Compared to earlier work, a key improvement is the single-shot coverage of a broadband spectral range of more than four octaves, which yields a time resolution of the reconstructed bunch profile in the sub-femtosecond region. This work further inspired the development of a new

  15. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  16. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-01-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm 2 and 0.4 pC/(ps mm 2 ), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  17. Electron beam charge diagnostics for laser plasma accelerators

    Directory of Open Access Journals (Sweden)

    K. Nakamura

    2011-06-01

    Full Text Available A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs. First, a scintillating screen (Lanex was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160  pC/mm^{2} and 0.4  pC/(ps  mm^{2}, respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  18. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, H.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2015-03-15

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z{sub m} and then becomes constant with magnitude equal to that at z{sub m}. Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ=802. The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  19. Acceleration of charged particles by lasers in vacuum

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Hora, H.; Scheid, W.

    1989-01-01

    For laser acceleration of electrons (and other charged particles) by lasers to the TeV energy range in vacuum, the scheme of trapping electrons in spatially moving and accelerated intensity gradients or minima of laser fields, the single electron motion in standing wave fields is evaluated in details numerically. Acceleration of the minima results in the acceleration of the electrons as expected from global results of the nonlinear forces. If half-wave length laser pulses propagating in vacuum are used the relativistic exact solutions are derived and evaluated. A disadvantage is the lateral motion requiring a large laser focus. For TeV electron energy, MJ KrF-laser pulses are necessary and the acceleration length is about 10 cm. copyright 1989 American Institute of Physics

  20. On the quasi-monoenergetic electron beam generation in the laser wakefield acceleration

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Tajima, Toshiki

    2005-01-01

    A new phase of laser acceleration research has entered, as signified by the recent reports in Nature 9/30/05 of the generation of quasi-monoenergetic electron beam by laser wakefield acceleration in three experiments. We survey the current status of experiments and offer their theoretical interpretation. We understand why the choice of parameters is of such importance and why the earlier experiments showed energy spectra far from monoenergy. (author)

  1. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-01

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  2. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  3. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  4. A cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Sprangle, P.; Tang, C.M.; Vlahos, L.

    1983-01-01

    A laser acceleration mechanism which utilizes a strong static, almost uniform, magnetic field together with an intense laser pulse is analyzed. The interaction and acceleration mechanism relies on a self resonance effect. Since the laser field is assumed to be diffraction limited, the magnetic field must be spatially varied to maintain resonance. The effective accelerating gradient is shown to scale like 1/√E /SUB b/ , where E /SUB b/ is the electron energy. For a numerical illustration the authors consider a 1 x 10 13 W/cm 2 , CO 2 laser and show that electrons can be accelerated to more than 500 MeV in a distance of 15 m (approximately two Rayleigh lengths)

  5. Near-field enhanced electron acceleration from dielectric nanospheres in intense few-cycle laser fields

    International Nuclear Information System (INIS)

    Zherebtsov, S.; Znakovskaya, I.; Wirth, A.; Herrwerth, O.; Suessmann, F.; Ahmad, I.; Trushin, S.; Fennel, Th.; Plenge, J.; Antonsson, E.

    2010-01-01

    Complete text of publication follows. The interaction of nanostructured materials with few-cycle laser light has attracted significant attention lately. This interest is driven by both the quest for fundamental insight into the real-time dynamics of many-electron systems and a wide range of far-reaching applications, such as, e.g. ultrafast computation and information storage on the nanoscale and the generation of XUV frequency combs. We investigated the above-threshold electron emission from isolated SiO 2 nanoparticles in waveform controlled few-cycle laser fields at intensities close to the tunneling regime. The enhancement of the electron acceleration from the silica nanoparticles was explored as a function of the particle size (ranging from 50 to 147 nm) and the laser peak intensity (1 - 4x10 13 W/cm 2 ). Obtained cut-off values in the kinetic energy spectra are displayed in Fig. 1. The cut-off values show a linear dependence with intensity within the studied intensity range, with the average cut-off energy being 53 U P , indicated by the black line. Quasi-classical simulations of the emission process reveal that electron rescattering in the locally enhanced near-field of the particle is responsible for the large energy gain. The observed near-field enhancement offers promising new routes for pushing the limits of strong-field phenomena relying on electron rescattering, such as, high-harmonic generation and molecular imaging.

  6. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  7. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  8. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  9. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  10. Operation regimes of a dielectric laser accelerator

    Science.gov (United States)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  11. Laser-plasma accelerators, acceleration of particles through laser-matter interaction at ultra-high intensity

    International Nuclear Information System (INIS)

    Lefebvre, E.

    2010-01-01

    This series of slides overviews the development of powerful lasers for inertial confinement fusion (Icf) at NIF (National Ignition Facility, Usa) and LMJ (Laser Megajoule, France) facilities. Then the principle of laser wakefield acceleration is presented and the possibility of designing compact accelerators delivering 200 GeV/m while conventional RF accelerators reach only 50 MeV/m, is considered. This technical breakthrough will bring important gains in terms of size, cost and new uses for accelerators. While Icf will use nanosecond (10 -9 s) laser pulses, wakefield accelerators will use femtosecond (10 -15 s) laser pulses which means more power but less energy. The electrons accelerated by laser can produce a multi-MeV X radiation useful for industrial radiography or cancer treatment. (A.C.)

  12. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  13. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    Science.gov (United States)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  14. A two-dimensional laser-wire scanner for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, A. [Physics Department John Adams Institute for Accelerator Science at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)], E-mail: alessio.bosco@rhul.ac.uk; Price, M.T.; Blair, G.A.; Boogert, S.T.; Boorman, G.; Malton, S.; Driouichi, C. [Physics Department John Adams Institute for Accelerator Science at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Kamps, T. [Berliner Elektronenspeicherring, Gesellschaft fur Synchrotronstrahlung, Albert Einstein-Str. 15, 12489 Berlin (Germany); Poirier, F.; Balewski, K.; Elsen, E.; Gharibyan, V.; Lewin, H.-C.; Schreiber, S.; Walker, N.; Wittenburg, K. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)

    2008-07-21

    A two-dimensional laser-wire scanner capable of measuring the transverse charge profiles of an electron (or positron) bunch has been constructed at the PETRA accelerator in DESY. The development of the system is explained in this paper, along with descriptions of its photon detector and laser system. Results of transverse profile scans are presented for both horizontal and vertical directions. The measurement error is 1.3% from a multi-scan measurement in the vertical direction, where single scans can be performed in less than 50 s.

  15. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-01-01

    A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the ''laser breakout afterburner'' (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 10 21 W/cm 2 , the carbon ions accelerate as a quasimonoenergetic bunch to 100 s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of ∼2 GeV

  16. Treatment planning for laser-accelerated very-high energy electrons

    International Nuclear Information System (INIS)

    Fuchs, T; Szymanowski, H; Oelfke, U; Glinec, Y; Rechatin, C; Faure, J; Malka, V

    2009-01-01

    In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.

  17. Femtosecond laser micromachining of sapphire capillaries for laser-wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Philipp; Delbos, Niels Matthias; Maier, Andreas R. [CFEL, Center for Free-Electron Laser Science, 22607 Hamburg (Germany); University of Hamburg, Institute of Experimental Physics, 22761 Hamburg (Germany); Calmano, Thomas [University of Hamburg, Institute of Experimental Physics, 22761 Hamburg (Germany)

    2015-07-01

    Laser-plasma accelerator are promising candidates to provide ultra-relativistic electron beams for compact light sources. One factor that limits the achievable electron beam energy in a laser plasma accelerator is the Rayleigh length of the driver laser, which dictates the length over which the electron beams can effectively be accelerated. To overcome this limitation lasers can be guided in a capillary waveguide to extend the acceleration length beyond the Rayleigh length. The production of waveguide structures on scales, that are suitable for plasma acceleration is very challenging. Here, we present experimental results from waveguide machining in sapphire crystals using a Clark MXR CPA 2010 laser with a wavelength of 775nm, 1KHZ repetition rate and a pulse duration of 160 fs. We discuss the effects of different parameters like energy, lens types, writing speed and polarisation on the size and shape of the capillaries, and compare the performance of different parameter sets.

  18. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode

    Directory of Open Access Journals (Sweden)

    P. Piot

    2013-01-01

    Full Text Available We report the experimental generation, acceleration, and characterization of a uniformly filled electron bunch obtained via space-charge-driven expansion (often referred to as “blow-out regime” in an L-band (1.3-GHz radiofrequency photoinjector. The beam is photoemitted from a cesium-telluride semiconductor photocathode using a short (<200  fs ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character are observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ∼0.5  nC corresponding to a ∼20-fold increase compared to previous experiments with metallic photocathodes.

  19. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  20. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO 2 laser to drive the wake and a frequency-doubled Ti:Al 2 O 3 laser for ionization injection.

  1. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  2. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  3. Proposal for a study of laser acceleration of electrons using micrograting structures at ATF (Phase 1)

    International Nuclear Information System (INIS)

    Chen, W.; Claus, J.; Fernow, R.C.

    1989-01-01

    We propose to investigate new methods of particle acceleration using a short-pulse CO 2 laser as the power source and grating-like structures as accelerator ''cavities''. Phase I of this program is intended to demonstrate the principle of the method. We will focus the laser light to a 3 mm line on the surface of the microstructure. The structure is used to transform the electric field pattern of the incoming transversely polarized laser beam to a mode which has a component along the electron beam direction in the vicinity of the surface. With 6 mJ of laser energy and a 6 ps pulse length, the electric field in the spot will be around 1 GV/m. The electron beam from the Brookhaven Accelerator Test Facility (ATF) will be focused transversely within the few micron transverse dimension of the microstructure. The maximum expected acceleration for a 1 GV/m field and a 3 mm acceleration length is 3 MeV. 17 refs., 11 figs., 2 tabs

  4. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

    Directory of Open Access Journals (Sweden)

    T. Toncian

    2016-01-01

    Full Text Available The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.

  5. Directed Acceleration of Electrons from a Solid Surface by Sub-10-fs Laser Pulses

    International Nuclear Information System (INIS)

    Brandl, F.; Hidding, B.; Osterholz, J.; Hemmers, D.; Pretzler, G.; Karmakar, A.; Pukhov, A.

    2009-01-01

    Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 μJ energy which were focused to an intensity of 2x10 16 W/cm 2 . The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

  6. Inverse Cerenkov laser acceleration experiment at ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Pogorelsky, I.; Fernow, R.; Kusche, K.P.; Liu, Y.; Kimura, W.D.; Kim, G.H.; Romea, R.D.; Steinhauer, L.C.

    1994-01-01

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 μm CO 2 laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO 2 laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO 2 laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations

  7. Standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1991-01-01

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set. (orig.)

  8. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  9. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser AccelerationLaser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  10. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  11. Laser-driven Ion Acceleration using Nanodiamonds

    Science.gov (United States)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  12. Summary Report of Working Group 6: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-01-01

    A summary is given of presentations and discussions in the Laser-Plasma Acceleration Working Group at the 2006 Advanced Accelerator Concepts Workshop. Presentation highlights include: widespread observation of quasi-monoenergetic electrons; good agreement between measured and simulated beam properties; the first demonstration of laser-plasma acceleration up to 1 GeV; single-shot visualization of laser wakefield structure; new methods for measuring <100 fs electron bunches; and new methods for 'machining' laser-plasma accelerator structures. Discussion of future direction includes: developing a roadmap for laser-plasma acceleration beyond 1 GeV; a debate over injection and guiding; benchmarking simulations with improved wake diagnostics; petawatt laser technology for future laser-plasma accelerators

  13. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  14. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Matlis, N.H.; Bakeman, M.; Geddes, C.G.R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G.R.; Schroeder, C.B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W.P.

    2010-01-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  15. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  16. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  17. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  18. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  19. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d' Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  20. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Lundh, O.; Rechatin, C.; Faure, J.; Ben-Ismaïl, A.; Lim, J.; De Wagter, C.; De Neve, W.; Malka, V.

    2012-01-01

    Purpose: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. Methods: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. Results: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. Conclusions: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.

  1. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  2. Time-dependent quantum chemistry of laser driven many-electron molecules

    International Nuclear Information System (INIS)

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-01-01

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH 2 , treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10 15 W/cm 2 ), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics

  3. Transverse particle acceleration techniques using lasers and masers

    International Nuclear Information System (INIS)

    Schoen, N.C.

    1983-01-01

    The concept discussed herein uses an intense traveling electromagnetic wave, produced by a laser or maser source, to accelerate electrons in the Rayleigh region of a focused beam. Although the possibility of non-synchronous acceleration has been considered, very little analysis of potential device configurations has been reported. Computer simulations of the acceleration process indicate practical figure of merit values in the range of 100 MeV/m for achievable electric field strengths with current technology. The development of compact, high energy electron accelerators will provide an essential component for many new technologies. Such as high power free electron lasers, X-ray and VUV sources, and high power millimeter and microwave devices. Considerable effort has been directed toward studies of new concepts for electron acceleration, including inverse free electron lasers, GYRACS, and modified betatrons

  4. Ultraintense laser interaction with nanoscale target: a simple model for layer expansion and ion acceleration

    International Nuclear Information System (INIS)

    Albright, Brian J.; Yin, Lin; Hegelich, Bjoorn M.; Bowers, Kevin J.; Huang, Chengkun; Fernandez, Juan C.; Flippo, Kirk A.; Gaillard, Sandrine; Kwan, Thomas J.T.; Henig, Andreas; Habs, Dieter

    2009-01-01

    A simple model has been derived for the expansion of a thin (up to 100s of nm thickness), solid-density target driven by an u.ltraintense laser. In this regime, new ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) (1), emerge with the potential to dramatically improve energy, efficiency, and energy spread of laser-driven ion beams. Such beams have been proposed (2) as drivers for fast ignition inertial confinement fusion (3). Analysis of kinetic simulations of the BOA shows two dislinct times that bound the period of enhanced acceleration: t 1 , when the target becomes relativistically transparent to the laser, and t 2 , when the target becomes classically underdense and the enhanced acceleration terminates. A silllple dynamical model for target expansion has been derived that contains both the early, one-dimensional (lD) expansion of the target as well as three-dimensional (3D) expansion of the plasma at late times, The model assumes that expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.

  5. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  6. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  7. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  8. The Energy Selection System for the laser-accelerated proton beams at ELI-Beamlines

    Czech Academy of Sciences Publication Activity Database

    Tramontana, A.; Candiano, G.; Carpinelli, M.; Cirrone, G.A.P.; Cuttone, G.; Bijan Jia, S.; Korn, Georg; Licciardello, T.; Maggiore, Mario; Manti, L.; Margarone, Daniele; Pisciotta, P.; Romano, F.; Stancampiano, C.; Schillaci, Francesco; Scuderi, Valentina

    2014-01-01

    Roč. 9, May (2014), s. 1-11 ISSN 1748-0221 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : instrumentation for hadron therapy * wake-field acceleration (laser-driven, electron-driven) * plasma diagnostics * charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.399, year: 2014

  9. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    Science.gov (United States)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  10. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    Science.gov (United States)

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  11. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  12. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  13. Development of a high power free-electron laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB 6 -based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author)

  14. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  15. Detection of laser-accelerated protons

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine

    2012-08-08

    Real-time (Online) detection of laser-accelerated protons is a challenge for any electronic detector system due to the peculiar time structure ({<=} ns) and high intensity ({>=}10{sup 7} p/cm{sup 2}) of the generated ion pulses. Besides considerable saturation effects, problems are expected by an electromagnetic interference pulse (EMP), generated during laser-plasma interaction. In the scope of this work, different detection systems were built-up with regard to specific demands of laser-ion-acceleration at the MPQ ATLAS laser, which allow the quantitative analysis of the generated proton beam. A cell irradiation experiment at the ATLAS laser was accomplished to demonstrate the usability of laser-accelerated protons for radiation therapy. Cells were irradiated with a single shot dose of few Gy for a proton energy of 5 MeV. The following cell analysis required the spatially resolved measurement of the dose distribution. Only radiation-sensitive films were applicable because of the small proton range, although they show significant quenching effects for the used proton energy. This was extensively studied in the 3-200 MeV energy range. A film-based dosimetry protocol for low-energy proton irradiations was developed, making the absolute dose determination in the cell experiment possible. The non-electronic detectors (nuclear track detectors, radiation-sensitive films) are still state of the art in laser-accelerated ion diagnostics, although these detectors only allow a delayed in time (offline) detection. A non-electronic system, based on image plates, was thoroughly characterized and calibrated for ongoing experiments at the ATLAS laser, for the first time. Main objective of this work, though, was the set-up of a real-time detection system, which is urgently required, owing to increasing repetition rate of the laser accelerator (>Hz), to advance the parameter optimisation of the laser-acceleration in an efficient way. Systems based on silicon pixel detectors are

  16. Detection of laser-accelerated protons

    International Nuclear Information System (INIS)

    Reinhardt, Sabine

    2012-01-01

    Real-time (Online) detection of laser-accelerated protons is a challenge for any electronic detector system due to the peculiar time structure (≤ ns) and high intensity (≥10 7 p/cm 2 ) of the generated ion pulses. Besides considerable saturation effects, problems are expected by an electromagnetic interference pulse (EMP), generated during laser-plasma interaction. In the scope of this work, different detection systems were built-up with regard to specific demands of laser-ion-acceleration at the MPQ ATLAS laser, which allow the quantitative analysis of the generated proton beam. A cell irradiation experiment at the ATLAS laser was accomplished to demonstrate the usability of laser-accelerated protons for radiation therapy. Cells were irradiated with a single shot dose of few Gy for a proton energy of 5 MeV. The following cell analysis required the spatially resolved measurement of the dose distribution. Only radiation-sensitive films were applicable because of the small proton range, although they show significant quenching effects for the used proton energy. This was extensively studied in the 3-200 MeV energy range. A film-based dosimetry protocol for low-energy proton irradiations was developed, making the absolute dose determination in the cell experiment possible. The non-electronic detectors (nuclear track detectors, radiation-sensitive films) are still state of the art in laser-accelerated ion diagnostics, although these detectors only allow a delayed in time (offline) detection. A non-electronic system, based on image plates, was thoroughly characterized and calibrated for ongoing experiments at the ATLAS laser, for the first time. Main objective of this work, though, was the set-up of a real-time detection system, which is urgently required, owing to increasing repetition rate of the laser accelerator (>Hz), to advance the parameter optimisation of the laser-acceleration in an efficient way. Systems based on silicon pixel detectors are applicable for

  17. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X

  18. Proof on principle experiments of laser wakefield acceleration

    International Nuclear Information System (INIS)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1994-01-01

    The principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred. (author)

  19. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    Science.gov (United States)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  20. Principles of laser-plasma accelerators

    International Nuclear Information System (INIS)

    Malka, V.; Mora, P.

    2009-01-01

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain in which extremely high electric and magnetic fields are generated. Thanks to these tremendous fields, that only plasma can support and sustain, new and compact approaches for producing energetic particle beams have been recently achieved (for example the bubble regime and the colliding laser pulses scheme). The incredible progress of these laser-plasma accelerators has allowed physicists to produce high quality beams of energetic radiation and particles. These beams have interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine (radiotherapy, proton therapy, imaging), radiation biology (short-time-scale), chemistry (radiolysis), physics and material science (radiography, electron and photon diffraction), security (material inspection), and of course accelerator science. Stimulated by the advent of compact and powerful lasers, with moderate costs and high repetition rate, this research field has witnessed considerable growth in the past few years, and the promises of laser-plasma accelerators are in tremendous progress. The recent years in particular have seen spectacular progress in the acceleration of electrons and of ions, both in terms of energy and in terms of quality of the beams. (authors)

  1. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  2. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  3. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    International Nuclear Information System (INIS)

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  4. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  5. Optimized operation of dielectric laser accelerators: Single bunch

    Directory of Open Access Journals (Sweden)

    Adi Hanuka

    2018-05-01

    Full Text Available We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ∼10  GV/m, one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  6. Summary Report of Working Group 1: Laser-Plasma Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  7. Summary Report of Working Group 1: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-01-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  8. Gain physics of rf-linac-driven xuv free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1986-01-01

    In an rf-linac-driven xuv free-electron laser oscillator, the gain depends on the details of the shape of the electron beam's phase-space distribution, particularly the distribution of electrons in the transverse (to the direction of propagation) position and velocity coordinates. This strong dependence occurs because the gain in this device is inhomogeneously broadened. Our previous theoretical studies have assumed that the transverse phase space distribution is a product of uncorrelated Gaussian functions. In the present work, we shall present the results of a theoretical study of the gain for non-Gaussian phase-space distributions. Such distributions arise either from a better representation of the electron beam from an rf-linac or from an emittance filter applied to the beam after the linac

  9. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  10. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  11. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  12. CAS - CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs

    CERN Document Server

    2018-01-01

    These proceedings collate lectures given at the course on Free Electron Lasers and Energy Recovery Linacs (FELsand ERLs), organised by the CERN Accelerator School (CAS). The course was held at the Hotel Scandic HamburgEmporio, Hamburg, Germany from 31 May to 10 June 2016, in collaboration with DESY. Following introductorylectures on radiation issues, the basic requirements on linear accelerators and ERLs are discussed. Undulators andthe process of seeding and lasing are then treated in some detail, followed by lectures on various beam dynamicsand controls issues.

  13. Vacuum electron acceleration by coherent dipole radiation

    International Nuclear Information System (INIS)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-01-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. copyright 1999 The American Physical Society

  14. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  15. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  16. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  17. Inverse free electron laser beat-wave accelerator research

    International Nuclear Information System (INIS)

    Marshall, T.C.; Bhattacharjee, A.

    1993-09-01

    A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published

  18. The LILIA (laser induced light ions acceleration) experiment at LNF

    International Nuclear Information System (INIS)

    Agosteo, S.; Anania, M.P.; Caresana, M.; Cirrone, G.A.P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L.A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.

    2014-01-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given

  19. The LILIA (laser induced light ions acceleration) experiment at LNF

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Anania, M.P. [INFN LNF Frascati, Frascati (Italy); Caresana, M. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Cirrone, G.A.P. [INFN LNS Catania, Catania (Italy); De Martinis, C. [Physics Department, University of Milan and INFN, Milan (Italy); Delle Side, D. [LEAS, University of Salento and INFN, Lecce (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Gatti, G. [INFN LNF Frascati, Frascati (Italy); Giove, D. [Physics Department, University of Milan and INFN, Milan (Italy); Giulietti, D. [Physics Department, University of Pisa and INFN, Pisa (Italy); Gizzi, L.A.; Labate, L. [INO-CNR and INFN, Pisa (Italy); Londrillo, P. [Physics Department, University of Bologna and INFN, Bologna (Italy); Maggiore, M. [INFN LNL, Legnaro (Italy); Nassisi, V., E-mail: vincenzo.nassisi@le.infn.it [LEAS, University of Salento and INFN, Lecce (Italy); Sinigardi, S. [Physics Department, University of Bologna and INFN, Bologna (Italy); Tramontana, A.; Schillaci, F. [INFN LNS Catania, Catania (Italy); Scuderi, V. [INFN LNS Catania, Catania (Italy); Institute of Physics of the ASCR, Prague (Czech Republic); Turchetti, G. [Physics Department, University of Bologna and INFN, Bologna (Italy); and others

    2014-07-15

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  20. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  1. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan

    2006-01-01

    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  2. CAS CERN Accelerator School. Synchrotron radiation and free electron lasers. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the tenth specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Synchrotron Radiation and Free-electron Lasers'. A similar course was already given at Chester, UK in 1989 and whose proceedings were published as CERN 90-03. However, recent progress in this field has been so rapid that it became urgent to present a revised version of the course. Starting with a review of the characteristics of synchrotron radiation there follows introductory lectures on electron dynamics in storage rings, beam insertion devices, and beam current and radiation brightness limits. These themes are then developed with more detailed lectures on lattices and emittance, wigglers and undulators, current limitations, beam lifetime and quality, diagnostics and beam stability. Finally lectures are presented on linac and storage ring free-electron lasers. (orig.)

  3. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-01-01

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity

  4. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  5. Preformed transient gas channels for laser wakefield particle acceleration

    International Nuclear Information System (INIS)

    Wood, W.M.

    1994-01-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10 17 W/cm 2 are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10 17 cm -3 are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas

  6. Electron beams accelerated with two TW class lasers. Preplasma effect of target materials

    International Nuclear Information System (INIS)

    Bergaux, M.; Gobet, F.; Tarisien, M.; Hannachi, F.; Aleonard, M.M.; D'Humieres, E.; Nicolai, P.; Tikhonchuk, V.; Malka, G.; Debayle, A.

    2010-01-01

    preplasma created by the ASE preceding the main pulse. Namely, in the first series of experiments with low Z targets the ASE creates a large scale plasma that expands spherically from the laser focal spot. The characteristic density scale length is much larger than the laser focal spot and consequently the main pulse interacts essentially with a weakly inhomogeneous low density plasma. These conditions are very favorable for the efficient electron acceleration and a formation of a collimated electron beam. On the contrary, in the second series of a weaker ASE, or in the experiences with higher Z targets, the size of preplasma is comparable or even smaller than the focal spot size. Consequently, the efficiency of acceleration is much lower and the beam divergence is much higher due to the density curvature radius comparable to the focal spot. Hydrodynamic simulations of the ASE interaction with the targets and the kinetic PIC simulations of electron acceleration have confirmed this assertion. Acknowledgements. We acknowledge the Conseil Regional d'Aquitaine, IN2P3/CNRS, the Institut Laser Plasma and LaserLab for financial supports during experiments as well as LOA and IOQ laser staff help.

  7. Mid-infrared lasers for energy frontier plasma accelerators

    Directory of Open Access Journals (Sweden)

    I. V. Pogorelsky

    2016-09-01

    Full Text Available Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO_{2} lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO_{2} laser technology.

  8. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  9. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    Science.gov (United States)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  10. Free-electron lasers considered for CEBAF

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Spinoff development of industrial free-electron lasers is in prospect for an industry-universitylaboratory consortium centred at the Continuous Electron Beam Accelerator Facility in Newport News, Virginia, site of the CEBAF 4 GeV superconducting radiofrequency (SRF) accelerator, now being commissioned (see page 42). Together with several US corporations and universities, the Laboratory is now also addressing the potential of smaller SRF electron accelerators for ''driving'' free-electron lasers (FELs)

  11. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    International Nuclear Information System (INIS)

    Sahai, Aakash A.

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a 0 >1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary

  12. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  13. Design and Status of the ELIMED Beam Line for Laser-Driven Ion Beams

    Directory of Open Access Journals (Sweden)

    G. A. Pablo Cirrone

    2015-08-01

    Full Text Available Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. The peculiarities of laser-driven beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles, due to the wide energy spread, the angular divergence and the extremely intense pulses. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical applications beamline, developed by INFN-LNS (Catania, Italy and installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams in multidisciplinary applications. ELIMED will represent the first user’s open transport beam line where a controlled laser-driven ion beam will be used for multidisciplinary and medical studies. In this paper, an overview of the beamline, with a detailed description of the main transport elements, will be presented. Moreover, a description of the detectors dedicated to diagnostics and dosimetry will be reported, with some preliminary results obtained both with accelerator-driven and laser-driven beams.

  14. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Directory of Open Access Journals (Sweden)

    J. M. Cole

    2018-02-01

    Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30  MeV.

  15. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    International Nuclear Information System (INIS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-01-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target

  16. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  17. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    International Nuclear Information System (INIS)

    Cline, David B.

    2016-01-01

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  18. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  19. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  20. Advanced Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.

    2005-02-14

    The research into advanced acceleration concepts for electron linear accelerators being pursued at SLAC is reviewed. This research includes experiments in laser acceleration, plasma wakefield acceleration, and mmwavelength RF driven accelerators.

  1. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  2. Acceleration of Electrons in a Diffraction Dominated IFEL

    CERN Document Server

    Musumeci, Pietro; Pellegrini, Claudio; Ralph, J; Rosenzweig, J B; Sung, C; Tochitsky, Sergei Ya; Travish, Gil

    2004-01-01

    We report on the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected ina 50 cm long undulator strongly tapered both in period and field amplitude. A CO2 10 μ m laser with power >300 GW is used as the IFEL driver. The Rayleigh range of the laser (1.8cm) is shorter than the undulator length so that the interaction is diffraction dominated. Few per cent of the injected particles are trapped in stable accelerating buckets and electrons with energies up to 35 MeV are detected on the magnetic spectrometers. Experimental results on the scaling of the accelerator characteristics versus input parameters like injection energy, laser focus position and laser power are discussed. Three dimensional simulations are in good agreement with the electron energy spectrums observed in the experiment and indicate that substantial energy exchange between laser and electron beam only occurs in the firs...

  3. Betatron radiation from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schnell, Michael

    2014-01-01

    The presented thesis investigates the processes which lead to the generation of highenergetic X-ray radiation, also known as ''betatron radiation'', by means of a relativistic laser-plasma interaction. The generated betatron radiation has been extensively characterized by measuring its radiated intensity, energy distribution, far-field beam profile, and source size. It was shown for the first time that betatron radiation can be used as a non-invasive diagnostic tool to retrieve very subtle information on the electron acceleration dynamics within the plasma wave. Furthermore, a compact polarimeter setup has been developed in a unique experiment in which the polarization state of the laser-plasma generated betatron radiation was measured in single-shot mode. This lead to a detailed study of the orientation of the electron trajectory within the plasma interaction. By controlling the injection of the electrons into the plasma wave it was demonstrated that one can tune the polarization state of the emitted X-rays. This result is very promising for further applications, particularly for feeding the electrons into an additional conventional accelerator or a permanent magnet based undulator for the production of intense X-ray beams. During this work, the experimental setup for accelerating electrons and generating high-energy X-ray beams was consistently improved: to enhance both its reliability and stability. Subsequently, the betatron radiation was used as a reliable diagnostic tool of the electron dynamics within the plasma. Parallel to the experimental work, 3-Dimensional Particle-In-Cell (3D-PlC) simulations were performed together with colleagues from the University of Duesseldorf. The simulations included the electron acceleration and the X-ray generation processes together with the recoil force acting on an accelerating electron caused by the emitted radiation during which one can also ascertain its polarization state. The simulations proved to be in good agreement

  4. Radio-isotope production using laser Wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-01-01

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu 61 was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator

  5. Laser wakefield acceleration using wire produced double density ramps

    Directory of Open Access Journals (Sweden)

    M. Burza

    2013-01-01

    Full Text Available A novel approach to implement and control electron injection into the accelerating phase of a laser wakefield accelerator is presented. It utilizes a wire, which is introduced into the flow of a supersonic gas jet creating shock waves and three regions of differing plasma electron density. If tailored appropriately, the laser plasma interaction takes place in three stages: Laser self-compression, electron injection, and acceleration in the second plasma wave period. Compared to self-injection by wave breaking of a nonlinear plasma wave in a constant density plasma, this scheme increases beam charge by up to 1 order of magnitude in the quasimonoenergetic regime. Electron acceleration in the second plasma wave period reduces electron beam divergence by ≈25%, and the localized injection at the density downramps results in spectra with less than a few percent relative spread.

  6. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  7. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  8. Development of a free-electron laser user facility for the extreme ultraviolet

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1987-01-01

    A free-electron laser user facility for scientific experimentation in the extreme ultraviolet is being developed at Los Alamos. A series of laser oscillators and amplifiers, driven by a single, rf linear accelerator, will generate broadly tunable, picosecond-pulse, coherent radiation from 1 nm to 400 nm. The design and output parameters of this facility are described, comparison with synchrotron radiation sources is made, and recent progress in developing the three primary components (electron beam, undulator, and resonator mirrors) is reviewed, and various categories of scientific applications are indicated

  9. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  10. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    Science.gov (United States)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  11. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  12. A new collective-field acceleration mechanism using a powerful laser

    International Nuclear Information System (INIS)

    Willis, W.J.

    1975-01-01

    Performance estimates for a linear accelerator for positive ions are presented. Focusing and acceleration is performed by means of a local, strong modulation of a relativistic electron beam using the electromagnetic field of a laser. For high-power laser beams of 1010 watts per square wavelength, the accelerating field strength can be several GV/m, assuming free electrons. Various interaction mechanisms of the laser beam with the electron beam are briefly discussed, notably inverse bremsstrahlung and interaction with the self-magnetic field of the electron beam. Finally, coherent effects and the injection of ions are dealt with. (author)

  13. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    C. J. Zhang

    2016-06-01

    Full Text Available A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  14. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    Directory of Open Access Journals (Sweden)

    W. Lu

    2007-06-01

    Full Text Available The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels. We demonstrate our results by presenting a sample particle-in-cell (PIC simulation of a 30   fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×10^{18}  cm^{-3} to produce an ultrashort (10 fs monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  15. Electron pulse shaping in the FELIX RF accelerator

    International Nuclear Information System (INIS)

    Weits, H.H.; Geer, C.A.J. van der; Oepts, D.; Meer, A.F.G. van der

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel through an undulator. It was demonstrated that the power level of the CSE critically depends on the settings of the accelerator. In this article we seek to explain these observations by studying the length and shape of the electron bunches as a function of the settings of the accelerator. A particle-tracking model was used to simulate the acceleration and transport processes. These include bunch compression in a 14-cell travelling wave buncher cavity, acceleration in a travelling wave linear accelerator, and passage through a (dispersive) chicane structure. The effect of the phase setting of the RF accelerating field with respect to the arrival time of the electron bunch in each accelerator structure was studied. The parameter range of the simulations is related to that of an actual free-electron laser experiment using these bunches. We find that, for specific settings of the accelerating system, electron pulses with a length of 350 μm FWHM (1 ps) are produced. The charge in the bunch rises steeply within a distance of 25 μm. This bunch shape explains the high level of coherently enhanced spontaneous emission observed in the FELIX laser. (author)

  16. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    Science.gov (United States)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  17. Construction and characterization of a laser-driven proton beamline at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Busold, Simon

    2014-05-15

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the German national LIGHT collaboration (Laser Ion Generation, Handling and Transport), has been used to create collimated, intense proton bunches at 10 MeV with 2.7% energy spread from the laser-driven source. Also, the feasibility of phase focusing experiments with this setup has been shown and simulations predict peak currents of 10{sup 10} protons/ns at this energy level. Furthermore, first quantitative measurements on the spectral properties of the also present co-moving electrons from such a proton source could be performed and their influence on the protons within the solenoid observed. Finally, permanent magnetic quadrupoles as an alternative first ion collimation system have been investigated experimentally.

  18. Electron acceleration by laser fields in a gas: Technical progress report

    International Nuclear Information System (INIS)

    Fontana, J.R.

    1987-01-01

    Alternative media are considered for inverse Cherenkov interactions, with refractive indices given for several neutral gases. Breakdown considerations are taken into account as well as elastic collisions. Properties of ionized gases are also discussed as they relate to the usefulness of plasmas as accelerator media. The planning for inverse Cherenkov interaction experiments at a CO 2 laser, 50 MeV electron linac test facility is being carried out

  19. Conceptual design of a bright electron injector based on a laser-driven photocathode rf electron gun

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, Y.J.; Hopkins, D.; Kim, K.J.; Kung, A.; Miller, R.; Sessler, A.; Young, T.

    1988-09-01

    Conceptual design of a bright electron injector for the 1 GeV high gradient test experiment, envisaged by the LLNL-SLAC-LBL collaboration on the Relativistic Klystron is presented. The design utilizes a high-brightness laser-driven rf photocathode electron gun, similar to the pioneering LANL early studies in concept (different parametrically however), together with achromatic magnetic bunching and transport systems and diagnostics. The design is performed with attention to possible use in an FEL as well. A simple but realistic analytic model including longitudinal and transverse space-charge and rf effects and extensive computer simulation form the basis of the parametric choice for the source. These parameters are used as guides for the design of the picosecond laser system and magnetic bunching section. 4 refs., 5 figs., 2 tabs

  20. Free-electron laser as a power source for a high-gradient accelerating structure

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-02-01

    A two beam colliding linac accelerator is proposed in which one beam is intense (approx. = 1KA), of low energy (approx. = MeV), and long (approx. = 100 ns) and provides power at 1 cm wavelength through a free-electron-laser-mechanism to the second beam of a few electrons (approx. = 10 11 ), which gain energy at the rate of 250 MeV/m in a high-gradient accelerating structure and hence reach 375 GeV in 1.5 km. The intense beam is given energy by induction units and gains, and losses by radiation, 250 keV/m thus supplying 25 J/m to the accelerating structure. The luminosity, L, of two such linacs would be, at a repetition rate of 1 kHz, L = 4. x 10 32 cm -2 s -1

  1. Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet

    Science.gov (United States)

    Boháček, K.; Kozlová, M.; Nejdl, J.; Chaulagain, U.; Horný, V.; Krůs, M.; Ta Phuoc, K.

    2018-03-01

    The generation of stable electron beams produced by the laser wakefield acceleration mechanism with a few-terawatt laser system (600 mJ, 50 fs) in a supersonic synthetic air jet is reported and the requirements necessary to build such a stable electron source are experimentally investigated in conditions near the bubble regime threshold. The resulting electron beams have stable energies of (17.4 ± 1.1) MeV and an energy spread of (13.5 ± 1.5) MeV (FWHM), which has been achieved by optimizing the properties of the supersonic gas jet target for the given laser system. Due to the availability of few-terawatt laser systems in many laboratories around the world these stable electron beams open possibilities for applications of this type of particle source.

  2. Laser driven electron-positron pair creation-kinetic theory versus analytical approximations

    International Nuclear Information System (INIS)

    Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.

    2013-01-01

    The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  4. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  5. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    International Nuclear Information System (INIS)

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  6. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  7. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    Directory of Open Access Journals (Sweden)

    K. D. Xiao

    2016-01-01

    Full Text Available Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA case.

  8. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  9. Staging of laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Steinke, S., E-mail: ssteinke@lbl.gov; Tilborg, J. van; Benedetti, C.; Geddes, C. G. R.; Gonsalves, A. J.; Nakamura, K.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daniels, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven (Netherlands); Swanson, K. K.; Shaw, B. H.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); University of California, Berkeley, California 94720 (United States)

    2016-05-15

    We present results of an experiment where two laser-plasma-accelerator stages are coupled at a short distance by a plasma mirror. Stable electron beams from the first stage were used to longitudinally probe the dark-current-free, quasi-linear wakefield excited by the laser of the second stage. Changing the arrival time of the electron beam with respect to the second stage laser pulse allowed reconstruction of the temporal wakefield structure, determination of the plasma density, and inference of the length of the electron beam. The first stage electron beam could be focused by an active plasma lens to a spot size smaller than the transverse wake size at the entrance of the second stage. This permitted electron beam trapping, verified by a 100 MeV energy gain.

  10. Optical design for increased interaction length in a high gradient dielectric laser accelerator

    OpenAIRE

    Cesar, D.; Maxson, J.; Musumeci, P.; Shen, X.; England, R. J.; Wootton, K. P.

    2018-01-01

    We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.

  11. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  12. High repetition rate laser-driven MeV ion acceleration at variable background pressures

    Science.gov (United States)

    Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.

    2017-10-01

    Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  13. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  14. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  15. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  16. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  17. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  18. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  19. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  20. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  1. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  2. Radiation pressure injection in laser-wakefield acceleration

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  3. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  4. Development of a high brightness electron gun for the Accelerator Test Facility at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Batchelor, K.; Kirk, H.; Sheehan, J.; Woodle, M.; McDonald, K.

    1988-01-01

    An electron gun utilizing a radio frequency accelerating cavity operating at a frequency of 2856 MHZ is described. Low level tests of a model cavity designed for use with either a thermionic or laser driven photo-cathode are presented. Calculations for a laser driven photo-cathode at a bunch charge of 1nC in a 5 psec bunch are given. With this configuration we hope to achieve an emittance (γσ/sub x/σ/sub x/) of 5 to 10 /times/ 10/sup /minus/6/ m /center dot/ rad at an output energy of 4.85 MeV for a 1nC charge. 9 refs., 10 figs., 4 tabs

  5. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  6. PIC simulation of electron acceleration in an underdense plasma

    Directory of Open Access Journals (Sweden)

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  7. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  8. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler, D.; Cary, J.R.

    2007-01-01

    An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a 0 = 2.6 and colliding beam of a 1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ∼ 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV

  9. A high-order corrected description of ultra-short and tightly focused laser pulses, and their electron acceleration in vacuum

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, P.X.; Kong, Q.; Chen, Z.; Ho, Y.K.

    2007-01-01

    Field expressions are derived for ultra-short, tightly focused laser pulses up to the second-order temporal correction and seventh-order spatial correction. To evaluate the importance of these corrections, we simulate these fields and investigate the final energy of the accelerated electrons. We vary the order of the corrected expressions, the pulse duration, and the beam waist. We find that electron capture is still an important and generic phenomenon in ultra-short, tightly focused laser pulses. While small differences in the electron acceleration are obtained for various orders of the corrected field equations relative to the paraxial field equations, there is no qualitative difference in the behavior of the electron. Furthermore, the temporal and spatial corrections are found to be correlated

  10. Linac technology for free-electron lasers

    International Nuclear Information System (INIS)

    Cooper, R.K.; Morton, P.L.; Wilson, P.B.; Keefe, D.; Faltens, A.

    1983-01-01

    The purpose of this paper is to concentrate on the properties of high-energy electron linear accelerators for use in free-electron lasers operating principally in the Compton regime. To fix our focus somewhat, we shall consider electron energies in the 20- to 200-MeV range and consider requirements for high-power free-electron lasers operating in the 0.5- to 10-μm range. Preliminary remarks are made on high-power free-electron laser amplifiers and oscillators and some desirable characteristics of the linacs that deliver electron beams for these devices. Both the high peak-current requirements of the amplifier and the high pulse-repetition frequency requirements of the oscillator can be met by present-day linac technology, although not necessarily by the same machine. In this papers second and third section, the technology of two rather different types of linear accelerators, the rf linac and the induction linac, is reviewed. In conclusion, applications to the Free Electron Lasers are stated

  11. 100 MeV laser accelerator demonstration and 1 GeV baseline design development. 1992 Annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The acceleration of relativistic electrons using the inverse Cerenkov effect was first demonstrated at Stanford University in 1981. Later, Fontana and Pantell developed an improved configuration for the inverse Cerenkov acceleration (ICA) process. A radially polarized laser beam is focused by an axicon onto the e-beam traveling through a gas-filled interaction region. The light intersects the e-beam at the Cerenkov angle θ c , where θ c = cos -1 (1/nβ), n is the index of refraction of the gas, and β is the ratio of the electron velocity to the speed of light. The goal of the present program is to demonstrate improved laser acceleration using the Fontana and Pantell configuration. The experiments will be performed on the Accelerator Test Facility (ATF) located at Brookhaven National Laboratory (BNL). This facility features a 50 MeV linac fed by a Nd:YAG (4ω) laser-driven photocathode e-gun. It will be upgraded to 65 MeV in the near future. The ATF also has a high peak power CO 2 laser, which was developed for laser acceleration studies. The present ICA experiment was divided into two phases. Phase 1 was to examine certain experimental issues in preparation for Phase 2. Phase 1 was successfully completed in the spring of 1992. Phase 2 is to perform the actual laser acceleration experiments on the ATF e-beam. The authors are currently waiting for the availability of the e-beam so that they can begin the Phase 2 experiments. In this section, the theory and experimental hardware for the present program are described. The results of the Phase 1 experiments are presented, and an update on the Phase 2 experiment is given

  12. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Jung, Daniel

    2012-01-01

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C 6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH 2 targets. Experimental data is presented, where the conversion efficiency into carbon C 6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  13. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  14. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  15. A laser plasma beatwave accelerator experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-03-01

    An experiment to test the laser plasma beatware accelerator concept is outlined. A heuristic estimate of the relevant experimental parameters is obtained from fluid theory and considerations of wave-particle interactions. Acceleration of 10 MeV electrons to approximately 70 MeV over a plasma length of 3 cm appears to be feasible. This corresponds to an accelerating gradient of approximately 2.5 GeV/m

  16. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  17. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  18. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    International Nuclear Information System (INIS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-01-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments

  19. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  20. On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces

    Science.gov (United States)

    May, Joshua Joseph

    The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only

  1. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  2. Optimization of laser parameters to obtain high-energy, high-quality electron beams through laser-plasma acceleration

    International Nuclear Information System (INIS)

    Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Upadhyay, Ajay K.; Jha, Pallavi

    2010-01-01

    The propagation of an intense (a 0 =3), short-pulse (L∼λ p ) laser through a homogeneous plasma has been investigated. Using two-dimensional simulations for a 0 =3, the pulse-length and spot-size at three different plasma densities were optimized in order to get a better quality beam in laser wakefield accelerator. The study reveals that with increasing pulse-length the acceleration increases, but after a certain pulse-length (L>0.23λ p ) the emittance blows-up unacceptably. For spot-sizes less than that given by k p0 r s =2√(a 0 ), trapping is poor or nonexistent, and the optimal spot-size is larger. The deviation of the optimal spot-size from this formula increases as the density decreases. The efficacy of these two-dimensional simulations has been validated by running three-dimensional simulations at the highest density. It has been shown that good quality GeV-class beams can be obtained at plasma densities of ∼10 18 cm -3 . The quality of the beam can be substantially improved by selecting only the high-energy peak; in this fashion an energy-spread of better than 1% and a current in tens of kA can be achieved, which are important for applications such as free-electron lasers.

  3. Laser-driven acceleration at ELI Beamlines - radioprotection aspects

    International Nuclear Information System (INIS)

    Olsovcova, V.; Fasso, A; Versaci, R.

    2014-01-01

    The international research centre ELI Beamlines, which is under construction in the village of Dolni Brezany near Prague, will exploit high power lasers of PW class to generate and accelerate beams of charged particles (up to tens of GeVs in energy). The beams will be used for both fundamental and applied research by experts from various scientific fields, including biology, medicine, plasma physics but also dosimetry and radiation protection. As laboratories operating lasers do not belong among the traditional 'radiation workplaces', there are no suitable specialized recommendations or standards available. Therefore, it is necessary to newly implement the existing general recommendations. Further, the generated mixed fields possess unique properties due to their production methods. As a result, the routinely used detection methods are not reliable or fail completely. (authors)

  4. A proof of principle experiment of laser wakefield accelerator

    International Nuclear Information System (INIS)

    Nakajima, K.; Enomoto, A.; Nakanishi, H.; Ogata, A.; Kato, Y.; Kitagawa, Y.; Mima, K.; Shiraga, H.; Yamakawa, K.; Downer, M.; Horton, W.; Newberger, B.; Tajima, T.

    1992-01-01

    Ultrashort super-intense lasers allow us to test a principle of the laser wakefield particle acceleration. The peak power of 30 TW and the pulse width of 1 ps produced by the Nd:glass laser system is capable of creating a highly-ionized plasma of a moderate density gas in an ultrafast time scale and generating a large amplitude plasma wave with the accelerating gradient of 2.5 GeV/m. Particle acceleration can be demonstrated by injecting a few MeV electrons emitted from a solid target by intense laser irradiation. (Author) 2 figs., 5 refs

  5. Phase and amplitude feedback control system for the Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Higgins, E.F.

    1985-01-01

    Phase and amplitude feedback control systems for the Los Alamos free-electron laser (FEL) are described. Beam-driven voltages are very high in the buncher cavity because the electron gun is pulsed at the fifth subharmonic of the buncher resonant frequency. The high beam loading necessitated a novel feedback and drive configuration for the buncher. A compensation cirucit has been added to the gun/driver system to reduce observed drift. Extremely small variations in the accelerator gradients had dramatic effects on the laser output power. These problems and how they were solved are described and plans for improvements in the feedback control system are discussed. 5 refs., 7 figs

  6. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    Science.gov (United States)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  7. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  8. Micron-scale resolution radiography of laser-accelerated and laser-exploded foils using an yttrium x-ray laser

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.; Celliers, P.; Moreno, J.C.; Mrowka, S.; Perry, T.S.; Wan, A.S.

    1994-09-01

    The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 angstrom, 80 eV, ∼200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility

  9. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    Science.gov (United States)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  10. Dose properties of a laser accelerated electron beam and prospects for clinical application

    International Nuclear Information System (INIS)

    Kainz, K.K.; Hogstrom, K.R.; Antolak, J.A.; Almond, P.R.; Bloch, C.D.; Chiu, C.; Fomytskyi, M.; Raischel, F.; Downer, M.; Tajima, T.

    2004-01-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25x25 cm2 field. An energy window (ΔE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to ΔE. However, since the falloff of the depth-dose curve (R 10 -R 90 ) and the dose rate both increase with ΔE, a tradeoff between minimizing (R 10 -R 90 ) and maximizing dose rate is implied. If ΔE is constrained so that R 10 -R 90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min-1

  11. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  12. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    Nuernberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10 12 W/cm 2 ) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 10 19 W/cm 2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat

  13. Enhancement of proton acceleration field in laser double-layer target interaction

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-01-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations

  14. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  15. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    Science.gov (United States)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  16. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  17. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    K. Svensson

    2016-05-01

    Full Text Available The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  18. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C; Gregori, G; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Makita, M

    2010-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  19. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  20. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  1. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  2. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  3. On electron betatron motion and electron injection in laser wakefield accelerators

    Czech Academy of Sciences Publication Activity Database

    Matsuoka, T.; McGuffey, C.; Cummings, P.G.; Bulanov, S.S.; Chvykov, V.; Dollar, F.; Horovitz, Y.; Kalinchenko, Galina; Krushelnick, K.; Rousseau, P.; Thomas, A.G.R.; Yanovsky, V.; Maksimchuk, A.

    2015-01-01

    Roč. 56, č. 8 (2015), s. 1-8 ISSN 0741-3335 Institutional support: RVO:68378271 Keywords : accelerators * beams and electromagnetism * nuclear physics * plasma physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.404, year: 2015

  4. Laser-plasma based electron acceleration studies planned at CAT, Indore

    International Nuclear Information System (INIS)

    Naik, P.A.; Gupta, P.D.

    2005-01-01

    The Laser Plasma Division at the Centre for Advanced Technology is engaged in a variety of R and D activities on laser-plasma interaction with special emphasis on laser-matter interaction at ultra-high intensities. An important aspect of our future work is studies in laser-plasma based acceleration using an elaborate infrastructural set-up of ultra-fast laser and plasma diagnostic systems and recently acquired 10 TW, 50 fs Ti: Sapphire laser system. This paper presents outline of the planned studies in this field. (author)

  5. Report of the Working Group on Far Field Accelerators

    International Nuclear Information System (INIS)

    Cha-Mei Tang

    1992-01-01

    This report describes the accomplishments of the Working Group on Far Field Accelerators. In addition to hearing presentations of current research, the group produced designs for ''100 MeV'' demonstration accelerators, ''1 GeV'' conceptual accelerators and a small electron beam source. Two of the ''100 MeV'' designs, an Inverse Free Electron Laser (IFEL) and an Inverse Cerenkov Accelerator (ICA), use the CO 2 laser and the 50 MeV linac at the Advanced Test Facility (ATF) at Brookhaven National Laboratory (BNL), requiring only modest changes in the current experimental setups. By upgrading the laser, an ICA design demonstrated 1 GeV acceleration in a gas cell about 50 cm in length. For high average power accelerators, examples based on the IFEL concept were also produced utilizing accelerators driven by high average power FELs. The Working Group also designed a small electron beam source based on the inverse electron cyclotron resonance concept. Accelerators based on the IFEL and ICA may be the first to achieve ''100 MeV'' and ''1 GeV'' energy gain demonstration with high accelerating gradients

  6. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  7. Laser-controlled collective ion accelerator

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Destler, W.W.; Rodgers, J.; Segalov, Z.

    1986-01-01

    We report first results from a new collective accelerator experiment in which a laser-controlled channel of ionization is used to control the propagation of the potential well at the front of an intense relativistic electron beam injected at currents above the space-charge limit. The controlled acceleration of protons at the rate of 40 MeV/m over a distance of 45 cm is reported, in good agreement with experimental design values

  8. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams.

    Science.gov (United States)

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing

    2017-07-07

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  9. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  10. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  11. ELYSE, a new picosecond electron accelerator at Orsay

    International Nuclear Information System (INIS)

    Belloni, J.D.; Gaillard, M.; Monard, H.; Larbre, J.-P.; Gobert, F.; Mostafavi, M.; Lampre, I.; Marignier, J.-L.

    2003-01-01

    ELYSE is a new instrument allowing to study fast kinetics processes at picosecond range by the complementary techniques of pulse radiolysis and laser photochemistry which was installed by the Laboratoire de Chimie Physique, University Paris-Sud, at Orsay. It was designed and constructed by the Linear Accelerator Laboratory, Orsay. The accelerator is a RF photocathode electron gun type which will deliver electron pulses of less than 5 ps FWHM. The Cs 2 Te cathode was chosen because of its high efficiency and long life time. Photoelectrons are generated by a picosecond synchronized laser system with a normal incidence. The charge per pulse is 1 nC with a dark current less than 1 % and a repetition frequency 1 to 50 Hz. Other detailed specifications of the accelerator, of the laser and of the optical spectroscopy detection set-up are described

  12. Free-electron laser results

    International Nuclear Information System (INIS)

    Stein, W.E.; Brau, C.A.; Newnam, B.E.; Warren, R.W.; Winston, J.; Young, L.M.

    1981-01-01

    The Los Alamos free-electron laser (FEL) amplifier experiment was designed to demonstrate high efficiency for transfer of energy from an electron beam to a light beam in the magnetic field of a tapered wiggler. Initial results indicate an energy transfer consistent with theory. Distinct groups of decelerated electrons as well as accelerated electrons are clearly present in the energy spectrum of electrons emerging from the wiggler when the laser light is present. The observed energy decrease for the electrons captured in the decelerating bucket is approx. 6% and the average decrease of the entire energy distribution is approx. 2% for the conditions of these initial measurements

  13. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  14. Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality

    Directory of Open Access Journals (Sweden)

    F. Stephan

    2010-02-01

    Full Text Available The photoinjector test facility at DESY, Zeuthen site (PITZ, was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL applications like the free-electron laser in Hamburg (FLASH and the European x-ray free-electron laser (XFEL. In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43  MV/m at the photocathode and the other at about 60  MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.26±0.13  mm mrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mm mrad.

  15. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  16. Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers

    Directory of Open Access Journals (Sweden)

    P. Piot

    2003-03-01

    Full Text Available Energy recovering an electron beam after it has participated in a free-electron laser (FEL interaction can be quite challenging because of the substantial FEL-induced energy spread and the energy antidamping that occurs during deceleration. In the Jefferson Lab infrared FEL driver accelerator, such an energy recovery scheme was implemented by properly matching the longitudinal phase space throughout the recirculation transport by employing the so-called energy compression scheme. In the present paper, after presenting a single-particle dynamics approach of the method used to energy recover the electron beam, we report on experimental validation of the method obtained by measurements of the so-called “compression efficiency” and “momentum compaction” lattice transfer maps at different locations in the recirculation transport line. We also compare these measurements with numerical tracking simulations.

  17. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio [Univ. of Pisa (Italy)

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  18. Diagnostics for advanced laser acceleration experiments

    International Nuclear Information System (INIS)

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure

  19. Megawatt-class free electron laser concept for shipboard self-defense

    International Nuclear Information System (INIS)

    Todd, Alan M.M.; Colson, William B.; Neil, George

    1997-01-01

    An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high-power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in an FEL driven by a superconducting RF accelerator is attractive. Configuration options and the key development issues for such a system are described

  20. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  1. Electron accelerators: History, applications, and perspectives

    International Nuclear Information System (INIS)

    Martins, M.N.; Silva, T.F.

    2014-01-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs. - Highlights: ► We present an outlook on sources of radiation, focusing on electron accelerators. ► We review important advances for the development of modern electron accelerators. ► We outline advances that allowed for brighter synchrotron light sources. ► We describe the history of the development of electron accelerators in Brazil

  2. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    Science.gov (United States)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  3. 3D printing of gas jet nozzles for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

  4. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  5. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O' Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  6. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    OpenAIRE

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  7. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P.; Auroux, E. [Laboratoire de Combustion et de Detonique (UPR 9028 CNRS), ENSMA, BP 109, Teleport 2, Chasseneuil du Poitou, 86960 Futuroscope Cedex (France)

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  8. Electron accelerators: History, applications, and perspectives

    Science.gov (United States)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  9. Collective ion acceleration via laser controlled ionization channel

    International Nuclear Information System (INIS)

    Destler, W.W.; O'Shea, P.G.; Rodgers, J.; Segalov, Z.

    1987-01-01

    Initial results from a successful laser-controlled collective ion acceleration experiment at the University of Maryland are presented. In the experiment, positive ions are trapped in the potential well at the head of an intense relativistic electron beam injected at current levels above the space charge limit. Seed ions for acceleration are provided by puff valve injection of a neutral gas cloud localized to within 3 cm of the injection point. Control over the acceleration of the well and the ions is then achieved by means of a laser-generated ionization channel produced by passing the light from a Q-switched ruby laser through a series of partially and fully reflecting mirrors in such a way as to provide time-sequenced laser ionization of a target located on the drift tube wall. Using this system, controlled acceleration of protons at a rate of approximately 40 MV/m has been demonstrated over a distance of about 50 cm

  10. ELIMED, future hadrontherapy applications of laser-accelerated beams

    International Nuclear Information System (INIS)

    Cirrone, Giuseppe A.P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-01-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum

  11. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, Giuseppe A.P. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Carpinelli, Massimo [INFN Sezione di Caglari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, Giacomo; Gammino, Santo [INFN-LNS, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Korn, Georg [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Maggiore, Mario [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); INFN-LNL, Legnaro (Italy); Manti, Lorenzo [University Federico II of Naples, Dip.to di Scienze Fisiche, Naples (Italy); Margarone, Daniele; Prokupek, Jan [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Renis, Marcella [University of Catania, Catania (Italy); Romano, Francesco [INFN-LNS, Catania (Italy); Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Schillaci, Francesco, E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Tomasello, Barbara [University of Catania, Catania (Italy); Torrisi, Lorenzo [INFN-LNS, Catania (Italy); Dip. to di Fisica, University of Messina, Messina (Italy); Tramontana, Antonella [INFN-LNS, Catania (Italy); Velyhan, Andriy [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum.

  12. Design and optimization of a compact laser-driven proton beamline.

    Science.gov (United States)

    Scisciò, M; Migliorati, M; Palumbo, L; Antici, P

    2018-04-19

    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 18  W·cm -2 ), represent a complementary if not outperforming source compared to conventional accelerators, due  to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm 2 . We briefly discuss the results in the context of applications in the domain of Cultural Heritage.

  13. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    homogeneity and take into account the available amount of space inside the vacuum chamber. Together with additional Helmholtz coils inside the target chamber (diameter of 0.8 m) the direction of the homogeneous magnetic field can be varied. Furthermore, a new concept of a proper gas source composed of a fast pressure booster made of non-magnetizable materials and a fast-opening non-magnetic valve with a supersonic nozzle attached had to be designed in order to produce polarized gas jets with adequate density profiles. The pre-polarized gas is delivered at a low pressure (3 bar) which is not suitable for an efficient laser-driven ion acceleration. Hence, the {sup 3}He gas pressure has to be increased tenfold. Prevalent opening mechanisms being used in commercial solenoid valves are not applicable for spin-polarized gases. A piezo-driven and a pressure-driven valve in combination with a novel booster made of unprohibited materials fulfill the requirements.

  14. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  15. Proton acceleration experiments and warm dense matter research using high power lasers

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C R D; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Gregori, G

    2009-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  16. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  17. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  18. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  19. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Science.gov (United States)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  20. Modeling of inverse Cherenkov laser acceleration with axicon laser-beam focusing

    International Nuclear Information System (INIS)

    Romea, R.D.; Kimura, W.D.

    1990-01-01

    Acceleration of free electrons by the inverse Cherenkov effect using radially polarized laser light focused through an axicon [J. P. Fontana and R. H. Pantell, J. Appl. Phys. 54, 4285 (1983)] has been studied utilizing a Monte Carlo computer simulation and further theoretical analysis. The model includes effects, such as scattering of the electrons by the gas, and diffraction and interference effects of the axicon laser beam, that were not included in the original analysis of Fontana and Pantell. Its accuracy is validated using available experimental data. The model results show that effective acceleration is possible even with the effects of scattering. Sample results are given. The analysis includes examining the issues of axicon focusing, phase errors, energy gain, phase slippage, focusing of the e beam, and emittance growth

  1. Ultra fast imaging of a laser wake field accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saevert, Alexander; Schnell, Michael; Nicolai, Maria; Reuter, Maria; Schwab, Matthew B.; Moeller, Max [Friedrich-Schiller-Universitaet, Jena (Germany); Mangles, Stuart P.D.; Cole, Jason M.; Poder, Kristjan; Najmudin, Zulfikar [The John Adams Institute Imperial College, London (United Kingdom); Jaeckel, Oliver; Paulus, Gerhard G.; Spielmann, Christian; Kaluza, Malte C. [Friedrich-Schiller-Universitaet, Jena (Germany); Helmholtz Institut Jena, Jena (Germany)

    2014-07-01

    Ultra intense laser pulses are known to excite plasma waves with a relativistic phase velocity. By harnessing these waves it is possible to generate quasi-monoenergetic, ultra-short electron pulses with kinetic energies from 0.1 to 2 GeV by guiding the laser pulse over several Rayleigh lengths. To further improve the stability of these particle pulses and ultimately to be able to tailor the energy spectrum toward their suitability for various applications, the physics underlying the different acceleration scenarios need to be understood as completely as possible. To be able to resolve the acceleration process diagnostics well-suited for this plasma environment need to be designed and realized. By using sub-10 fs probe pulses we were able to freeze the transient accelerating structure in the plasma. We will present the first results of an experiment which was carried out with the 30 TW JETi Laser and a few cycle probe pulse at the Institute of Optics and Quantum Electronics Jena. The resulting snapshots show unprecedented details from the laser plasma interaction and allow a direct comparison to computer simulations.

  2. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  3. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  4. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  5. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  6. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  7. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  8. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  9. Measurement and interpretation of laser accelerated protons at GSI

    International Nuclear Information System (INIS)

    Al-Omari, Husam

    2014-01-01

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  10. Measurement and interpretation of laser accelerated protons at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, Husam

    2014-04-28

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  11. First electrons from the new 220 TW Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME) at Frascati National Laboratories (LNF)

    International Nuclear Information System (INIS)

    Levato, T.; Calvetti, M.; Anelli, F.; Batani, D.; Benocci, R.; Cacciotti, L.; Cecchetti, C.A.; Cerafogli, O.; Chimenti, P.; Clozza, A.; Drenska, N.; Esposito, A.; Faccini, R.; Fioravanti, S.; Gamucci, A.; Gatti, C.; Giulietti, A.; Giulietti, D.; Labate, L.; Lollo, V.

    2013-01-01

    A new era of laser based plasma accelerators is emerging following the commissioning of many high power laser facilities around the world. Extremely short (tens of fs) laser pulses with energy of multi-joules level are available at these newly built facilities. Here we describe the new 220 TW FLAME facility. In particular we discuss the laser system general layout, the main measurements on the laser pulse parameters, the underground target area. Finally we give an overview of the first results of the Self-Injection Test Experiment (SITE), obtained at a low laser energy. This initial low laser energy experimental campaign was necessary for the validation of the radio-protection shielding (Esposito, 2011 [1]) we discuss here. With respect to our preliminary configuration, with a pulse duration of 30 fs and a focusing optic of F/15, we discuss here the minimum laser energy requirements for electron acceleration and the forward transmitted optical radiation

  12. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  13. Laser-driven magnetic reconnection in the multi-plasmoid regime

    Science.gov (United States)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2017-10-01

    Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.

  14. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  15. Construction and characterization of a laser-driven proton beamline at GSI

    OpenAIRE

    Busold, Simon

    2014-01-01

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the...

  16. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  17. Self-injection threshold in self-guided laser wakefield accelerators

    Directory of Open Access Journals (Sweden)

    S. P. D. Mangles

    2012-01-01

    Full Text Available A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance—a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k_{p}r_{b} required for trapping is not constant but varies slowly with density and find excellent agreement with this model.

  18. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  19. X-band rf driven free electron laser driver with optics linearization

    Directory of Open Access Journals (Sweden)

    Yipeng Sun (孙一鹏

    2014-11-01

    Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.

  20. Interaction of an ultra-intense laser pulse with a dense plasma: heating and transport of electrons and ions

    International Nuclear Information System (INIS)

    Toupin, Catherine

    1999-01-01

    This work was aimed at characterizing the acceleration and transport of the plasma electrons and ions during the interaction of an ultra-intense laser pulse with a dense plasma. Our main tool was numerical simulation with kinetic particle-in-cell codes. During the interaction, the target surface electrons are accelerated up to high energies inward the target. The electron acceleration mechanisms are proved to strongly depend on the density profile deformation due to the ion motion. This motion has been studied as well and different acceleration mechanisms have been identified: pushing in of the target surface by the laser ponderomotive pressure, acceleration by an electrostatic shock or by breaking of an ion acoustic wave, acceleration by the space charge force induced by radial expulsion of the electrons out of a channel drilled in a slightly overcritical plasma. The electrons and ions accelerated at the target surface penetrate inward the target and interact with it. The competition between the focussing due to the self-generated magnetic field, driven by the very important electron current, and the scattering induced by collisions has been analyzed. In a homogeneous, hot plasma, the existence of an optimum current for which the propagation length without scattering is maximum, has been demonstrated. The electron drag-back effect of the axial electric field is also proved to be more significant than the friction due to collisions. By penetrating into the target, the accelerated ions can produce neutrons if the target is deuterated. A strong correlation between the ion acceleration mechanisms and the angle and energy distributions of the produced neutrons has been underlined. (author) [fr

  1. Trojan horse underdense plasma photocathode acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Karger, Oliver [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; DESY, FLA Arbeitsbereich Beschleunigerphysik, Hamburg (Germany); Koenigstein, Thomas; Pretzler, Georg [Duesseldorf Univ. (Germany). Inst. fuer Laser- und Plasmaphysik; Rosenzweig, James B. [California Univ., Los Angeles, CA (United States). Dept. of Physics and Astronomy; Hidding, Bernhard [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; DESY, FLA Arbeitsbereich Beschleunigerphysik, Hamburg (Germany); California Univ., Los Angeles, CA (United States). Dept. of Physics and Astronomy

    2013-07-01

    Relativistic electron beams with small emittance and size are needed for advanced applications such as free electron lasers (FEL) and other coherent light sources in the X-ray regime. Present laser plasma acceleration schemes are hardly able to provide electron beams of sufficient quality on a stable level. The concept of underdense plasma photocathode acceleration uses a beam-driven plasma wave in a two component gas mixture consisting a low ionisation threshold medium (LIT) and a high ionisation threshold medium (HIT) and a low-energy laser pulse. Shapeable electron bunches with sub-fs-length and unprecedented normalized emittance down to 10{sup -9} m rad can be produced. Based on this method, laboratory-sized-experimental setups may enable performance much better than today's conventional coherent hard X-ray sources. The presentation discusses the basic concept, shows recent numero-analytical results and the R and D towards experimental realization.

  2. ELECTRON ACCELERATION BY MULTI-ISLAND COALESCENCE

    International Nuclear Information System (INIS)

    Oka, M.; Phan, T.-D.; Krucker, S.; Fujimoto, M.; Shinohara, I.

    2010-01-01

    Energetic electrons of up to tens of MeV are created during explosive phenomena in the solar corona. While many theoretical models consider magnetic reconnection as a possible way of generating energetic electrons, the precise roles of magnetic reconnection during acceleration and heating of electrons still remain unclear. Here, we show from two-dimensional particle-in-cell simulations that coalescence of magnetic islands that naturally form as a consequence of tearing mode instability and associated magnetic reconnection leads to efficient energization of electrons. The key process is the secondary magnetic reconnection at the merging points, or the 'anti-reconnection', which is, in a sense, driven by the converging outflows from the initial magnetic reconnection regions. By following the trajectories of the most energetic electrons, we found a variety of different acceleration mechanisms but the energization at the anti-reconnection is found to be the most important process. We discuss possible applications to the energetic electrons observed in the solar flares. We anticipate our results to be a starting point for more sophisticated models of particle acceleration during the explosive energy release phenomena.

  3. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1997-01-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 μm wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design

  4. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  5. Fundamentals for a terahertz-driven electron gun

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Olsen, Filip D.; Iwaszczuk, Krzysztof

    2017-01-01

    dipoles placed with a small gap in between. We conclude that it is possible to make ultra-bright electron bunches shorter than 1 ps and accelerate them to the low keV range over 15 mu m using only a single THz transient. Our results are fundamental to understand and build a THz-driven electron gun....

  6. All-Optical Quasi-Phase Matching for Laser Electron Acceleration

    Science.gov (United States)

    2016-06-01

    center wavelength of 800 nm and FWHM bandwidth of ∼30 nm. The laser beam was split into three by two beam splitters ; the first reflected beam served...Figure 4.6(e) shows a small parabolic phase which is due to small chirp caused by a beam splitter in the system. Figures 4.6(d) and 4.6(f) show curves...basis for implementation of this laser acceleration technique. A deterministic test particle simulation has been developed to facilitate the design of the

  7. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    Plateau, G.

    2011-10-01

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  8. Measurements of beat wave accelerated electrons in a toroidal plasma

    International Nuclear Information System (INIS)

    Rogers, J.H.

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v e ph e (v ph was varied 2v e ph e ), where v e is the electron thermal velocity, (kT e /m e ) 1/2 . As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted

  9. Studies of ion acceleration in a one meter laser controlled collective accelerator

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; Striffler, C.D.; Yao, R.L.

    1991-01-01

    The basic concept behind the Laser Controlled Beam-front Experiment has been described in detail in previous reports. In the experiment, control over the propagation of a virtual cathode at the front of an intense relativistic electron beam is achieved by a time-sequenced plasma channel produced by laser-target interactions. Ions are trapped and accelerated by the very strong electric fields (50-400 MV/m) at the virtual cathode

  10. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    International Nuclear Information System (INIS)

    Mayet, Frank

    2012-12-01

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  11. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  12. Temporary acceleration of electrons while inside an intense electromagnetic pulse

    Directory of Open Access Journals (Sweden)

    Kirk T. McDonald

    1999-12-01

    Full Text Available A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron, and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons.

  13. Gamma-neutron activation experiments using laser wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.

    2001-01-01

    Gamma-neutron activation experiments have been performed with relativistic electron beams produced by a laser wakefield accelerator. The electron beams were produced by tightly focusing (spot diameter ≅6 μm) a high power (up to 10 TW), ultra-short (≥50 fs) laser beam from a high repetition rate (10 Hz) Ti:sapphire (0.8 μm) laser system, onto a high density (>10 19 cm -3 ) pulsed gasjet of length ≅1.5 mm. Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Measured γ-ray and neutron yields are also found to be in reasonable agreement with simulations using a Monte Carlo transport code

  14. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    International Nuclear Information System (INIS)

    Geyko, V.I.; Fraiman, G.M.; Dodin, I.Y.; Fisch, N.J.

    2009-01-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 10 17 cm -3 . Assuming a/γ g 0 ∼ g , where a is the normalized laser field, and γ g is the group velocity Lorentz factor. Yet γ ∼ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted

  15. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  16. Dynamics of electron bunches at the laser–plasma interaction in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.I., E-mail: vmaslov@kipt.kharkov.ua; Svystun, O.M., E-mail: svistun_elena@mail.ru; Onishchenko, I.N.; Tkachenko, V.I.

    2016-09-01

    The multi-bunches self-injection, observed in laser–plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser–plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  17. Parametric emittance measurements of electron beams produced by a laser plasma accelerator

    Science.gov (United States)

    Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.

  18. Suppression of beam-break-up in a standing wave free electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Kim, J.S.

    1994-03-01

    Various schemes are examined in this study on the suppression of beam break-up (BBU) in a standing wave free electron laser two-beam accelerator (SWFEL/TBA). Two schemes are found to be not only able to effectively suppress the BBU but at the same time have minimum effect on the microwave generation process inside the SWFEL cavities. One is making the cavity-iris junction sufficiently gradual and the other is stagger-tuning the cavities

  19. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A.J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W.P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  20. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm 2 and 0.4 pC/ps/mm 2 , respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.